DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

Scalable Group Membership Services for Novel Applications

Tal Anker, Gregory V. Chockler, Danny Dolev, and Idit Keidar

ABSTRACT. Group communication is a useful abstraction in the development
of highly available distributed and communication-oriented applications in
wide area networks (WANs). The most important aspects of this abstraction
are the dynamic maintenance of group membership and its diverse semantics
for interleaving membership change notifications within the flow of regular
messages.

In this paper we propose a new architecture for a scalable group mem-
bership service for wide area environments. Our architecture provides two
different service levels and their semantics, each geared to different applica-
tions with different needs: The CONGRESS membership service which provides
simple semantics of membership approximation, and the MOSHE service, which
extends CONGRESS, provides full virtual synchrony semantics.

The novelty of our design is in its client-server approach, which allows
lightweight clients to benefit from advanced membership services. Further-
more, our design supports the coexistence of full-fledged clients along with
thin clients.

1. Introduction

Group communication [ACM96] is an important abstraction, widely used for
distributed and communication-oriented applications. Such applications typically
require the coordination of large and dynamic sets of processes at different sites.
The group communication abstraction is essential for the modular design of group-
ware and other multi-user applications in such networks. The most important
aspects of this abstraction are the maintenance of group membership and the se-
mantics of interleaving membership change notifications within the flow of regular
messages.

Different applications utilize group communication for different purposes, and
hence require different semantics from the group membership service they utilize
(as explained in [BFHR98, CHKD96, Bir96]). For example, video conferencing
applications need a general knowledge of which peers are interested in joining the
conference, in order to know where to multicast the video stream, and where to
receive it from. Such applications do not require the synchronization of membership

1991 Mathematics Subject Classification. Primary 68-06, 68M10; Secondary 90B12, 90B25.

This work was supported in part by ARPA grant #030-7310 and by the Israeli Ministry of
Science grant #032-7658.

Idit Keidar’s research was supported by the Israeli Ministry of Science.

©0000 (copyright holder)

2 TAL ANKER, GREGORY V. CHOCKLER, DANNY DOLEV, AND IDIT KEIDAR

change notifications with regular messages. Other examples are pay-TV and highly-
available video-on-demand servers [ACK*97].

On the other end of the spectrum, consistent data replication may greatly
benefit from strong semantics [BJ87, ABCD96, KD96, FLS97, ADMSM94,
SM98]. For example, some group communication systems provide virtual syn-
chrony semantics, which synchronize membership notifications with regular mes-
sages and thus simulate a “benign” world in which message delivery is reliable
within the set of live processes. This enables synchronization among applications,
but is costly: it incurs a delay period in which messages may not be transmit-
ted [FvR95]. Therefore, it is not appropriate for applications that require real-time
message delivery (e.g., video transmission).

Computer Supported Cooperative Work (CSCW) [Rod91] groupware and mul-
timedia applications involve different services that require different Qualities of Ser-
vice (QoS) and different semantics from the group membership which they use, for
example, an on-line conferencing application may incorporate multimedia multicast
as well as coordination and sharing of consistent information (e.g., a shared white
board).

Extensive research is currently being carried out to optimize scalable reliable
multicast protocols in order to meet the demands of such applications [Car94,
FIM*95, PSK94, PSLB97]. Many of these applications make use of highly
dynamic multicast groups. One example is a TV broadcasting service that serves
groups of clients that may join or leave at any time. Such protocols often need
to be complemented by a membership mechanism that maintains the dynamically
changing set of members in each multicast group.

However, the design of a scalable membership service for WANs is a challenging
task. A typical multicast group over a WAN may consist of a large number of mem-
bers, which may be geographically far apart. These conditions cause membership
to be highly dynamic. A protocol that manages the membership information will
be forced to propagate large amounts of membership data across long distances.

In this paper we describe a new architecture for construction of a scalable group
membership service for wide area environments. OQur membership service provides
two different service levels and semantics, each geared to different applications with
different needs. In addition, our membership server provides advanced services such
as a hierarchical directory of groups and secure group services.

The two different service semantics are geared towards different kinds of appli-
cations: the coNGRESS [ABDL97, Ank97] membership service provides simple
semantics of membership approximation, and the mosHE [KSDM] service, which
extends CONGRESS, provides full virtual synchrony semantics.

In our design, membership is not maintained by every process, but only by a
few dedicated servers. Thus, membership maintenance induces very low overhead
when membership changes are infrequent, and the strong semantics required by
some parts of the application induce no overhead for those parts which require
weaker semantics.

In order to be scalable and efficient, our service minimizes the network traffic
required to maintain the dynamic group membership. The saving in network traffic
is achieved by using a hierarchy of dedicated servers, which propagate necessary
information about multicast groups to clients in the server’s area.

The rest of this paper is organized as follows: In Section 2 we describe the
environment model and in Section 3 we describe the system architecture. The

SCALABLE GROUP MEMBERSHIP SERVICES FOR NOVEL APPLICATIONS 3

basic membership service, CONGRESS, is described in Section 4, and the virtually
synchronous membership service, MOSHE, in Section 5. In Section 6 we describe
the advanced membership services that we provide. Section 7 concludes the paper.

2. The environment model

Processes communicate by exchanging messages. There is no bound on message
delivery time, hence the system is asynchronous. Processes fail by crashing, and
crashed processes may later recover. Live processes are considered correct, crashed
processes are faulty.

Communication links may fail. A connected component C' is a set of correct
processes among which all the communication links are operational, and all the
links from processes in C' to processes outside C' are not operational. The system
is equipped with a (possibly unreliable) external failure detector module, which is
described in Section 2.2, and reliable FIFO communication links, which are described
in Section 2.1.

2.1. Reliable rFiro links. The communication links between pairs of pro-
cesses preserve the FIFO order, i.e., if process p sends two messages to process ¢:
my and later my, and if ¢ delivers both messages, then these messages are delivered
in the order in which they were sent.

Furthermore, while process ¢ does not suspect process p, p’s messages are de-
livered to ¢ without gaps, i.e., if process p sends a message m’ between m; and ms,
and between the delivery of m; and ms, ¢ does not suspect p, then ¢ also delivers
m’ between m; and ms.

2.2. Failure detector. Our membership server exploits an external failure
detector (FD) module which reports changes in the network topology and in process
liveness. We say that a process p suspects a process q if the failure detector module
at p reports ¢ as faulty/disconnected. The failure detector may be inaccurate, i.e.,
it may suspect correct processes. However, we assume that the failure detector is
complete, 1.e., it eventually suspects every process that has permanently crashed or
disconnected.

