
CAFÉ: Scalable Task Pools with

Adjustable Fairness and Contention

Dmitry Basin

CAFÉ: Scalable Task Pools with Adjustable Fairness and
Contention

Research Thesis

Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Electrical Engineering

DMITRY BASIN

Submitted to the Senate of the Technion – Israel Institute of Technology

CHESHVAN 5772 HAIFA OCTOBER 2011

The Research Was Done Under the Supervision of Prof. Idit Keidar

from the Department of Electrical Engineering, Technion, in the Depart-

ment of Electrical Engineering, Technion. It was accepted to the Dis-

tributed Computing (DISC) 2011 Conference [3].

The Work was Done in Cooperation with Rui Fan, Idit Keidar, Ofer

Kiselov and Dmitri Perelman.

THE GENEROUS FINANCIAL HELP OF THE TECHNION — ISRAEL INSTITUTE

OF TECHNOLOGY IS GRATEFULLY ACKNOWLEDGED

Acknowledgments

I would like to thank the following people for their help, guidance and support during

my studies for the master degree. My advisor Prof. Idit Keidar, for revealing to me the

distributed and parallel systems area of study, for very friendly atmosphere for work, wise

advices and smart guidance. I thank Dmitri Perelman for saying one day: “Let’s do the

master degree!”, for great friendship, guidance and support during this work. Thanks

to my family: parents Michael and Svetlana; brother Pavel and sister Nina for believing

in me and supporting in all difficult moments. I am also very grateful to my girlfriend,

Anastasia, for encouragement and having a great time despite of the efforts required by

this work.

Contents

Abstract 1

1 Introduction 2

2 Related Work 5

3 Model and Problem Definitions 9

3.1 Implementation Environment . 9

3.2 Concurrent Objects, Linearizability . 10

3.3 α-Fair Task Pool Sequential Specification 11

3.4 Concurrent Object Liveness Properties 11

4 The CAFÉ Algorithm 13

4.1 Abortable Pool Sequential Specification 13

4.2 TreeContainer . 14

4.2.1 Task Insertion . 14

4.2.2 Task Retrieval . 17

4.3 Combining TreeContainers in a FIFO List 18

5 CAFÉ’s Properties 21

5.1 Safety Properties . 21

5.2 Liveness Properties . 22

5.3 Performance Properties . 23

6 Evaluation 25

6.1 Experiment Setup . 25

6.2 System Throughput . 26

6.3 Choosing the Tree Height . 29

6.4 Performance Breakdown . 30

6.5 The Cost of Fairness . 32

6.5.1 Partitioning Technique . 32

6.5.2 Throughput of Partitioned Task Pools 33

7 Proofs of Safety Properties 35

7.1 Safety of TreeContainer . 35

7.2 Safety of CAFÉ . 38

8 Proofs of Performance Properties 42

8.1 TreeContainer Insertions vs Random Walk 42

8.2 TreeContainer Density Guaranties . 44

8.3 TreeContainer Step Complexity . 45

9 Proofs of Liveness Properties 48

9.1 Probabilistic Wait Freedom of Producers 48

9.2 Consumers Wait Freedom . 51

10 Conclusions 54

List of Figures

4.1 CAFÉ keeps a linked list of scalable task trees. The tree height defines

the fairness of the protocol. 18

6.1 Task insertion and retrieval rates (equal numbers of producers and con-

sumers). The throughput of CAFÉ-13 increases up to 32 threads (the

number of hardware threads in the system). In this configuration it is×30

faster than the Michael-Scott ConcurrentLinkedQueue and over three times

higher than all other implementations, including the ones not providing

FIFO. CAFÉ continues demonstrating high throughput even when the

number of threads increases up to 64. 27

6.2 Throughput on different hardware architectures, normalized by the through-

put of LBQ. There are 6 producer threads and 6 consumer threads. 27

6.3 Task insertion rate for big number of producers, various number of con-

sumers. Insertion rate of CAFÉ remains significantly higher than that of

the competitors. 28

6.4 CAS failures and system throughput as a function of CAFÉ’s tree height

for 16 producers and 16 consumers. Small trees induce high contention

because of linked list manipulations and reduced tree randomization. Ex-

cessively large trees induce contention among producers and consumers

operating in the same tree. The SQ pool throughput on 6.4(b) is measured

for segments of sizes equal to TreeContainer of the specified height. . . . 29

6.5 CAFÉ and CLQ CAS instruction statistics for producer threads. 30

6.6 CAS instructions cost depending on number of threads competing on the

same shared resource. Increased contention on the shared object increases

the duration of CAS instructions. 31

6.7 Here we show throughput of containers constructed using a partitioning

technique for three different basic pools: CAFÉ -13 (6.7(a)), CAFÉ -8

(6.7(b)) and CLQ (6.7(c)). Evaluation is done with equal numbers of

producer and consumer threads. Groups of size d#threads
4
e are used for

partitioning due to the maximal throughput achieved by such configura-

tion. Each plot presents results for three types of thread assignment: Good

affinity - threads in the same groups are assigned to cores of a single chip;

OS assignment – threads are dynamically assigned by the scheduler of

Linux OS with 2.6.35 kernel version; Bad affinity –threads in the same

group are assigned to cores of different chips. Basic pools use OS assign-

ment for threads. 33

Abstract

Task pools have many important applications in distributed and parallel computing. Pools

are typically implemented using concurrent queues, which limits their scalability. We

introduce CAFÉ, Contention and Fairness Explorer, a scalable and wait-free task pool

which allows users to control the trade-off between fairness and contention. The main

idea behind CAFÉ is to maintain a list of TreeContainers, a novel tree-based data struc-

ture providing efficient task inserts and retrievals. TreeContainers don’t guarantee FIFO

ordering on task retrievals. But by varying the size of the trees, CAFÉ can provide any

type of pool, from ones using large trees with low contention but less fairness, to ones

using small trees with higher contention but also greater fairness.

TreeContainer scalability of is shown by proving an O(log2N) bound on the step

complexity of insert operations when there are N inserts, as compared to an average of

Ω(N) steps in a queue based implementation. A further proof shows that get operations

are wait-free. Evaluations of CAFÉ show that it outperforms the Java SDK implementa-

tion of the Michael-Scott queue by a factor of 30, and is over three times faster than other

state-of-the-art non-FIFO task pools.

1

Chapter 1

Introduction

A task pool is a data structure consisting of an unordered collection of objects, a put

operation to add an object to the collection, and a get operation to remove an object.Task

pools are also called producer-consumer pools ; producers perform puts, and consumers

gets. Pools have a number of important applications in multiprocessor computing, such

as maintaining the set of pending tasks in a parallel computation. For example, there is a

highly concurrent web server, SEDA [13], that uses such task pools as a building block. A

key challenge in these applications is to ensure that the pool does not become a bottleneck

when it is concurrently accessed by a large number of threads. Another challenge is to

ensure fairness — although strict FIFO ordering is not necessary, we nevertheless want to

avoid starvation and limit the number of times a task is overtaken by another task, i.e., is

retrieved after a task that was inserted later than it.

More formally, a task pool is a concurrent object, which resides in shared memory, and

multiple threads perform operations on it concurrently. We are interested in implementing

an atomic or linearizable [9] pool. Intuitively, an atomic implementation of a concurrent

object allows to think that every operation takes an effect at some moment in time between

its invocation and response without influence of concurrent updates from other threads.

Most current task pools implementations [11, 10, 1, 2, 12] provide lock-freedom [7]

guarantees about execution progress, ensuring that at least one thread progresses in its

operation regardless of the performance or failures of other threads. In our work we focus

on wait-free and randomized wait-free pool implementation. Wait-freedom implies that

2

each thread executing an operation performs a finite number of steps, while randomized

wait-free implementation guarantees a finite number of steps with probability 1. Formal

definitions of correctness and progress properties appear in Chapter 3.

In this thesis, we present CAFÉ (Contention And Fairness Explorer), an efficient ran-

domized wait-free task pool algorithm. CAFÉ maintains a list of scalable bounded pools

called TreeContainers. When one TreeContainer becomes full, a new TreeContainer is

appended to the end of the list. Retrievals follow the FIFO order of the TreeContainers,

but each TreeContainer can return its tasks in any order. This way, the tree size is a system

parameter controlling the trade-off between fairness and contention. Using smaller trees,

the system provides better fairness but also has more contention.

A TreeContainer stores tasks in a complete binary tree, in which every node can store

one task. Each node keeps presence bits indicating whether its child subtrees contain

tasks. This allows get operations to find tasks by walking down the tree from the root,

following a trail of presence bits. At the same time, the bits do not change frequently,

even when there are a large number of concurrent puts and gets, so they do not cause

much contention. We show that TreeContainers are dense: a tree with height h contains

at least 2(1−ε)h tasks with high probability, for any ε > 0. We also show that TreeContain-

ers perform well under contention. When there are N concurrent put operations and an

arbitrary number of gets, each put finishes in O(log2N) steps, whp.

CAFÉ combines TreeContainers in a FIFO linked list, to provide the following prop-

erties: 1) The number of overtaken tasks in CAFÉ is bounded by the size of a tree. 2)

In most workloads, producers and consumers operate on different TreeContainers, which

decreases contention and improves performance. 3) Puts are wait-free with probability 1,

and gets are deterministically wait-free.

Our algorithm offers some significant advantages over other approaches for task pools.

The most common approach to implement pools is using FIFO queues (e.g., Java Thread-

PoolExecutor). However, lock-free queue-based algorithms suffer Ω(N) contention at the

head and tail, while our algorithm has O(log2N) contention for puts, whp. Other queue-

based algorithms use locks, and require puts and gets to wait for each other. In contrast,

all operations in our algorithm are wait-free. Recent ED pools in [1] also use trees, but

in a different way. Unlike our algorithm, [1] does not provide any upper bounds on step

3

complexity, nor on the number of times a task can be overtaken. SegmentedQueue (SQ)

of [2] uses, similar to CAFÉ, the idea of managing a linked list of segments. However, the

segments of SQ are implemented by simple arrays and, as a result, are much less scalable.

In addition, SQ has lock-free liveness guarantees, while CAFÉ is wait-free.

We have implemented CAFÉ in Java, and tested its performance on a 32-core ma-

chine1. Our results show that CAFÉ is over 30 times faster than a pool based on Java’s

implementation of the Michael-Scott queue, and over three times faster than a pool which

uses Java’s state-of-the-art lock-based queue (even though CAFÉ is wait-free). Also,

CAFÉ is over three times faster than SQ and over 30 times faster than ED pools, while

providing stronger liveness and fairness guarantees.

The rest of the thesis is organized as follows: Chapter 2 describes background and

previous work. Chapter 3 introduces the model of CAFÉ’s implementation context and

formally defines the α-fair task pool problem it solves. Chapter 4 introduces the CAFÉ

algorithm and provides intuition for its correctness and efficiency. Chapter 5 states key

lemmas regarding the correctness, liveness, and performance properties of CAFÉ. Chap-

ter 6 empirically evaluates CAFÉ, compares its performance to that of other algorithms,

makes performance breakdown, and considers the cost of implementing fairness require-

ments. Chapters 7– 9 include formal proofs of the lemmas stated in Chapter 5: Chapter 7

deals with correctness, Chapter 8 proves performance properties, and Chapter 9 formally

proves CAFÉ’s liveness properties. Finally, Chapter 10 concludes the thesis.

1The code is publicly available at http://code.google.com/p/cafe-pool/.

4

http://code.google.com/p/cafe-pool/

Chapter 2

Related Work

A common approach to implementing concurrent task pools is to use FIFO queues for

task management. The state of the art concurrent FIFO queue implementation is Michael

and Scott’s queue (M&S) [11]. The queue is represented by an unidirectional linked list.

It has global head and tail references. Every node in the list has a next reference to the

following node. The last node’s next is ⊥. A put operation adds a new node to the end of

the list and updates the tail reference. During the operation, the thread has to perform two

CAS instructions: first, update by CAS the next reference of the last node in the list to

point to the new node; second, update by CAS the global tail reference to point to the new

node. A get operation removes the head node of the list by a single CAS on the global

head reference, moving it to point to the following node in the list. The M&S queue is

lock free and linearizable with respect to the sequential specification of a FIFO queue.

Later work by Ladan-Mozes and Shavit [10] improves the M&S implementation

achieving a single CAS per put operation in their optimistic queue. The optimistic queue

manages a bidirectional linked list where every node has prev and next references to

neighboring nodes. A put operation allocates a new node with prev pointing to the current

tail node, and CASes tail to point to the allocated node. In rare cases, there is a possible

inconsistent state of next, prev fields in some nodes, but together with head, tail references

threads can discover this and fix the state and, finally, use correct values. The optimistic

queue, like M&S, is lock-free and linearizable with respect to a FIFO queue sequential

specification.

5

Both M&S and optimistic queue have simple implementations and are widely used.

