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Abstract

We consider the problem of DUST: Different URLs with Similar Text. Such duplicate URLSs
are prevalent in web sites, as web server software often uses aliases and redirections, trans-
lates URLs to some canonical form, and dynamically generates the same page from various
different URL requests. We present a novel algorithm, DustBuster, for uncovering DUST;
that is, for discovering rules for transforming a given URL to others that are likely to have
similar content. DustBuster is able to mine DUST effectively from previous crawl logs or web
server logs, without examining page contents. Verifying these rules via sampling requires
fetching few actual web pages. Search engines can benefit from this information to increase
the effectiveness of crawling, reduce indexing overhead as well as improve the quality of
popularity statistics such as PageRank.



List of Symbols

Abbreviations and Acronyms

DUST — Different URLs with Similar Text.

e DUST rules — A transformation rule that when applied to one URL results in a different
URL likely to have similar text.

e DustBuster — The algorithm presented in this thesis for detecting DUST rules.

e URL — Uniform Resource Locator.

Symbols

e D, — The set of disqualified envelopes for a pair («, 3).

e E,(a) — the set of envelopes of o in URLs that: (1) appear in the URL list £; and
(2) have « as a substring.

e [, — Interval between the minimum and the maximum size values encountered for URL
u in a URL list.

e L — The URL list.

e M AD — The maximum absolute deficiency used by the “Eliminating Redundant Rules”
phase to compare the support of two rules.

e M RD — The maximum relative deficiency used by the “Eliminating Redundant Rules”
phase to compare the support of two rules.

e MS — The minimum support size. Any rules below this support are not considered.

e MW — The maximum window size considered during the “Eliminating Redundant
Rules” phase.

e O — Buckets bigger than some threshold T are called overflowing, and all envelopes

pertaining to them are denoted collectively by O.



e S — The maximum substring length.

e SUPPORT.(¢) — The set of instances (u1, ug) of the DUST rule ¢, for which both u; and
ug appear in the URL list L.

e 7' — The maximum bucket size.



Chapter 1

Introduction

The pDUST problem. The web is abundant with DUST, Different URLs with Similar
Text [18, 12]. For example, the URLs http://google.com/news and http://news.google.~
com return similar content. Adding a trailing slash or /index.html to either will still return
the same result. Many web sites define links, redirections, or aliases, such as allowing the
tilde symbol ~ to replace a string like /people, /users, or homepages. Some web servers
are case insensitive, and can be accessed with capitalized URL names as well as lower case
ones. Some sites allow different conventions for file extensions— .htm and .html; others allow
for multiple default index file names — index.html and default.html. A single web server
often has multiple DNS names, and any can be typed in the URL. As the above examples
illustrate, DUST is typically not random, but rather stems from some general rules, which
we call DUST rules, such as “77 — “/people”, or omitting “/default.html” at the end of
the URL. Additionally, our findings show that these rules remain valid for months and even
years and are valid for new pages as well as old ones.

Moreover, DUST rules are typically not universal. Many are artifacts of a particular web
server implementation. For example, URLs of dynamically generated pages often include
parameters; which parameters impact the page’s content is up to the software that generates
the pages. Some sites use their own conventions; for example, a forum site we studied allows
accessing story number “num” both via the URL http://domain/story?id=num and via
http://domain/story_num. Our study of the CNN web site has discovered that URLs of the
formhttp://cnn.com/money/whatever get redirected to http://money.cnn.com/whatever.
In this thesis, we focus on mining DUST rules within a given web site. We are not aware of
any previous work tackling this problem.

Knowledge about DUST rules can be very valuable for search engines as well as for large
scale investigation of the web, web caching, and web site traffic analysis. The fact that pages
do not have unique identifiers creates problems in almost every large scale software that
deals with the web. Knowledge about DUST rules allows for a canonical URL representation,
where each page has a single canonical name. Thus, canonization using DUST rules can reduce
crawling overhead, reduce indexing overhead, reduce caching overhead [18, 12|, and increase
the accuracy of any statistical study of web pages, e.g., computing their popularity [8,
17]. For example, in search engines, using knowledge about DUST rules can increase the



effectiveness of web crawling by eliminating redundant accesses to the same page via multiple
URLs. In one crawl we examined, the number of URLs fetched would have been reduced
by 26%. We focus on URLs with similar contents rather than identical ones, since different
versions of the same document are not always identical; they tend to differ in insignificant
ways, e.g., counters, dates, and advertisements. Likewise, some URL parameters impact
only the way pages are displayed (fonts, image sizes, etc.) without altering their contents.

Standard techniques for avoiding DUST are not based on discovering site-specific DUST
rules. Universal rules, such as adding http:// or removing a trailing slash are used, in order
to obtain some level of canonization. Additional DUST is found by comparing document
sketches such as shingles, which are hash-based summaries of page content. However, this
is conducted on a page by page basis, and all the pages must be fetched in order to employ
this technique. By knowing DUST rules, one can dramatically reduce the overhead of this
process. But how can one learn about site-specific DUST rules?

Detecting DUST from a URL list. Contrary to initial intuition, we show that it is
possible to discover likely DUST rules without fetching a single web page. We present an
algorithm, DustBuster, which discovers such likely rules from a list of URLs. Such a URL
list can be obtained from many sources including a previous crawl or the web server logs.
The rules are then verified (or refuted) by sampling a small number of actual web pages.

At first glance, it is not clear that a URL list can provide reliable information regarding
DUST, as it does not include actual page contents. We show, however, how to use a URL
list to discover two types of DUST rules: substring substitutions and parameter substitutions.
A substring substitution rule a — [ replaces an occurrence of the string o in a URL by
the string §. A parameter substitution rule replaces the value of a parameter in a URL by
some default value or removes the parameter altogether. Thanks to the standard syntax of
parameter usage in URLs, detecting parameter substitution rules is fairly straightforward.
Most of our work therefore focuses on substring substitution rules, which are similar to the
“replace” function in many editors.

DustBuster uses three heuristics, which together are very effective at detecting likely
DUST rules and distinguishing them from false rules. The first heuristic is based on the
observation that if a rule @« — 3 is common in a web site, then we can expect to find in
the URL list multiple examples of pages accessed both ways. For example, in the site where
story?id= can be replaced by story_, we are likely to see in the URL list many different
pairs of URLs that differ only in this substring; we say that such a pair of URLs is an
instance of the rule “story?id=" — “story_”. The set of all instances of a rule is called the
rule’s support. Our first attempt to uncover DUST is therefore to seek rules that have large
support.

Nevertheless, some of the rules that have large support are not DUST rules. For example,
when examining one site we found instances such as http://movie-forum.com/story_100
and http://politics-forum.com/story_100 which support the false rule “movie-forum”
— “politics-forum”. Another example of a false rule with large support is “17 — “27,
which emanates from instances like pic-1. jpg and pic-2.jpg, story_1 and story_2, and



lecture.1 and lecture.?2, none of which are DUST. Our second and third heuristics address
the challenge of eliminating such false rules.

The second heuristic is based on the observation that false rules tend to flock together.
For example in most instances of “1”7 — “2” one could also replace the “1” by other digits.
We therefore ignore rules that come in large groups.

Further eliminating false rules requires calculating the fraction of DUST in the support of
each rule. How could this be done without inspecting page content? Our third heuristic uses
cues from the URL list to guess which instances are likely to be DUST and which are not. In
case the URL list is produced from a previous crawl, we typically have document sketches
available for each URL in the list. Document sketches are short summaries that can be used
to estimate document similarity [9]. We can thus use the sketches to estimate the likelihood
that pairs of URLs are DUST and eliminate rules whose support does not contain sufficiently
many DUST pairs.

In case the URL list is produced from web server logs, document sketches are not available.
The only cue about the contents of URLs in these logs is the sizes of these contents. We thus
use the size field from the log to filter out instances (URL pairs) that have “mismatching”
sizes. The difficulty with size-based filtering is that the size of a dynamic page can vary
dramatically, e.g., when many users comment on an interesting story or when a web page
is personalized. To account for such variability, we compare the ranges of sizes seen in all
accesses to each page. When the size ranges of two URLs do not overlap, they are unlikely
to be DUST.

Having discovered likely DUST rules, another challenge that needs to be addressed is
eliminating redundant ones. For example, the rule “http://site-name/story?id=" —
“http://site-name/story_” will be discovered, along with many consisting of substrings
thereof, e.g., “?7id=" — “_”. However, before performing validations, it is not obvious which
rule should be kept in such situations— the latter could be either valid in all cases, or invalid
outside the context of the former. Nevertheless, we are able to use support information
from the URL list to remove many redundant likely DUST rules. We remove additional
redundancies after performing some validations, and thus compile a succinct list of rules.

Canonization. Once the correct DUST rules are discovered, we exploit them for URL
canonization. In the general case, the canonization problem is NP-hard. Nevertheless, we
have devised an efficient canonization algorithm that typically succeeds in transforming URLs
to a site-specific canonical form.

Experimental results. We experiment with DustBuster on four web sites with very differ-
ent characteristics. Two of our experiments use web server logs, and two use crawl outputs.
We find that DustBuster can discover rules very effectively from moderate sized URL lists,
with as little as 20,000 entries. Limited sampling is then used in order to validate or refute
each rule.

Our experiments show that up to 90% of the top ten rules discovered by DustBuster prior
to the validation phase are found to be valid, and in most sites 70% of the top 100 rules are



found to be valid. Furthermore, we show that DUST rules discovered by DustBuster may
account for 47% of the DUST in a web site and that using DustBuster can reduce a crawl by
26%.

The rest of this thesis is organized as follows. In Chapter 2, we review some related
work. We formally define what DUST rules are and state the DUST detection problem in
Chapter 3. Chapter 4 presents the basic heuristics our algorithm uses. DustBuster and the
canonization algorithm appear in Chapter 5. Chapter 6 presents experimental results. We
end with discussion and some concluding remarks in Chapter 7.



Chapter 2

Related Work

2.1 Canonization rules

2.1.1 Global canonization rules

The most obvious and naive way DUST is being dealt with today is through standard canon-
ization. URLs have a very standard structure [4]. The hostname may have many different
aliases. Different hostnames may return the exact same site. For example adding a “www” to
the base hostname often returns the same content. Choosing one hostname to identify each
site is a standard way to canonize a URL. Other standard canonization techniques include
replacing a “//” with a single “/” and removing the index.html suffix. However, site specific
DUST rules cannot be detected using these simple rules.

2.1.2 Site-specific canonization rules

Another method for discovering DUST rules is to examine the web server configuration file
and file system. In the configuration, file alias rules are defined. Each such rule allows a
directory in the web server to be accessed using a different name, an alias. By parsing the
web server configuration file [1] one could easily learn these rules. Further inspection of the
file system may uncover symbolic links. These too have the exact same effect.