We assume that the failure detector module operates in conjunction with the
underlying communication, so that no messages are ever delivered from a sus-
pected process. In this paper, we do not discuss how the failure detector is im-
plemented. A framework for implementing a failure detector in a WAN is pro-
vided in [Vog96]. Theoretical aspects of failure detectors are discussed in [CT96,
DFKM96, DFKMO97].

3. The service architecture

Group communication systems introduce the notion of group abstraction, which
allows processes to be easily arranged into multicast groups. Each message targeted
to the group is delivered to all currently connected and operational group mem-
bers. Group communication systems typically support reliable group multicast and
membership services. The task of the membership service is to maintain a listing of
the currently active and connected group members, and to deliver this information
to the application whenever it changes.

Our membership service differs from those of other group communication sys-
tems in that it complies with the client-server paradigm (please see Figure 1).

4 TAL ANKER, GREGORY V. CHOCKLER, DANNY DOLEV, AND IDIT KEIDAR

Sockets or CORBA

Create/Join/Leave ——pm MOSHE
Client
- Propose/View CONGRESS
VV)
MMTS
NETWORK

FiGURE 1. The membership service architecture.

Processes that communicate with each other are clients of the membership service.
The clients communicate with each other using a multicast transport service, called
MMTS [CHKD96] which allows them to multicast messages to all the members of
a group. In this section, we describe the overall design of the membership service.
The description of the multicast service is beyond the scope of this paper.

In Section 3.1 we explain how client and server communicate. The membership
server structure is described in Section 3.2. The membership server uses an external
failure detector, as described in Section 2.2.

3.1. Client-Server interaction. The membership server interface recognizes
the following events:

Create: A request to create a group.

Join: A request to join a group.

Leave: A request to leave a group.

Client Failure: A report of a client failure.

DEeFINITION 3.1. We say that a process p is a member of a group G in a con-
nected component C', if p is currently in C, p has joined G (i.e., issued a join), and
afterwards p has neither crashed nor issued a leave .

The client interface recognizes the following events:

Propose: A report of the beginning of the synchronization phase (see below).
View: A report of a new group membership.
Server Failure: A report of server failure.

We currently support two options for client-server interaction: The first option
is based on a reliable point-to-point FIFO service built directly atop the low-level
socket interface. The second option utilizes the Common Object Request Broker
Architecture (CORBA) which is the industrial standard for building client-server
applications. Some of the advantages of using CORBA include: simplified object-
oriented design, network transparency, client-server failure detection, and the possi-
bility of using standard CORBA services (e.g., security, naming and event services).

Within the CORBA framework, objects (i.e., entities consisting of an interface
and an implementation) are registered over a virtual software bus, called the Ob-
ject Request Broker (ORB). Whenever a CORBA application issues a request to

SCALABLE GROUP MEMBERSHIP SERVICES FOR NOVEL APPLICATIONS 5

MOSHE Thread of Control

#—Join
=—eave
=—Create
=—ClientFailure

View/Propose
request

CORBA

Join/Leave/Create
request
|

Client ‘

=—View
=—Propose
=—ServerFailure

FIGURE 2. The client-server interaction using CORBA.

a previously registered (possibly remote) object, the ORB locates the object and
forwards the request to it.

The membership client-server interaction using CORBA is illustrated in Fig-
ure 2. For the membership server, an object implementing the Create/Join/Leave
interface is registered over the ORB. For the membership client, an object imple-
menting the Propose/View interface is also registered over the ORB. Both objects
run in separate threads. Additionally, both objects implement methods for han-
dling client/server failures. Whenever a membership client (server) wishes to invoke
some server’s (client’s) method, it simply makes a regular function call in its ad-
dress space. All remaining steps (which include: locating the remote object, call
parameters marshalling/de-marshalling and message passing) are transparently ac-

complished by the ORB.

3.2. The membership server. The membership server is designed accord-
ing to the object-oriented paradigm and written in the Java programming lan-
guage [Now98]. The membership server consists of two objects: the Membership
Object-oriented Service for Heterogeneous Environments (MOSHE) and CONnection-
oriented Group-address RESolution Service (CONGRESS). The CONGRESS substra-
tum accumulates the group membership and failure detection information and dis-
seminates it among the membership servers. CONGRESS resides directly on top of
a network layer (such as ATM or TP).

MOSHE extends CONGRESS to provide membership services with strong mem-
bership and message delivery semantics. Examples of such semantics include virtual
synchrony and the ordered delivery of views. In addition, MOSHE provides some
advanced services such as hierarchical and secure group services. In order to syn-
chronize multicast message delivery with membership change events, MOSHE clients
multicast synchronization messages via the MMTS.

6 TAL ANKER, GREGORY V. CHOCKLER, DANNY DOLEV, AND IDIT KEIDAR

Client requests are first processed by the MOSHE object. For each client request,
this processing includes updating the group hierarchy (if necessary) as well as au-
thorization and/or authentication for secure groups. Then, the request is delegated
to the CONGRESS object for further dissemination among the other membership
servers.

When a change in the membership of some group is reported by CONGRESS,
MOSHE checks if the group requires strong semantics. If it doesn’t, MOSHE imme-
diately informs the group members of the new membership. Otherwise, MOSHE
initiates an additional synchronization round at the end of which the view is re-
ported.

4. CONGRESS

Maintenance of a multicast group membership in a WAN environment is a
challenge. The membership of the multicast groups may change dynamically and
the multicast groups themselves may be created and disposed of on-demand. Failure
detection is harder in a WAN environment, and the probability of failures is higher.
Thus a protocol for resolving (i.e., mapping a multicast group name into a set of
members identifiers) and maintaining the membership of multicast groups geared
to the WAN 1s necessary. CONGRESS is such a protocol.

4.1. coNGRESs design principles. CONGRESS is a protocol for maintaining
multicast group membership information. CONGRESS operates over point-to-point
connections, and is scalable to a WAN. It should be noted that CONGRESS is not
designed to deal with the actual application data transfer within a multicast group.
CONGRESS separates the multicast group management from the data transfer issues.
Thus, maintenance of multicast group membership does not affect the QoS provided
by the network.

CONGRESS’ design is based on the following principles:

¢ No flooding: cONGRESS does not flood the WAN on every group member-
ship change. This is achieved through careful maintenance of a distributed
spanning tree for each of the multicast groups. A single membership change
in a multicast group G incurs O(|G|) protocol messages.

e Hierarchical design: CONGRESS services are provided to applications by
hierarchically organized servers. The hierarchical design minimizes the size
of the data structures maintained by each server. CONGRESS defines scopes
within which group membership information should be propagated in order
to conserve network resources.

e Robustness: CONGRESS is designed to operate in a WAN, where there
is a greater possibility that CONGRESS servers may temporarily disconnect
and later reconnect, due to network failures or network reconfiguration and
re-planning. CONGRESS withstands such transient errors by providing a best-
effort service. Applications continue to receive the CONGRESS services from
those servers to which they remain connected. The small amount of data
maintained by the servers allows for simple recovery.