However, they do not scale well under high contention, because many threads contend on

few memory locations - the head and tail of the queue. ConsiderN threads performing get

operations simultaneously on such a queue (the case of put is symmetric). All the threads

compete to CAS a single head reference. Only one thread succeeds in each iteration, and

the remaining threads retry the CAS on the new head. The total number of CASes in

such a run is N + (N − 1) + (N − 2) + ... + 1 = N ·(N+1)
2

. Thus, an average thread

does Ω(N) CASes per single get operation. In contrast, in CAFÉ most operations are

done inside a single TreeContainer, and we formally prove that, in TreeContainer, in

N successful put operations, every thread performs whp O(log2(N)) steps consisting of

CAS, read and write instructions. The improvement is possible due to relaxation of strict

FIFO requirement.

Further work by Moir et al. [12] tries to solve the scalability problem of a single

contention point by adding an elimination array to an M&S-like queue. When the queue

is empty, put and get threads can “eliminate” each other at randomly chosen entries of

the elimination array without proceeding to the linked list queue operations. So when

the queue is empty, producer and consumer threads meet at multiple locations in the

elimination array which reduces the average number of CASes a thread has to do per

operation. This approach best suits workloads in which there are more consumers than

producers. Elimination is less useful if the queue remains non-empty most of the time, or

when concurrency is low. When the queue is not empty, elimination is not used and we get

the usual M&S performance. When concurrency is low, producer/consumer eliminations

are rare, and threads waste time waiting for elimination. The queue of Moir et al. [12] is

lock-free and linearizable with respect to a FIFO queue sequential specification.

The elimination of [12] cannot be used for a non-empty queue because of FIFO re-

quirements. CAFÉ makes the observation that strict FIFO ordering is not necessary for

a task pool, and thereby achieves a scalable algorithm, which performs well under both

high and low concurrency, regardless of the ratio between producers and consumers.

Afek et al. [1] also propose a task pool foregoing FIFO ordering for scalability. Their

Elimination Diffraction (ED) pools yield significantly better results than FIFO imple-

mentations. ED pools use a fixed number of queues along with elimination for reducing

6

contention. However, as we show in Section 6.2, ED pools do not scale well on multi-

chip architectures. We explain this by the fact that all the elimination arrays used in the

ED pool are constantly accessed by all threads at random locations. As a result, all the

elimination arrays are replicated in the caches of all chips, and very frequently, operations

require expensive exits to neighboring chips to maintain cache coherency. Additional dis-

advantages of ED pool are that, unlike CAFÉ , it is not wait-free, and offers no fairness

guarantees.

In [2] Afek et al. present a non-FIFO segmented queue (SQ) which, like CAFÉ, has a

bound on the number of overtaken tasks. Like CAFÉ, SQ maintains a linked list of seg-

ments. Each segment is an array of nodes in the size of the overtakers’ bound. Each node

has a deleted Boolean marker, which indicates if it has been taken by get. Each producer

iterates over the last segment in the linked list in some random permutation order. When

it finds an empty cell, it performs a CAS operation attempting to put its new element. In

case the entire segment has been scanned and no available cell is found (implying that the

segment is full), the operation attempts to add a new segment to the list. The get operation

is similar: the consumer iterates over the first segment in the linked list in some random

permutation order. When it finds an item that has not yet been taken, it performs a CAS on

its deleted marker in order to delete it, and if successful, this item is considered dequeued.

In case the entire segment was scanned and all the nodes have already been dequeued

(implying that the segment is empty), then it attempts to remove this segment from the

linked list and repeats the process on the next segment. If there is no next segment, the

queue is considered empty. We can see in Section 6.2 that distributing contention over

arrays of segments, indeed, performs better than FIFO implementations. However, it still

is at least 3 times worse than CAFÉ’s performance. The main reason for this is the inef-

ficient search for required nodes by producers and consumers. When an SQ segment is

full producers have to traverse all the array to find a place for item insertion, and when

a segment is empty, consumers have to traverse all the array while searching for an item

to retrieve. We show in Section 6.3 that SQ performance improves only up to a segment

size of 255 and further relaxation of FIFO has no benefit. CAFÉ, on the other hand, uses

as its “segment” TreeContainer, which provides much better navigation to empty nodes

for producers and to non-taken tasks for consumers. In CAFÉ, producers do not have to

7

traverse all the nodes of a TreeContainer before adding a new segment. Producers can

discover in a few steps that the current segment has few empty nodes and allocate a new

TreeContainer. As a side-effect of this approach, producers can work on more than one

TreeContainer simultaneously, which requires much more complicated maintenance of

TreeContainers than that of SQ, which CAFÉ still does efficiently. Consumers of CAFÉ

use metadata presence bits of TreeContainer to navigate efficiently to non-taken tasks.

We show in Section 6.2, that CAFÉ’s throughput grows up to a size 214 of TreeContainer,

providing a good payoff for FIFO relaxation. In addition, CAFÉ’s put and get operations

are wait-free, while those SQ are only lock-free.

The idea of using concurrent tree-based data structures for reducing contention has ap-

peared in previous works not related to task pools [5, 4]. For example, Scalable NonZero

Indicator (SNZI) [4] is a shared object that supports Arrive and Depart operations, as

well as a Query operation that returns a boolean value indicating whether the number of

completed Arrive operations exceeds the number of completed Depart operations (i.e.,

whether there is a surplus of Arrive operations). The SNZI data structure is organized as

a rooted tree of nodes implemented by SNZI objects. Arrive and Depart operations are

performed on the nodes of the tree, increasing or decreasing the node’s surplus, respec-

tively. Operations preserve the property that the root has surplus if and only if some node

in the tree has surplus. The idea behind SNZI is that the child node acts as a filter for

its parent updates. For example, when some thread arrives to a child node that already

has a surplus, the thread can finish the arrival quickly without updating parent node, be-

cause all the predecessors of the child node up to the root already have surplus. SNZI’s

approach of tracking surplus on nodes resembles our TreeContainer’s metadata presence

bits. However, TreeContainer supports not only indication about presence of tasks in the

tree, but also navigation to tasks, such that any task previously inserted by some producer

thread can be taken by any consumer thread. In addition, unlike previous work [5, 4], we

prove formal bounds on the worst-case step complexity of our TreeContainer algorithm.

8

Chapter 3

Model and Problem Definitions

The problem we solve in this thesis is implementing a wait-free linearizable α-fair task

pool. In Section 3.1 we describe the model and runtime environment. Then, in Sec-

tion 3.2, we define the linearizability criterion for concurrent data structures. In Sec-

tion 3.3, we introduce a sequential specification for α-fair task pool. Finally, in Sec-

tion 3.4, we consider formal definitions of progress guarantees.

3.1 Implementation Environment

We consider a shared memory environment where execution threads have a shared heap,

shared read only code, and separate stack memory spaces. The implementation assumes

that objects that are not accessible from any thread stack are automatically garbage col-

lected by the underlying middleware (in our implementation the Java VM). We assume

that order dependencies between instructions in different threads are according to the Java

Memory Model[6] specification. The scheduler can suspend a thread, for an arbitrary du-

ration of time, at any moment after termination of a basic processor instruction (read,

write, CAS, FetchAndInc, FetchAndDec).Threads cannot be suspended in the middle of

a basic instruction. In addition, we assume that threads can independently generate uni-

form random integer values of any range.

9

3.2 Concurrent Objects, Linearizability

Formally, a task pool is a concurrent object [9], which resides in a memory shared among

multiple threads. As a concurrent object, it has some state and supports a set of opera-

tions. Multiple threads can simultaneously perform operations on the same object. Such

operations may update the state of the object. Each thread operation takes time and,

thus, has a moment of invocation and a moment of response. When threads concurrently

perform operations on concurrent objects, they generate a history [9], which is an or-

dered list of invocation and response events of concurrent object operations. The order

of events is according to the time line in which they occurred. An operation invocation

event is represented by the record O.methodT (args), where O is the concurrent object,

method is the invoked operation, args are the invocation arguments and T is the thread

that started the invocation. An operation response event is represented by the record

O.methodT → results, where results are the operation result set. In a given history, we

say that a response matches a prior invocation if it has the same objectO and thread T , and

no other events of T on object O appear between them. A sequential history is a history

that has the following properties: 1) the first event in the history is an invocation; 2) each

invocation, except possibly the last, is immediately followed by a matching response.

Each concurrent object has a sequential specification defining which sequential his-

tories are legal. In other words, it actually says what actions are correct when operations

are invoked sequentially without overlapping calls from different threads.

For defining correctness criteria of concurrent objects we consider the following def-

initions. An invocation is pending in history H if no matching response follows the in-

vocation. An extension of history H is a history constructed by appending zero or more

responses matching the pending invocations of H . Complete(H) is the sub-sequence of H

created by removing all pending invocations of H . H|T is a history consisting of exactly

the events of thread T in history H . Two histories H and H ′ are equivalent if for each

thread T , H|T = H ′|T .

For a given sequential specification of a concurrent object, the linearizability [9] cor-

rectness criterion can be defined. A history H is linearizable if it has an extension H ′ and

there is a sequential history S such that:

10

1. S is legal according to the sequential specification of the object.

2. Complete(H ′) is equivalent to S.

3. If method response m0 precedes method invocation m1 in H , then the same is true

in S.

Concurrent objects that have only linearizable histories are called linearizable or

atomic. Intuitively, concurrent object is linearizable if it requires each concurrent run

of its method calls to be equivalent in some sense to a correct serial run.

3.3 α-Fair Task Pool Sequential Specification

An α-fair task pool supports put(t) and get()→ t operations, where t is a task or ⊥. We

assume that tasks inserted into the pool are unique. That is, if put(t), and put(t′) are two

different invocations on a task pool, then t 6= t′. This assumption is made to simplify the

definitions, and could be easily enforced in practice by tagging tasks with process ids and

sequence numbers. An α-fair task pool satisfies the following properties:

1. Get validity: get returns a task t previously inserted by a put(t) operation, and not

returned by any preceding get operation; if there is no such task, it returns ⊥.

2. α-Fairness: if between the response of put(t) and the invocation of put(t′), α put

operations have started and terminated, then no get operation can return t′ before t

has been returned.

3.4 Concurrent Object Liveness Properties

Threads may invoke a concurrent object’s operations simultaneously. A concurrent ob-

ject implementation is lock-free if there is guaranteed system-wide progress, i.e., at least

one thread always makes progress in its operation execution, regardless of the execution

speeds or failures of the threads.

11

A lock-free concurrent object implementation is wait-free if every thread can complete

any operation on the object in a finite number of steps, regardless of the execution speeds

or failures of other threads.

A concurrent object implementation is wait-free with probability 1 if each thread exe-

cuting an operation can complete it in a finite number of steps with probability 1, regard-

less of the execution speeds or failures of the threads.

In this thesis, we implement a shared object that is wait-free with probability 1.

12

Chapter 4

The CAFÉ Algorithm

In this section, we describe CAFÉ, a wait-free, scalable task pool algorithm, whose fair-

ness can be adjusted arbitrarily by the user. The main idea behind CAFÉ is to keep a linked

list of scalable task pools called TreeContainers, each of bounded size. Each TreeCon-

tainer is linearizable with respect to the abortable pool sequential specification introduced

in Section 4.1. The algorithm for a single TreeContainer is given in Section 4.2. Tasks

are stored at tree nodes, which can be occupied at most once. When a tree becomes full,

a new tree is added to the list. The algorithm for combining TreeContainers in a FIFO list

is described in Section 4.3.

4.1 Abortable Pool Sequential Specification

In this section we introduce a sequential specification called abortable pool, which we

later implement by the TreeContainer concurrent data structure. An abortable pool sup-

ports put(t) → result and get() → t operations, where result is true or false and t is a

task. If put returns true, we say that it succeeds, else we say that it fails. We assume that

tasks inserted in the abortable pool are unique, i.e. if put(t) and put(t′) are two different

invocations on the container, then t 6= t′.

Abortable pool’s get operations satisfy the following property: get returns a task t

previously inserted by a successful put(t) operation and not returned by any preceding

get operation; if there is no such task, it returns ⊥.

13

4.2 TreeContainer

A TreeContainer consists of a bounded complete binary tree, in which each node can

store one task. A node with a task is occupied, and otherwise it is free. Each node can

be occupied at most once, as indicated by an isDirty flag. In addition, the node keeps a

presence bit for each child subtree; the bit is zero when all the nodes in the respective

subtree are free. Presence bits allow get operations to find a task in the tree by walking

down from the root following a trail of non-zero bits. Since presence bits summarize the

occupancy of an entire subtree, they change infrequently even under highly concurrent

workloads, which allows our algorithm to achieve low step complexity.

The code of TreeContainer is shown in Algorithm 1. Level i of the tree is implemented

using an array tree[i], which allows O(1) access to any node at a level. The root is the

only node at level 0. Each node also keeps pointers to its father and children, as well as a

bit side, indicating whether it is the left or right child of its father.