There are three main problems with using this technique. The main problem is that
symbolic links and aliases are by no means the sole source of DUST rules. Other sources
include parameters that do not affect the content, different dynamic files that produce the
same content and many others. Our technique, therefore, can discover a wider range of DUST
rules, regardless of cause. The second problem is that each configuration file is different
according to the type and version of the web server. The third and final problem is that
once the files are parsed and processed the rules discovered would have to be transfered to
the search engine. Transferring these rules from the web server to the search engine may
be possible in the future if new protocols are defined and adopted. The Google Sitemaps
architecture [14] defines a protocol for web site managers to supply information about their
sites to search engines. This type of protocol can be extended to enable the web server to
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//
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send canonization rules to any party that wants such information. However, this protocol is
not widely adopted yet.

2.2 Detecting similarity between documents

The standard way of detecting similarity is by using document sketches, also known as
fingerprints, at the search engine’s site after information has been collected. Our approach
cannot replace the use of document sketches, since it does not find similar documents across
sites or similar documents whose associated URLs are not related to each other by some rule.
However, it is desirable to use our approach to complement the use of document sketches
in order to reduce the overhead of collecting redundant data, and increase the percentage
of unique pages found by crawling a given site. Moreover, since using document sketches
does not find rules, it cannot be used for URL canonization, which is important in order to
improve the accuracy of page popularity metrics.

Shingles [9] are perhaps the most well known technique for document sketches. A shingle
is a short string that represents the document. The document is viewed as a sequence of
words. A hash is calculated for every m consecutive word sequence. The minimal hash is the
documents shingle. The probability that the shingles are equal, is equal to the documents
similarity. We can use several hash functions and calculate several shingles to increase the
accuracy of the results.

In [22] and [13] a general framework for the detection of plagiarism and copy detection
is introduced: break down the document to chunks, retain a small number of chunks, create
digests of each chunk and store these chunks. The digests can then be used using any of
the possible resemblance measures to compare the two documents. This paper is interesting
because it builds a generalized sketching framework that highlights the choices you have
to make. They consider several chunking strategies: sentence, overlapping and hash based
breakpoints. They also examined several fingerprint selection based on the chunk size distri-
bution. One method, for example, retains the square root of the number of chunks, closest
to the median.

In [16] two techniques are combined to compare similar documents: Content-defined
Chunking (CDC) and bloomfilters. The CDC technique is used to determine how to split a
document into chunks while the bloomfilters are used to estimate the overlap between two
documents. Chunk boundaries in this technique are determined by computing the Rabin
fingerprints of consecutive overlapping 48-byte sequences. If the lower bits of the fingerprint
match some predetermined value a chunk boundary is set. This makes the chunks insensitive
to small changes in the text while allowing you to set the average chunk size. The chunks
are then hashed.

A bloom filter consists of m bits and k hash functions. Each hash function returns a
number between 1 and m. KEach element is hashed using the k hash functions and the
appropriate bits are set to 1. Bloomfilters are usually used to test membership in a set
efficiently. They are used here to estimate the similarity between the documents.

In [28] an interesting attempt is made to put several well known similarity measures into



a single framework. Using the framework one can then specify different similarity measures
using a @-expression of an eight-position string. This string specifies a whole space of possible
similarity measures. This space, however, could not be explored in any meaningful way.

2.3 Detecting mirror sites

One common source of near-duplicate content is mirroring. A number of previous works have
dealt with automatic detection of mirror sites on the web. There are two basic approaches
to mirror detection. The first method is based on the content itself. The documents are
downloaded and processed. Mirrors are detected by processing the documents to detect the
similarity between hosts. We will call these techniques “bottom-up”.

The second method uses meta information that may already be available such as a URL
list, the IP number associated with the host names and other techniques. We will call these
techniques “top-down”. These techniques are closer to what we are doing in this thesis.

In contrast to mirror detection, we deal with the complementary problem of detecting
DUST within one site. Mirror detection may exploit syntactic analysis of URLs and limited
sampling as we do. However, a major challenge that site-specific DUST detection must
address is efficiently discovering prospective rules out of a daunting number of possibilities
(all possible substring substitutions). In contrast, mirror detection focuses on comparing a
given pair of sites, and only needs to determine whether they are mirrors.

Bottom-up: based on content

In [10] Cho et al. deal with the replicated collections problem. They start by discussing
the difficulty of defining a replicated web collection: different versions, partial crawls and
different formats. A document collection is modeled as a graph; vertices are documents and
edges are hyperlinks between them. Two such collections, C; and C5 are similar if a mapping
exists M such that for every p € Cy, p is similar to M(p). Similarity between pages can
be defined using any of the methods in the previous section. It is interesting to note that
they assume similarity is transitive. The mapping between collections is restricted to being
one-to-one. The collections compared are restricted to being of equal size. Furthermore,
they require that pages deemed similar have at least a pair of incoming links from pages that
are also similar. Finally they define a similar cluster as a set of collections each of which is
similar to the other.

The algorithm initially finds trivial clusters by using a document similarity technique.
Each collection is of a single document. A trivial cluster graph is formed. A vertex represents
a trivial cluster. An edge exists between two trivial clusters if they can be merged. Trivial
clusters can be merged if each page in one trivial cluster has a link to a unique page in the
other. Finally the connected components of these graphs are merged into similar clusters.
This means that the algorithm prefers a large set of mirror sites with few pages in each
mirror to few mirror sites with many pages in each. They use the information collected to
reduce the next crawl by 48%.
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The algorithm is very different from ours. They operate on multiple sites and require
extensive analysis of the entire document collection. Our method operates on a single site
and requires very little processing and very few document fetches. Their technique requires
that the collection be equally sized. Our technique unifies both document similarity and
“missing” documents through the validation threshold. Their technique puts emphasis on
the link structure while ours puts the main emphasis on the documents existence.

[18] attempts to quantify the problem of URL aliases and its performance impact on
URL-indexed cache management. They show that aliased payloads, data requested using
different URLs, account for 54% of the traces they examined and 36% of the actual bytes
transfered. They also show that the 10% most popular payloads account for over 85% of http
transactions. They go over the causes of aliasing and categorize them according to whether
or not they reside on the same host and in the same absolute path. They find that 10% of
payload transfers to clients are redundant and 20% to a shared proxy.

Top-down: based on structure similarity

The top-down methods utilize common paths between mirror sites and common IP numbers
between host names to detect mirror candidate host pairs.

In [5] Bharat and Broder define mirror sites by saying that the two sites share a high
percentage of the paths and that these path reference similar documents. They detect
candidate host pairs by coordinately sampling the URLs from both sites and testing for
similarity. At the next stage they process the candidate host pairs, test if each pair is a
mirror and the extent of their overlap. To detect candidates they produce features for each
host and try to find a large overlap in features. The features are produced from the URL,
from its hostname and path segments. Non-alphanumeric characters are considered word
breaks. Each two consecutive word sequence is a feature. A position number is added to
the features produced from the path in order to make them more distinguishing. Other
optimizations used include converting the URLs to lowercase, eliminating frequent words
such as txt and html and tossing infrequent words as well. Features are weighted in inverse
proportion to the number of hosts they appear in. Another optimization they use is ignoring
features that appear within more than 20 hosts.

Each feature has a weight that is inversely proportional to the number of hosts which it
occurs in, giving host features four times the weight of path features. The similarity score
is simply the sum of shared feature weights. Calculating this score is straightforward. The
score is then normalized. Host pairs which share only one feature or share no path features
are eliminated. Finally each host pair is classified according to its content and structure
similarity.

As an optimization they do not consider hosts with few URLs as they are probably not
worth the added processing time. Further reduction is achieved by sampling the URLs by
accepting URLs only if the hash of their path segment yields 0 mod m. The value of m is
doubled every 20 URLs sampled. This is done to achieve a sub-linear relationship between
site size and sample, large sites have more URLs but will not dominate the list.  [20]
implements and evaluates the above algorithm.

11



The work [6] by Bharat, Broder et. al compares several top-down techniques. These are
all categorized by using the URLs, the IP addresses and even the hyperlinks but without
using the content itself. The first method lists hosts which have identical or highly similar IP
addresses. The second method detects host pairs that have URLs that are very similar. This
is done by extracting terms from the URLs and comparing them using their term vectors.
The third method examined seeks host pairs with common paths, and with documents
with similar paths sharing outlinks. The final method examined considers each host as one
big document and examines the links between these “super-documents”, mirror sites are
expected to link to common hosts.

The first observation made is that if two hosts are mapped to the same IP they are likely
to be mirrors. However, the more hosts being mapped to the same IP the more likely it is
that these are not mirrors but rather something like virtual hosting servers. In the URL
string matching scheme they considered several alternatives: terms from the hostname, full
path, path prefixes and word bigrams from the path segment. The third method, extends the
path based method by examining outlinks. If two common paths share a fraction f of their
outlinks, above a certain threshold, they pass the test. A threshold is used because different
mirrors have different update frequencies. The outlinks are turned relative to increase the
accuracy of this technique.

Finally when examining the hosts as one big document they use term vector matching as
well. Each host represents a document. The terms this time are the hosts that the outlinks
point at. Each document is represented as a vertex on a graph. A link from document A
to document B indicates an outlink exists from host A to host B. Document frequency, the
number of documents in which the terms appear is exactly the in-degree of the host-term.
The term frequency is not used in the term weight but rather only in term selection, choosing
the terms with the highest frequency.

By combining all methods they achieve a precision of 0.57 with a recall of 0.86 when
considering the top 100,000 results.

2.4 Analysis of web logs

Various commercial tools as well as papers are available on analyzing web logs. We are not
aware of any previous algorithm for automatically detecting DUST rules nor of any algorithm
for harvesting information for search engines from web access logs. Some companies (e.g.,
(27, 25, 3]) have tools for analyzing web logs, but their goals are very different from ours.
This type of software usually provides such statistics as: popular keyword terms, entry pages
(first page users hit), exit pages (pages users use to move to another site), information about
visitor paths and many more.

In [7] Borges et al. model the users browsing session using probabilistic regular grammars.
The goal is to build a grammar which generates strings that represent the users navigational
trails. They define a user navigation session as a sequence of page requests such that no
two consecutive requests are separated by more than X seconds. They define a subclass of
probabilistic regular grammar which they call hypertext probabilistic grammar. The user

12



navigation sessions are then modeled as text in the hypertext probabilistic language defined
by hypertext probabilistic grammar. The hypertext probabilistic grammar consists of a state
for each page plus two more states S for start and F for finish. The probability of production
from one state to another is modeled according to the number of times these two pages
appeared consecutively in user navigation sessions. The probability of production from the
start state is a linear combination of the probability that this page appeared first in a user
navigation session and the probability that a random page in the log would be this page.

