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Abstract

Many systems today operate over the Internet, which is a hostile environment where many attacks
are common, e.g., penetration, forgery, and denial of service (DoS) attacks. Thus, security measures
should be taken in order to ensure the survivability of a system even when facing failures or attacks.
One of the most devastating attacks is an application-level DoS attack, which aims to deplete the
resources of end hosts by abusing application traffic. Dealing with such an attack is a challenge that
concerns both the industry and the academic community.

Our research begins by presenting Drum — a gossip-based application-level multicast protocol
that is resistant to application-level DoS attacks. Drum ensures correct delivery of multicast mes-
sages to al nodes in a timely fashion, w.h.p., even when a large percentage of the nodes is under
DoS attacks. Drum is analyzed, simulated, and implemented, and al results show its good traits.

Our research on Drum continues by allowing each node to locally adapt its behavior to the
locally-perceived state of the system. We model the multicast problem as an optimization problem,
and solve it to find a solution to the adaptation problem. We show that even though nodes adapt
their behavior using local knowledge only, the total expected propagation time of messages in an
attacked system isimproved.

Having found a DoS solution for application-level multicast, we turn to protect other applica
tions. Obvioudly, thereisavast number of different applications, and tailoring a specialized solution
for each and every one of themisnot viable. Thus, it isimportant to find some general DoS solution
that can be applied in a multitude of applications. We start by developing a simple and genera
building block — DoS-resistant two-party communication. We define a formal model of arealistic
port-based rationing channel, and based on that model we develop a protocol, ¢-Hopper, that is
resilient to DoS attacks. We prove the protocol’s resilience by rigorously analyzing its success rate,
i.e., the number of valid messages that are sent and are correctly received at the other end. We show
that existing protocols that validate communication using an unchanged secret payload are bound
to eventually fail, while ¢-Hopper uses packet fields, e.g. ports, to store its random payload, and
proactively hops between field values.

Finaly, we use ¢-Hopper as one component of Beaver — a multi-party solution that alows a
server to communicate with many clients, even in the face of application-level DoS attacks. We



2 Abstract

design a complete system to protect legacy servers from DoS attacks, with minimal alterations to
the communicating parties. Our design provides mechanisms for registration, admission, and DoS-
resistant communication between the parties involved. We show that the system is robust even when
DosS attacks and compromised clients are present.
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Chapter 1

I ntroduction and Background

The proliferation of Denial of Service (DoS) attacks in recent years [12] has increased the interest
in protecting systems from such attacks [46, 43, 42, 27, 1]. In aremotely-launched DoS attack, the
attacker attempts to disrupt some service by crafting specia network packets. We concentrate on
attackers that generate bogus requests and send them to the target, with the intention of overwhelm-
ing the target and degrading its service. Such adversaries can magnify the severity of their attack
by first infiltrating many computers, and then utilizing them as “zombies’ to perform a Distributed
DoS (DDoS) attack [51].

The first line of defense in protecting against DoS attacks is to protect the network [46, 43].
Indeed, if the network is congested, there is little one can do to allow valid communication to take
place. However, protecting the network does not solve the DoS problem for the application. Com-
mon network-protection mechanisms include filtering according to field values on packet headers
(such as addresses and ports), and rate-limiting traffic. But packet headers can be spoofed by the
adversary, and rate-limiting discards messages indiscriminately, throwing away valid messages as
well. Moreover, it is possible to perform a DoS attack on the application without overloading the
network, especially when the application invests many resources in each incoming request, as might
happen, for example, when using cryptographic primitives to authenticate or encrypt/decrypt pack-
ets.

One might assume that authenticating every packet in transit, e.g. using 1PSec [3], removes the
problem of DoS, as bogus packets are identified and dropped, while valid packets are authenticated
and delivered to the application. But while thisisindeed the case, the cost of per-packet authentica-
tion creates a new attack vector — targeting the authenticator. Thus, as we show in this work, using
IPSec alone to protect from DoS attacks is insufficient.

Our goal isto provide mechanisms, tools and systems to protect against DoS attacks when the
network is not congested. We leverage existing cheap and simple solutions such as filtering and

5



6 CHAPTER 1. INTRODUCTION AND BACKGROUND

rate-limiting to provide strong and robust protection against DoS. Our systems are practical and
easy to implement and deploy.
We provide means to protect the following communication methods:

e (Gossip-based) Multicast [8, 14].
e Two-party communication.

e Client-server communication [27, 1].