As was previously noted, a scalable multicast group membership service is very
important for multicast oriented applications. CONGRESS provides for decentraliza-
tion, load sharing, and fault tolerance.

SCALABLE GROUP MEMBERSHIP SERVICES FOR NOVEL APPLICATIONS 7

4.2. CONGRESS services. The CONGRESS services are provided by an interface
that consists of the following basic functions:

e join(G): Make the invoking client a registered member of group G.

e leave((): Unregister the invoking member from G.

e resolve((): Request to resolve a multicast group name G into an approxi-
mated set of members identifiers.

o set_flag(G, online_flag): Enable or disable the reception of the incremental
membership notifications w.r.t. GG, by the invoking member.

A client may learn of the membership of a group in one of two ways:

e resolve-reply is a response to a resolve request. It consists of an approxi-
mated list of members.

e Incremental Membership Notification is a notification that reflects a
change in the group’s membership, due to join, leave, process/ communication
link failure. Incremental membership notifications reflect only the difference
between the new membership and the previously reported one.

The membership of group G computed by a user is constructed by resolving a
group name once, and subsequently applying the incremental membership notifica-
tions as they arrive.

4.3. Overview of the CONGRESS architecture. CONGRESS services are pro-
vided by a set of servers. There are two kinds of CONGRESS servers: Local Mem-
bership Servers (LMss) and Global Membership Servers (GMSs). An LMS resides
in each host and is a CONGRESS front-end for the clients on that host. GMss are
organized in a hierarchical structure throughout the network, and may run either
on dedicated machines or in routers. GMSs maintain data structures that efficiently
aggregate the global membership information. Neighboring servers communicate
via reliable FIFo links.

Failure handling in CONGRESS focuses on asynchronous host crash/recoveries,
and communication link failures/recoveries. In order to handle these failures, each
CONGRESS server interacts with the local failure detector module that monitors the
liveliness of the particular CONGRESS server’s neighbors.

CONGRESS views the network as a hierarchy of domains, where each domain
is serviced by a CONGRESS server. At the lowest level, a domain consists of a set
of clients (applications) running on the same host. Such domains are called host
domains. Each host domain is serviced by the LMs of its respective host. The LMs
is called a representative of a host domain. Higher level domains consist of a set of
lower level domain representatives. Thus, a single GMS may serve a domain that
consists of either several LMSs, or several GMSs that are representatives of their
respective lower level domains.

A CONGRESS domain identifier 1s the longest common address prefix of the
lower level domains which make up a particular domain. The domain identifier of a
host-domain is the full address of the LMS’ host. An example is shown in Figure 3:
Here, one can see that the sample domain 1.1 is comprised of two domains: 1.1.1
and 1.1.2. The domain 1.1.2 is comprised of three host-domains 1.1.2.1, 1.1.2.3 and
1.1.2.4.

In order to avoid flooding the whole network with every membership change in
every group, membership notifications pertaining to a specific multicast group are
propagated using a distributed spanning tree for this group. This spanning tree is a

8 TAL ANKER, GREGORY V. CHOCKLER, DANNY DOLEV, AND IDIT KEIDAR

LMS
1121°_1.1

LMS LMS

1721 A 1726

S
.3

Process
(client)
using

Process
(client)
using

F1GURE 3. The CONGRESS hierarchy structure.

sub-tree of the CONGRESS servers hierarchy. The CONGRESS servers comprising the
sub-tree of a group, are those which have members of this group in their domains.
Each server in the CONGRESS hierarchy maintains only that part of the spanning
tree which consists of its immediate neighbors. The spanning tree is constructed
and maintained according to member join/leave requests. In addition, network
topology changes and client or server crash/recovery events! change the topology
of the spanning tree. Obviously, since CONGRESS operates in an asynchronous
environment, the spanning tree of a group can only be a best-effort approximation.

The details of the CONGRESS algorithm may be found in [ABDL96, ABDL97].

4.4. CONGRESS guarantees. In this section, we intuitively describe the prop-
erties that CONGRESS guarantees w.r.t. the membership information it provides.

Membership updates and replies to resolve requests are propagated by CON-
GRESS and received by its clients in an order that reflects that of the membership
events’ (or membership changes) occurrence. This enables a client to construct an
up-to-date view of the group membership based either upon membership updates
or upon resolve replies. The ordering of membership events that CONGRESS guaran-
tees 1s defined only w.r.t. events that involve a particular host, domain or a client.
This guarantee is called per-source chronological ordering of membership events.

PROPERTY 4.1 (Per-Source Chronological Ordering of Membership Events). Any
two membership events that involve the same source will be reported to every mem-
ber in the order that they occurred.

1Such events are detected by the failure detector module.

SCALABLE GROUP MEMBERSHIP SERVICES FOR NOVEL APPLICATIONS 9

LMS

----- » d's join notification

— — —» c's join notification
FiGURE 4. Two clients concurrently join a CONGRESS group.

Note, however, that CONGRESS may report membership events (corresponding
to different sources) in different orders at different sites. This is illustrated in
Example 4.1 below. Agreement on the order of notifications would require running
a synchronization round for each membership change. This synchronization round
is performed by MOSHE for groups that require it, as explained in Section 5.

EXAMPLE 4.1. Assume that a and b are two members of a group G. Assume
further that the membership at both of them is {a,b}. Now, assume that ¢ and d
join group G at approximately the same time. Assume also that ¢ is topologically
close to @ and that d 1s topologically close to b, as illustrated in figure 4. It is highly
probable that a will receive CONGRESS’ notification about ¢ joining GG before receiv-
ing notification about d joining GG, and that b will receive the notifications in the
reverse order (i.e., the notification about d will be received before the notification
about ¢ at b). This implies that a will calculate the membership of G first as {a, b},
then as {a,b,c} and finally as {a,b, ¢, d}, whereas b will calculate the membership
first as {a,b}, then as {a,b,d} and only then as {a,b, ¢, d}.