The results we are looking for are the trails that best characterize the user’s behavior. The
results are found by traversing the state graph with a special case of directed-graph Depth
First Search. The results are then pruned using two methods. The probability of switching
from the start state to the first state in the sequence has to be above the support threshold 6.
The derivation probability of a sequence is calculated by multiplying the probabilities along
the links between the states, not including the link from the start state. The derivation
probability has to be above the cut-point A\. The navigational paths with support above 6
and confidence above \ are the rules we are looking for.

2.5 Grammatical inference

The problem we consider resembles the problems of grammatical inference [11] and learning
one variable pattern languages, but fundamentally differs from them since URLs are typically
not generated as context-free grammars or one variable languages. Moreover, these problems
learn from a collection of positive examples, a sequence of strings all of which are in the
language learned. Our data, the URL list, usually does not necessarily follow any such
language (apart from basic structure of the URL ), and contains many URLs that have no
relation to the rules we are trying to discover.

In [23] Reischuk et al. learn a one variable language from positive examples. They define
the general problem as follows. Let L be any language, a text of L is an infinite sequence
of string in L which should contain all of L. eventually. The learner is presented with the
text incrementally and outputs hypothesis on L which should converge to the language L.
A one-variable pattern (X U x)™ consists of a non empty string above the alphabet > and a
variable x. Pat denotes the set of all such patterns. Let m € Pat and let 7[z/u] denote the
string resulting in substituting all occurrences of x in 7 with u. The language generated by
pattern 7 L(m) := {y € ¥"|3u € X1,y = w[z/u]}. The goal of this paper is to learn such
languages with sub-quadratic bounds on the expected total learning time.

Given a sequence of example strings X7, Xs, ... the algorithm should output a series of one-
variable patterns 11, s, ... such that the v; converges to a pattern ¢ such that L(mw) = L(v).
Unlike the general problem defined above, they do not assume that {X;|i € Nt} = L,
meaning they do not assume that every string in the language is eventually represented.
Additional assumptions are made about the distribution of the substitution strings used
to generate the text. These assumptions are necessary to ensure the boundaries placed on
learning time as well as correctness. Infinite length example strings are not allowed of course,
otherwise we could not guarantee the algorithm would stop. Another assumption prevents

13



the substitution strings themselves following a pattern and thus creating two languages that
cannot be distinguished.

The algorithm itself starts by assuming the first string is the pattern. The prefix and
suffix of the pattern are learned from the strings by choosing the largest prefix and suffix of
all seen so far. It is shown that once the prefix and suffix strings of the pattern are correct
the hypothesis pattern is only refined with every new string that is presented.

2.6 Mining association rules

Although our problem also resembles the problem of mining association rules [2], the two
problems differ substantially. Whereas the input of data mining algorithms consists of a
sample of complete list of items that belong together, our input includes individual items
from different lists. The absence of complete lists renders techniques used therein inapplicable
to our problem. Another difference is that rules cannot be deduced solely from the input
URL list, since the content of the corresponding documents is not available from this list.

2.7 Unsupervised learning of synonyms

Learning synonyms and name aliases has been researched in the past. The DustBuster
algorithm finds words that in some sense “mean” the same thing. DustBuster does not,
however, learn synonyms. The structure of sentences is different from the structure of URLs.
Thus, DustBuster algorithm solves the problem of detecting likely substring substitution
rules in different way and does not use the following methods.

In [26] Turney compares two methods of unsupervised learning of synonyms. Latent
Semantic Analysis (LSA) is a method first introduced in [19]. LSA is based on Singular
Value Decomposition (SVD). The idea is that SVD naturally breaks down document space
into concept vectors.

The basic idea is as follows. We start off with a matrix X. The rows represent words,
the columns represent text fragments. This could be sentences, paragraphs or documents.
Landauer and Dumais [19] used X directly measuring the cosine of inner product of the
word vectors, this lead to a 36.8% score in the TOEFL. Applying SVD results in a matrix
that can be viewed as a words by concepts matrix. Using the exact same method with this
matrix lead to a 64.4% score.

In PMI the basic idea is again that of co-occurrence. A word is characterized by the
words it appears with. So given a problem word and several possible synonyms marked
choice; we score the choices using score(choice;) = % = p(problem|choice;).
PMI-IR attempts to estimate these scores using the Web throué;h search engines.

[21] deals with the problem of automatic identification of similar words given a corpus.
Initially dependency triples are extracted from each sentence. A dependency triple consists
of two words and the grammatical relationship between them. For example “I have a brown
fox” yields the triple (have subject I). The similarity between the words w; and w, is defined
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as the amount of information contained in the words they share a relationship with divided
by the sum of the total information contained in all their relationships. The similarity
between words is used to build a thesaurus by searching word pairs that are most similar to
each other.
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Chapter 3

Problem Definition

URLs. We view URLs as strings over an alphabet ¥ of tokens. Tokens are either alphanu-
meric strings or non-alphanumeric characters. In addition, we require every URL to start
with the special token ~ and to end with the special token $ (= and $ are not included in X).
For example, the URL http://www.site.com/index.html is represented by the following
sequence of 15 tokens: ~ http,:,/,/,www,.site,.,com,/,index,..html,$. We denote by U the
space of all possible URLs.

A URL wu is valid, if its domain name resolves to a valid IP address and its contents can
be fetched by accessing the corresponding web server (the http return code is not in the 4xx
or 5xx series). If u is valid, we denote by Doc(u) the returned document®.

pUST. Two valid URLs uy, us are called DUST, if their corresponding documents, DOC(u)
and DOC(ug), are “similar”. To this end, any method of measuring the similarity between
two documents can be used. For our implementation and experiments, we use the popular
resemblance measure due to Broder et al. [9].

DUST rules. In this thesis, we seek general rules for detecting when two URLs are DUST.
A DUST rule ¢ is a relation over the space of URLs. ¢ may be a many-to-many relation.
Every pair of URLs belonging to ¢ is called an instance of ¢. The support of a ¢, denoted
SUPPORT(¢), is the collection of all its instances.

We discuss two types of DUST rules: substring substitutions and parameter substitutions.
Parameter substitution rules either replace the value of a certain parameter appearing in the
URL with a default value, or omit this parameter from the URL altogether. Thanks to the
standard syntax of parameter usage in URLSs, detecting parameter substitution rules is fairly
straightforward. Most of our work therefore focuses on substring substitution rules, which
are similar to the “replace” function in many editors. A substring substitution rule o — (3
is specified by an ordered pair of strings («, 3) over the token alphabet . (In addition, we
allow these strings to simultaneously start with the token ~ and/or to simultaneously end
with the token $.) Instances of substring substitution rules are defined as follows:

'poc(u) may include software error messages returned from the web server even though u is valid
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Definition 1. (Instance of a substring substitution rule) A pair u;, us of URLSs is an instance
of a substring substitution rule a — [ if and only if there exist strings p, s s.t. u; = pas and

uy = ppfs.

For example, the pair of URLs http://www.site.com/index.html and http://www.site-
.com is an instance of the DUST rule “/index.html$” — “$”.

The DUST problem. Our goal is to detect DUST and eliminate redundancies in a collection
of URLs belonging to a given web site S. This is solved by a combination of two algorithms,
one that discovers DUST rules from a URL list, and another that uses them in order to
transform URLs to their canonical form.

A URL list is a list of records consisting of: (1) a URL; (2) the http return code; (3)
the size of the returned document; and (4) the document’s sketch. The last two fields are
optional. This type of list can be obtained either from the web server logs or from a previous
crawl. Note that the URL list is typically only a (non-random) sample of the URLs that
belong to the web site.

For a given web site S, we denote by Ug the set of URLs that belong to S. A DUST rule
¢ is said to be valid w.r.t. S, if for each u; € Ug and for each uy s.t. (uy,us) is an instance
of ¢, us € Us and (uq,usy) is DUST.

A DUST rule detection algorithm is given a list £ of URLs from a web site S and outputs
an ordered list of DUST rules. The algorithm may also fetch pages (which may or may not
appear in the URL list). The ranking of rules represents the confidence of the algorithm in
the validity of the rules.

Note that we did not define until now what a web site is, nor do we limit the scope of
the problem to any such definition. The implicit assumption in this case is only that the
URL list is a representative sample of some URL collection and that the rules learned will
be valid to the entire URL collection. The URL collection may be limited to a single web
site, to a certain set of domain names or to a specific directory on the web site. Regardless
of the way the URL collection is defined we learn rules specific to that URL collection. For
convenience we will define such a URL collection to be a site.

Canonization. Let R be an ordered list of DUST rules that have been found to be valid
w.r.t. to some web site S. We would like to define what is a canonization of the URLs in
Us using the rules in R. To this end, we assume that application of any rule ¢ € R to any
URL u € Ug results in a URL ¢(u) that also belongs to Us (this assumption holds true in
all the data sets we experimented with)?. The rules in R naturally induce a labeled graph

Gr on Ug: there is an edge from u; to uy labeled by ¢ if and only if u 2, ug. Since the
dissimilarity between every two adjacent URLs in G is at most €, the dissimilarity between
URLs that are connected by a path of length k is at most ke (dissimilarity respects the
triangle inequality). We conclude that if Gg has a bounded diameter (as it does in the data

2There may exist several ways of applying a rule to a URL. Our discussion assumes that one standard
way is always chosen.
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sets we encountered), then every two URLs connected by a path are similar. A canonization
which maps every URL w to some URL that is reachable from u would thus make sense,
because the original URL and its canonical form are guaranteed to be DUST.

A set of canonical URLs is a subset CUg C Ug that is reachable from every URL in Ug
(equivalently, CUg is a dominating set in the transitive closure of Gg). A canonization is
any mapping C : Us — CUg that maps every URL u € Ug to some canonical URL C(u),
which is reachable from u by a directed path. Our goal is to find a small set of canonical
URLs and a corresponding canonization, which is efficiently computable.

Finding the minimum size set of canonical URLs is intractable, due to the NP-hardness
of the minimum dominating set problem. Fortunately, our empirical study indicates that for
typical collections of DUST rules found in web sites, efficient canonization is possible. Thus,
although we cannot design an algorithm that always obtains an optimal canonization, we
will seek one that maps URLs to a small set of canonical URLs, and always terminates in
polynomial time.

Metrics. There are three measures that we use to evaluate DUST detection and canoniza-
tion. The first measure is precision—the fraction of valid rules among the rules reported by
the DUST detection algorithm. The second and most important measure is the discovered
redundancy—the amount of redundancy eliminated in a crawl. Formally, it is defined as the
difference between the number of unique URLs in the crawl, before and after canonization,
divided by the former.