We formally model and prove the correctness and effectiveness of our systems when under DoS
attacks. We provide a framework for reasoning about different approaches and best strategies, and
compare different solutions. Finally, we quantify the robustness of our systems by providing results
from simulations and measurements of real implementations.

In Chapter 3 we propose aframework and methodology for quantifying the effect of DoS attacks
on a distributed system. We present a systematic study of the resistance of gossip-based multicast
protocols to DoS attacks. We show that even distributed and randomized gossip-based protocols,
which eliminate single points of failure, do not necessarily eliminate vulnerabilities to DoS attacks.
We propose Drum — a simple gossip-based multicast protocol that eliminates such vulnerabilities.
Drum was implemented in Java and tested on a large cluster. We show, using closed-form mathe-
matical analysis, simulations, and empirical tests, that Drum survives severe DoS attacks. The work
presented in Chapter 3 appeared in [6, 7].

In Chapter 4 we improve the resistance of gossip-based multicast protocols to (Distributed) De-
nial of Service (DDoS) attacks using dynamic local adaptations at each node. Each node estimates
the current state of the attack on the system, and then adapts its behavior according to this local es-
timation. The adaptation is achieved through modeling the problem of propagating messages under
a DoS attack as an optimization problem, and solving it using linear programming, independently
at each node. Simulation results show that when the system is under attack, the local decisions
each node takes bring the system to a stable point, which is the solution of the linear program-
ming problem. The adaptation leads to propagation times that are 30% faster than those of existing
DoS-resistant gossip-based protocols.

In Chapter 5 we consider the problem of overcoming DDoS attacks by realistic adversaries that
have knowledge of their attack’s successfulness, e.g., by observing service performance degrada-
tion, or by eavesdropping on messages or parts thereof. A solution for this problem in a high-speed
network environment necessitates lightweight mechanisms for differentiating between valid traffic
and the attacker’s packets. The main challenge in presenting such a solution is to exploit existing
packet filtering mechanisms in away that allows fast processing of packets, but is complex enough
so that the attacker cannot efficiently craft packets that pass the filters. We show a protocol, ¢-
Hopper, that mitigates DoS attacks by adversaries that can eavesdrop and (with some delay) adapt



their attacks accordingly. The protocol uses only available, efficient packet filtering mechanisms
based mainly on addresses and port numbers. ¢-Hopper avoids the use of fixed ports, and instead
performs *‘ pseudo-random port hopping’. We model the underlying packet-filtering services and
define measures for the capabilities of the adversary and for the success rate of the protocol. Using
these, we provide a novel rigorous analysis of the impact of DoS on an end-to-end protocol, and
show that ¢-Hopper provides effective DoS prevention for realistic attack and deployment scenarios.
The work presented in Chapter 5 appeared in [4, 5].

In Chapter 6 we present two prototype implementations of ¢-Hopper, one as part of IPSecin a
Linux kernel, and a second as an NDIS hook driver on a Windows machine. Our implementations
show that ¢-Hopper is practical, and easy to deploy. We also present results of experiments, using
the two implementations. Our measurements illustrate that ¢-Hopper withstands severe DoS attacks
without hampering the client-server communication. Moreover, ¢-Hopper is simple and easy to
deploy.

In Chapter 7 we present Beaver, a method and architecture to “build dams’ (filters) to protect
servers from DDoS attacks (floods). Beaver alows efficient filtering of DoS traffic using low-cost,
high-performance, readily-available packet filtering mechanisms. Beaver improves on previous so-
lutions by not requiring cryptographic processing per message, allowing the use of efficient routing
(avoiding overlays), and establishing keys and state as needed.
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Chapter 2

M ethodology

We evaluate our systems using closed-form formal analysis, simulations, and experiments. We
model the attacker and the system, and then perform an analysis of our solution based on that
model. Such an analysis alows us to prove the correctness of our solution for all scenarios, as
oppossed to just using experiments, or simulations, which show the practicability of the solution in
specific settings.

Our formal analysis tries to find lower and upper bounds on metrics that are relevant to the
problem at hand. For instance, in Chapter 3 wefind lower and upper bounds on message propagation
time in gossip-based multicast protocols that are under attack. In Chapter 5 we find alower bound
on the success rate and delivery probability, which is the percentage of valid message that reach the
target under attack. We usually find the lower and upper bounds by solving optimization problems.
For example, in Chapter 4 we use linear programming to solve an optimization problem for the
node's best behavior under attack. In Chapter 5 we find the attacker’s best strategy.