Since the network is asynchronous and protocol messages may be delayed, mem-
bership information at distinct CONGRESS servers may differ at any given time. Tt
has been proven that it 1s impossible to make strong guarantees regarding the
preciseness of the membership derived from notifications at instable time periods
(please see discussion in Section 5.1.1). If, however, the network stabilizes, and no
new membership events occur in group G, then eventually all the members of G
will have a precise view of the membership in G. This is formulated in the following
property:

PROPERTY 4.2 (Eventual Preciseness). Let G be a group, and ty a point in
time s.t. the set of members of G has not changed after time tq. Furthermore, as-
sume that after time ty all the members of G are in the same connected component,

10 TAL ANKER, GREGORY V. CHOCKLER, DANNY DOLEV, AND IDIT KEIDAR

and do not suspect each other. Then there is a time t1 > tg s.t. at time t1 all the
members of G have the same computed membership, which consists of exactly the
set of members of G.

Consider, for instance, Example 4.1 above. There, the membership eventually
becomes {a, b, ¢, d} at all the processes.
Two points are worth noting about the above definition:

1. If there are live members of G in two disjoint network components, then
we would like processes in each component to have a computed membership
consisting of the set of members of GG in the local component. It is easy to see
that this requirement is fulfilled by any protocol that fulfills Property 4.2.

2. For simplicity’s sake, we required in this paper that stability would last for-
ever. In practice, however, the following situation holds: Let ¢; reflect a time
by which all the events that occurred before time ¢y have been propagated
to all the processes. If the membership of GG stabilizes for only a finite time
interval [to,?s], s.t. t3 > t; then all the members of G will also have the
same computed membership. This membership will consist of exactly the
set of members of G during the interval [tq,?5].

The stronger guarantees are formulated and proven in [Ank97].

5. Virtually synchronous membership services

Some applications require membership services with only weak semantics, and
some require strong semantics. Applications that need to consistently maintain a
replicated state (e.g., coherent cache), greatly benefit from virtually synchronous
communication and membership semantics. The MOSHE membership service pro-
vides such semantics for groups that explicitly request this service. We call such
groups VS groups. The protocol that implements these semantics is the MOSHE VS
membership protocol.

There are many different formulations of group membership services (some
examples may be found in [VKCD98, DMS94, DMS95, BDM97]), and var-
ious definitions of virtual synchrony semantics (e.g., [VKCD98, BJ87, FvR95,
MAMSA94]). Our protocol provides semantics which have been proven useful
for several distributed applications [ABCD96, KD96, FLS97, ADMSM94,
SM98]. In Section 5.1 we specify the semantics provided by the MOSHE VS mem-
bership protocol.

Numerous group membership protocols providing similar semantics were con-
structed (e.g., [CS95, AMMS*95, MMSAt96, EMS95, ADKM92, MPS91,
MSMA91, DMS94, MS94, BDM97]). The novelty of MOSHE is in its client-
server approach: The servers maintain the membership of clients in groups. The
client-server design is a major challenge, since the protocol has to synchronize dif-
ferent entities. Our implementation focuses on minimizing the number of messages
sent in order to achieve preciseness, without sacrificing efficiency. In Section 5.2 we
describe an overview of the implementation of the membership protocol.

5.1. Semantics of the MOSHE VS membership protocol. The member-
ship protocol encapsulates membership notifications in views. A view v is a triple
consisting of: the group name, denoted v.G; the group membership (i.e., the list of
members), denoted v.M, and a view identifier, denoted v.id. We say that the view

SCALABLE GROUP MEMBERSHIP SERVICES FOR NOVEL APPLICATIONS 11

v occurs in the group v.G. The view identifier is taken out of some totally ordered
set.
The key features of the membership provided by MOSHE for VS groups are:

e Agreement on the order of views.
e Synchronization of multicast messages with view reports (virtual synchrony).

We elaborate on these features below.

5.1.1. Agreement on views. Agreement on the order of views allows processes
that continue together to perceive changes of the membership in the same order.
With the CONGRESS basic service, two processes that continue together may re-
ceive membership notifications in different order, as illustrated in Example 4.1
in Section 4.4. The membership service uses CONGRESS incremental membership
notifications in conjunction with a one round agreement protocol, which allows pro-
cesses that remain connected to receive views in the same order. The MOSHE VS
membership protocol guarantees the following properties:

PROPERTY 5.1 (View Identifier Local Monotony). Processes receive view reports
wn the view identifier order.

PROPERTY 5.2 (Self Inclusion). Processes deliver only views of which they are
members.

PROPERTY 5.3 (Agreement on Views). Let G be a VS group, to a point in time,
and S a set of clients. Assume that from time ty onwards:

1. All the clients in S are members of G.

2. All the clients in S and their servers are in the same connected component
C, and the topology of C' does not change.

3. Processes in C' do not suspect each other, and every process which s not in
C' is suspected by every member of C2.

Then there 1s a time ty > 1y s.t. all the processes in S incur the same sequence of
views n G after time t1. Furthermore, if the set of members of G in C' s exactly
S after time tg, then all the members of S eventually deliver the same view v, s.t.
v.M = S and do not deliver any further views in G.

As noted in Section 4.4, stability does not have to actually hold forever. It only
has to hold “long enough” for the membership protocol to stabilize.

We would like to note that perfectly precise membership services are impossi-
ble to implement in truly asynchronous environments [CHTCB96, VKCD98]. A
powerful adversary that fully controls the communication can force every determin-
istic membership algorithm to be imprecise, to block, or to constantly change its
mind. Therefore, we have formulated Properties 4.2 (Eventual Preciseness) and 5.3
(Agreement on Views) to guarantee preciseness of the membership service only at
stable periods in which the external failure detector module does not suspect correct
and connected processes. If the failure detector is highly unreliable, then it is possi-
ble that our membership algorithm would never be precise. If, however, the failure
detector is an eventual perfect one (please see [CT96, DFKM96, DFKM97]),
and the communication stabilizes, then our membership service is guaranteed to
eventually be precise.

2This requirement is fulfilled if the failure detector is eventually perfect. Please see [CT96,
DFKM96, DFKM97].

12 TAL ANKER, GREGORY V. CHOCKLER, DANNY DOLEV, AND IDIT KEIDAR

5.1.2. Virtual synchrony. Virtual synchrony involves synchronizing multicast
communication with membership notifications. In this programming model, group
multicast send and receive events occur within the context of views. We say that a
multicast send (receive) event e in group GG occurs at process p in view v if v was
the latest view that p received in group G before e. The MOSHE VS membership
protocol guarantees:

PROPERTY 5.4 (Self Delivery). A message sent by a process is eventually de-
livered by that process, unless the process suffers a crash failure or leaves the group.

PROPERTY 5.5 (Termination of Delivery). If a process p sends a message in
a view v wn G, and process q 1s i v.M, then either q delivers this message or p
eventually delivers a new view in G.

PROPERTY 5.6 (Synchronous Delivery). Every message is delivered within the
view in which it was sent>.