The third measure is coverage: given a large collection of URLs that includes DUST, what
percentage of the duplicate URLs is detected. The number of duplicate URLs in a given
URL list is defined as the difference between the number of unique URLs and the number of
unique document sketches. Since we do not have access to the entire web site, we measure
the achieved coverage within the URL list. We count the number of duplicate URLs in the
list before and after canonization, and the difference between them divided by the former is
the coverage.

One of the standard measures of information retrieval is recall, which may seem an ap-
propriate measure for our problem as well. In our case, recall would measure what percent of
all correct DUST rules is discovered. However, it is clearly impossible to construct a complete
list of all valid rules to compare against, and therefore, recall is not directly measurable in
our case, and is replaced by coverage as explained above.

As for performance, we use four complexity measures: (1) running time; (2) storage space
(in secondary storage); (3) memory complexity; and (4) number of web pages fetched.

Clearly, there are tradeoffs between the complexity metrics and the success metrics. For
example, an algorithm that fetches a large number of web pages is more likely to achieve
precision than one that fetches few or none. We therefore contrast precision with the number
of web pages fetched, and also study the precision attained when none are fetched.
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Chapter 4

Basic Heuristics

Our algorithm for extracting likely string substitution rules from the URL list uses three
heuristics: the large support heuristic, the small buckets heuristic, and the similarity likeli-
ness heuristic. Our empirical results provide evidence that these heuristics are effective on
web-sites of varying scopes and characteristics.

4.1 Large support heuristic

Our first heuristic is the following:

Large Support Heuristic
The support of a valid DUST rule is large.

For example, if a rule “index.html$” — “$” is valid, we should expect many instances
witnessing to this effect, e.g., www.site.com/d1/index.html vs. www.site.com/d1/ and
www.site.com/d3/index.html vs. www.site.com/d3/. We would thus like to discover rules
of large support. Note that valid rules of small support are not very interesting anyway,
because the savings gained by applying them are negligible.

Finding the support of a rule on the web site requires knowing all the URLs associated
with the site. Since the only data at our disposal is the URL list, which is unlikely to be
complete, the best we can do is compute the support of rules in this URL list. That is,
for each rule ¢, we can find the number of instances (uy,us) of ¢, for which both u; and
uy appear in the URL list. We call these instances the support of ¢ in the URL list and
denote them by SUPPORT.(¢). If the URL list is long enough, we expect this support to be
representative of the overall support of the rule on the web site.

Note that since |[SUPPORT.(a — [(3)| = |[SUPPORT,(8 — «)|, for every a and (3, our
algorithm cannot know whether both rules are valid or just one of them is valid. It therefore
outputs the pair «, § instead. Finding which of the two directions is valid is left to the final
phase of DustBuster.
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Characterization of support size

Given a URL list £, how do we compute the size of the support of every possible rule?
To this end, we introduce a new characterization of the support size. Consider a substring
a of a URL u = pas. We call the pair (p,s) the envelope of a in u. For example, if
u = http://www.site.com/index.html and o =“index”, then the envelope of a in w is
the pair of strings “"http://www.site.com/” and “.html$”. By Definition 1, a pair of
URLSs (u1,us) is an instance of a substitution rule « — [ if and only if there exists a shared
envelope (p, s) so that u; = pas and uy = pfs.

For a string «, denote by E,(a) the set of envelopes of o in URLs that satisfy the
following conditions: (1) these URLs appear in the URL list £; and (2) the URLs have «
as a substring. If o occurs in a URL u several times, then u contributes as many envelopes
to E.(a) as the number of occurrences of o in u. The following theorem shows that under
certain conditions, |Ez(a) N E-(B)| equals SUPPORT.(ov — (). As we shall see later, this
gives rise to an efficient procedure for computing support size, since we can compute the
envelope sets of each substring « separately, and then by join and sort operations find the
pairs of substrings whose envelope sets have large intersections.

Theorem 2. Let a # (3 be two distinct, non-empty, and non-semiperiodic strings. Then,
|SUPPORT,(av — )| = |Ez(a)) N EL ()]

A string « is semiperiodic, if it can be written as a = v¥4' for some string v, where
la| > ||, & > 1, 4* is the string obtained by concatenating k copies of the string v, and +'
is a (possibly empty) prefix of v [15]. If a is not semiperiodic, it is non-semiperiodic. For
example, the strings “a.a.a” and “/////” are semiperiodic, while the strings “a.a.b” and
“W////7 are not.

Unfortunately, the theorem does not hold for rules where one of the strings is either
semiperiodic or empty. For example, let o be the semiperiodic string “a.a” and g = “a”.
Let u; = http://a.a.a/ and let us = http://a.a/. There are two ways in which we can
substitute a with 8 in u; and obtain wus. Similarly, let v be “a” and ¢ be the empty string.
There are three ways in which we can substitute v with ¢ in u; to obtain us. This means
that the instance (uq, us) will be associated with three envelopes in E.(y) N Ez(0) and with
two envelopes in E(a) N E-(8) and not just one. Thus, when « or § are semiperiodic or
empty, |Ez(a)NE.(B)| can overestimate the support size. On the other hand, such examples
are quite rare, and in practice we expect a minimal gap between |E(a) N Ez(3)] and the
support size.

Proof of Theorem 2. To prove the identity, we will show a 1-1 mapping from SUPPORT (v —
B) onto Er(a) N Ez(B). Let (ug,us) be any instance of the rule @« — [ that occurs in L.
By Definition 1, there exists an envelope (p,s) so that u; = pas and uy = pfs. Note that
(p,s) € Eg(a) N E(f), hence we define our mapping as: f, 5(u1,u2) = (p,s). The main
challenge is to prove that f, s is a well defined function; that is, f, s maps every instance
(u1,usz) to a single pair (p, s). This is captured by the following lemma:
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Lemma 3. Let o # 3 be two distinct, non-empty, and non-semiperiodic strings. Then, there
cannot be two distinct pairs (p1,s1) # (P2, S2) s.t. pyasy = paasy and p15sy = pafss.

We are left to show that f is 1-1 and onto. Take any two instances (uy,us),(vy,vs) of
(o, B), and suppose that f, g(u1,u2) = fap(vi,v2) = (p,s). This means that u; = pas = vy
and uy = pfs = vy. Hence, necessarily (uj,us) = (vy,vs), implying f is 1-1. Take now
any envelope (p,s) € Eg(a) N Ez(3). By definition, there exist URLs uq,us € L, so that
uy = pas and ug = pfs. By Definition 1, (u,us) is an instance of the rule o — 3, and thus

fa,ﬁ(ul,uz) = (p,s). O

In order to prove Lemma 3, we show the following basic property of semiperiodic strings:

Lemma 4. Let a # (3 be two distinct and non-empty strings. If B is both a suffiz and a
prefix of «, then a must be semiperiodic.

Proof. Since (3 is both a prefix and a suffix of o and since v # 3, there exist two non-empty
strings By and (35 s.t.
o = Poff = B

Let k = L%J Note that k > 1, as |a| > |Bo|. We will show by induction on k that a = 353},

where (3 is a possibly empty prefix of (.

The induction base is k = 1. In this case, |G| > %, and as o = (o3, |5] < |Bo|- Since

BofB = s, it follows that 3 is a prefix of Fy. Thus, define 5} =  and we have:

a=fyf = 50/56-

laf
|Go]

L%j = k. As o = (3, then L%J =k — 12> 1. Hence, |B| > |fo| and thus Sy must be a

prefix of 3 (recall that By3 = [$32). Let us write 3 as:

B = fophr.

Assume now that the statement holds for |2 ] =k —1 > 1 and let us show correctness for

We thus have the following two representations of a:

a =[P = Pofol and o = (P2 = Bofi .

We conclude that:
ﬁ = 5152-

We thus found a string (1), which is both a prefix and a suffix of 5. We therefore conclude
from the induction hypothesis that

/6 = ﬁ(])c_lﬁ(lb
for some prefix () of . Hence,

a = o = By
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We can now prove Lemma 3:

Proof of Lemma 3. Suppose, by contradiction, that there exist two different pairs (p1, $1)
and (pg, s2) so that:
U = P1aSsy = Pa¥so (4-1)

Uy = p1351 = pa3ss. (4-2)

These equations together with the fact that (pi, s1) # (pe, S2) imply that both p; # po
and s; # so. Thus, by Equations (4.1) and (4.2), one of p; and ps is a proper prefix of the
other. Suppose, for example, that p; is a proper prefix of ps (the other case is identical). It
follows that s, is a proper suffix of s;.

Let us assume, without loss of generality, that |«| > |3|. There are two cases to consider:

Case (i): Both pja and p; 3 are prefixes of ps. This implies that also sy, s93 are suffixes
of s;.

Case (ii): At least one of pja and p; 3 is not a prefix of po.
Case (i): In this case, ps can be expressed as:
P2 = prapy = p1Bps,
for some strings pl, and pj. Thus, since |a| > |3, § is a prefix of a. Similarly:
s1 = Sjasy = s\ Bss.

Thus, [ is also a suffix of a. According to Lemma 4, « is therefore semiperiodic. A contra-
diction.

Case (ii): If pyav is not a prefix of py, o can be written as @ = a1 = ajae, for some
non-empty strings ag, aq, ag, as shown in Figure 4.1. By Lemma 4, « is semiperiodic. A
contradiction. The case that p;/3 is not a prefix of p, is handled in a similar manner. O

» p2

Figure 4.1: Breakdown of o in Lemma 3.
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4.2 Small buckets heuristic

While most valid DUST rules have large support, the converse is not necessarily true: there
can be rules with large support that are not valid. One class of such rules is substitutions
among numbered items, e.g., (lectl.ps,lect2.ps), (lectl.ps,lect3.ps), and so on. An-
other class is substitutions among values of a parameter, e.g., (day=1,day=2), (day=1,day=3),
etc. Some parameter substitutions are DUST and others are not. Moreover, the ranges of
many parameter values are too large to efficiently capture as a collection of substring sub-
stitutions (e.g., dates). We therefore do not want to capture parameter substitution rules in
this phase of the algorithm; we deal with them separately in Chapter 5.3.

We would like to somehow filter out the rules with “misleading” support. The support
for a rule & — (8 can be thought of as a collection of recommendations, where each envelope
(p,s) € Ex(a) N E(B) represents a single recommendation. Suppose now that one envelope
(p, s) is willing to give a recommendation to anybody (any rule) that asks for it, for example
““http://” — “77. Naturally its recommendations would lose their value. This type of
support only leads to many false rules being considered. This is the intuitive motivation for
the following heuristic to separate the valid DUST rules from false ones.

If an envelope (p,s) belongs to many envelope sets F.(a1), Er(as),..., Er(ay), then
it contributes to the intersections E.(c;) N Eg(a;), for all 1 < ¢ # j < k. The sub-
strings aq, ag, ..., constitute what we call a bucket. That is, for a given envelope (p, s),
bucket(p, s) is the set of all substrings « s.t. pas € L. An envelope pertaining to a large
bucket supports many rules.