To check the effect of the simplifying assumptions in our model formal analysis, we sometimes
simulate the system using MATLAB (see Chapters 3 and 4). Since our protocols use random infor-
mation, we run each experiment 100 times, and each data point we use is an average of the results
of these 100 experiments.

Finaly, we implement our systems in C (Chapter 6) or Java (Chapter 3) and test their perfor-
mance under real DoS attacks. We compare our results to the results obtained by the simulations
and the results predicted by the analysis, which assumes a simplified model.

Our different techniques for analyzing the systems validate each other, and thus we can be
certain that the systems are robust. The evaluation frameworks that we build allow us to compare
different systems and protocols, and show that our solutions improve the resistance to DoS attacks
compared to existing solutions.
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Chapter 3

Drum

One of the biggest security threats faced by a distributed system isadenial of service (DoS) attack,
in which an attacker makes a system unresponsive by forcing it to handle bogus requests that con-
sume all available resources. In adistributed denial of service (DDoS) attack, the attacker utilizes
multiple computers as the source of a DoS attack, in order to increase the attack strength. Since
a DDosS attack is essentially a strong DoS attack, we will consider them to be the same. In 2003,
approximately 42% of U.S. organizations, including government agencies, financial institutions,
medical institutions and universities, were faced with DoS attacks [12]. That year, DoS attacks
were the second most financially damaging attacks, only short of theft of proprietary information,
and far above other attacks [12]. Therefore, coping with DoS attacks is essential when deploying
services in a hostile environment such as the Internet [39].

As afirst defense, one may protect a system against DoS attacks using network-level mecha-
nisms [46, 42, 43]. These mechanisms involve rate-limiting incoming traffic, and filtering packets
according to their headers. However, network-level filters cannot detect DoS attacks at the applicea-
tion level, when the traffic seems legitimate. Even if means are in place to protect against network-
level DoS, an attack can till be performed at the application level, as the bandwidth needed to
perform such an attack is usually lower. Thisis especially true if the application performs intensive
computations for each message, as occurs, e.g., with secure protocols based on digital signatures.

As network-level DoS-mitigation solutions are increasingly available, application level DoS at-
tacks are becoming amajor concern [53]. Consequently, vendors have begun employing some mea-
sures against DoS attacks at the application layer [24, 41]. Such solutions are commonly deployed
at the network/firewall level, although they are application-specific. However, these measures are
usualy just hard-coded validity checks for well-known protocols, and do not contain means to deal
with resource exhaustion caused by the application. In this chapter, we are concerned with coping
with DoS attacks in application-level multicast protocols. The basic ideais to assume simple and

11



12 CHAPTER 3. DRUM

general mechanisms at the network/firewall level and to exploit them at the application (multicast
protocol) level.

To quantify the effects of DoS attacks, we measure their influence on the time it takes to prop-
agate a message to al the processes in the system, as well as on the average throughput processes
can receive. We do this using asymptotic analysis, simulations, and measurements.

We focus on large-scale distributed systems (e.g., 1000 processes). A DoS attack that targets
every process in alarge system inevitably causes performance degradation, but also requires vast
resources. In order to be effective even with limited resources, attackers target vulnerable parts of
the system. For example, consider a tree-based multicast protocol; by targeting a single inner node
inthe tree, an attacker can effectively partition the multicast group. Hence, eliminating single points
of failure is an essentia step in constructing protocols that are less vulnerable to DoS attacks.

We therefore focus on gossip-based (epidemic) multicast protocols [13, 8, 14, 19, 26, 31, 25],
which eliminate single points of failure using redundancy and random choices. Such protocols are
robust and have been shown to provide graceful degradation in the face of amounting failures [20,
32]. Asin previouswork, e.g., [8, 31], we assume that the gossip-based multicast system isdeployed
in a WAN environment, and as such, its nodes suffer from DoS attacks launched from outside the
system. One may expect that such a system will not suffer from vulnerabilities to DoS attacks, since
it can continue to be effective when many processes fail. Surprisingly, we show that gossi p-based
protocols can be extremely vulnerable to DoS attacks targeted at a small subset of the processes.
This occurs because an attacker can effectively isolate a small set of processes from the rest of the
group by attacking this set.