4.2.1 Task Insertion

Tasks are inserted in a tree using the put() operation. First, put finds a free node to insert

the task. Then it updates the presence bits of the node’s ancestors. Because a tree has

bounded size, task insertions can fail if they do not find a free node in the tree. Below, we

describe the main steps in a put.

Finding an unoccupied node. The function findNodeForPut() finds a free tree node for

task insertion. It iterates over the tree levels starting from the root (lines 19–24). At each

level, a random node x is chosen, and the algorithm tries to put the task in the highest free

node on the path from x to the root. This is done using the recursive function putInNode()

(lines 27–31). Nodes are reserved by CASing the isDirty flag. Having nodes search

for a free ancestor increases put’s step complexity from O(h) to O(h2) for a tree with

height h (see Section 8.3). However, it also creates denser trees with a more balanced

node occupation, as we show in Section 8.1.

If neither x nor its ancestors can be reserved, another random node is checked. At

each level except the last one, a single node is checked. The number of nodes checked

14

Algorithm 1 TreeContainer, a scalable bounded task pool algorithm.
1: TreeNode data structure:

B ver: version of the metadata
B p indicates presence of tasks in left/right subtrees
B 〈ver, p〉 is kept by a single AtomicInteger in Java

2: [〈ver, p〉, 〈ver, p〉]: meta
3: int: pending
4: boolean: isDirty B true if the node has been already

used
5: Data: task
6: int: side B 0 for the left child, 1 for the right child
7: Tree data structure:

B tree[i] keeps an array of size 2i with the nodes of level
i

8: TreeNode[][]: tree

9: Function hasTasks(node):
10: if (node.meta[0].p ∨ node.meta[1].p)
11: then return 1
12: else return (node.task 6= ⊥) ? 1 : 0

13: Function put(task):
14: node← findNodeForPut(task)
15: if (node = ⊥) then return false
16: updateNodeMetadata(node, 1)
17: return true

18: Function findNodeForPut(task):
19: for level = 0, 1, . . . do
20: trials← (level < height(root)) ? 1 : k
21: for i = 1, . . . , trials do
22: node← random node in tree[level]
23: reserved← putInNode(node)
24: if (reserved 6= ⊥) return reserved
25: return ⊥ B did not succeed in this tree

26: Function putInNode(node, task)
27: if (node.father 6= ⊥∧ node.father.task = ⊥)
28: return putInNode(node.father, task)
29: if (node.isDirty.CAS(false, true))
30: node.task← task; return node
31: else return ⊥

32: Function get()
33: while(true):
34: if (hasTasks(root) = 0) return ⊥
35: node← findNodeForGet()
36: task← node.task
37: if (task 6= ⊥ ∧ node.task.CAS(task, ⊥) = false)

continue
38: updateNodeMetadata(node, 0)
39: if (task 6= ⊥) return task

40: Function findNodeForGet()
41: node← root
42: while(true)
43: if(node.task6=⊥∨node.meta[0].p=node.meta[1].p=0)

return node
44: node← random child among those with p = 1

45: Function updateNodeMetadata(node, myVal)
46: trials← 0;
47: while(node.father 6= ⊥)

B check if my operation has been eliminated
48: if (myVal 6= hasTasks(node)) return
49: if (needToUpdate(node))
50: trials← trials +1
51: if (updateFather(node) 6= success ∨ trials < 2)

continue B try again on this node
52: node← node.father; trials← 0

53: Function needToUpdate(node)
54: fm1 ← father.meta[node.side].p
55: if (node.pending > 0) return true
56: fm2 ← father.meta[node.side].p
57: if(fm1 6= hasTasks(node) ∨ fm1 6= fm2) return true
58: return false

59: Function updateFather(node)
60: node.pending.FetchAndInc()
61: new← old← father.meta[node.side]
62: new.ver← new.ver +1; new.p← hasTasks(node)
63: success← father.meta[node.side].CAS(old, new)
64: node.pending.FetchAndDec()
65: return success

at the last level is defined by a parameter k, with higher k’s resulting in denser trees. In

Section 8.2, we show that in a tree with height h, at least 2
k+2
k+3

h nodes are occupied before

a put operation fails, whp.

Updating the ancestors’ metadata. After a task is inserted in node x, the function

updateNodeMetadata() updates the presence bits of x’s ancestors (lines 47–52). At each

node the function checks that the metadata of the father is correct. Contention remains

low because in the common case, the presence bits of upper-level nodes are not updated

when a new task is inserted or removed.

Though the general outline of the algorithm is simple, ensuring linearizability, wait-

15

freedom and low contention require special care, as we describe below.

1. Ensuring linearizability. A naı̈ve approach to update x’s father’s metadata could

be to implement updateNodeMetadata by a direct call to updateFather: first read the

old presence bit of x’s father (line 61), then calculate whether x’s subtree contains tasks

(line 62), and finally CAS a new metadata value if the old value is incorrect (line 63). If

the CAS fails, the updater retries. Version numbers are attached to the presence bits in

order to avoid ABA problems.

Unfortunately, this simple approach can violate linearizability. Consider nodes x, y

and z, where y is the right child of x and z is the right child of y. Node y has a task,

so that x.meta[1].p = 1. There are two concurrent threads, a consumer tc that removes

the task from y and a producer tp that inserts a task in z. tc starts updating the metadata

of B’s father. It reads the right presence bit at x, which is 1, and decides to update it to

0. We then suspend tc right before it performs its CAS operation. At this time, tp starts

updating the ancestors of z. It first changes y.meta[1].p from 0 to 1, and then checks the

right presence bit at x. Since tc is paused, x.meta[1].p is still 1, and so tp decides that this

value is correct, and terminates. Now tc resumes and successfully changes x.meta[1].p to

0. This makes future gets think that the tree is empty, so that no get will retrieve tc’s task,

violating linearizability.

We solve this problem by letting other threads know about concurrent pending up-

daters. Whenever a thread t plans to change the metadata of x’s father, it increments a

pending counter at x (line 60); after the update, it decrements the counter (line 64). Now,

every updating thread first calls the needToUpdate function to check the father node’s

consistency and whether pending updates exist. If the father’s state is consistent and there

are no pending updates, then the thread can continue without updating the father node.

However, if the thread sees x.pending > 0 at line 55, it will call updateFather (line 51)

for x, regardless of x’s father’s current state. To verify that the father’s state has not

changed after the the read in line 55, we perform a second read after the check (line 56).

Now, in the aforementioned race scenario, tp sees tc’s pending update and therefore up-

dates the father node using CAS on y.meta[1].p, causing failure of tc’s subsequent CAS.

2. Limiting the number of CAS failures. In the simple algorithm described earlier,

an updater thread t that fails to CAS the metadata of x’s father will retry the update.

16

This makes t’s worst case step complexity linear in the tree size, since every thread that

successfully performed an operation in x’s subtree can cause t’s CAS to fail. However,

as we show in Section 7, it suffices for t to only try to update x’s father’s metadata twice

(line 53). The idea is that if t fails two CASes, then some other thread will have already

updated x’s father’s metadata to the correct value.

3. Producer/consumer elimination. We have also adopted the elimination technique

used in [12] and [1]. Consider a thread t that inserted a new task at a node, and started

updating the node’s ancestors. Let x and y be two such ancestors, where y is the father of

x. In the function updateNodeMetadata, t updated y’s metadata (on x’s side) to 1 while

t was still at x. Thus, if t later arrives at y and sees that y’s x-side metadata is now 0, it

means there has been a consumer thread that already removed the task t inserted. In this

case, t doesn’t need to update any more ancestors, and can terminate early (line 48). This

optimization improves performance in scenarios where multiple producers and consumers

are working on the same tree.

In Section 9.1, we show that put operations in TreeContainer are wait-free. Intuitively,

this is because the tree is bounded, and because a thread only tries two updates per node.

If the tree has height h, the put performsO(h2) steps. We show in Section 8 that our inser-

tions create a balanced tree, whp. Hence, when the tree contains N tasks, the complexity

of a put is O(log2N).

4.2.2 Task Retrieval

The get() function in TreeContainer runs in a loop (lines 33–39). If there are no tasks

in the tree, as indicated by the presence bits at the root, the function returns ⊥ (line 34).

get() first finds a task at a random node to retrieve from using findNodeForGet(), and

then updates the metadata of the node’s ancestors.

The function findNodeForGet() searches for a node to get a task from. When it reaches

an unoccupied node, it randomly chooses a nonempty subtree to go down. The random-

ization reduces contention.

A task T is removed from node x by CASing x.task from T to ⊥ (line 37). If the

CAS succeeds, then the metadata of x’s ancestors need to be updated. Otherwise, the

algorithm starts a new retrieval attempt. Note that if findNodeForGet() finds a node xwith

17

x.task = ⊥, it means that another consumer tc removed x’s task but still hasn’t updated

x’s ancestors. In order to be wait-free, a consumer needs to make sure that it will not arrive

to this empty node infinitely many times. Hence, a consumer that arrives at an empty

node x updates x’s ancestors even though it did not take x’s task (line 38). Updating the

ancestors is done in the same way as after a task insertion, using updateNodeMetadata().

In Section 9.2, we show that get operations are wait-free. Intuitively, this is because a

get thread tc can only fail to take a task from a previously occupied node x if some other

thread took x’s task. Then, tc updates the metadata on the path to the root, so that tc does

not go down the same path again. The bounded number of nodes in a tree then limits the

number of unsuccessful get attempts.

4.3 Combining TreeContainers in a FIFO List

As stated earlier, CAFÉ maintains a linked list of TreeContainers, adding new trees as old

ones become full (see Figure 4.1). The order among the trees in the list is preserved when

tasks are returned. This guarantees that the maximum number of overtakers in CAFÉ

is bounded by the tree size. Therefore, the tree size is a parameter that determines the

trade-off between fairness and contention. Using bigger trees, CAFÉ performs more like

a TreeContainer, and so has low contention but less fairness. Using smaller trees, CAFÉ

performs more like a FIFO list, so there is higher contention but greater fairness.

id=10 id=11 id=12

PT

cur><prev

id=9

garbage
collected

GT

Figure 4.1: CAFÉ keeps a linked list of scal-

able task trees. The tree height defines the

fairness of the protocol.

Basic approach. A simple way to man-

age a linked list of trees is to keep one

pointer (PT) for producers, which ref-

erences the tree for puts, and another

(GT) for consumers, referencing the tree

for gets. Whenever the current insertion

tree becomes full, PT is moved forward.

Whenever no tasks are left in the retrieval

tree, GT is moved forward. Old trees are garbage collected automatically in managed

memory systems as they become unreachable.

18

This straightforward approach, however, violates correctness, as we now demonstrate.

Consider the following scenario. tp inserts a task in tree T and pauses before changing the

metadata of T ’s root. Consumers assume that T is empty and increment GT to continue

to later trees. When tp finally resumes, we have GT > PT , and no consumer will ever

retrieve tp’s task.

One way to solve this problem is to reinsert the task in a later tree whenever tp notices

its task may be lost. However, this approach might lead to livelocks, in which producers

constantly chase consumers, never finishing their operations. Another method is to main-

tain a non-zero indicator on each tree (e.g., using SNZI [4]) indicating whether there are

concurrent producers working on the tree. But this approach incurs high overhead, for

managing both indicators and lists of “pending and active” trees. Our solution is instead

based on the idea of moving the consumer pointer GT backwards when a task is added in

an old tree.

Algorithm 2 CAFÉ algorithm for adjustable fairness and contention.
1: Data structures:
2: Node:
3: int: id
4: ScalableTree: tree

5: Global variables:
6: Node: PT B tree for producers
7: 〈prev, cur〉: GT B tree for consumers
8: int: oldProducers B for producers that move GT

backwards

9: Function put(task)
10: while(true)
11: latest← PT
12: if (latest.tree.put(task) = true) then
13: if (GT.cur.id > latest.id) moveGTBack(latest)
14: return
15: else
16: if(latest.next = ⊥) insertNewTree()
17: PT.CAS(latest, latest.next)

18: insertNewTree()
19: newNode← Node()
20: cur← PT B go to the end of the list
21: for(; cur.next 6= ⊥; cur← cur.next);
22: newNode.id← cur.id +1
23: cur.next.CAS(⊥, newNode) B return even if CAS fails

24: Function moveGTBack(Node: prodTree)
25: oldProducers.FetchAndInc()
26: while(true)
27: gtVal← GT
28: if (gtVal.cur.id ≤ latest.id) break
29: newGT← 〈⊥, latest〉
30: if (GT.CAS(gtVal, newGT) = true) break
31: oldProducers.FetchAndDec()

32: Function get()
33: ptVal← PT
34: gtVal← GT
35: while(true)
36: task← gtVal.prev.getTask()

if (task 6= ⊥) return task

37: task← gtVal.cur.getTask()
if (task 6= ⊥) return task

B could not find a task in the tree
38: if (ptVal.id ≤ gtVal.cur.id) return ⊥
39: if (oldProducers = 0) then
40: newGT← 〈gtVal.cur, gtVal.cur.next〉
41: GT.CAS(gtVal, newGT)
42: gtVal← GT
43: else
44: gtVal← 〈gtVal.cur, gtVal.cur.next〉

Managing the list of trees. The pseudo-code for the list of trees pool is shown in Algo-

rithm 2. A put operation tries to insert the task into the tree pointed to by PT (call this tree

T). If the insert fails, the algorithm moves to the next tree in the list by incrementing PT

19

(lines 16–17). New trees are created and appended to the end of the list as needed. For

reasons we explain later, the pointer for consumers GT actually points to two consecutive

trees, GT.cur and GT.prev. When an insert succeeds, the producer checks that its task

will be retrievable in the future. To this end, it checks that GT.cur does not point to a tree

that succeeds T in the linked list (line 13). If it does, the GT pair is moved backwards to

〈⊥, T 〉 in the function moveGTBack.