Small Buckets Heuristic
Most of the support of valid DUST substring substitution rules is likely to belong to small
buckets.

4.3 Similarity likeliness heuristic

The above two heuristics use the URL strings alone to detect DUST. In order to raise the
precision of the algorithm, we use a third heuristic that better captures the “similarity
dimension”, by providing hints as to which instances are likely to be similar.

Similarity Likeliness Heuristic
The likely similar support of a valid DUST rule is large.

We show below that using cues from the URL list we can determine which URL pairs in the
support of a rule are likely to have similar content and which are not. This enables us to filter
out instances that are not DUST and thereby calculate the “likely similar support” of a rule.
The likely similar support, rather than the complete support, is used to determine whether
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a rule is valid or not. This heuristic turned out to be very important in removing invalid
rules. For example, in a forum web site we examined, the URL list included two sets of URLs
http://politics.domain/story_num and http://movies.domain/story_num with differ-
ent numbers replacing “num”. The support of the false rule “http://politics.domain” —
“http://movies.domain” was large, yet since the corresponding stories were very different,
the likely similar support of the rule was found to be small.

How do we use the URL list to estimate similarity between documents? The simplest case
is that the URL list includes a document sketch for each URL. Such sketches are typically
available when the URL list is the output of a previous crawl of the web site. Documents
sketches, such as the shingles of Broder et al. [9], can be used to estimate the similarities
among documents.

When the URL list is taken from web server logs, documents sketches are not available.
In this case we use document sizes as primitive sketches (document sizes are usually given by
web server software). We determine two documents to be similar if their sizes “match”. Size
matching, however, turns out to be quite intricate, because the same document may have
very different sizes when inspected at different points of time or by different users. This is
especially true when dealing with forums or blogging web sites. The URL list may provide
sizes of documents at different times, and therefore if two URLs have different “size” values
in the URL list, we cannot immediately infer that these URLs are not DUST. Instead, we
resort to a somewhat more refined strategy.

For each unique URL u that appears in the URL list, we track all its occurrences in the
URL list, and keep the minimum and the maximum size values encountered. We denote the
interval between these two numbers by I,. We now say that two URLs, u; and uy, have
mismatching sizes, if the intervals I,,, and I, are disjoint. That is, either the maximum size
of uy is smaller than the minimum size of uy or vice versa. Our experiments show that this
size matching heuristic is very effective in improving the precision of our algorithm, often
increasing precision by a factor of two.

While size matching is an effective heuristic, it also has its limitations. Valid DUST rules
may exist that will never be found when using the size heuristic. An example of such a DUST
rule is “ps” — “pdf” which was found in the academic site only when running DustBuster
without size matching. The reason is that such documents are likely to have consistently
different sizes although their contents are similar.
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Chapter 5

DustBuster

In this chapter we describe DustBuster—our algorithm for discovering site-specific DUST
rules. DustBuster has four phases. The first phase, presented in Section 5.1, uses the
URL list alone to generate a short list of likely DUST rules. The second phase, detailed in
Section 5.2, removes redundancies from this list. The next phase generates likely parameter
substitution rules and is discussed in Section 5.3. The last phase, presented in Section 5.4,
validates or refutes each of the rules in the list, by fetching a small sample of pages. The
last section discusses the application of the algorithm for DUST canonization.

5.1 Detecting likely DUST rules

Our strategy for discovering likely DUST rules, based on the heuristics described in the
previous chapter, is the following: we compute the size of the support of each rule that has
at least one instance in the URL list, and output the rules with largest support. Based
on Theorem 2, we compute the size of the support of a rule @« — [ as the size of the set
Er(a) N E(F). That is roughly what our algorithm does, but with three reservations:

(1) Based on the small buckets heuristic, we avoid considering certain rules by ignor-
ing large buckets in the computation of envelope set intersections. Buckets bigger than
some threshold T are called overflowing, and all envelopes pertaining to them are denoted
collectively by O and are not included in the envelope sets.

(2) Based on the similarity likeliness heuristic, we filter support by estimating the likeli-
hood of two documents being similar: We eliminate additional rules by filtering out instances
whose associated documents are unlikely to be similar in content. That is, for a given instance
u; = pas and uy = pfs, the envelope (p,s) is disqualified if u; and uy are found unlikely
to be similar using the tests introduced in Chapter 4.3. These techniques are provided as a
boolean function LikelySimilar which returns false only if the documents of the two input
URLs are unlikely to be similar. The set of all disqualified envelopes is then denoted D, g.

(3) In practice, substitutions of long substrings are rare. Hence, our algorithm considers
substrings of length at most S, for some given parameter S.

To conclude, our algorithm computes for every two substrings «a, 3 that appear in the
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URL list and whose length is at most S, the size of the set (Ez(a) N Ez(8)) \ (O U D, ).

1:Function DetectLikelyRules(URLList £)
2: create table ST (substring, prefix, suffix, size_range/doc_sketch)
3: create table IT (substringl, substring2)

4: create table RT (substringl, substring2, support_size)

5: for each record r € £ do

6: for /=0toSdo

7 for each substring « of r.url of length ¢ do

8 p := prefix of r.url preceding «

9: s := suffix of r.url succeeding «

10: add («, p, s, r.size_range/r.doc_sketch) to ST

11: group tuples in ST into buckets by (prefix,suffix)

12: for each bucket B do

13:  if (|B| = 1 or |B| > T) continue

14: for each pair of distinct tuples t1,t2 € B do

15: if (LikelySimilar(t;, t2))

16: add (t;.substring, to.substring) to IT

17: group tuples in IT into rule_supports by (substringl,substring?2)
18: for each rule_support R do

19:  t := first tuple in R
20:  add tuple (t.substringl, t.substring2, |R|) to RT
21: sort RT by support_size
22: return all rules in RT whose support size is > M S

Figure 5.1: Algorithm for discovering likely DUST rules.

Our algorithm for discovering likely DUST rules is described in Figure 5.1. The algorithm
gets as input the URL list £. It uses three tunable parameters— the maximum substring
length, S, the overflowing bucket size, T', and the minimum support size, M.S. We assume
the URL list has been pre-processed so that: (1) only unique URLs have been kept; (2) all
the URLSs have been tokenized and include the preceding ~ and succeeding $; (3) all records
corresponding to errors (http return codes in the 4xx and 5xx series) have been filtered out;
(4) for each URL, the corresponding document sketch or size range have been recorded.

The algorithm uses three tables: a substring table ST, an instance table IT, and a rule
table RT. Their attributes are listed in Figure 5.1. In principle, the tables can be stored in
any database structure; our implementation uses text files.

In lines 5-10, the algorithm scans the URL list, and records all substrings of lengths 0
to S (where S is the maximum substring length) of the URLs in the list. A substring of
length 0 represents the empty string, which occurs in some rules. For each such substring «,
a tuple is added to the substring table ST. This tuple consists of the substring «, as well as
its envelope (p, s), and either the URL’s document sketch or its size range. The substrings
are then grouped into buckets by their envelopes (line 11). Our implementation does this
by sorting the file holding the ST table by the second and third attributes. Note that two
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substrings «, § appear in the bucket of (p, s) if and only if (p,s) € Ez(a) N E.(5).

In lines 12-16, the algorithm enumerates the envelopes found. An envelope (p,s) con-
tributes 1 to the intersection of the envelope sets E(«) N E(3), for every a, 5 that appear
in its bucket. Thus, if the bucket has only a single entry, we know (p, s) does not contribute
any instance to any rule, and thus can be tossed away. If the bucket is overflowing (its size
exceeds T'), then (p, s) is also ignored (line 13).

In lines 14-16, the algorithm enumerates all the pairs («, 3) of substrings that belong to
the bucket of (p,s). If the documents associated with the URLs pas and pfs seem likely
to be similar either through size matching or document sketch matching (line 15), («, 5) is
added to the instance table IT (line 16).

The number of times a pair («, 3) has been added to the instance table is exactly the
size of the set (Ez(a) N Ex(B)) \ (O U D, ), which is our estimated support for the rules
a — (# and § — «. Hence, all that is left to do is compute these counts and sort the pairs
by their count (lines 17-22). The algorithm’s output is an ordered list of pairs. Each pair
representing two likely DUST rules (one in each direction). Only rules whose support is large
enough (bigger than M S) are kept in the list.

Complexity analysis. Let n be the number of records in the URL list and let m be the
average length (in tokens) of URLs in the URL list. We assume tokens are of constant length.
The size of the URL list is then O(mn) bits. We use O() to suppress logarithmic factors,
which are typically negligible.

The computation has two major bottlenecks. The first is filling in the instance table
IT (lines 12-16). Since the algorithm enumerates all the buckets in ST (there are at most
O(mnS) of these), and then enumerates each pair of substrings in each bucket, it could
possibly face a quadratic blowup. Yet, since overflowing buckets are ignored, then this
step takes only O(mnST?) time. The second bottleneck is sorting the URL list and the
intermediate tables. Since all the intermediate tables are of size at most O(mnST?), the
sorting can be carried in O(mnST?) time and O(mnST?) storage space. By using an efficient
external storage sort utility, we can keep the memory complexity O(l) rather than linear.
The algorithm does not fetch any pages.

5.2 Eliminating redundant rules

By design, the output of the above algorithm includes many overlapping pairs. For ex-
ample, when running on a forum site, our algorithm finds the pair (“.co.il/story?id=",
“.co.il/story.”), as well as numerous pairs of substrings of these, such as (“story?id=",
“story_”). Note that every instance of the former pair is also an instance of the latter. We
thus say that the former refines the latter. It is desirable to eliminate redundancies prior to
attempting to validate the rules, in order to reduce the cost of validation. However, when
one likely DUST rule refines another, it is not obvious which should be kept. In some cases,
the broader rule is always true, and all the rules that refine it are redundant. In other cases,
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the broader rule is false as a general rule, and is only valid in specific contexts identified by
the refining ones.

Nevertheless, in some cases, we can use information from the URL list in order to deduce
that a pair is redundant. When two pairs have exactly the same support in the URL list,
this gives a strong indication that the latter, seemingly more general rule, is valid only when
showing up at the context specified by the former rule. We can thus eliminate the latter rule
from the list.

We next discuss in more detail the notion of refinement and show how to use it to
eliminate redundant rules.

Definition 5. (Refinement) A rule ¢ refines a rule ¢ if SUPPORT(¢) C SUPPORT(%)).

That is, ¢ refines 1, if every instance (uj,us) of ¢ is also an instance of . Testing
refinement for substitution rules turns out to be easy:

Lemma 6. A substitution rule o — (' refines a substitution rule o — (3 if and only if there
exists an envelope (7y,0) s.t. o/ =~yad and ' = ~f30.