In addition, MOSHE provides the following property for groups that require it:

PROPERTY 5.7 (View Synchrony). Two processes undergoing the same two con-
secutive views in a group G delwer the same set of messages in G within the former
view.

The MOSHE VS guarantees are very similar to the Ezxtended Virtual Synchrony
semantic described in [MAMSA94]. We have removed the causal order, total or-
der, and safe delivery properties from that semantic, in the belief that these are
optional properties that one might build on top of this service. There are other
group membership specifications in the literature, such as [FvR95], [BDM97]
and [DMS95, VKCD98]. These differ in various details, but have much in com-
mon with the semantic that is used here.

5.2. Implementation of the MOSHE VS membership protocol. In this
section we describe an overview of the implementation of the MOSHE VS membership
protocol. The implementation details may be found in [KSDM].

The MOSHE membership algorithm maintains the list of members in each group.
The algorithm is invoked in response to requests from clients to join or leave groups,
and in response to network events. MOSHE servers extend CONGRESS LMSs. MOSHE
uses CONGRESS incremental updates to propagate knowledge of network changes
and of membership events.

5.2.1. Message flow in MOSHE. When a client join/leave request or a client
failure report is handled by a MOSHE server, the server invokes a corresponding
join/leave request in CONGRESS for further dissemination among the other mem-
bership servers. Once CONGRESS generates a membership notification reflecting this
event, MOSHE starts a synchronization round, in order to achieve virtual synchrony
and agreement on the view.

The membership server computes a proposed view, as explained in Section 5.2.3
below, and emits proposals reflecting it to all of its clients which are members of the
group. The clients echo the proposals in flush messages, which acknowledge their
participation in this view. The flush messages are propagated to all the membership
servers. The clients also multicast the flush messages to the other members of the

3This can be relaxed in various ways, which are not in the scope of this paper. Please

see [FvR95, SM98, VKCD98].

SCALABLE GROUP MEMBERSHIP SERVICES FOR NOVEL APPLICATIONS 13

(5) View(G: {a, b, ¢}) =—— (5) View(G: {a, b, c})

‘(‘1\) Join(i © (3) propose

(3) propose\

SR ~_osHE
\ -
\é ‘\ -
(4) flush(a) ‘ o (4) flush(c)
| ‘ CONGRESS
& (2) MN(a,) (4) flush(b)
B
Jonia. ©) (@) fush@) | (4) flush(c)
| | |
MMTS / Network
| \ \
(1) Join(a, G) (4) flush(a) (4) flush(c)
v
1 CONGRESS
(2) MN(a, G) (4) flush(b)
(4) flush(b) y ¢
e MOSHE
(3) propose

@)4/—(5) View(G: {a, b, c})

FIGURE 5. Events occurring in MOSHE when process a is joining

VS group G.

group in order to synchronize view delivery with the multicast message flow, as
explained in Section 5.2.2 below.

After the proposals are emitted, we say that the view is pending until flush
messages arrive from all of its members. If a new incremental membership notifi-
cation arrives while the view is pending, then new proposals are sent only to those
newly joined clients to whom proposals for this view were not previously sent.

Once the MOSHE server receives flush messages from all the members of the
pending view, it emits a view message to all of its clients (which are members of
the group). The clients synchronize the view with the flush messages, as explained
in Section 5.2.2 below.

EXAMPLE 5.1. In Figure 5 we illustrate the events that occur in the protocol
when process a is joining group G. Initially, the membership of group G is {b,c}.
The protocol is invoked when process a issues its join request.

14 TAL ANKER, GREGORY V. CHOCKLER, DANNY DOLEV, AND IDIT KEIDAR

The join request (denoted by (1) Join(a, G) in Figure 5), is propagated us-
ing CONGRESS. All the MOSHE servers learn of it via the CONGRESS membership
notification, denoted by (2) MN(a, G).

Upon receiving this event, the MOSHE servers generate proposals for a new
membership to their clients. In Figure 5, these are denoted by (3) propose. The
clients respond by multicasting (4) flush messages to the servers and clients.

Once the MOSHE membership server receives flush messages from all the mem-
bers of the new view, it issues a view message, (denoted by (5) View(G: {a, b, c})).

5.2.2. Supporting wvirtual synchrony. Virtual synchrony requires synchroniza-
tion among the clients: In order to fulfill Properties 5.6 (Synchronous Delivery)
and 5.7 (View Synchrony) the clients have to synchronize their multicast messages
with membership events. Such synchronization necessarily incurs a delay period in
which messages may not be transmitted [FvR95].

The synchronization mechanism is based on the flush messages described above.
The purpose of flush messages is to synchronize views with the multicast message
flow. Therefore, flush messages are multicast via the MMTS, and serve as place
holders which denote where (in the message flow) the previous view ends. After
sending a flush message, the clients do not send any new messages until the new
view is reported.

Once the MOSHE membership server receives flush messages from all the mem-
bers of the new view, it issues a view message. The view also contains a view
identifier as explained in Section 5.2.3 below. The clients synchronize the view
with the flush messages: Messages that were sent before the flush are delivered in
the previous view. Recall that we assume that the MMTS provides FIFO multicast
services; hence, messages sent before the flush message are delivered before the flush
message. This way, every message is delivered in the view in which it was sent.

5.2.3. Computing the proposed view. A proposed view (for a group () consists
of the proposed set of members, a proposed view identifier, and a proposed set of
suspects (or leavers).

The membership server computes the initial members and suspects sets of the
proposed view by applying the CONGRESS incremental membership notification to
the membership of the current view. When a CONGRESS incremental membership
notification reports that a process is leaving a group*, the process is removed from
the members set and added to the suspects set. In case a join notification arrives,
the joiner is added to the members set and the suspects set is empty.

Consider Example 5.1 above: There, the membership of group G was {b, ¢}
and the incremental notification reported that a had joined. The proposed set of
members is therefore {a,b,c}, and the proposed set of suspects is empty.

The proposed view identifier is computed by incrementing the latest known
view identifier by one. For example, if the latest view was < G, {b,c},3 >, then the
new proposed view is < {a, b, c},{},4 >. The proposed view is sent in the proposal,
and echoed in the corresponding flush message.

If a new incremental notification arrives while the view is pending, then the
pending view is re-computed by aggregating the incremental notification to the
pending view. When a join notification arrives, the joiner is added to the members

4This can occur either because the process crashed or because it has requested to leave the
group.