In moveGTBack, a producer repeatedly tries to CAS GT to T until a CAS succeeds,

or it reads GT.cur ≤ T . As we want producers to be wait-free, we need to ensure this

loop eventually terminates. Thus, we do not allow theGT pointers to move forward while

there are pending producers that want to move GT backwards. We increment a counter

oldProducers at the start of moveGTBack, and decrement it at the end. If a consumer

does not find a task in the GT trees, but sees oldProducers > 0, it advances to a later

tree, but does not increment GT (line 44).

A consumer tries to retrieve a task from the trees pointed to by GT.prev and GT.cur

(lines 36–37). If both trees are empty, and if PT points to a later tree than GT.cur, then

GT is updated to 〈GT.cur,GT.cur.next〉. This update is performed by first creating a

pair with the new tuple values (line 40), and then CASing GT from the old pair to the

new one (line 41). Note that the ABA problem does not occur during the CAS, because

every newly created pair is a new object whose address is different from the addresses of

any old pairs, which are not deallocated throughout the function’s execution.

Finally, we explain the reason for using two consumer pointers,GT.cur andGT.prev.

Suppose GT only pointed to one tree, and consider the following situation. GT and PT

both point to a tree T . Producer tp inserts a new task in T and pauses. Meanwhile, other

producers insert new tasks, append new trees and move PT . Suppose a consumer tc

comes to retrieve a task, does not find any tasks in T , and pauses right before changing

GT to T.next. When tp resumes, it inserts its task to T , checks that GT is still pointing

to T and terminates. When tc resumes, it changes GT to T.next. Now, tp’s task is lost.

As we show in the next section, keeping two pointers allows us to solve this problem in a

simple and efficient way.

In the next section, we show that both put and get operations in CAFÉ terminate within

a finite number of steps with probability 1. Thus, CAFÉ is wait-free.

20

Chapter 5

CAFÉ’s Properties

In this section, we present the correctness and performance properties of CAFÉ. We only

state the main results and describe the ideas behind them, deferring the full proofs to

Chapters 7– 9. Recall that we assume that an adversary controls thread scheduling but

cannot influence the randomness threads use. In Section 5.1, we state key lemmas for

CAFÉ’s linearizability proof. Section 5.2 states key liveness lemmas. Finally, Section 5.3

states key lemmas of TreeContainer’s performance properties. Together, the lemmas in

Sections 5.1 and 5.2 imply the following theorem:

Theorem 1. CAFÉ implements a linearizable α-fair task pool that is wait free with prob-

ability 1.

5.1 Safety Properties

We start by showing that CAFÉ implements a linearizable task pool. Intuitively, if the task

pool is nonempty, then a get must be able to find a task. Formally, we prove in Lemma

10 that after any put operation finishes, no subsequent get operation will return ⊥, until

the put’s task has been returned. Proving this consists of two parts. First, we prove in

Theorem 2 that each TreeContainer that CAFÉ uses is itself linearizable with respect to

the abortable task pool specification. Second, we show in Theorem 3 that CAFÉ with a

TreeContainer of size α is linearizable with respect to α-fair task pool specification.

The key to proving Theorem 2 is Lemma 7, which says that after a put operation has

21

inserted a task in some node of a TreeContainer, hasTasks(x) = 1 for every node x on the

path from that node to the root of the TreeContainer, until the node’s task is removed. We

say that the nodes on the path are marked. Get operations follow a path of marked nodes,

and so will always find a task as long they have not all been removed. We briefly describe

the proof of Lemma 7. Let x and y be two nodes that a put operation p passes through

during updateNodeMetadata, where y is the father of x. The invariant we maintain

is that the value of hasTasks(x) has been fixed to 1 by the time p starts updating y’s

metadata. Since p tries to set y’s metadata to hasTasks(x), then hasTasks(y) will also

be fixed to 1 after p finishes processing y. Thus, all the hasTasks values on the path from

p’s insertion node to the root will be fixed to 1 inductively.

Next, we briefly describe the proof of Theorem 3. The proof of Theorem 3 consists of

the get validity property provided by Lemma 9 and a proof of α-fairness. Lemma 9 shows

that after a put inserts a task in some TreeContainer, subsequent get operations will not

skip this TreeContainer when looking for a task. After a put operation has inserted a task

in a tree T , it does moveGTBack to ensure the value of GT is at most T . There are two

ways the put checks this condition. Either it successfully CASed the value 〈⊥, T 〉 into

GT , or it read that GT.cur is at most T . Because the CASes on GT can be linearized, we

can show in the first case that later gets see T (or a smaller value) when they read GT .

In the second case, we need to be careful that while the put is checking that GT.cur is

at most T , there may be a paused get operation, which then increases GT as soon as the

put’s check finishes. However, even if this happens, GT.cur only moves forward by 1.

Since a get operation checks both GT.cur and its preceding tree GT.prev, the get will

still see the tree that the put inserted into.

To prove α-fairness we show that the gets return tasks preserving order among the

TreeContainers they were inserted into. This follows simply because tasks are inserted

and removed based on the linked list order of the TreeContainers.

5.2 Liveness Properties

We next intuitively demonstrate the wait-freedom of CAFÉ. We first show that put oper-

ations are wait-free with probability 1, and then argue that get operations are determinis-

22

tically wait-free.

A put operation traverses the linked list of TreeContainers until it succeessfully inserts

a task in one of them; new TreeContainers are appended if the insertions keep failing.

Intuitively, it might seem that this traversal could go on forever. For example, a slow

thread tp could repeatedly try to insert a task in some tree, then pause until all other

producers proceed to a new tree, fail its current insert, and have to retry in a new tree.

Fortunately, this situation does not happen. Due to the randomness in the algorithm, other

threads are likely to have left unoccupied nodes in tp’s tree, which tp can acquire once it

resumes. We formalize this intuition in the following lemmas, proven in Chapter 9.

Lemma 1. If P producer threads and any number of consumer threads use CAFÉ, then

any TreeContainer’s put operation succeeds with probability at least (1− 1
2h

)k(P−1) · [1−
(1− 1

2h
)k].

Using Lemma 1, we prove the following. Note that CAFÉ using TreeContainers of

height 0 is equivalent to a linked list.

Lemma 2. If the height of TreeContainer is greater than zero, then CAFÉ’s put operations

are wait-free with probability 1.

In order to show CAFÉ ’s get operations are wait-free, we need to show that a con-

sumer does not need to traverse an unbounded number of trees when looking for a task.

This is true because each get operation keeps a pointer to the latest TreeContainer when it

starts (line 33 in Algorithm 2), and subsequently only checks trees that had tasks before it

started. In a linearizable execution, the get is allowed to return ⊥ when all these trees are

empty (in line 38), as all their tasks will have been taken by other gets concurrent with or

preceding the current get. We conclude with the following lemma, proven in Section 9.2.

Lemma 3. Every get operation of CAFÉ terminates in a finite number of steps.

5.3 Performance Properties

We first show that our trees are dense: by choosing an appropriate k (number of trials at

last level of TreeContainer) we can guarantee that a tree with height h is populated with

23

at least 2(1−ε)h tasks for an arbitrary 0 < ε < 1, with high probability. In Section 8.1, we

also show that this density is higher than that achieved by a simple random walk based

insertion. More formally, we prove the following lemma in Section 8.2:

Lemma 4. In a TreeContainer of height h, if a put operation fails, then the tree contains

at least 2
k+2
k+3
·h tasks with probability at least 1− 1

2
(3− 7

k+3
)h+k+1

.

We further demonstrate that TreeContainer performs well under contention. For N

concurrent put operations and an arbitrary number of get operations, each put finishes in

O(log2N) steps, whp (the proof appears in Section 8.3):

Lemma 5. Consider a TreeContainer after N successful put operations. Then each of

these operations has taken O(log2N) steps with probability at least 1− 1

2(N+1)
4
3

.

24

Chapter 6

Evaluation

In this chapter we evaluate the performance of our Java implementation of CAFÉ and

compare it to other algorithms in Section 6.1. In Section 6.2 we analyze the performance

of the algorithms. Section 6.3 considers the influence of tree height on CAFÉ. Section 6.4

investigates the reasons for CAFÉ’s superior performance. Finally, Section 6.5 considers

the cost of implementing the fairness requirements.

6.1 Experiment Setup

We compare the following task pool implementations:

• CAFÉ-h – CAFÉ with height h for each tree. Unless stated otherwise, we use

h = 13.

• CLQ – The standard Java 6 implementation of a (FIFO) lock-free queue by Michael

and Scott [11] (class java.util.concurrent.ConcurrentLinkedQueue),

which is considered to be one of the most efficient lock-free algorithms in the liter-

ature [8, 10].

• LBQ – The standard Java 6 implementation of a (FIFO) lock-based queue that

uses a global reader-writer lock (class java.util.concurrent.Linked-

BlockingQueue).

• ED – The original elimination-diffraction tree implementation [1] (downloaded

from the web page of the project), in its default configuration. Tasks are inserted

25

into a diffraction tree with FIFO queues attached to each leaf. The queues are im-

plemented using Java LinkedBlockingQueues. Every tree node contains an elimi-

nation array where producers can pass tasks directly to consumers. Changing the

tree depth, pool size and spinning behavior did not have a significant effect on the

pool’s performance. Note that ED trees, like CAFÉ , do not enforce FIFO ordering.

• SQ – The original segmented queue implementation of [2] (downloaded from the

web page of the project). SQ is a non-FIFO queue. Like CAFÉ, SQ provides a

bound on the number of overtaken tasks and maintains a linked list of segments.

Each segment is an array of nodes with a size of the fairness bound. Unless stated

otherwise, we use SQ with segment size of 255, which we found to provide maximal

throughput.

We use a synthetic benchmark for the performance evaluation, in which producer

threads work in loops inserting dummy items, and consumer threads work in loops re-

trieving dummy items.

Unless stated otherwise, tests are run on a dedicated shared memory NUMA server

with 8 Quad Core AMD 2.3GHz processors and 16GB of memory attached to each pro-

cessor. JVM is run with the AggressiveHeap flag on. We run up to 64 threads on the 32

cores. The influence of garbage collection was negligible for all algorithms1.

6.2 System Throughput

Workloads with the same number of producers and consumers. In Figure 6.1 we

show the average insertion and retrieval rates in a system with an equal number of pro-

ducers and consumers. Both graphs demonstrate the same behavior. The throughput of

CAFÉ increases up to 32 threads, the number of hardware threads in our architecture. At

this point, the throughput of CAFÉ is×30 higher than the Michael-Scott queue or the ED

pool. It is also over three times higher than the lock-based queue. Producers of CAFÉ

are almost three times faster than those of SegmentedQueue, and consumers more than

six times faster. When the number of working threads exceeds the number of hardware

1This was checked using the verbose:gc flag in JVM.

26

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 8 16 24 32 40 48 56 64

Ta
sk

s/
m

s

Number of threads

CAFÉ-13

LBQ

CLQ

EDQ

SQ

(a) Task insertion rate.

0

500

1000

1500

2000

2500

3000

3500

2 4 8 16 24 32 40 48 56 64

Ta
sk

s/
m

s

Number of threads

CAFÉ-13

LBQ

CLQ

EDQ

SQ

(b) Task removal rate.

Figure 6.1: Task insertion and retrieval rates (equal numbers of producers and consumers).
The throughput of CAFÉ-13 increases up to 32 threads (the number of hardware threads
in the system). In this configuration it is ×30 faster than the Michael-Scott Concur-
rentLinkedQueue and over three times higher than all other implementations, including
the ones not providing FIFO. CAFÉ continues demonstrating high throughput even when
the number of threads increases up to 64.

threads in the system, the throughput of CAFÉ decreases moderately, but still outperforms

the other algorithms.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 Nehalem chip 2 Nehalem chips 3 AMD quad-cores
(6 HT cores) (6 HT cores) (no HT)

CAFÉ-13

LBQ

CLQ

EDQ

SQ

Figure 6.2: Throughput on different hard-

ware architectures, normalized by the

throughput of LBQ. There are 6 producer

threads and 6 consumer threads.