Proof. We prove derivation in both directions. Assume, initially, that there exists an envelope
(7,0) s.t. o = ~yad and 5" = y35. We need to show that in this case o/ — ' refines o — 3.
Take, then, any instance (u1, us) of @’ — . By Definition 1, there exists an envelope (p', §')
s.t. up = p'd’s’ and uy = p'F's’. Hence, if we define p = p'y and s = 0s’, then we have
that u; = pas and uy = pfs. Using again Definition 1, we conclude that (uq,us) is also an
instance of & — (3. This proves the first direction.

For the second direction, assume that o’ — [’ refines @« — (3. Assume that none of
a, 3,/ 3" starts with ~ or ends with $. (The extension to «, 3,a/, 3’ that can start with
or end with $ is easy, but requires some technicalities, that would harm the clarity of this
proof.) Define u; = "o'$ and uy = “#'$. By Definition 1, (uy,us) is an instance of o/ — '.
Due to refinement, it is also an instance of @« — 3. Hence, there exist p, s s.t. u; = pas and
us = pfBs. Hence, pas = “a'$ and pfs = “F'$. Since «, [ do not start with ~ and do not
end with $, then p must start with = and s must end with $. Define then v to be the string
p excluding the leading ~, and define ¢ to be the string s excluding the trailing $. We thus
have: o/ = vyad and 3’ = 736, as needed. O

The characterization given by the above lemma immediately yields an efficient algorithm
for deciding whether a substitution rule o/ — 3’ refines a substitution rule @ — (3: we simply
check that « is a substring of o/, replace « by 3, and check whether the outcome is 3. If «
has multiple occurrences in o/, we check all of them. Note that our algorithm’s input is a
list of pairs rather than rules, where each pair represents two rules. When considering two
pairs («a, #) and (¢, 3'), we check refinement in both directions.

Now, suppose a rule o — ' was found to refine a rule &« — (3. Then, SUPPORT(o/ —
#') C supPORT(av — f3), implying that also SUPPORT.(c/ — (') C SUPPORT./(av —
B3). Hence, if |[SUPPORT.(o — )] = |SUPPORT.(a« — [f3)|, it must be the case that
SUPPORT.(a/ — ') = SUPPORT,(a — [3). If the URL list is sufficiently representative of
the web site, this gives an indication that every instance of the refined rule o — [ that
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occurs on the web site is also an instance of the refinement o/ — [3’. This makes one of the
rules redundant. We choose to keep the refinement o/ — ', because it gives the full context
of the substitution.

One small obstacle to using the above approach is the following. In the first phase of our
algorithm, we do not compute the exact size of the support [SUPPORT.(cv — ()|, but rather
calculate the quantity |(Ez(a) N E(8)) \ (O U D,g)|. It is possible that o/ — [ refines
a — (3 and SUPPORT (o — ') = SUPPORT (a0 — 3), yet |(E(a')NEL(B')\(OUDy 5)| <
(Ec(a) N E(8)\ (OU Do),

How could this happen? Consider some envelope (p,s) € Eg(a) N E(3), and let
(ug,us) = (pas,pfs) be the corresponding instance of & — (. Since SUPPORT,(a/ —
(') = SUPPORT. (v — [3), then (uy, us) is also an instance of o/ — . Therefore, there exists
some envelope (p,§') € Ex(a/) N E(f) s.t. up = p'd’s’ and uy = p'ff's’.

« is a substring of o/ and (3 is a substring of 4, thus p’ must be a prefix of p and s’ must
be a suffix of s. This implies that any URL that contributes a substring v to the bucket
of (p,s) will also contribute a substring +" to the bucket of (p',s’), unless 7" exceeds the
maximum substring length S. In principle, then, we should expect the bucket of (p/,s") to
be larger than the bucket of (p,s). If the maximum bucket size T" happens to be exactly
between the sizes of the two buckets, then (p', s") overflows while (p, s) does not. In this case,
the first phase of DustBuster will account for (uj,us) in the computation of the support of
a — [ but not in the computation of the support of o/ — [, incurring a difference between
the two.

In practice, if the supports are identical, the difference between the calculated support
sizes should be small. We thus eliminate the refined rule, even if its calculated support size
is slightly above the calculated support size of the refining rule. However, to increase the
effectiveness of this phase we run the first phase of the algorithm twice, once with a lower
overflow threshold 7j,, and once with a higher overflow threshold 7j;,,. While the lower
threshold support is more effective in filtering out false rules the support calculated using
the higher threshold is more effective in eliminating redundant rules.

The algorithm for eliminating refined rules from the list is described in Figure 5.2. The
algorithm gets as input a list of pairs, representing likely rules, sorted by their calculated
support size. It uses three tunable parameters: (1) the mazimum relative deficiency, MRD,
(2) the mazimum absolute deficiency, MAD; and (3) the mazimum window size, MW. MRD
and MAD determine the maximum difference allowed between the calculated sizes of the
supports of the refining rule and the refined rule, when we eliminate the refined rule. MW
determines how far down the list we are willing to look for refinements.

The algorithm scans the list from top to bottom. For each rule R[i], which has not
been eliminated yet, the algorithm scans a “window” of rules below R[i]. Suppose s is the
calculated size of the support of R[i]. The window size is chosen so that (1) it never exceeds
MW ; and (2) the difference between s and the calculated support size of the lowest rule in
the window is at most the maximum between MRD - s and MAD. Now, if R[i] refines a
rule R[j] in the window, the refined rule R[j] is eliminated, while if some rule R[j] in the
window refines R[i], R[] is eliminated.
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1:Function EliminateRedundancies(pairs_list R)
2: fori=1to|R|do
3:  if (already eliminated R[i]) continue

4:  to_eliminate_current := false

5. for j =1 to min(MW,|R| —1i) do

6: if (R]i].size — R[i + j].size >
max(MRD - R[i].size, MAD)) break

7: if (R[é] refines R[i + j])

8: eliminate R[i + j]

9: else if (R[i + j] refines R[i]) then

10: to_eliminate_current := true

11: break

12:  if (to_eliminate_current)

13: eliminate R[]

14: return R

Figure 5.2: Eliminating redundant rules.

It is easy to verify that the running time of the algorithm is at most |R|- MW. In our
experiments, this algorithm reduces the set of rules by over 90%.

5.3 Parameter substitutions

Inline parameters in URLs typically comply with a standard format. In many sites, an inline
parameter name is preceded by ? or & and followed by = and the parameter’s value, which
is followed by either the end of the URL or &. We can therefore employ a simple regular
expression search on URLs in the URL list in order to detect popular parameters, along
with multiple examples of values for each parameter. Having detected the parameters, we
check for each one whether replacing its value with an arbitrary one is a valid DUST rule.
To this end, we exploit the ST table computed by DustBuster (see Figure 5.1), after it has
been sorted and divided into buckets. We seek buckets whose prefix attribute ends with
the desired parameter name, and then compare the document sketches or size ranges of the
relevant URLs pertaining to such buckets.

For each parameter, p, we choose some value of the parameter , v,, and add two rules to
the list of likely rules: the first, replaces the value of the parameter p with v,, the second
rule, omits the parameter altogether. Due to the simplicity of this algorithm, its detailed
presentation is omitted.

5.4 Validating DUST rules

So far, the algorithm has generated likely rules from the URL list alone, without fetching
even a single page from the web site. Fetching a small number of pages for validating or
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refuting these rules is necessary for two reasons. First, it can significantly leverage the final
precision of the algorithm. Second, the first two phases of DustBuster, which discover likely
substring substitution rules, cannot distinguish between the two directions of a rule. The
discovery of the pair («, ) can represent both & — (3 and  — «. This does not mean that
in reality both rules are valid or false simultaneously. It is often the case that only one of the
directions is valid; for example, in many sites removing the substring index.html is always
valid, whereas adding one is not. Only by attempting to fetch actual page contents we can
tell which direction is valid, if any.

The validation phase of DustBuster therefore fetches a small sample of web pages from
the web site in order to check the validity of the rules generated in the previous phases. The
validation of a single rule is presented in Figure 5.3. The algorithm is given as input a likely
rule R and a list of URLs from the web site and decides whether the rule is valid. It uses
two parameters: the validation count, N (how many samples to use in order to validate each
rule), and the refutation threshold, e (the minimum fraction of counterexamples to a rule
required to declare the rule false).

1:Function ValidateRule(R, £)

2: positive := 0

3: negative := 0

4: while (positive < (1 —¢)N AND negative < eN) do

5:  u:= arandom URL from £ on which applying R results in a different URL
6: v := outcome of application of R to u

7:  fetch u and v

8:  if (fetch u failed) continue

9: if (fetch v failed OR DocSketch(u) # DocSketch(v))

10 negative := negative + 1

11: else

12: positive := positive + 1
13:  if (negative > eN )

14: return FALSE

15: return TRUE

Figure 5.3: Validating a single likely rule.

Remark. The application of R to u (line 6) may result in several different URLs. For exam-
ple, there are several ways of replacing the string “people” with the string “users” in the URL
http://people.domain.com/people, resulting in the URLs http://users.domain.com/pe-
ople, http://people.domain.com/users, and http://users.domain.com/users. Our
policy is to select one standard way of applying a rule. For example, in the case of sub-
string substitutions, we simply replace the first occurrence of the substring.

In order to determine whether a rule is valid, the algorithm repeatedly chooses random
URLs from the given test URL list until hitting a URL on which applying the rule results in
a different URL (line 5). The algorithm then applies the rule to the random URL u, resulting
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in a new URL v. The algorithm then fetches u and v. Using document sketches, such as
the shingling technique of Broder et al. [9], the algorithm tests whether u and v are similar.
If they are, the algorithm accounts for u as a positive example attesting to the validity of
the rule. If v cannot be fetched, or they are not similar, then it is accounted as a negative
example (lines 9-12). The testing is stopped when either the number of negative examples
surpasses the refutation threshold or when the number of positive examples is large enough
to guarantee the number of negative examples will not surpass the threshold.

One could ask why we declare a rule valid even if we find (a small number of) counterex-
amples to it. There are several reasons: (1) the document sketch comparison test sometimes
makes mistakes, since it has an inherent false negative probability; (2) dynamic pages some-
times change significantly between successive probes (even if the probes are made at short
intervals); and (3) the fetching of a URL may sometimes fail at some point in the middle,
after part of the page has been fetched. By choosing a refutation threshold smaller than one,
we can account for such situations.

Each parameter substitution rule is validated using the code in Figure 5.3. The val-
idation of substring substitutions is more complex, as it needs to address directions and
refinements. The algorithm for doing so is given in Figure 5.4. Its input consists of a list of
pairs representing likely substring transformations, (R[i].cr, R[i].5), and a test URL list L.