SCALABLE GROUP MEMBERSHIP SERVICES FOR NOVEL APPLICATIONS 15

set unless it is already in the suspects set®. New proposals are then sent only to
those newly joined clients to whom proposals were not previously sent. This is
illustrated by the following example:

ExAMPLE 5.2. Consider Example 4.1 (illustrated in Figure 4) where two pro-
cesses, ¢ and d, concurrently try to join group GG. Assume that the current view of
group G is < G, {a,b},3 >. Consider the case in which membership server M; first
receives the notification that ¢ is joining, and then issues proposals for the view
< G, {a,b,c},{},4> to a and c. At the same time, server M5 receives the notifica-
tion that d is joining, and then issues proposals for the view < G, {a,b,d},{},4 >
to b and d.

In the next stage, M7 receives the notification that d is joining, and aggregates
it to the pending view, which now becomes < G,{a,b,c,d},{},4 >. Server M;
checks if it has to send new proposals: Since the only new member (d) is not
a client of M7, no new proposals have to be emitted. Similarly, the aggregated
pending view at server My becomes < G,{a,b,c,d},{},4 >, and M5 does not emit
new proposals.

Similarly, if a leave notification is received during the synchronization round,
the server removes the leaving client from the members set of the pending view,
adds 1t to the suspects set, and no longer waits for a flush message from this client.
In order to prevent blocking, the servers should eventually either receive a flush
message from every member of the view, or receive a notification that the member
has failed. This is fulfilled since we assume that the failure detector is complete,
i.e., eventually suspects every faulty process.

Note that it is possible for a flush message that reflects a CONGRESS membership
notification to arrive before (or even without) the membership notification®. In such
cases, the incremental change reflected in the flush message is also aggregated into
the pending view: The suspects set becomes the union of the suspect sets, and the
new members set consists of the members of the union of the members sets, except
for those who are in the suspects set.

Once flush messages arrive from all the members of the pending view, the server
sends the new view to the clients. The view membership is the members set of the
pending view, and the view identifier is chosen to be the maximum of the proposed
view identifiers among the collected flush messages.

Consider Example 5.2 above: There, the servers wait until they receive flush
messages from all four members before they send the new view to their clients. Since
all the proposals contain the proposed view identifier 4, this is the view identifier for
the new view. Thus, two separate CONGRESS incremental membership notifications
are aggregated and reflected in one view: < G, {a,b,c,d},4>.

In case two previously disconnected servers become connected, it is possible
that they may send proposals for the same view with different view identifiers.
This is illustrated in the example below.

EXAMPLE 5.3. There are two membership servers, M7 and M5, which are dis-
connected due to a network failure. At M; the view of group G is < {a,b},3 >,
while at M5 the view is < {c¢,d},5 >. There is a difference in the view identifiers

5If the joiner is in the suspects set, the notification is buffered to be handled after the current
pending view will be delivered.
8This can occur, for example, in case of a false suspicion at some of the processes.

16 TAL ANKER, GREGORY V. CHOCKLER, DANNY DOLEV, AND IDIT KEIDAR

due to a couple of membership changes that occurred at M;’s network component
while M; and M5 were disconnected.

Now, the network failure is mended and all the processes in the system recon-
nect. M receives a CONGRESS membership notification that reflects the join of ¢
and d, and M5 receives a CONGRESS membership notification that reflects the join
of a and b. M emits the proposal < G,{a,b,c,d},{},4 > whereas My emits the
proposal < G,{a,b,c,d},{},6 >. These proposed views are echoed in the flush
messages. Once all the flush messages are collected, both servers report of the view
< G,{a,b,c,d},6 >, since 6 is the maximum view identifier among the collected
flush messages.

5.2.4. Recovery from server failures. The MOSHE service is fault tolerant: If
a MOSHE server crashes, its clients are transparently migrated to another MOSHE
server, and the application program is unaware of this change.

When a client receives a server failure report, it tries to reconnect to an al-
ternative server’. The live servers also receive a report of the server’s failure via
CONGRESS. When a live MOSHE server receives such a report, it waits for the
failed server’s clients to connect to it during a predefined time interval, called the
reconnection time interval.

After the reconnection time interval is over, the servers exchange among them-
selves the list of reconnected clients, and issue a leave event for those clients that
did not succeed to reconnect. Since the system is asynchronous, it is possible that
a client will succeed to reconnect to a server only after the reconnection time inter-
val is over. In this case, when the client reconnects the server notifies it that the
reconnect is too late. The client then re-joins all the groups that it was previously
a member of.

During the migration period, some messages that were in transit between the
client and server may have been lost. We now describe how the protocol recovers
from these message losses:

Recovery from a lost proposal or flush message: After the reconnection
time interval is over, each server emits proposals for pending views to the
reconnected clients. The clients echo these proposals in flush messages as
usual. The servers ignore duplicate flush messages, and ignore flush messages
which pertain to views that have already been cleared.

Recovery from a lost view report: When a client connects to a new server
it emits a join request for each group that corresponds to a pending view
(a pending view is one for which the client received a proposal and has not
received a view report yet). If the server receives a join request from a client
that is included in the group membership, it assumes that the client had
lost the view report, and re-sends it.

Recovery from a lost join or leave: The client re-issues join/leave requests
for every group that it tried to join/leave but did not receive a proposal re-
flecting this request. In order to keep track of these groups, the client also
needs to receive proposals for groups that it is leaving. Such proposals are
not echoed in flush messages.

7The alternative server may be located using CORBA services, or using a list of alternative
servers that the client holds. For details please see [Now98].

SCALABLE GROUP MEMBERSHIP SERVICES FOR NOVEL APPLICATIONS 17

6. Advanced group membership services

The client-server design of the membership service allows us to support a vari-
ety of advanced services without adding complexity to the clients and hence without
paying a performance penalty. MOSHE provides advanced services such as hierar-
chical organization of groups, secure groups and group policies.

An important innovation of our membership service is the support for hierar-
chical directory services. MOSHE maintains a hierarchy of groups: a group may
be a sub-group of a parent group. A parent group may contain a number of sub-
groups. This concept is useful for applications containing a number of logically
related groups, e.g., a conferencing application with several discussion groups.

MOSHE also supports secure group services: It implements authentication and
authorization mechanisms that determine when a user is authorized to perform
actions in a group, (e.g., create a sub-group for a specified group, query which sub-
groups a group has, or join a group). Furthermore, the membership service may
maintain two membership sets for each process group: active members who may
provide input in the group, and passive members who receive messages sent to the
group but cannot send messages to the group.

Thus, the authentication mechanism allows users to determine policies which
restrict the ability of processes to become (active/passive) members of the group.
The policies are declared when the group is created. If no policy is declared, then
the policies are inherited from the parent group.