As we can see in Figure 6.1, the results

of both Michael-Scott concurrent queue

and ED pools are worse than those of other

algorithms. This differs from the results

demonstrated by Afek et al. [1], where

ED pools were shown to clearly outper-

form standard Java queues. This discrep-

ancy seems to follow from differences in

the hardware architectures used in our ex-

periments. Afek et al. use a Sun Ultra-

SPARC T2 machine with 2 processors of

64 hardware threads each, while in our sys-

tem there are 8 quad-cores. The differ-

ence in architecture is significant due to the non-uniform memory access time in multi-

processor systems: accessing a memory location from multiple processors is significantly

slower than accessing it from multiple hardware threads on the same chip, which usu-

27

ally share a last-level cache. We now show how the non-uniformity of memory accesses

influences performance.

Figure 6.2 demonstrates the throughput of the algorithms in three different configura-

tions: a single Nehalem chip with 6 hyper-thread cores, two Nehalem chips with 6 hyper-

thread cores and three AMD quad-cores with no hyper-threading. The algorithms are

run with 6 producers and 6 consumers (corresponding to the number of hardware threads

available in a single Nehalem chip); the throughput is normalized by the throughput of

the Java LinkedBlockingQueue.

We observe that, consistent with the findings of Afek et al., both ED pools and MS

lock-free queue perform twice as well as Java’s linked blocking queue when running on

a single chip. However, their performances decrease significantly in systems with two or

more chips, when memory sharing becomes more expensive. Nevertheless, it is worth

mentioning that in [1], ED pools achieved the best results when run on many threads (up

to 64) on the same core. We were unable to reproduce these results as we do not have

access to a machine with more than 12 HW threads per chip.

0

500

1000

1500

2000

2500

3000

3500

4000

32/32 32/28 32/24 32/20 32/16 32/12 32/8 32/4 32/1

Ta
sk

s/
m

s

Number of threads (producer/consumer)

Figure 6.3: Task insertion rate for big num-

ber of producers, various number of con-

sumers. Insertion rate of CAFÉ remains sig-

nificantly higher than that of the competitors.

Workloads with a high number of pro-

ducers and a varying number of con-

sumers. In some real-world scenarios,

tasks can arrive in bursts and the number

of producers varies in time. In such cases,

the aim of a task pool is not to delay the

producer threads, which are typically part

of a critical path. The insertion through-

put should remain high even if there are

more producers than consumers. To model

this behavior, we run algorithms with more

producers than consumers.

We demonstrate the task insertion rate

of the algorithms for the workloads with different numbers of consumers in Figure 6.3.

The insertion rate of CAFÉ remains high for all configurations. SegmentedQueue pro-

28

ducers show the second best results. SQ’s throughput continues to grow as the number of

producers becomes higher. However, CAFÉ is still two times faster thanks to the scala-

bility of TreeContainer.

6.3 Choosing the Tree Height

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CA
S

fa
ilu

re
s

pe
r

op
er

at
io

n

Tree height of CAFÉ

(a) CAS failures per operation as a function of tree
height.

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ta
sk

s/
m

s

Tree height of CAFE

CAFÉ

LBQ

CLQ

EDQ

SQ

(b) CAFÉ throughput as a function of tree height.

Figure 6.4: CAS failures and system throughput as a function of CAFÉ’s tree height for
16 producers and 16 consumers. Small trees induce high contention because of linked list
manipulations and reduced tree randomization. Excessively large trees induce contention
among producers and consumers operating in the same tree. The SQ pool throughput
on 6.4(b) is measured for segments of sizes equal to TreeContainer of the specified height.

In Figure 6.4 we demonstrate CAFÉ’s performance for 16 producers and 16 consumers

as a function of tree height. Figure 6.4(a) shows the average number of CAS failures per

insertion / removal operation. For height = 0, CAFÉ is equivalent to the Michael-Scott

concurrent queue, and there are 4 CAS failures per operation. The rate of CAS failures

drops quickly for larger trees, becoming less than 0.1 for CAFÉ-8.

The statistics of CAS failures match the throughput graph shown in Figure 6.4(b).

Increasing the tree height improves throughput up to a certain point (height 13 in our

workload), but beyond this performance plateaus. This is because for intermediate tree

sizes, producers and consumers usually find themselves in different trees (the latter lag-

ging behind the former), while for heights larger than 14, most of the threads operate

in the same tree, which increases contention and decreases performance. We can see in

Figure 6.4(b) that using SegmentedQueue with segment sizes equal to CAFÉ’s TreeCon-

29

tainers does not show significant throughput improvement, i.e. for segments sizes bigger

than 255, the further FIFO relaxation of SegmentedQueue does not bring any benefit.

6.4 Performance Breakdown

0

1

2

3

4

5

6

7

2 4 8 16 24 32 40 48 56 64

C
A

Se
s

p
er

 o
p

er
at

io
n

Number of threads

CAFÉ-13

CLQ

(a) CAS instructions per operation.

0

10

20

30

40

50

60

70

80

90

2 4 8 16 24 32 40 48 56 64

%
 o

f
fa

ile
d

 C
A

Se
s

 p
er

 o
p

er
at

io
n

Number of threads

CAFÉ-13

CLQ

(b) Percent of failed CAS instructions.

Figure 6.5: CAFÉ and CLQ CAS instruction statistics for producer threads.

We saw in previous experiments that CAFÉ outperforms all competitors. To better

understand the reasons for these results, we break down the performance costs of CAFÉ

and CLQ. There are a number of factors contributing to CAFÉ’s superior performance.

First, we notice that CAFÉ performs fewer CAS instructions per operation. In Chapter 8

we formally prove that under worst case scheduling, producer threads of CAFÉ perform

asymptotically fewer CAS instructions than those of CLQ. We now observe this effect

also in practice: we measure CAS instructions per operation. In Figure 6.5(a) we present

the number of CAS instructions per operation for producer threads. We see that CLQ

performs up to 3 times more CAS instructions per operation than CAFÉ. Note that CLQ

mostly runs CAS instructions, while CAFÉ also has an additional overhead for maintain-

ing complex data structures. Therefore, if this were the only factor contributing to the

performance gap, we could expect CAFÉ’s throughput to be less than 3 times higher than

that of MSQ. However, CAFÉ outperforms CLQ by as much as a factor of 30. The main

reason for this is that CAFÉ’s CAS loops are less expensive because fewer of them con-

tend on the same shared resource. We can see the degree of contention in Figure 6.5(b).

30

Most CAS instructions of CLQ fail, while CAFÉ’s CASes seldom fail even for high num-

bers of threads.

0

1

2

3

4

5

6

7

8

9

10

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
A

S
d

u
ra

ti
o

n
 in

 µ
se

c

Number of threads

(a) Duration of CAS instruction (µsec).

0

20

40

60

80

100

120

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

%
 o

f
fa

ile
d

 C
A

Se
s

Number of threads

(b) Percent of failed CAS instructions.

Figure 6.6: CAS instructions cost depending on number of threads competing on the same
shared resource. Increased contention on the shared object increases the duration of CAS
instructions.

To illustrate the impact of contention on the cost of CAS instructions we conduct

another experiment. The experiment runs a predefined number of threads that operate on

a shared variable of AtomicReference type. Every thread runs two operations in a loop

for a predefined period of time: it reads a shared atomic reference value and then tries to

update the shared variable to a new value using a CAS instruction. The average duration of

a CAS instruction is presented in Figure 6.6(a) and the percent of failed CASes is shown

in Figure 6.6(b). We can see from Figure 6.6(b) that increasing the number of threads

concurrently CASing the same shared object increases the percent of CAS failures, while

Figure 6.6(a) shows that in experiments with a high percent of failures, the duration of

CAS operations grows by up to 18 times. To get a feeling for how much faster CASes

of CAFÉ can be compared to those of CLQ, we use the percentage of CAS failures as a

measurement for contention. For example, from Figure 6.5(b) we see that with 32 threads,

CLQ has 80% CAS failures. We get this contention level with 8 threads in Figure 6.6(b)

where the CAS duration is around 2µs. CAFÉ’s percentage of CAS failures is close

to zero, which corresponds to a CAS duration of around 0.01 µs. According to these

calculations, CAFÉ’s CASes are roughly 20 times faster than those of CLQ.

31

6.5 The Cost of Fairness

When we are not concerned with fairness requirements we can construct simple and scal-

able task pools from existing containers using a partitioning technique, as we now de-

scribe: In this section we introduce such non-fair task pools and measure their perfor-

mance. We show that fairness has a high price. Once we forfeit fairness requirements

we can simply partition existing task pools and get more than 1.5 times higher through-

put than that of CAFÉ, which is, according to Section 6.2, the best among existing fair

containers. We show that the partitioning technique, by itself, can bring major throughput

improvements, e.g., a factor of 10 for the CLQ task pool. We further show that a correct

NUMA-aware assignment of threads to cores can yield significant additional improve-

ments, more than a factor of 3 for some pools.

6.5.1 Partitioning Technique

We now describe the partitioning technique used for the construction of non-fair task

pools. Given a basic task pool data structure, a number of producer and consumer threads,

and a number of partition groups, we implement partitioning as follows:

1. Divide threads to the desired number of groups, s.t. every group has at least one

producer and consumer thread.

2. Allocate to each group a basic task pool.

3. Each producer thread inserts tasks into its group’s pool.

4. Each consumer thread:

(a) Tries to retrieve a task from the pool of its group.

(b) If the group’s pool is empty, it traverses in random order one by one other

groups’ pools and tries to retrieve a task from them.

(c) If all the pools are empty, it returns ⊥.

32

0

2000

4000

6000

8000

10000

2 4 8 16 24 32

Ta
sk

s/
m

s

Number of threads

Partition:Good Affinity

Partition:OS assignment

Partition:Bad affinity

Basic pool:CAFÉ-13

(a) Partitioning of CAFÉ-13.

0

2000

4000

6000

8000

10000

2 4 8 16 24 32

Ta
sk

s/
m

s

Number of threads

Partition:Good affinity

Partition:OS assignment

Partition:Bad affinity

Basic pool:CAFÉ-8

(b) Partitioning of CAFÉ-8.

0

2000

4000

6000

8000

10000

2 4 8 16 24 32

Ta
sk

s/
m

s

Number of threads

Partittion:Good affinity

Partition:OS assignment

Partition:Bad affinity

Basic pool:CLQ

(c) Partitioning of CLQ pool.

Figure 6.7: Here we show throughput of containers constructed using a partitioning tech-
nique for three different basic pools: CAFÉ -13 (6.7(a)), CAFÉ -8 (6.7(b)) and CLQ
(6.7(c)). Evaluation is done with equal numbers of producer and consumer threads.
Groups of size d#threads

4
e are used for partitioning due to the maximal throughput

achieved by such configuration. Each plot presents results for three types of thread as-
signment: Good affinity - threads in the same groups are assigned to cores of a single
chip; OS assignment – threads are dynamically assigned by the scheduler of Linux OS
with 2.6.35 kernel version; Bad affinity –threads in the same group are assigned to cores
of different chips. Basic pools use OS assignment for threads.

6.5.2 Throughput of Partitioned Task Pools

We run the synthetic benchmark used for the evaluation in previous sections for parti-

tioned task pools based on CLQ and CAFÉ task pools. The evaluation results are pre-

sented in Figure 6.7. The graphs show results for three types of thread assignment: good

affinity - threads are optimally assigned to cores to preserve locality of partitioned pools;

OS assignment – threads are dynamically assigned by the scheduler of Linux OS with

2.6.35 kernel version; Bad affinity –threads are intentionally assigned to break locality.

Basic pools use OS assignment for threads.

As we saw in Section 6.2, CAFÉ outperforms existing state-of-the-art task pools that

33

have fairness guarantees. However, as Figure 6.7 shows, once we omit the fairness re-

quirement, by non-fair partitioning of CLQ pool under OS scheduling (Figure 6.7(c)), we

get throughput more than 1.5 times higher than that of CAFÉ.

We see in Figure 6.7 that for basic pools that do not have high cache utilization (Fig-

ures 6.7(b) and 6.7(c)) partitioning, even with a bad thread assignment, improves through-

put from 2 to 10 times. The exception is CAFÉ-13 (Figure 6.7(a)), where every group

allocates relatively big TreeContainer of size 214 − 1 nodes. Hence, when multiple con-

tainers are allocated on a single chip and concurrently used by threads of multiple groups,

cache efficiency decreases. As a result, partitioning of CAFÉ -13 does not bring any ben-

efit. However, as we see in Figure 6.7(b), if we use smaller TreeContainers in CAFÉ,

we get more than a factor of 2 improvement over the basic pool for partitioning with bad

affinity and get the highest throughput.

For all containers we get maximal throughput when threads in partitioned groups are

assigned to cores of a single chip, i.e., have a good affinity. We see in Figure 6.7, that

by only changing the threads assignment we can increase the system throughput by up to

factor of 4 for the CLQ pool and more than twice for CAFÉ-8.