For a pair of substrings («, 5), we use the notation o < 3 to denote that either |a| < |5
or |a] = |A] and « precedes (3 in the lexicographical order. In this case, we say that the
rule shrinks the URL. We give precedence to shrinking substitutions. Therefore, given a
pair («, ), if a > 3, we first try to validate the rule  — . If this rule is valid, we ignore
the rule in the other direction since, even if this rule turns out to be valid as well, using
this rule during canonization is only likely to create cycles, i.e., rules that can be applied
an infinite number of times because they cancel out each others’ changes. If the shrinking
rule is invalid, though, we do attempt to validate the opposite direction, so as not to lose a
valid rule. Whenever one of the directions of («, 3) is found to be valid, we remove from the
list all pairs refining («, 3)— once a broader rule is deemed valid, there is no longer a need
for refinements thereof. By eliminating these rules prior to validating them, we reduce the
number of pages we fetch. We assume that each pair in R is ordered so that R[i].cc > R]i].[.

The algorithm eliminates a rule from the list either if it is found to be false or if it or
its counterpart in the other direction is a refinement of a valid rule. Note that when a rule
o/ — (3 refines a rule o — (3, then the validity of the latter immediately implies the validity
of the former. The refining rule is thus made redundant and can be eliminated from the list
(lines 3-10).

The running time of the algorithm is at most O(|R|*+ N|R|). Since the list is assumed to
be rather short, this running time is manageable. The number of pages fetched is O(N|R|)
in the worst-case, but much smaller in practice, since we eliminate many redundant rules
after validating rules they refine. In typical scenarios, we had to attempt to validate roughly
a third of the original list of rules.
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1:Function Validate(rules_list R, test_URLList £)

2
3
4
5:
6.
7
8

9.

10:
11:
12:
13:
14:
15:
16:

create an empty list of rules LR

: fori=1to |R|do

forj=1toi-1do
if (R[j] was not eliminated AND R[i] refines R[j])
eliminate R[i] from the list
break
if (R[i] was eliminated)
continue
if (ValidateRule(R[i].ao — R[i].(3, L))
add R[i].a — R][i].0 to LR
else if (ValidateRule(R[i].0 — R[i].a,, L))
add R[i].a — R[i].0 to LR
else
eliminate R[i] from the list
return LR

Figure 5.4: Validating likely rules.

5.5 Application for URL canonization

Finally, we explain how the discovered DUST rules may be used for canonization of a URL
list. Our canonization algorithm is described in Figure 5.5. The algorithm receives a URL u
and a list of valid DUST rules, R. The idea behind this algorithm is very simple: it repeatedly
applies to u all the rules in R, until there is an iteration in which u is unchanged (lines 6-7).
It is easy to see that u is always mapped to a canonical URL to which it has a directed path

in the graph Gg.

1:Function Canonize(URL wu, rules_list R)
fork =1to MA do
prev := u
for i =1 to |R| do
u := A URL obtained by applying R[i] to u'
if (prev = u)
break
output u

Figure 5.5: Canonization algorithm.

We limit the number of iterations to the parameter M A, because otherwise the algorithm
could have entered an infinite loop (if the graph G’z contains cycles). Since M A is a constant,

!There may exist several ways of applying a rule to a URL. Our discussion assumes that one standard

way is always chosen.
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chosen independently of the number of rules, the algorithm’s running time is linear in the
number of rules. Recall that the general canonization problem is hard, so we cannot expect
this algorithm to always produce a minimum size canonization. Nevertheless, our empirical
study shows that the savings obtained using this algorithm are high.

We believe that the algorithm’s common case success stems from two features. First,
our policy of choosing shrinking rules whenever possible typically eliminates cycles. Second,
our elimination of refinements of valid rules leaves a small set of rules, most of which do not
affect each other.
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Chapter 6

Experimental Results

6.1 Experiment setup

We experiment with DustBuster on four web sites: a dynamic forum site, an academic
site (www.ee.technion.ac.il), a large news site (cnn.com) and a smaller news site (nydai-
lynews.com). In the forum site, page contents are highly dynamic, as users continuously add
comments. The site supports multiple domain names. Most of the site’s pages are generated
by the same software. The news sites are similar in their structure to many other news sites
on the web. The large news site has a more complex structure, and it makes use of several
sub-domains as well as URL redirections. The academic site is the most diverse: It includes
both static pages and dynamic software-generated content. Moreover, individual pages and
directories on the site are constructed and maintained by a large number of users (faculty
members, lab managers, etc.)

In the academic and forum sites, we detect likely DUST rules from web access logs, whereas
in the news sites, we detect likely DUST rules from a crawl log. The small news site crawl
includes 9,456 URLs (see Table 6.1) and the large news site crawl includes 11,883 unique
URLs. In these two cases, the log size is equal to the number of unique URLs since the URL
list is produced from a crawl and we do not crawl the same page twice. In the forum and
academic sites, we repeat our experiment four times with four different access logs pertaining
to different time periods. In the forum site, each of the four logs covers a single day. Each
daily log includes roughly 40,000 entries, accounting for around 15,000-20,000 unique URLSs
(as some URLs are accessed multiple times). In the academic site, there is less traffic, hence
we use logs representing roughly a week of activity. Each weekly log includes between 300,000
and 500,000 entries, accounting for around 15,000 unique URLs. In the validation phase, we
use random entries from additional logs, different from those used to detect the rules. The
canonization algorithm is tested on yet another log, different from the ones used to detect
and validate the rules.
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Web Site Log Size | Unique URLs
Forum Site 38816 15608
Academic Site 344266 | 17742

Large News Site | 11883 11883

Small News Site | 9456 9456

Table 6.1: Log sizes.

6.2 DustBuster parameter settings

Although the parameters are only heuristically chosen to obtain good results, we use the
same parameter values for all four sites and our empirical results demonstrate that these
values give good results for sites that vary in structure and size. In our experiments, the
maximum substring length, S, is set to 35 tokens, greater than the width of the widest rule. S
should be big enough to include the widest rule, which includes the most context and refines
all other redundant rules. This ensures the effectiveness of the second phase in eliminating
redundant rules. For example, the rule http://www.cnn.com — http://cnn.com refines
both “www.cnn” — “cnn” and http://www — http://. However, if S is set to 10, this rule
will not be discovered, and since neither of the other two rules refines the other, they will
both appear in the likely DUST rules. On the other hand, the larger S is, the longer the
algorithm runs.

The max bucket size used for detecting DUST rules, T},,,, was set to 6, and the max bucket
size used for eliminating redundant rules, T};,,, was set to 11. The former is set to a lower
value because we are only interested in rules whose support comes from small buckets. On
the other hand, the latter is used to compare the support sizes of two rules in order to test
whether one refines the other. In this context, using a small threshold gives noisy results, so
we use a larger threshold in order to increase the consistency of these counts.

In the elimination of redundant rules, we allowed a relative deficiency, MRD, of up to 5%,
and an absolute deficiency, MAD, of 1. The implication of setting these parameters to higher
values is increasing the likelihood of eliminating more general valid rules. On the other hand,
using lower values may lead to missing some of the redundant rules. The maximum window
size, MW, was set to 1100 rules in our experiments. The lower this value is, the more likely
it is that some redundant rules will not be eliminated. On the other hand, a higher value
increases the memory usage of the algorithm. Empirically, our choice appears to provide a
good tradeoff.

The value of MS, the minimum support size, was statically set to 3 in all our experiments
so the reduction in the crawl will be high. The algorithm uses a validation count, N, of 100.
In all our experiments, extra validations beyond 50 and up to 100 do not affect the results.

Finally, the canonization uses a maximum of 10 iterations. Again, empirically, the re-
duction achieved remains the same for any number of iterations beyond 2 and up to 10.
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6.3 Shingles

The validation uses shingling to detect similarity of html, text, pdf and ps files converted
to text. Given document D, S, (D) is defined as the set of all word sequences of length
n, or n-grams, in D (n=10 in our experiments). A hash is then applied to each of these
n-grams, and the hashed n-grams are called shingles [9]. The resemblance of two documents
A and B is then defined as r(A, B) = %. Shingles can be used to efficiently test the
resemblance between two documents. For a given document D, the shingle with the lowest
value can be used as a document sketch. The probability that two such shingles are identical
is equal to the resemblance of the associated documents. Two text documents dq,d, are
said to be similar, if the resemblance between them exceeds 1 — 9, where 6 > 0 is some
small tunable threshold value. Binary documents are hashed using the MD5 message digest
algorithm [24] and compared for an exact match.

In our experiments, n-grams of length 10 are extracted from each document, a hash is
applied to all the n-grams to produce shingles, and the shingle with the lowest value is chosen.
The process is repeated 4 times with four different hash functions resulting in a document
sketch of 4 shingles. In most of our experiments, unless stated otherwise, when comparing
two documents, we require that all 4 shingles be identical. In some of our experiments we
require that only two shingles of the four are similar.

It should be noted that our algorithm is agnostic to the method used to estimate
the similarity of two documents. Although the shingles method is effective, efficient, and
widely used, it has its limitations. For example, in the small news site, the print ver-
sion of the article includes many additional links, anchor text and images. When requiring
that four of the four shingles for each document be equal, and setting € to 5%, the rule
“http://www.nydailynews.com/news/v-pfriendly/story/” — “http://www.nydailyne-
ws.com/news/story/” does not pass the validation phase. This rule passes the validation
phase when we set € to 10% and declare two documents similar if at least two of the four
shingles are equal. There is of course a tradeoff between the dust coverage achieved and
precision.

6.4 Detecting likely DUST rules and eliminating redun-
dant ones

DustBuster’s first phase (cf. Figure 5.1) scans the log and detects a very long list of likely
DUST rules (substring substitutions). Subsequently, the redundancy elimination phase (cf.
Figure 5.2) dramatically shortens this list. In all of our experiments, the latter phase has
eliminated over 90% of the rules in the original list (see Table 6.2). For example, in the largest
log in the academic site, 26,899 likely rules were detected in the first phase, and only 2041
(8%) remained after the second; in a smaller log 10,848 rules were detected, of which only
354 (3%) were not eliminated. In the large news site 12, 144 were detected, 1243 remained
after the second phase. In the forum site, much fewer likely rules were detected, e.g., in one
log 402 rules were found, of which 37 (9%) remained. We believe that the smaller number
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Figure 6.1: Precision@k achieved by likely rule detection:
(DustBuster’s first phase) without fetching actual content.

of rules is a result of the forum site being more uniformly structured than the academic one,
as most of its pages are generated by the same web server software.