Having observed the vulnerabilities of traditional protocols, we turn to search for ways to elim-
inate these vulnerabilities. Specifically, our goal is to design a protocol that does not alow an
attacker to increase the damage it causes by focusing on a subset of the processes. We are familiar
with only one previous work, by Minsky and Schneider [38], that addresses DoS attacks on agossip-
based protocol. However, the problem they consider differs from ours in a way that renders their
approach inapplicable to our setting (see Section 3.1), and moreover, they only dea with limited
attack strengths.

We present Drum (DoS-Resistant Unforgeable Multicast), a gossip-based multicast protocol,
which, using afew simple ideas, eliminates common vulnerabilities to DoS attacks: the best attack
against Drum requires the attacker to target the entire system. The 3 main ideas used in Drum are:

1. Simultaneously using two gossiping techniques, push and pull.
2. Allocating separate resources for each operation.

3. Using random ports whenever possible, for each communication channel.
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Mathematical analysis and simulations show that Drum indeed achieves our design goal: an at-
tacker cannot substantially hinder Drum’s performance by targeting a small subset of the processes.
When an adversary has alarge sending capacity, its most effective attack against Drum is an all-out
attack that distributes the attacking power as broadly as possible. We concentrate on heavy attacks
since they are the most damaging, and one can expect them to happen in actual scenarios [51]. Obvi-
oudly, performance degradation due to a broad all-out DDoS attack is unavoidable for any multicast
protocol, and indeed all the tested protocols exhibit the same performance degradation under such a
broad attack. In contrast, under an attack that focuses on a strict subset of the processes, Drum’s la-
tency remains constant as the attack strength increases, whereas in traditional protocols, the latency
grows linearly with the attack strength.

We have implemented Drum in Java and tested it on a cluster of workstations. Our measure-
ments validate the analysis and simulation results, and show that Drum can withstand severe DoS
attacks, where naive protocols that do not take any measures against DoS attacks completely col-
lapse in terms of latency and throughput.

In summary, this chapter makes the following contributions:

e It presents anew framework and methodology for quantifying the effects of DoS attacks. We
are not familiar with any previously suggested metrics for DoS-resistance nor with previous
attempts to quantify the effect of DoS attacks on a system.

e It uses the new methodology to conduct the first systematic study of the impact of DoS at-
tacks on multicast protocols. This study exposes vulnerabilities in traditional fault-tolerant
protocols, showing that robustness, although necessary, is not sufficient for DoS-mitigation.

e It presents Drum, a simple gossip-based multicast protocol that eliminates such vulnerabili-
ties. We believe that the ideas used in Drum can serve to mitigate the effects of DoS attacks
on other protocols as well.

e It provides closed-form asymptotic analyses as well as simulations and measurements of
gossip-based multicast protocols under DoS attacks varying in strength and extent.

This chapter proceeds as follows: Section 3.1 gives background and related work. Section 3.2
presents the system model. Section 3.3 describes Drum. Section 3.4 presents our eval uation method-
ology and considered attack models. The following three sections evaluate Drum and compare it
to traditional gossip-based protocols using various tools: Section 3.5 gives closed-form asymp-
totic latency bounds; Section 3.6 provides a thorough evaluation using simulations; and Section 3.7
presents latency and throughput measurements. Section 3.8 evaluates the usefulness of two specific
DoS-mitigation techniques used in Drum. Finally, we provide some derivations for the analysis.
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3.1 Background and Related Work

Gossip-based dissemination [13] isaleading approach in the design of scalable reliable application-
level multicast protocals, e.g., [8, 14, 19, 26, 31, 25]. Our work focuses on symmetric gossip-based
multicast protocols like lpbcast [14]. We consider protocols that do not rely on external mechanisms
such as |P multicast.

Such protocols work roughly asfollows. each processlocally dividesitstimeinto gossip rounds,
rounds are not synchronized among the processes. In each round, the process randomly selects a
small number of processes to gossip with, and tries to exchange information with them. Every piece
of information is gossiped for a number of rounds. It has been shown that the propagation time of
gossip protocols increases logarithmically with the number of processes [44, 25]. There are two
methods for information dissemination: (1) push, in which the process sends messages to randomly
selected processes; and (2) pull, in which the process requests messages from randomly selected
processes. We show that both methods are susceptible to DoS attacks: attacking the incoming
push channels of a process may prevent it from receiving valid messages, and attacking a process's
incoming pull channels may prevent it from sending messages to valid targets. Some protocols use
both methods [13, 25]. Karp et a. showed that combining push and pull alows the use of fewer
transmissions to ensure data arrival to all group members [25].