34

Chapter 7

Proofs of Safety Properties

In this section, we first show that TreeContainer is linearizable with respect to the abortable

pool sequential specification, defined in Section 4.1. Then, basing on TreeContainer lin-

earizability, we prove that CAFÉ using TreeContainer of size α is linearizable with respect

to α-fair task pool sequential specification, defined in Section 3.3 . We will refer to line

number r in Algorithms 1 and 2 by 〈Tr〉 and 〈Cr〉, respectively.

7.1 Safety of TreeContainer

We now show that a single TreeContainer is linearizable with respect to abortable pool

specification defined in Section 4.1. To prove the linearizability we need to prove that a

get operation only returns ⊥ if the tasks of all successful put operations that completed

before the get have been taken. The basic idea, stated in Lemma 7, is that between the

time a successful put operation finished inserting a task in a node and when the task is

removed, the entire path between the node and the root is marked. This implies that as

long as there are some unremoved tasks in the TreeContainer, there is a marked path

which leads get operations to a task.

We first prove a lemma that says that each CAS on a node’s metadata sees the value of

the previous CAS. This allows processes to correctly transfer information to each other.

Lemma 6. Let T be any TreeContainer, let x ∈ T be any node, and let y be x’s father.

Consider the sequence of successful CASes (at 〈T63〉)C1, . . . , Cm on y.meta[x.side], and

35

let R1, . . . , Rm be the corresponding reads (at 〈T61〉) preceding each such CAS. Then for

i = 2, . . . ,m, Ri occurs after Ci−1.

Proof. From 〈T62〉 and 〈T63〉, we see that each successful CAS on y.meta[x.side] in-

crements the version number y.meta[x.side].ver. Thus, if someRi occurred before Ci−1,

the value y.meta[x.side].ver Ri read would be less than y.meta[x.side].ver after Ci−1,

and so Ci would fail. This is a contradiction.

In the following, given a node x and a time t, we write hasTasks(x) at t to refer to

the value that the function hasTasks(x) would return if evaluated at time t.

Lemma 7. Consider any TreeContainer T , and let p be a put operation that inserted a

task in node x0 ∈ T and completed before time τ . Suppose further that by time τ , no get

operation has removed the task from x0, i.e. 〈T37〉 with node = x0 has not occurred.

Then for every node x on the path from x0 to the root of T , hasTasks(x) = 1 at τ .

Proof. We first show the lemma holds for x0. Since p finished its operation, it inserted a

task in x0 at 〈T30〉 at some time t < τ . Also, since a get for x0 has not occurred by τ ,

then x0.tasks 6=⊥ from t to τ . So hasTasks(x) = 1 at τ .

To show the lemma for the other nodes on the path, we first prove the following claim,

which says that if p passes through some node whose hasTasks = 1 from some point

onwards, then p will also pass through the node’s father, and the father’s hasTasks = 1

from some point onwards.

Claim 1. Let x be a node on the path from x0 to the root of T , let y be x’s father. Suppose

there’s a time t < τ such that p.node = x, and also hasTasks(x) = 1 from t until τ . Then

there’s another time t′ such that t < t′ < τ , and p.node = y at t′, and hasTasks(y) = 1

from t′ until τ .

Proof. Since p finishes its operation by time τ , then it returns either after not entering the

loop in 〈T47〉 or at 〈T48〉. Also, because p is a put operation, p.myV al = 1. So since

p.node = x at t and hasTasks(x) = 1 = p.myV al from t till τ , then p does not return

from 〈T48〉 while p.node = x. Thus, p performs 〈T52〉 at some time t′ > t, and the first

part of the claim holds.

36

To show the second part, consider 3 cases for the iteration when p.node = x: (1)

the if on 〈T49〉 is false at some point, (2) the if on 〈T49〉 is true and the if on 〈T51〉 is

true due to at least one successful updateFather call, or (3) the if on 〈T49〉 is true and

updateFather on 〈T51〉 is false twice.

In case (1), p does not call updateFather. We will show that in this case hasTasks(y)

is true to begin with and any other thread that updates y’s metadata keeps the correct value

of hasTasks(y). Denote t′′ the time when the if on 〈T49〉 samples false. For a line num-

ber i, denote by tpi the line at which p executes line i in the call needToUpdate that com-

pletes at t′′. We get, tp54 < tp55 < tp56 < tp57 < t′′. Note that in line 54 hasTasks(y) = 1.

We next show that this persists until τ . Consider any step that changes the value of

y.meta[x.side].h between tp54 and τ . By inspection, we see that this must be a successful

CAS step on 〈T63〉, say by thread q, occurring at time tq63 and denote tq61 the time of q’s

preceding read. Note that q increments x.pending before tq61 and decrement it after tq63.

Let tq60 and tq64 be the times of these events respectively. We observe that the mentioned

events of q have the following order: tq60 < tq61 < tq63 < tq64. Recall that 〈T49〉 samples

false, therefore the if on line 55 is false, and, either tp55 < tq60 or tp55 > tq64. We now show

that in both cases hasTasks(y) = 1 from tp55 to τ . Assume first tp55 < tq60, then tp54 < tq60,

thus, tp54 < tq61 and so t < tq61. Recall that from t till τ hasTasks(x) = 1, so in line 61,

q reads 1 and writes 1 to y.meta[x.side].h, which keeps hasTasks(y) = 1. The second

case is handled by the second read of the father’s metadata in line 56: tp55 > tq64 , therefore

tp56 > tq63. 〈T49〉 is false, so at moment tp56 p reads value 1, therefore, again, in line 63 q

keeps value 1 of y.meta[x.side].h.

In case (2), let t′′ be the time when p did a successful CAS to y.meta[x.side] in 〈T63〉
during one of its executions of updateFather. Since hasTasks(x) = 1 from t to t′′, then

p CASed the value 1 into y.meta[x.side].h, and so y.meta[x.side].h = 1 right after

t′′. Consider any (CAS) step C by a process q that changes the value of y.meta[x.side]

between t′′ and τ , and let R be the read on 〈T61〉 by q right before C. Then R occurs

after t′′, by Lemma 6. So R reads hasTasks(x) = 1 sometime after t′′ > t, and after C,

we have y.meta[x.side].h = 1.

In case (3), let C1, C2 be the two failed CASes on 〈T63〉 that p performed during its

2 executions of updateFather, and let R1, R2 be the reads on 〈T61〉 preceding C1, C2,

37

resp. Since C1 failed, then there must be a successful CAS C ′1 which occurred between

R1 and C1; otherwise, C1 would have succeeded. Similarly, there must be a successful

CAS C ′2 by a process q between R2 and C2. Let R′2 be the read at 〈T61〉 by q before C ′2.

Then by Lemma 6, R′2 occurs after C ′1. So, since R1 occurs after t, and R′2 occurs after C ′1
which occurs after R1, then q sees hasTasks(x) = 1 when it does 〈T62〉 after R′2. Thus,

y.meta[x.side].h = 1 after C ′2.

We now complete the proof of the lemma. As stated earlier, hasTasks(x0) = 1 from

some t < τ to τ . Then by repeatedly applying Claim 1, we have hasTasks(x) = 1 for

every x on the path from x0 to T ’s root, from some time before τ until τ . So the lemma

holds. �

Corollary 1. Let T be a TreeContainer, and suppose that a get operation g performs

T.getTask() at time t1, and returns ⊥ at time t2. Let p be a task that was put into T

before t1. Then p was removed from T before t2.

Proof. Suppose by way of contradiction that p’s task was not removed before t2. Let

x be the node that p’s task was inserted into. Then by Lemma 7, every node x′ on the

path from x to the root of T has hasTasks(x′) = 1 during [t1, t2]. Thus, g does not

return ⊥ in 〈T34〉. g also doesn’t return ⊥ in 〈T39〉, as this would imply that some

other get successfully took x’s task in 〈T37〉. Hence, g does not return ⊥, which is a

contradiction.

Theorem 2. TreeContainer implements a linearizable producer-consumer pool with re-

spect to the abortable task pool sequential specification.

Proof. By using a CAS in 〈T37〉, we ensure that every task can be returned by at most one

get. Also, Corollary 1 shows that a get operation only returns ⊥ if all the put operations

that finished before it started have been returned. So, the theorem follows.

7.2 Safety of CAFÉ

We now show that CAFÉ implements a linearizable task pool with respect to α-fair task

pool sequential specification.

38

The proof of CAFÉ get validity property is based on the fact that CAFÉ uses a list of

linearizable TreeContainers. We show in Lemma 9 that if there is an unremoved task in

some TreeContainer T , then a get operation will start looking for tasks starting from T or

an earlier TreeContainer. This implies that if a get operation returns ⊥, then all the tasks

that were put into some TreeContainer before the get started have been removed. This

implies get validity of CAFÉ operations.

We begin by showing that processes can correctly pass information to each other by

performing CAS on GT . Note that GT is only changed by a CAS at either 〈C30〉 or

〈C41〉. In each case, there’s a preceding read on GT , at either 〈C27〉 for a CAS at

〈C30〉, or 〈C34〉 or 〈C42〉 for a CAS at 〈C41〉. Given an execution of CAFÉ , denote

the sequence of CASes on GT by C1, . . . , Cm, and denote the sequence of corresponding

reads by R1, . . . , Rm.

Lemma 8. For i = 2, . . . ,m, Ri occurs after Ci−1.

Proof. Each time a CAS occurs, we try to set GT to a new value created on 〈C29〉 or

〈C40〉. As mentioned earlier, since CAFÉ is implemented in Java, each of the new values

is a Java reference, and hence, is unique for the entire execution of CAFÉ . Thus, if Ri

occurs before Ci−1, for some i, then Ci−1 will change the value of GT that Ri read, and

hence Ci will fail, which is a contradiction.

Lemma 9. Let p be a completed put operation that inserted a task in TreeContainer T .

Suppose at some time τ , p’s task has not been removed. Then GT.cur.id ≤ T.id+ 1 at τ .

Proof. We will prove a stronger statement than the lemma. Define a time t as follows.

Since p completed its operation, it returned from moveGTBack either at 〈C28〉 or 〈C30〉.
In the first case, let t be when p performed 〈C27〉, and in the second case, let t be when p

performed 〈C30〉. The lemma follows from the following claim.

Claim 2. GT.cur.id ≤ T.id+ 1 from t until τ .

Proof. Consider the sequence of successful CAS operations on GT between t and τ .

Note that these are the only operations that change GT ’s value. We prove the claim using

induction on the sequence of CASes.

39

The base case is time t, when no CASes have occurred yet. If t is defined as in the first

case above, then GT.cur.id = gtV al.cur.id ≤ T.id at t. If t is defined as in the second

case, then after p’s CAS at 〈C30〉, we also have GT.cur.id ≤ T.id.

Next, assume inductively that GT.cur.id ≤ T.id + 1 after some number of CASes

on GT . We show the condition still holds after the next CAS. This CAS occurs at either

〈C30〉 or 〈C41〉. If the CAS occurs at 〈C30〉, then the corresponding read occurred at

〈C27〉. By induction, we have gtV al.cur.id = GT.cur.id ≤ T.id + 1 from this read.

Since 〈C30〉 occurred, the if in 〈C28〉 was false, and so gtV al.cur.id > latest.id. Then,

the CAS on 〈C30〉 sets GT.cur.id to latest.id < gtV al.cur.id ≤ T.id + 1, and so

GT.cur.id ≤ T.id+ 1 after the CAS.

In the other case, the CAS occurs at 〈C41〉. We claim that at most one such CAS

occurs after t, andGT.cur.id ≤ T.id+1 after this CAS. Let C be the last successful CAS

on GT before t, and C ′ be the first successful CAS on GT after t. Then by Lemma 8, the

read operation R′ on GT corresponding to C ′ occurs after C. Since GT.cur.id ≤ T.id

immediately after t, and C was the last CAS to change GT ’s value before t, then R′

read GT.cur.id ≤ T.id. From 〈C40〉, we see that C ′ increased GT.cur.id by 1, and

so GT.cur.id ≤ T.id + 1 after C ′, which proves the second part of the (sub)claim. To

show that C ′ is the only successful CAS on GT between t and τ , consider the read R

corresponding to any CAS attempt on GT after t, say by a process q. If R occurs before

C ′, then q’s CAS will fail, by Lemma 8. Otherwise, R occurs after C ′, which occurs after

t, which occurs after p finished 〈C12〉. If gtV al is the value of GT that R read, then

by induction, we have gtV al.prev.id = T.id or gtV al.cur.id = T.id. Thus, q will do

T.getTask() either in 〈C36〉 or 〈C37〉. Since p’s task has not been removed by time τ ,

then by Corollary 1, T.getTask() 6=⊥. Thus, q will not advance past 〈C37〉, and will not

do a CAS on GT . This shows that C ′ is the last CAS on GT from t till τ .

Lemma 10. Suppose a get operation g in CAFÉ returns ⊥ at a time t. Then for every

put operation p that completed before the start of g, p’s task was removed by some get

operation before t.