Web Site Rules Detected | Rules after 2"? Phase | Rules Remaining (percent)
Forum Site 402 37 9.2%

Academic Site | 26899 2041 7.6%

Large News Site | 12144 1243 9.76%

Small News Site | 4220 96 2.3

Table 6.2: Rule elimination in second phase.

In Figures 6.1(a) and 6.1(b), we examine the precision level in the short list of likely
rules produced at the end of these two phases. These graphs deal with the forum and
academic sites when size matching is used. Recall that no page contents are fetched in these
phases. As this list is ordered by likeliness, we examine the precision@k; that is, for each
top k rules in this list, the curves show which percentage of them are later deemed valid (by
DustBuster’s validation phase) in at least one direction. Figure 6.1(a) shows results obtained
with 4 different logs in the forum site, and Figure 6.1(b) shows results from 4 logs of the
academic site. We observe that, quite surprisingly, DustBuster’s detection phase achieves a
very high precision rate even though it does not fetch even a single page. In the forum, out
of the 40-50 detected rules, over 80% are indeed valid. In the academic site, over 60% of the
300-350 detected rules are valid, and of the top 100 detected rules, over 80% are valid.

This high precision is achieved, to a large extent, thanks to size matching. The log in-
cludes false rules. For example, the forum site includes multiple domains, and the stories in
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each domain are different. Thus, although we find many pairs http://domainl/story_num
and http://domain2/story_num with the same num, these represent different stories. Sim-
ilarly, in the academic site, we see pairs like http://site/coursel/lecture-num.ppt and
http://site/course2/lecture-num.ppt, although the lectures are different. Such false
rules are not detected, since stories/lectures typically vary in size. Figure 6.2 illustrates
the impact of size matching in the academic site. We see that when size matching is not
employed, the precision drops by around 50%. Thus size matching reduces the number of
accesses needed for validation. Nevertheless, size matching has its limitations— valid rules
may be missed at the price of increasing precision. For example, when running on the aca-
demic site without size matching, DustBuster discovers the rule “ps” — “pdf”, linking two
versions of the same document, whereas size matching discards this rule. When running
DustBuster from crawl logs, where document sketches from the previous crawl are readily
available for validation, we use the document sketches to filter support rather than the size

matching heuristic.
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Figure 6.2: Impact of size matching on precision:
Precision@k achieved by likely rule detection (DustBuster’s first phase) without fetching
actual content. One academic log.

Figure 6.3(a) shows results obtained in the large news site (cnn.com) with and without
shingles-filtered support. When we use neither shingles-filtered support nor size matching,
over 24% of the first 50 detected rules are valid. The precision rises to 42% of the first
50 detected when we use shingles-filtered support. In addition, filtering reduces the list by
roughly 70%. At the same time this reduction in detected rules has little impact on the final
outcome after validations, most rules filtered out by shingles are indeed invalid.

The precision@k in the large news site is low compared to the precision@k in the academic
site shown in Figure 6.1(b). When examining the likely rule list we observe that some
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Figure 6.3: Impact of shingle matching:
Precision@k achieved by likely rule detection (DustBuster’s first phase) without fetching actual content.

rules that we expect to be valid, such as “http://edition.cnn.com/2006/SHOWBIZ/” —
“http://www.cnn.com/2006/SHOWBIZ/”, do not pass the validation phase. After reducing
the similarity threshold by requiring at least two of the four shingles to be identical and
increasing € to 10% these rules are found valid. We can observe the effect of changing these
two values in Figure 6.3(a) and Figure 6.3(b). The precision increased both with and without
filtering support for similarity. The precision@k went up from 0.4% at 200 to 0.74%. This
demonstrates the tradeoff among the similarity requested, the validation threshold, and the
number of rules found to be valid.

An interesting phenomenon is apparent in Figures 6.2 and 6.3(a), where the precision
begins low and rises. This is due to the large support for rules that transfer one valid
URL to another albeit not with similar content. E.g., the academic site’s top five rules
include four variations on the interesting rule “/thumbnails/” — “/images/” which we
find invalid because images are compared using their MD5 message digests. Another ex-
ample is “http://www.movies-forum.domain” — “http://www.politics-forum.domain”
found using the forum web logs. The large support for this rule stems from the similar
URL structure of the two sub-sites, which are running the same software. For example,
“http://www.politics-forum.domain/story_100" and “http://www.movies-forum.dom-
ain/story_100" are valid but different in content. Size matching alleviates this problem,
and raises the initial precision to 0.6 at 5 and 0.8 at 10.

6.5 Validation

We now study how many validations are needed in order to declare that a rule is valid;
that is, we study what the parameter N in Figure 5.4 should be set to. To this end, we
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Figure 6.4: Precision among rules that DustBuster attempted to validate
vs. number of validations used (N).

run DustBuster with values of N ranging from 0 to 100, and check which percentage of
the rules found to be valid with each value of N are also found valid when N=100. We
run this experiment only for substring substitution rules. The results from conducting this
experiment on the likely DUST rules found in 8 logs (4 from the academic site and 4 from
the forum site) are shown in Figures 6.4(a) and 6.4(b). In these graphs, we only consider
rules that DustBuster attempts to validate. Since many valid rules are removed (in line 6
of Figure 5.4) after rules that they refine are deemed valid, the percentage of valid rules
among those that DustBuster attempts to validate is much smaller than the percentage of
valid rules in the original list. In all these experiments, 100% precision is reached after 40
validations. Moreover, results obtained in different logs are consistent with each other. Our
aggressive elimination of redundant rules reduces the number of rules we need to validate.
For example, on one of the logs in the forum, the validation phase was initiated with 28 pairs
representing 56 likely rules (in both directions). Of these, only 19 were checked, and the
rest were removed because they or their counterparts in the opposite direction were deemed
valid either directly or since they refined valid rules. We conclude that the number of actual
pages that need to be fetched in order to validate the rules is very small.

At the end of the validation phase, DustBuster outputs a list of valid substring substitu-
tion rules without redundancies. In the small news site we detected 5 rules (see Table 6.3),
whereas in the large news site we found 62 rules. In the forum site, we detect a handful of
rules, whereas in the academic site, 40-52 rules are found. The list of 7 rules found in one of
the logs in the forum site is depicted in Figure 6.5 below. These 7 rules or refinements thereof
appear in the outputs produced using each of the studied logs. Some studied logs include
1-3 additional rules, which are insignificant (have very small support). Similar consistency
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is observed in the academic site outputs. We conclude that the most significant DUST rules
can be adequately detected using a fairly small log with roughly 15,000 unique URLs.

Web Site Valid Rules Detected
Forum Site 7

Academic Site 52

Large News Site | 62

Small News Site | 5

Table 6.3: The number of rules found to be valid.
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Figure 6.5: Valid substring substitution rules detected in a forum site
excluding refinements of valid rules.

6.6 Coverage

We now turn our attention to coverage, or the percentage of duplicate URLs discovered by
DustBuster, in the academic site. When multiple URLs have the same document sketch, all
but one of them are considered duplicate URLs, or duplicates. We use a new test log in order
to study how much of the duplicates in it are detected by rules found by running DustBuster
on another log. We detect duplicates in the test log by fetching the contents of all of its
URLs, and computing their document sketches. Figure 6.6 classifies these duplicates. As
the figure shows, 47.1% of the duplicates in the test log are eliminated by DustBuster’s
canonization algorithm using rules discovered on another log. An additional 25.7% of the
duplicates consist of images, such as arrows, bullets and horizontal lines, which are reused
and copied to various locations. This is partly due to the use of automatic tools, which make
use of the same images.

17.9% of duplicates stem from exact duplicates of files. This is mainly due to replicating
a course’s site from a previous semester and modifying it. In case files are added or modified
extensively, the DUST rule linking the two semesters does not pass the validation phase.
Another cause for exact copies is a research paper appearing in all the authors individual
home-pages.
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Figure 6.6: DUST classification, academic.

Another 7.5% of the duplicates are due to soft errors, such as empty search results,
non-existing user error messages, and various software errors, or in general, pages that do
not provide any useful information. Note that classifying these as duplicates is only an
artifact of our methodology, which computes similar shingles for similar error messages.
Nevertheless, this type of duplicates cannot be expected to be discovered by an algorithm
such as DustBuster. Overall, DustBuster appears to discover most of the duplicates that
stems from systematic rules, and discovers the majority of duplicates when discounting soft
erTors.

6.7 Savings in crawl size

The next measure we use to evaluate the effectiveness of the method is the discovered re-
dundancy, i.e., the percent of the URLs we can avoid fetching in a crawl by using the DUST
rules to canonize the URLs. To this end, we performed a full crawl of the academic site, and
recorded in a list all the URLs fetched. We performed canonization on this list and counted
the number of unique URLs before (Uy) and after (U,) canonization. The discovered redun-
dancy is then given by U"%bU“ We found this redundancy to be 18% (see Table 6.4), meaning
that the crawl could have been reduced by that amount. In the two news sites, the DUST
rules were learned from the crawl logs and we measured the reduction that can be achieved
in the next crawl. The small news site gave us less than 0.9% reduction when requiring that
four shingles be equal and € = 5%, but when requiring two shingles to be equal and setting e
to 10% we get a 26% reduction. The increase in the reduction is due to the lower similarity
required to pass validation. This again shows the significance of the similarity measure used.
The big news site gave us a 6% reduction with € = 5%. We did not crawl the forum site and
therefore do not have results for this site.
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Web Site Reduction Achieved
Academic Site 18%

Large News Site | 6%

Small News Site | 26%

Table 6.4: The reduction achieved in each site.
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Chapter 7

Conclusions

We have introduced the problem of mining site-specific DUST rules. Knowing about such
rules can be very useful for search engines: It can reduce crawling overhead by up to 26%
and thus increase crawl efficiency, and consequently, improve search accuracy. It can also
reduce indexing overhead. Moreover, knowledge of DUST rules is essential for canonizing URL
names, and canonical names are very important for statistical analysis of URL popularity
based on PageRank or traffic. We presented DustBuster, an algorithm for mining DUST very
effectively from a URL list. The URL list can either be obtained from a web server log or a
crawl of the site.

DustBuster cannot of course detect DUST that does not stem from rules. However, there
are DUST rules that DustBuster does not find. An example is a rule that substitutes two
strings in the URL simultaneously. For example in a site we examined http://somenewsite.-
com/print.pl?sid=06/06/27/2 is a printer friendly version of http://somenewsite.com/-
newsvac/06/06/27/2.shtml. As can be seen, the URL is changed in two places simultane-
ously. Future work may devise an algorithm to detect such rules, as well as more complex
ones.

Finally, some pages on the web have duplicate versions where the information is spread
over multiple pages. Future work may use ideas from DustBuster in order to devise an
algorithm that detects such duplicates. For example, by using containment rather than
similarity, one may be able to map all the fragment pages to the one page that contains
them all.
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