Drum utilizes both methods, and in addition, allocates a bounded amount of resources for each
operation (push and pull), so that a DoS attack on one operation does not hamper the other. Sim-
ilar resource separation was also used in COCA [62], for the sake of overcoming DoS attacks on
authentication servers. Drum further utilizes randomly selected ports for data transmission, thus
making it difficult for an attacker to target these ports.

Secure gossip-based dissemination protocols were previously suggested by Malkhi et al. [35, 36,
37]. However, they did not deal with DoS attacks. Follow-up work by Minsky and Schneider [38]
suggested a pull-based protocol that can endure limited DoS attacks by bounding the number of
accepted requests per round. However, these works solve the diffusion problem, in which each
message simultaneously originates at more than ¢ correct processes, where up to ¢ processes may
suffer Byzantine failures. In contrast, we consider a multicast system where a message originates
at asingle source. Hence, using a pull-based solution that utilizes ¢t + 1 digjoint paths, as suggested
in [38], does not help in withstanding DoS attacks in the multicast system we consider. Moreover,
Minsky and Schneider [38] focus on load rather than on DoS attacks; they include only a brief
analysis of DoS attacks, under the assumption that no more than ¢ processes perform the attack, and
that each of them generates a single message per round (the reception bound is also assumed to be
one message per round). In contrast, we focus on substantially more severe attacks, and study how
system performance degrades as the attack strength increases.
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Drum deals with DoS attacks at the application-level, assuming network-level defenses are al-
ready in place. Network-level DoS analysis and mitigation has been extensively dealt with [48, 9,
16, 55, 10, 46], but DoS-resistance at the secure multicast service layer has gotten little attention.
We note that our work is the first that we know of that conducts a systematic study of the effect of
DoS attacks on message latency.

Here, wefocus on DoS attacks in which the attacker sends fabricated application messages. DoS
can also be caused by churn, where processes rapidly join and leave [33], thus reducing availability.
In Drum, as in other gossip-based protocols, churn has little effect on availability: even when as
many as half of the processes fail, such protocols can continue to deliver messages reliably and with
good quality of service [32]. A DoS attack of another form can be caused by process perturbations,
whereby some processes are intermittently unresponsive. The effect of perturbations is analyzed
in[8], whereit is shown that probabilistic protocols, e.g., gossip-based protocols, solvethisproblem.

3.2 System Model

Drum supports probabilistically reliable multicast [8, 14, 25] among processes that are members
of agroup. Each message is created by exactly one group member (its source). Throughout this
chapter we assume that the multicast group is static. There are n members in the group, and each
process p has alist of the other n — 1 group members.

Like previous gossip protocols[8, 14], we assume that the underlying network isfully-connected.
The message latency varies, but it is bounded. The link-loss probability is constant, equal for all
links, and independent of any other factor. The communication channels are insecure, meaning that
senders of incoming messages cannot be reliably identified in a simple manner.

An adversary can generate fabricated messages. However, this requires the adversary to utilize
resources. Malicious processes can perform DoS attacks on group members. We note that au-
thenticating messages, e.g., using digital signatures, does not solve the DoS problem, as fabricated
messages must be invalidated using a costly operation.

We assume that communication can take place on ports that change on demand, and that the
multicast protocol can randomly choose to process a subset of the messages that arrive to a des-
ignated port, and ignore messages that arrive to other ports. We further assume that a DoS attack
that does not specifically target the designated port does not affect the reception on this port (i.e.,
the application-level DoS attack does not cause a network-level DoS attack as well). This can be
achieved using available network-level products [46, 42, 43].

We assume that a process can choose a random port for communication that the adversary
cannot predict. We assume that the adversary only attacks ports it knows of. In our protocol,
the use of a random port is limited in time, and the process notifies another process of this new
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communication port by sending it a message stating the port number. We assume that it takes the
adversary considerable timeto react to this message, so that it cannot attack this random port while it
isstill in use. Thisassumption isjustified, since an attacker that has significant strength is probably
employing a DDoS attack and needs to notify its subordinates whenever it wishes to change targets.