Proof. Suppose for contradiction there is some p that finished inserting a task in a tree T ,

40

and the task was not removed before t. Then by Lemma 9, we haveGT.cur.id ≤ T.id+1

when g does 〈C33〉 and 〈C34〉. Thus, in some iteration of g’s while loop at 〈C35〉, g does

T.getTask(). By Corollary 1, T.getTask() 6=⊥, and so g does not return ⊥, which is a

contradiction.

The following lemma and corollary prove the α-fairness property of CAFÉ pool.

Lemma 11. Let p1, p2 be two put operations inserting into trees T1, T2, resp., with T1.id <

T2.id. Suppose that p1 and p2’s tasks are not removed at time t1. Then if p1 and p2’s tasks

are both removed by gets that start after t1, p1 is removed before p2.

Proof. Let t2 be the first time when either p1 or p2’s task is removed. Then by Lemma

9, at any time between t ∈ [t1, t2], we have GT.id ≤ T1.id + 1 ≤ T2.id. Let g be any

get operation that starts after t1. Then from 〈C36〉 and 〈C37〉, g performs T1.getTask()

before T2.getTask(). Also, by Corollary 1, up to time τ1, g’s T1.getTask() does not

return ⊥. Thus, p1’s task is removed before p2’s.

Corollary 2. For a TreeContainer of size α = 2h+1 − 1, CAFÉ is α-fair.

Proof. In order to succeed, TreeContainer put operation first has to win a CAS on some

node at 〈T29〉. The first winning put permanently changes the node state to dirty and,

hence, all following CASes on this node at 〈T29〉 will fail. Therefore, the number of

successful put operation on a single TreeContainer is bounded by number of nodes in

TreeContainer, i.e. by α. Therefore, if between termination of p1 put operation and

invocation of p2 put operation α other successful puts have occurred, the task of p1 and

the task of p2 reside in different TCs. Let T1 and T2 denote the TCs, respectively. Then,

because p1 terminates before invocation of p2, T1.id < T2.id. Hence, by Lemma 11, get

operations that start after termination of p2 will retrieve p1’s task before the task of p2,

and the corollary follows.

Theorem 3. CAFÉ with TreeContainer of size α is linearizable with respect to α-fair task

pool specification.

Proof. The theorem follows from Lemma 10 and Corollary 2.

41

Chapter 8

Proofs of Performance Properties

We now formally prove the algorithm properties that were presented in Section 5. Let ht

be the highest level of TreeContainer containing occupied nodes and Xi be the number of

occupied nodes of level i of TreeContainer (i varies from 0 to h). In the procedure find-

NodeForPut(), a producer thread tries to reserve a random node while traversing different

levels of TreeContainer. Let ri be the number of unsuccessful trials that a producer can

do at level i before it continues to level i + 1 (lines 21-24 of TreeContainer). Recall that

rh = k, i.e., there are k trials at the last level.

8.1 TreeContainer Insertions vs Random Walk

The choice of TreeContainer node for task insertion is determined by findNodeForPut()

function. The function has two purposes: 1) in order to reduce contention between the

threads the function distributes them randomly between different nodes; 2) in order to im-

prove memory utilization and insertion/retrieval latency the function increases the density

of occupied nodes.

The straightforward approach for choosing a node for task insertion is a mere random

walk (RW) down from the root, where the task is inserted to the first unoccupied node.

This simple algorithm achieves low contention, however, as we show in the following

lemmas, RW approach yields trees with lower task density.

Claim 3. If tasks are inserted into TreeContainer by RW, the probability that an insertion

42

increases a current value of ht is

PrRW (increase ht) =
Xht

2ht
(8.1)

Proof. Consider the paths from the root to nodes at level ht. Every path has equal prob-

ability to be chosen by RW. Thus, the probability to increase the height equals to the

portion of paths that end at occupied nodes at level ht out of all paths of length ht. The

total number of paths from the root to level ht equals 2ht . The number of paths ending at

occupied nodes equals Xht . So, the probability to increase ht is Xht

2ht
.

Claim 4. Assume that N tasks have been inserted into TreeContainer by RW. Then the

probability that the next insertion by RW increases ht is bounded by

PrRW (increase ht) ≤
N + 1

2ht+1
(8.2)

Proof. Note that Xi-s have the following constraints:

1. Total number of tasks: N =
∑h

i=1Xi

2. Tasks, inserted by RW, are structured into a binary tree, therefore ∀0≤i≤ht−1Xi+1 ≤
2 ·Xi

The constraints ensure that Xht ≤ N+1
2

(equality holds in case of a complete tree with a

full last level). By Claim 3, we get (8.2).

Claim 5. The probability to increase ht by inserting a task with a TreeContainer put()

operation is

Pr(increase ht) = (Pr(increase ht by RW))rht+1 · Pr(reached level ht) (8.3)

Proof. The TreeContainer put() function calls findNodeForPut() in order to find a node

for task insertion. findNodeForPut traverses levels from 0 up to ht + 1. At each level it

makes ri trials to choose a free node uniformly at random. Once an unoccupied node is

found, the task is inserted into the highest free predecessor. Such an insertion increases

43

ht with probability

Pr(increase ht) = Pr(reached level ht) · Pr(failed rhttimes at ht|reached level ht)×
×Pr(occupy level ht + 1|failed rhttimes at ht)

The probability to pick an occupied node at level ht for rht times is

Pr(failed rhttimes at ht|reached level ht) = (
Xht

2ht
)rht

If all rht trials fail at level ht, then the inserter picks a random node at level ht + 1. The

insertion occupies level ht + 1 only if the parent of the chosen node is occupied. The

number of nodes at level ht + 1 that have an occupied parent is 2 · Xht . Hence, the

probability to occupy the level ht + 1 is:

Pr(occupy ht + 1|failed rht times at ht) =
2 ·Xht

2ht+1
=
Xht

2ht

By Claim 3, Pr(increase ht by RW) =
Xht

2ht
, so we get (8.3).

Lemma 12. Insertion by a TreeContainer put() function always has strictly lower proba-

bility to increase the tree height than the insertion by RW.

Proof. In findNodeForPut() procedure of TreeContainer rht = 1 for ht < h and rht = k

for ht = h, so the lemma follows from Claim 5.

8.2 TreeContainer Density Guaranties

Lemma 13. Assume that N tasks that have been inserted into an empty TreeContainer

using a put() function. Then the probability that the last occupied level ht does not exceed

hu, 0 < hu ≤ h, is at least 1− (N+1)rhu+2

2(hu+1)·(rhu+1)

Proof. We order the insertions in a run by the time they succeed to occupy nodes in the

tree from 1 (first) to N . Let {Yi}Ni=1 be a set of events, so that Yi corresponds to the case

that insertion number i increases the tree height to hu+1. The tree height remains hu after

44

N insertions if none of the these events occurs. According to the union bound theorem

Pr(
N⋃
i=1

Yi) ≤
N∑
i=1

Pr(Yi)

When insertion i samples tree nodes, there are at most i − 1 occupied nodes in the tree.

By Claims 4, 5

Pr(Yi) ≤ (
i+ 1

2hu+1
)rhu+1

Thus,

Pr(
N⋃
i=1

Yi) ≤
N∑
i=1

(
i+ 1

2hu+1
)rhu+1 <

(N + 1)rhu+2

2(hu+1)·(rhu+1)

The lemma follows.

The following lemma demonstrates the density properties of TreeContainer: it shows

that TreeContainer’s put() operation fails only if most of the nodes in the tree have already

been occupied.

Lemma 4 (restated). In a TreeContainer of height h, if a put operation fails, then the

tree contains at least 2
k+2
k+3
·h tasks with probability at least 1− 1

2
(3− 7

k+3
)·h+k+1

.

Proof. Recall that at the last level of TreeContainer there are k trials to occupy node in

findNodeForPut() procedure, i.e. rh = k. By Lemma 13, the if N = 2
rh+2

rh+3
·h

= 2
k+2
k+3
·h

the probability that all N nodes enter the tree of height h is at least 1 − 2
(k+2)2

k+3
·h

2(h+1)·(k+1) =

1− 1

2
(3− 7

k+3
)·h+k+1

.

8.3 TreeContainer Step Complexity

In the current section we investigate the step complexity of TreeContainer’s put() opera-

tions. We say that step is either read, write or a CAS operation.

Claim 6. Assume that thread T performs put() operation in TreeContainer. If ht is the

last occupied level at the end of this operation, then T has done at most O(ht
2) steps in

findNodeForPut() function.

45

Proof. According to the statement of the lemma, the last occupied level is ht, and so

findNodeForPut() iterates over at most ht + 1 levels. At each level T makes an attempt to

reserve a random node v (k attempts at the last tree level). The function putInNode(v) is

called for each such attempt. During this function T traverses the path from v to the root

looking for the highest unoccupied node. If an unoccupied node has been found, T tries

to mark its dirty bit using CAS operation. CAS may fail if some concurrent thread has

outrun T . In this case, T returns back on the path to v trying to CAS the isDirty variable of

the nodes along the way. If some CAS succeeds, the reservation has succeeded. However,

in the worst case, T may fail in putInNode() call at every level up to level ht. Therefore,

in the worst case, for every level except ht, T climbs to the root and goes back with CAS

failures. Hence, the number of steps is bounded by
∑ht

i=1 2 · i · consti ∈ O(ht
2).

Claim 7. The step complexity of updateNodeMetadata(v) for a node v with height hv is

O(hv).

Proof. In function updateNodeMetada(v), a thread traverses the nodes on the path from v

to the root updating the metadata of some v’s predecessors. At each node the thread makes

the pre-defined constant number of reads/writes and at most two CAS operations (limited

by the trials variable in lines 50 and 51 of TreeContainer). Hence, the total number of

steps is O(hv).

Lemma 14. Every put() operation of TreeContainer makes at most O(h2) steps.

Proof. The function put() of TreeContainer performs one call to findNodeForPut() and

at most one call to updateNodeMetada() functions. The lemma follows from Claims 6,

7.

Lemma 5 (restated). Consider a TreeContainer afterN successful put operations. Then

each of these operations has takenO(log2(N)) steps with probability at least 1− 1

2·(N+1)
4
3

.

Proof. According to Lemma 4, the height of the tree constructed by N insertions is

bounded by hu with probability at least 1 − (N+1)rhu+2

2(hu+1)·(rhu+1) . At all levels except the last

one there are rhu = 1 trials to reserve unoccupied node. If we take hu , 4
3
· log2(N), by

Lemma 4 the last occupied level is at most 4
3
·log2(N) with probability at least 1− 1

2·(N+1)
4
3

.

46

The function put() of TreeContainer performs one call to findNodeForPut() and at

most one call to updateNodeMetada(). If ht is bounded by 4
3
· log2(N) at the end of each

of N put() operations, by Claims 6, 7 each of these operations makes at most O(log2(N))

steps.

47

Chapter 9

Proofs of Liveness Properties

In this section we provide a formal proof that consumers operations are wait-free and

producers operations are wait-free with probability 1.

9.1 Probabilistic Wait Freedom of Producers

Lemma 1 (restated). If P producer threads and any number of consumer threads use

CAFÉ, then any TreeContainer’s put operation succeeds with probability at least (1 −
1
2h

)k·(P−1) · [1− (1− 1
2h

)k].

Proof. Consider a put() operation by some thread T . Assume that an adversarial sched-

uler tries to fail T ’s operation. By CAFÉ algorithm, T reads the latest tree from PT (let

C denote this tree) and runs TreeContainer’s put() operation on C. T ’s operation fails

if T does not succeed to reserve an unoccupied node in C. The optimal strategy for the

adversary to cause the failure is to suspend T and let other threads occupy the nodes of C.

TreeContainer’s put operation can fail even if there are unoccupied nodes in C. This

happens if there are occupied nodes at level h and findNodeForPut() picks k times one

of this nodes (TreeContainer lines 21-24). If some thread fails to put a task into C, this

thread runs its following put() operations on the next trees in the CAFÉ linked list and,

thus, cannot affect T ’s operation anymore.