More sophisticated policies may be also imposed, e.g., restricting the number
of members in a group, or even the properties of the members. For example, a
cosmopolitan conference over the Internet may allow only two members from each
country to participate in the discussion. If, due to a membership policy, a user’s
join request may not be currently fulfilled but may possibly be fulfilled later, MOSHE
allows the user to block until the join will become possible.

7. Conclusions

In this paper we presented a novel membership service, which exploits the
client-server paradigm to allow “thin” lightweight clients to benefit from sophisti-
cated membership services.

Our membership service provides two different service levels and semantics,
geared to different applications with different needs: the CONGRESS membership
service which provides simple semantics of membership approximation, and the
MOSHE service which extends it to provide full virtual synchrony semantics for
applications that require consistency.

CONGRESS minimizes the communication overhead and is therefore scalable and
appropriate for WANs. CONGRESS uses a logical name space for group addressing
and enables maintenance of dynamic multicast groups. The protocol copes with
network and host failures, and exploits the network’s hierarchical addressing scheme
to support world-wide scalability and scoping.

The MOSHE VS membership protocol provides agreement on membership and
strong semantics of message ordering w.r.t. membership changes, namely, virtual
synchrony [BJ87, FvR95, MAMSA94, VKCD98]. Virtual synchrony requires
synchronization among the applications and the membership service. This synchro-
nization greatly facilitates the design of applications that require consistency (e.g.,
applications with shared data [BJ87, ABCD96, KD96, FLS97, ADMSM94]),

18 TAL ANKER, GREGORY V. CHOCKLER, DANNY DOLEV, AND IDIT KEIDAR

but is too costly for applications that require real-time message delivery (e.g., video
transmission). Therefore, we provide virtually synchronous communication only for
groups that explicitly request this service.

We have implemented MOSHE in Java. Clients may communicate with the
MOSHE server using the standard CORBA interface, or using a TCP/IP socket
interface. MOSHE also provides some advanced services such as a hierarchical di-
rectory of groups and secure group membership services. MOSHE is inherently fault
tolerant: In case of a server failure, its clients are transparently migrated to another
server.

Acknowledgements

We are grateful to Aviva Dayan for many helpful comments which greatly
helped improve the quality of the presentation.

Many people contributed to the design and implementation of the membership
services. David Breitgand and Zohar Levy participated in the design of CONGRESS.
Jeremy Sussman participated in the design and implementation of the VS mem-
bership algorithm. Gabriel Benhanokh and Ariel Nowersztern participated in the
implementation of the communication framework for MosHE; Ariel Nowersztern im-
plemented the recovery from server failures, and Gabriel Benhanokh implemented
the authorization and authentication mechanisms in MOSHE. Gad Admoni imple-
mented the hierarchical directory of groups.

References

[ABCD96] Y. Amir, D. Breitgand, G. Chockler, and D. Dolev, Group communication as an
infrastructure for distributed system management, 3rd International Workshop on
Services in Distributed and Networked Environment (SDNE), June 1996, pp. 84-91.

[ABDL96] T. Anker, D. Breitgand, D. Dolev, and Z. Levy, CONGRESs: CONnection-oriented
Group-address RESolution Service, Tech. Report CS96-23, Institute of Computer
Science, The Hebrew University of Jerusalem, Jerusalem, Israel, December 1996,
Available from: http://www.cs.huji.ac.il/~transis/.

[ABDL97] T. Anker, D. Breitgand, D. Dolev, and Z. Levy, CONGRESS: Connection-oriented
group-address resolution service, Proceedings of SPIE on Broadband Networking
Technologies, November 2-3 1997.

[ACKt97] T. Anker, G. Chockler, I. Keidar, M. Rozman, and J. Wexler, Ezploiting group com-
munication for highly available video-on-demand services, Proceedings of the IEEE
13th International Conference on Advanced Science and Technology (ICAST 97)
and the 2nd International Conference on Multimedia Information Systems (ICMIS
97), April 1997, pp. 265-270.

[ACM96] ACM, Commun. acm 39(4), special issue on Group Communications Systems, April
1996.

[ADKM92] Y. Amir, D. Dolev, S. Kramer, and D. Malki, Membership algorithms for multi-
cast communication groups, 6th International Workshop on Distributed Algorithms
(WDAG), November 1992, pp. 292-312.

[ADMSM94] Y. Amir, D. Dolev, P. M. Melliar-Smith, and L. E. Moser, Robust and Efficient
Replication using Group Communication., Tech. Report CS94-20, Institute of Com-
puter Science, The Hebrew University of Jerusalem, Jerusalem, Israel, 1994.

[AMMSt93] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella, Fast
message ordering and membership using a logical token-passing ring, 13th Interna-
tional Conference on Distributed Computing Systems (ICDCS), May 1993, pp. 551—
560.

[AMMSt95] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella, The
totem single-ring ordering and membership protocol, ACM Trans. Comput. Syst. 13
(1995), no. 4.

SCALABLE GROUP MEMBERSHIP SERVICES FOR NOVEL APPLICATIONS 19

[Ank97]

[BDM97]

[BFHR9S]

[Bir9s6]

[BI87]

[Car94]

[CHKD96]

[CHTCB96]

[CS95]

[CT96]

[DFKM96]

[DFKM97]

[DMS94]

[DMS95]

[EMS95]

[FIMt95]

[FLS97]

[FvR95]

[KD96]

T. Anker, CoNGREsS: CONnection-oriented Group-address RESolution Service,
Master’s thesis, Institute of Computer Science, The Hebrew University of Jerusalem,
Jerusalem, Israel, 1997.

0. Babaoglu, R. Davoli, and A. Montresor, Partitionalbe Group Membership: Spec-
ification and Algorithms, TR UBLCS97-1, Department of Conmputer Science, Uni-
versity of Bologna, January 1997.

K. Birman, R. Friedman, M. Hayden, and 1. Rhee, Middleware support for dis-
tributed multimedia and collaborative computing, Multimedia Computing and Net-
working (MMCN98), 1998, To appear.

K. Birman, Building Secure and Reliable Network Applications, ch. 18, Manning,
1996.

K. Birman and T. Joseph, Ezploiting virtual synchrony in distributed systems, 11th
ACM SIGOPS Symposium on Operating Systems Principles (SOSP), ACM, Nov
1987, pp. 123-138.

Georg Carle, Reliable group commaunication in ATM networks, Proceedings of the
Twelve Annual Conference on European Fibre Optic Communications and Networks
EFOC&N’94, June 21-24 1994.