3.3 DoS-Resistant Gossip-Based Multicast Protocol

Drum is asimple gossip protocol, which achieves DoS-resistance using a combination of pull and
push operations, separate resource bounds for different operations, and the use of random ports in
order to reduce the chance of a port being attacked. Each process, p, localy divides its time into
rounds. The rounds are not synchronized among the processes. A round is typically in the order
of asecond, and its duration may vary according to local random choices. Every round, p chooses
two small (constant size) random sets of processes (group members), viewy, s, and view,,;, and
gossips with them. E.g., when these views consist of two processes each, this corresponds to acom-
bined fan-out of four. In addition, p maintains a message buffer. Process p performs the following
operations in each round:

e Pull-request —p sends adigest of the messages it has received to the processes in its viewy,;,
requesting missing messages. Pull-request messages are sent to awell-known port. The pull-
request specifies a randomly selected port on which p will await responses, and p spawns a
thread for listening on the chosen port. Thisthread is terminated after afew rounds.

e Pull-reply —in response to pull-request messages arriving on the well-known port, p randomly
selects messages that it has and are missing from the received digests, and sends them to the
destinations indicated in the requests.

e Push —inatraditiona push operation, p randomly picks messages from its buffer, and sends
them to each target ¢ in its viewy,s;,. In order to avoid wasting bandwidth on messages that ¢
aready has, p instead requests ¢ to reply with a message digest, as follows:

1. p sends a push-offer to ¢, along with arandom port on which it waits for a push-reply.

2. t replies with a push-reply to p’s random port, containing adigest of the messagest has,
and arandom port on which ¢ waits for data messages.

3. If p has messages that are missing from the digest, it chooses a random subset of these,
and sends them back to ¢’s randomly chosen port.

The target process listens on a well-known port for push-offers.
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Upon recelving a new data message, either by push or in response to a pull-request, p first
performs some sanity checks. If the message passes these checks, p delivers it to the application
and saves it in its message buffer for a number of rounds. The sanity checks employ cryptographic
mechanisms, which ensure that the attacker has negligible probability of fabricating a message that
passes these checks. Consequently, bogus messages impact only their first recipient. However,
the sanity checks are costly in terms of execution time (e.g., verifying digital signatures). Thus,
performing sanity checks at a high rate effectively causes DoS.

Resource allocation and bounds. In each round, p sends push-offers to all the processesin its
viewpysp, and pull-requests to all the processesinitsviewy,,;. If thetotal number of push-replies and
pull-requests that arrive in around exceeds p’s sending capacity, then p equally divides its capacity
between sending responses to push-replies and to pull-requests. Likewise, p responds to a bounded
number (typically |view,sn|) of push-offers in around, and if more data messages than it can
handle arrive, then p divides its capability for processing incoming data messages equally between
messages arriving in response to pull-requests and those arriving in response to push-replies. The
messages are randomly chosen from the incoming message buffers.

At the end of each round, p flushes its incoming message buffers. This isimportant, especially
in the presence of DoS attacks, as an attacker can send more messages than p can handle in around.

Achieving DoS-resistance. We now explain how the combination of push, pull, random port
selections, and resource bounds achieves resistance to targeted DoS attacks. A DoS attack can flood
a port with fabricated messages. Since the number of messages accepted on each port in a round
is bounded, the probability of successfully receiving a given valid message M in a given round is
inversely proportional to the total number of messages arriving on the same port as M in that round.
Thanks to the separate resource bounds, an attack on one port does not reduce the probability for
receiving valid messages on other ports.

In order to prevent a process from sending its messages using a push operation, one must attack
(flood) the push-offer targets, the ports where push-replies are awaited, or the ports where data
messages are awaited. However, the push destinations are randomly chosen in each round, as are
the push-reply and data ports. Thus, the attacker has no way of predicting these choices.

Similarly, in order to prevent a process from receiving messages during a pull operation, one
needs to target the destination of the pull-requests or the ports on which pull-replies arrive. However,
the destinations and ports are randomly chosen. Thus, using the push operation, Drum achieves
resilience to targeted attacks aimed at preventing a process from sending messages, and using the
pull operation, it withstands attacks that try to prevent a process from receiving messages.
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3.4 Evaluation Methodology

The most important contribution of this chapter is our thorough evaluation of the impact of various
DoS attacks on gossip-based multicast protocols. In addition to examining the effect of DoS on
Drum, we also measure the effectiveness of the DoS-mitigating techniques employed by it. We
mostly concern ourselves with the benefits of combining both the push and pull methods. We evalu-
ate three protocols: (i) Drum, (ii) Push, which uses only push operations, and (iii) Pull, which uses
only pull operations. Pull and Push are implemented the same way Drum s, with the important mea-
sures of bounding the number of messages accepted in each round and using random ports. Thus,
in comparing the three protocols, we study the effectiveness of combining push and pull operations
under the assumption that these other measures are used. Subsequently, Section 3.8 evaluates the
effectiveness of Drum’s other DoS-mitigation concepts, by contrasting Drum'’s performance against
that of two modified versions of Drum: one without resource separation, and a second without using
random ports.

