Failure Detectors in Omission Failure Environments

Danny Dolev* Roy Friedman!

We study failure detectors in asynchronous environments
using a novel generic formulation of failure detection prop-
erties which generalizes several previous works. We focus on
an asynchronous environment that admits message omission
failures. We adapt Chandra and Toueg’s definitions of fail-
ure detection Completeness and Accuracy to the omission
failure model, and define an eventual weak failure detector,
OW(om), that allows any majority of the processes that be-
come connected (and remain connected) to reach a Consen-
sus decision despite any number of transient communication
failures in their past. We provide a protocol that solves the
[sz;lj—resilient Consensus problem in this model, regardless
of past omissions. Our protocol is efficient in that it requires
a process to buffer and re-send only the last issued message
to overcome omissions.

Generic failure detectors

We study failure detectors in asynchronous environments pa-
rameterized by the fault types that they detect, such as crash
failure or Byzantine failure, and by a notion of “mutual co-
operation”: In every failure model, a co-operation predicate
— coop — is defined among all pairs of processes such that
coopy(q) denotes that ¢ is “co-operating” with p. coopy(p)
will usually be taken to mean that p is correct. For example,
in the crash failure model coop,(g) is chosen to mean “both
p and g are correct (not crashed)”.

Failure detectors are defined by combination of the prop-
erties below; Completeness indicates success in detecting pro-
cesses for which coop is false, and Accuracy indicates the
ability to avoid suspecting processes for which coop is true:

Strong coop Completeness If coop,(p) and —coopy(g) then
p eventually permanently suspects g.

Weak coop Completeness If coop,(p) and —coopy(gq) then
there is some process r s.t. coop,(p) and r eventually
permanently suspects g.

*Computer Science Institute, The Hebrew University of Jerusalem.

TDepartment of Computer Science, Cornell University.

*Computer Science Institute, The Hebrew University of Jerusalem.
Supported by the Israeli Ministry of Science.

SAT&T Labs—Research, Florham Park, New Jersey, USA.

To appear in the ACM Symp. on Prin. of Distributed Com-
puting (PODC 97), August 1997.

Idit Keidar ¥ Dahlia Malkhi®

Eventual Strong coop Accuracy If coop,(g) then there is
a time after which p does not suspect g.

Eventual Weak coop Accuracy If coop,(p) then there ex-
ists some r s.t. coopp(r) and there exists a time after
which for every g, s.t. coopy(r), ¢ does not suspect r.

Note that in the definitions above p and r may be the same
process.

Omission failure model

Using our generic framework we characterize the omission
failure model and the failure detector classes in it.

In our model, processes may fail by crashing and in addi-
tion messages may be omitted. The members of the largest
permanently connected component in the system® are consid-
ered correct. Processes outside this component are faulty. By
a permanently connected component we mean a group of pro-
cesses that communicate without loss and do not receive any
messages from processes outside the component. Members of
a majority connected component are called core processes.

We define an eventual weak failure detector for the omis-
sion failure environment, GW(om), satisfying Weak om Com-
pleteness and Fventual Weak om Accuracy. Our definition
makes use of a majority stability predicate om: omy(q) holds
if p and ¢ are core processes (i.e., belong to a permanently
connected majority-component).

Weak om Completeness If there exists some core process
p then for every non-core process ¢ there exists some
core process r that eventually permanently suspects gq.

Eventual om Weak Accuracy If there exists some core
process p then there exists some core process r such
that there is a time after which no core process ¢ sus-
pects r.

In the full paper, we present a protocol for solving [VLQ;JJ—
resilient Consensus (where n is the number of processes in the
system) in the omission failure environment using a failure
detector in GW(om). Our protocol is practical in the sense
that processes need only buffer and retransmit the last mes-
sage they sent, and the only source of unboundedness in the
size of messages stems from the need to carry a counter. Fi-
nally, we argue that OGW(om) is the weakest failure detector
for solving I_"Q;lj—resilient Consensus in the omission failure
model.

Lif there are two or more such components of equal size, determin-
istically choose one among them.