G. Chockler, N. Huleihel, I. Keidar, and D. Dolev, Multimedia multicast transport
service for groupware, TINA Conference on the Convergence of Telecommunications
and Distributed Computing Technologies, September 1996, Full version available as
Technical Report CS96-3, The Hebrew University, Jerusalem, Israel.

T.D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost, On the impossibility
of group membership, ACM Symposium on Principles of Distributed Computing
(PODC), May 1996, pp. 322-330.

F. Cristian and F. Schmuck, Agreeing on Process Group Membership in Asynchro-
nous Distributed Systems, Tech. Report CSE95-428, Department of Conmputer Sci-
ence and Engineering, University of California, San Diego, 1995.

T. D. Chandra and S. Toueg, Unreliable failure detectors for reliable distributed
systems, J. ACM 43 (1996), no. 2, 225-267.

D. Dolev, R. Friedman, I. Keidar, and D. Malki, Failure Detectors in Omission Fail-
ure Environments, TR 96-13, Institute of Computer Science, The Hebrew University
of Jerusalem, Jerusalem, Israel, September 1996, Also Technical Report 96-1608, De-
partment of Computer Science, Cornell University.

D. Dolev, R. Friedman, I. Keidar, and D. Malki, Failure detectors in omission failure
environments, ACM Symposium on Principles of Distributed Computing (PODC),
August 1997, Brief announcement.

D. Dolev, D. Malki, and H. R. Strong, An Asynchronous Membership Protocol that
Tolerates Partitions, Tech. Report CS94-6, Institute of Computer Science, The He-
brew University of Jerusalem, Jerusalem, Israel, 1994.

D. Dolev, D. Malki, and H. R. Strong, A Framework for Partitionable Member-
ship Service, TR 95-4, Institute of Computer Science, The Hebrew University of
Jerusalem, March 1995.

P. D. Ezhilchelvan, A. Macedo, and S. K. Shrivastava, Newtop: a fault tolerant group
communication protocol, 15th International Conference on Distributed Computing
Systems (ICDCS), June 1995.

Sally Floyd, Van Jacobson, Steven McCanne, Ching-Gung Liu, and Lixia Zhang, A
reliable multicast framework for light-weight sessions and application level framing,
Proceedings of the IEEE/ACM Transactions on Networking., November 1995, An
earlier version of this paper appeared in ACM SIGCOMM 95, August 1995, pp.
342-356.

A. Fekete, N. Lynch, and A. Shvartsman, Specifying and using a partionable group
communication service, 16th ACM Symposium on Principles of Distributed Com-
puting (PODC), August 1997.

Roy Friedman and Robbert van Renesse, Strong and Weak Virtual Synchrony in
Horus, TR 95-1537, dept. of Computer Science, Cornell University, August 1995.

I. Keidar and D. Dolev, Efficient message ordering in dynamic networks, 15th ACM
Symposium on Principles of Distributed Computing (PODC), May 1996, pp. 68-76.

20 TAL ANKER, GREGORY V. CHOCKLER, DANNY DOLEV, AND IDIT KEIDAR

[KSDM]

[MAMSA94]

[MMSAt96]

[MPS91]

[MS94]

[MSMA91]

[Now9g]

[PSK94]

[PSLB97]
[Rod91]

[SM9s]

[VKCD98]

[Vog9s]

I. Keidar, J. Sussman, D. Dolev, and K. Marzullo, A Client-Server Oriented Algo-
rithm for Virtually Synchronous Group Membership, In preparation.

L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal, Eztended virtual syn-
chrony, 14th International Conference on Distributed Computing Systems (ICDCS),
June 1994.

L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-
Papadopoulos, Totem: A fault-tolerant multicast group communication system,
Commun. ACM 39 (1996), no. 4.

S. Mishra, L. L. Peterson, and R. D. Schlichting, A Membership Protocol based on
Partial Order, Proc. of the intl. working conf. on Dependable Computing for Critical
Applications, Feb 1991.

C. Malloth and A. Schiper, View synchronous communication in large scale net-
works, 2nd Open Workshop of the ESPRIT project BROADCAST (Number 6360),
July 1995 (also available as a Technical Report Nr. 94/84 at Ecole Polytechnique
Fédérale de Lausanne (Switzerland), October 1994).

P. M. Melliar-Smith, L.. E. Moser, and V. Agrawala, Membership algorithms for asyn-
chronous distributed systems, International Conference on Distributed Computing
Systems (ICDCS), May 1991.

A. Nowersztern, MOSHE: Membership Object-oriented Service for Hetero-
geneous FEnvironments, Lab project, High Availability lab, The Hebrew
University of Jerusalem, Jerusalem, Israel, January 1998, Available from:
http://www.cs.huji.ac.il/labs/transis/.

Sanjoy Paul, Krishan K. Sabnani, and David M. Kristol, Multicast transport proto-
cols for high speed networks, Proceedings of the International Conference on Network
Protocols, 1994, pp. 4-14.

Sanjoy Paul, K. Sabnani, J.C. Lin, and S. Bhattacharyya, Reliable multicast trans-
port protocol (RMTP), IEEE Journal on Selected Areas in Communications (1997).
Tom Rodden, A survey of CSCW systems, Interacting with Computers 3 (1991),
no. 3, 319-353.

J. Sussman and K. Marzullo, The bancomat problem: An example of resource al-
location in a partitionable asynchronous system, 12th International Symposium on
DIStributed Computing (DISC), September 1998, To appear.

R. Vitenberg, I. Keidar, G. V. Chockler, and D. Dolev, Group Communication
System Specifications: A Comprehensive Study, Tech. report, Institute of Computer
Science, The Hebrew University of Jerusalem, 1998, In preparation.

Werner Vogels, World wide failures, Proceedings of the ACM SIGOPS 1996 Euro-
pean Workshop, September 1996.

INSTITUTE OF COMPUTER SCIENCE, THE HEBREW UNIVERSITY OF JERUSALEM, GIVAT RAM,
JERUSALEM 91904, ISRAEL
E-mail address: anker@cs.huji.ac.il

INSTITUTE OF COMPUTER SCIENCE, THE HEBREW UNIVERSITY OF JERUSALEM, GIVAT RAM,
JERUSALEM 91904, ISRAEL
E-mail address: grishac@cs.huji.ac.il

INSTITUTE OF COMPUTER SCIENCE, THE HEBREW UNIVERSITY OF JERUSALEM, GIVAT RAM,
JERUSALEM 91904, ISRAEL
E-mail address: dolev@cs.huji.ac.il

INSTITUTE OF COMPUTER SCIENCE, THE HEBREW UNIVERSITY OF JERUSALEM, GIVAT RAM,
JERUSALEM 91904, ISRAEL
FE-mail address: idish@cs.huji.ac.il