We begin by evaluating the effect that a range of DoS attacks have on message latency using
asymptotic mathematical analysis (in Section 3.5) and simulations (in Section 3.6). Our simulation
results exhibit the trends predicted by the analysis.

For these eval uations, we make some simplifying assumptions. We assume no message is ever
purged from any process's message buffer, and that all processes have some messagesin their buffers
(from previous multicast sessions). We aso assume that when processes send a data message, they
send the complete contents of their buffer in a single operation. We model the push operation as
performed without push-offers (in Drum and in Push). We assume that the rounds are synchronized,
and that the message-delivery latency is smaller than half the gossip period; thus, a process that
sends a pull-request receives the pull-reply in the same round. All of these assumptions were made
in previous analyses of gossip-based protocols, e.g., [8, 14, 35, 3§].

The analysis and simulations measure latency in terms of gossip rounds:. we measure the mes-
sage’s propagation time, which is the expected number of rounds it takes a given protocol to prop-
agate a message to all (in the closed-form analysis) or to 99% (in the simulations) of the correct
processes. We chose a threshold of 99% since the message may fail to reach some of the correct
processes due to old-message purging or link loss. Note that correct processes can be either attacked
or non-attacked. 1n both cases, they should be able to send and receive data messages.

We turn to measure actual performance on a cluster of workstations (in Section 3.7). Our goal
for this evaluation istwofold: First, we wish to ensure that the simplifying assumptions made in the
analysis and simulations have little impact on their results. E.g., in the implementation, rounds are
not synchronized and the push-offer mechanism is used (in Drum and in Push). Second, we seek
to measure the consequences of DoS attacks not only on actual latency (in msecs.), but aso on the
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throughput of area system, where multiple messages are sent, and old messages are purged from
processes’ message buffers.

Attacks. Inall of our evaluations, we stage various DoS attacks. We assume that the DoS attacks
are launched from outside the system. DoS from inside the group is essentially just one source (or
more) generating excessive traffic. This can happen regardless of any malicious nodes being part
of the multicast group, e.g., in a heterogenous system. Consequently, thisisin fact a flow-control
problem, as one cannot differentiate between a malicious attack and legitimate excessive traffic.
Flow control in gossip-based multicast has been dealt with in [47].

In each DoS attack, the adversary focuses on a fraction « of the processes (0 < o < 1), and
sends each of them x fabricated messages per round (in Drum, this means push messages and
5 pull-requests). We note that randomly choosing the attack targets every round does not make
any difference, as the communication partners are re-chosen uniformly at random each round. We
denote the total attack strength by B = = - o - n. We assume that the message source is being
attacked (this has no impact on the results of Push). We consider attacks either of a fixed strength,
where B is fixed and « increases (thus, x decreases); or of increasing strength, where either z is
fixed and « increases, or vice versa (in both cases, B increases). Examining fixed strength attacks
allows us to identify protocol vulnerabilities, e.g., whether an adversary can benefit from targeting
asubset of the processes. Increasing strength attacks enable us to assess the protocols performance
degradation due to an increasing attack intensity.

3.5 Asymptotic Closed-Form Analysis

In this section we assume that all the processes are correct. The protocols use a constant fan-
out, F. Every round, each process sends messages to F' processes and accepts messages from at
most I’ processes. In Drum, F' is equally divided between push and pull, e.g., if FF = 4, then
viewpysh, = Viewy, = 2, and each process accepts push messages from at most 2 processes and
pull-request messages from at most 2 processes in around. We analyze Drum in Section 3.5.1, Push
in Section 3.5.2, and Pull in Section 3.5.3.

We denote by p, the probability of a non-attacked process to accept a valid incoming push or
pull-request message sent to it. Similarly, we denote by p, the probability of an attacked process to
accept avalid incoming message. Obviously, p, isindependent of the attack strength. In Section 3.9,
we give detailed formulas for p, and p,, and Lemma 8 proves that p, > 0.6 for all F* > 3.
Numerical calculations using the formula in Section 3.9 show that p, > 0.6 for al F > 1, ascan
be seen in Figure 3.1(a). When at least one valid message is sent, an attacked process gets at |east
x + 1 messages in a round, and accepts at most F' of them. We get the following coarse bound:
Do < % Figure 3.1(b) shows an example of the numerical calculation of p, versus g
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351 Drum

We begin by considering increasing strength attacks. We show that in Drum, an adversary does
not gain any significant advantage by increasing its attack strength while focusing on afixed strict
subset of the processes.