Let ST be an event of T success to put a task in C. Let Ei be an event when all the

threads except T (T has been suspended by the adversary) have failed to insert a task

48

in C and that there are exactly 2h − i unoccupied nodes at level h. After Ei occurs, the

adversary cannot affect T ’s operation anymore, because all threads except T stop working

on C and move to next trees. Note that Ei are disjoint events and have the property

Pr(
⋃2h

i=1Ei) =
∑2h

i=1 Pr(Ei) = 1. Hence, we can write

Pr(ST) =
2h∑
i=1

Pr(ST
⋂

Ei) =
2h∑
i=1

Pr(ST |Ei) · Pr(Ei)

T makes k trials to reserve a uniformly random node at level h, therefore, for 1 ≤ i < 2h,

Pr(ST |Ei) = 1−Pr(¬ST |Ei) = 1− (i
2h

)k; for i = 2h, Pr(ST |E2h) = 0 (all nodes of C

are occupied). Thus,

Pr(ST) =
2h−1∑
i=1

[1− (
i

2h
)k] · Pr(Ei) ≥ [1− (

2h − 1

2h
)k] ·

2h−1∑
i=1

Pr(Ei)

As
∑2h

i=1 Pr(Ei) = 1,

Pr(ST) ≥ [1− (
2h − 1

2h
)k] · (1− Pr(E2h)) (9.1)

Let Aj be the event corresponding to the situation at which exactly j of P − 1 adversarial

threads have failed to put a task inC before 2h−1 nodes of level h become occupied. Note

that events {Aj}P−1j=0 are disjoint and have the property Pr(
⋃P−1
j=0 Aj) =

∑P−1
j=0 Pr(Aj) =

1, so we can write

Pr(E2h) =
P−1∑
j=0

Pr(E2h

⋂
Aj) =

P−1∑
j=0

Pr(E2h|Aj) · Pr(Aj)

For j < P − 1, the probability that at least one of P − j adversarial threads succeeds

to occupy the last unoccupied node in the following put operation is Pr(E2h|Aj) = 1 −
(2

h−1
2h

)k·(P−j). For j = P − 1, Pr(E2h|AP−1) = 0, because Pr(E2h
⋂
AP1) = 0. Hence,

we get

Pr(E2h) =
∑P−2

j=1 [(1− (1− 1
2h

)k·(P−j)) · Pr(Aj)]
≤ [1− (1− 1

2h
)k·(P−1)] ·

∑t−2
j=0 Pr(Aj) ≤ 1− (1− 1

2h
)k·(P−1)

49

By substituting the inequality result into (9.1), we finish the proof.

Lemma 15. Every producer thread makes a finite number of steps during the function

moveGTBack() of CAFÉ algorithm.

Proof. Let T be a producer thread that has called to moveGTBack(). Let t1 be the moment

of time at which T has finished fetchAndInc() (line 25), and t2 be the moment of time at

which T performs a call to fetchAndDec() (line 31) (if this never happens, t2 =∞).

The consumer threads that start get() operations in the interval (t1, t2) do not update

GT because they do not satisfy the if condition of line 39.

There may be consumer threads that have started and not terminated get() operations

before t1. We call such consumers t1-active. A number of these consumers is bounded

by the number of threads t using CAFÉ. t1-active consumer may update GT at most once

in the interval (t1, t2), because in its next loop iteration (lines 35-44), starting after t1, it

cannot satisfy if condition at line 39. Hence, t1-active consumers can update GT at most

t times in (t1, t2) interval.

Note that GT.curr.id never exceeds PT.id. PT.id only increases and, according to

line 38, a consumer never increases GT.curr.id beyond the value of ptV al.id, which is

read at the beginning of its get() operation (line 33).

Let idt1 be the value of PT.id at the moment t1. Note that GT.curr.id ≤ idt1 . t1-

active consumers execute at most t GT updates and, thus, can increase GT.curr.id up to

idt1 + t value.

The producers that start put() operations after t1 insert tasks into nodes with id ≥ idt1.

The producers, which put tasks into nodes with id ∈ [idt1, idt1 + t− 1], may discover that

GT.curr.id > latest.id (line 13) and, as a result, try to move GT backward. However,

GT can be moved backward at most t times, because after at most t updates of GT by

t1-active consumers, no consumers move GT forward anymore. Hence, producers that

start put() operation during (t1, t2) interval make at most t updates on GT.

Consider now the producers that have started and have not completed their put() op-

erations before t1. The number of such producers is bounded by the number t of threads

that use CAFÉ simultaneously and each of these threads makes at most one update of GT

(line 30).

50

To summarize, there are three types of threads that can update GT concurrently with

T , but all these threads can do at most 3 · t updates. Therefore, after at most 3 · t trials, T

succeeds in CAS at line 30 and terminates moveGTBack() call.

Lemma 2 (restated). If the height of TreeContainer is greater than zero, then CAFÉ’s

put operations are wait free with probability 1.

Proof. CAFÉ put() operation has two stages: 1) it invokes TreeContainer’s put() operation

on the TreeContainer objects until the first success; 2) it then can possibly call to the

function moveGTBack().

By Lemma 14, every TreeContainer’s put operation takes O(h2) steps. By Lemma

1, if h > 0, every TreeContainer’s put() operation succeeds with non-zero probability.

Therefore, the first stage terminates in a finite number of steps with probability 1. By

Lemma 15, the second stage terminates in a finite number of steps, which finishes the

proof.

9.2 Consumers Wait Freedom

We now show that get operations of CAFÉ are wait-free.

Lemma 16. After O(h · 2h) steps without concurrent updates on a TreeContainer by

producers every TreeContainer get() operation terminates.

Proof. We say that a node in TreeContainer is reachable from the root, if for every node on

the path to the root parent node has predicate 1 in metadata describing the child node. As

there are only consumer threads running and their updates write only 0 value to metadata

predicates, number of reachable nodes can only decrease.

Consider the function findNodeForGet() of TreeContainer. As the function looks for

a node by metadata predicates, it always returns a node that is reachable at the moment

when the function call has started.

According to findNodeForGet() (line 43), it can return either the node with a task, or

a node with predicates 0 for both of its children.

51

In the first case: if a consumer thread succeeds to take the task from the returned node

at line 37, the get() operation terminates after a call to updateNodeMetada(); otherwise

some other consumer thread has already taken the task. In both cases, the task is taken

from the node and the same node can be returned by the following calls only in the context

of the second case.

In the second case: the returned node does not have a task, so updateNodeMetadata()

is called and the returned node becomes unreachable. As a result, this node cannot be

returned in the following calls to findNodeForGet().

Therefore, after at most 2 · (2h+1− 1) (twice the size of TreeContainer) invocations of

findNodeForGet() TreeContainer does not have reachable nodes.

The get() function of TreeContainer runs a while loop, in which every iteration makes

a single call to findNodeForGet() and at most one call to updateNodeMetadata() function.

If at the beginning of a loop iteration there are no reachable nodes, the get() operation

terminates (line 34 of TreeContainer). Therefore, there are at most 2 · (2h+1 − 1) loop

iterations.

findNodeForGet() traverses only one path from the root to some inner node and thus

makes O(h) steps — by Lemma 7, updateNodeMetada() makes at most O(h) steps.

Hence, the total number of steps during the get() operation is O(h · 2h).

Lemma 17. Every get() operation of TreeContainer terminates within a finite number of

steps.

Proof. According to TreeContainer, a node can be occupied only once. Hence, there is a

finite number of put() operations that succeed to find an unoccupied node. The number

of these operations is bounded by the number of nodes in TreeContainer and, by Lemma

14, every such operation makes O(h2) updates. Thus, the number of producer updates is

bounded by constp · h2 · 2h for some constant constp.

By Lemma 16, there exists a constant constc, s.t. after at most constc · h · 2h steps

without concurrent updates by producers a get() operation of TreeContainer terminates.

As we noted before, producers can update TreeContainer at most constp · h·2h times,

therefore every TreeContainer’s get() operation terminates after at most constc · h · 2h ·
(constp · h2 · 2h + 1) steps.

52

Lemma 3 (restated). Every get operation of CAFÉ terminates within a finite number

of steps.

Proof. Let Tc be a consumer thread performing a get() operation. Let gtF irst be a pointer

to the first tree inserted into the linked list of TreeContainers. Let consts be a bound on

the number of steps taken by a get() operation of TreeContainer (by Lemma 17, such a

bound exists).

At the beginning of get() operation, Tc stores PT and GT values in ptV al and gtV al

respectively.

If (ptV al.id ≤ gtV al.curr.id), then Tc performs at most two get() operations of

TreeContainer and terminates.

Otherwise, Tc has to execute get() operations on all the trees between gtV al.curr and

ptV al in the linked list of trees. Meanwhile, producers can move GT back up to firstGt.

However, if starting from some moment Tc can take (ptV al.id − firstGt.curr.id) · 2 ·
consts steps with no producer threads concurrently moving GT, Tc terminates its get()

operation.

Note that the producers, which start their put() operations after the moment Tc reads

PT (line 33), do not move GT before Tc’s ptV al. Thus, these producers do not affect

the termination of the Tc get() operation. Hence, the only producers that can affect Tc

are the producers that started and have not terminated before Tc has read PT. The number

of such producers is bounded by the number t of threads using CAFÉ, so, the number

of times that GT can be moved back during Tc’s get operation is t. Therefore, after

t · (ptV al.id− firstGt.curr.id) · 2 · consts steps of Tc, either Tc terminates or producers

move GT t times. Hence, after at most (t + 1) · (ptV al.id − firstGt.curr.id) · consts
steps, Tc terminates its get() operation.

We conclude with the following theorem.

Theorem 1 (restated). CAFÉ implements a linearizable α-fair task pool that is wait

free with probability 1.

53

Chapter 10

Conclusions

We presented CAFÉ, an efficient wait-free task pool with adjustable fairness and con-

tention. CAFÉ uses a scalable TreeContainer building block, which greatly improves on

the performance of queue-based alternatives and provides polylogarithmic step complex-

ity for its put operations. Our experiments show that CAFÉ significantly outperforms both

FIFO and non-FIFO task pool algorithms in multi-chip architectures. As we’ve seen, ex-

isting task pools make different trade-offs between fairness and contention. We believe

that an interesting theoretical question is whether this trade-off is inherent: is it always

more expensive to implement a FIFO queue than an unordered set?

54

Bibliography

[1] Y. Afek, G. Korland, M. Natanzon, and N. Shavit. Scalable producer-consumer

pools based on elimination-diffraction trees. In Euro-Par 2010 - Parallel Processing,

pages 151–162. 2010.

[2] Y. Afek, G. Korland, and E. Yanovsky. quasi-linearizability: relaxed consistency

for improved concurrency. In Proceedings of the 14th international conference on

Principles of distributed systems, OPODIS’10, pages 395–410, Berlin, Heidelberg,

2010. Springer-Verlag.

[3] D. Basin, R. Fan, I. Keidar, O. Kiselov, and D. Perelman. CAFÉ: Scalable task pools

with adjustable fairness and contention. In D. Peleg, editor, DISC, volume 6950 of

Lecture Notes in Computer Science, pages 475–488. Springer, 2011.

[4] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. Snzi: scalable nonzero indicators. In

PODC ’07: Proceedings of the twenty-sixth annual ACM symposium on Principles

of distributed computing, pages 13–22, 2007.

[5] J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficient synchronization prim-

itives for large-scale cache-coherent multiprocessors. In Proceedings of the third

international conference on Architectural support for programming languages and

operating systems, ASPLOS-III, pages 64–75, 1989.

[6] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification, Third

Edition. Addison-Wesley Longman, Amsterdam, 3 edition, June 2005.

[7] M. Herlihy and J. E. B. Moss. Transactional memory: architectural support for lock-

free data structures. In Proceedings of the 20th annual international symposium

55

on computer architecture, ISCA ’93, pages 289–300, New York, NY, USA, 1993.

ACM.

[8] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kauf-

mann, 2008.

[9] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent

objects. ACM Trans. Program. Lang. Syst., 12:463–492, July 1990.

[10] E. Ladan-Mozes and N. Shavit. An optimistic approach to lock-free fifo queues.

Distributed Computing, 20:323–341, 2008.

[11] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and block-

ing concurrent queue algorithms. In Proceedings of the fifteenth annual ACM sym-

posium on Principles of distributed computing, PODC ’96, pages 267–275, 1996.

[12] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Using elimination to implement

scalable and lock-free fifo queues. In Proceedings of the seventeenth annual ACM

symposium on Parallelism in algorithms and architectures, SPAA ’05, pages 253–

262, 2005.

[13] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture for well-conditioned,

scalable internet services. In Proceedings of the eighteenth ACM symposium on

Operating systems principles, SOSP ’01, pages 230–243, New York, NY, USA,

2001. ACM.

56

	Abstract
	Introduction
	Related Work
	Model and Problem Definitions
	Implementation Environment
	Concurrent Objects, Linearizability
	-Fair Task Pool Sequential Specification
	Concurrent Object Liveness Properties

	The CAFÉ Algorithm
	Abortable Pool Sequential Specification
	TreeContainer
	Task Insertion
	Task Retrieval

	Combining TreeContainers in a FIFO List

	CAFÉ's Properties
	Safety Properties
	Liveness Properties
	Performance Properties

	Evaluation
	Experiment Setup
	System Throughput
	Choosing the Tree Height
	Performance Breakdown
	The Cost of Fairness
	Partitioning Technique
	Throughput of Partitioned Task Pools

	Proofs of Safety Properties
	Safety of TreeContainer
	Safety of CAFÉ

	Proofs of Performance Properties
	TreeContainer Insertions vs Random Walk
	TreeContainer Density Guaranties
	TreeContainer Step Complexity

	Proofs of Liveness Properties
	Probabilistic Wait Freedom of Producers
	Consumers Wait Freedom

	Conclusions