Lemmal Fix @« < 1 and n. Drum's expected propagation time is bounded from above by a
constant independent of x.

Proof: Since o < 1, some processes are not attacked at all. Let uslook at atwo-stage propagation
scheme that works as follows: At the first stage, only the source propagates the message. The
expected propagation time from the source via push to al the non-attacked processes is independent
of = and bounded, since n is fixed. At the next stage, the non-attacked processes constitute non-
attacked sources for the rest of the group viapull. The expected propagation time of the second stage
is again independent of 2 and bounded. Since n is fixed, this two-stage expected propagation time
is constant. The two-stage propagation from the source to all of the destinations is obviously not
faster than Drum’s propagation. Thus, Drum’s expected propagation time is bounded from above
by a constant independent of . O

Figure 3.3(a) in Section 3.6.2 illustrates this quality of Drum, using simulations.

We now consider attacks where the adversary has a fixed attacking power. Thus, the attacker
can intensely attack a small group of processes, or perform a moderate attack on a large number
of processes. We would like to see which strategy is more beneficia to the attacker. We denote by
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c= % = 9 theattack strength divided by the total system capacity. We show that the adversary’s
best strategy against Drum is to attack as many processes asit can, i.e., increase a.

We define the effective expected fan-in, I, to be the average number of valid data messages a
process successfully receivesin around. (If the same data message is received from k& processes,
we count this as k messages.) Likewise, the effective expected fan-out, O, is the average number of
messages that a process sends and are successfully received by their targets in a round.

L et us examine the effect of a DoS attack on O and I, with respect to the push operation (O,
and I, resp.). The probability of an attacked process to receive a push message is p,. The
probability of a non-attacked process to receive a push message is p,. Therefore, the effective

fan-ins 17 ., and I , of an attacked and non-attacked process (resp.) are:

pus pus

push = F *pa and Iy o = F-py (3.1

When an processes are attacked, the effective fan-outs are:
Zush = Ogush =F- (a “Da + (1 - a) 'pu) (32)

Similar arguments apply for the pull operation. The probability of an attacked process to receive a
pull-request is p,. The same probability for a non-attacked process is p,. Receiving pull-requests
allows a process to send data messages, and on average, each process receives I pull-requests. Due
to the use of random ports, we assume that each pull-reply is actually being received, and thus, the
effective fan-outs are:

Oyui= F-p, and O} F-p, (3.3

P pull —

Receiving data messages requires sending pull-requests. Each round, F' pull-requests are being
sent. On average, aF' of them reach an attacked process and are successfully read with probability
pa, and (1 — o) F of those reach a non-attacked process and are successfully read with probability
py. Due to the use of random ports, we can assume it makes no difference whether the requesting
process is attacked or not. We get the following fan-ins:

pat = Ly = F(a-pa+(1—0a) pu) (34

InDrum, O = 1(Opusn + Opunr) ad I = 3(Lyush + Lpuu). Therefore:

o o a+1 11—«
O =1"= %'(a'pa"i_(l_a)pu"i_pa) :F( 2 *Pa + 9 'pu) (35)
«a 2—-—«
O =1"= g'(a'pa'i_(l_a)pu‘i‘pu) :F'(E'pa+ 5 " Pu) (3.6)

Lemma?2 For ¢ > 5, Drum's expected propagation time is monotonically increasing with «.
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Proof: We will show that all the processes effective fan-ins and fan-outs are monotonically de-
creasing with «. That is, we want to prove that: 42° < 0 and 42° < 0. We require the following:

ddoaa = ddlaa - (pa +adpa + dpa pu) < 0

Pa + (0 + l)ip; < Pu
Recall that p, < £. In Lemma7 in Section 3.9 we show that %2 < £ Bounding the left side of
the inequality, we get:

dp, F
1 )— = . 1) =
Pa + (a+ )da w—i—(a—l— )owc o (a+a+1) p

Thus, our condition holds when 2 < p,, that is, when ¢ > 2. Similarly, when applying the

derivative to the second term we get the condition:

F F 20+ 1 3
<

dov _ drv dpa
el (paJFO‘dpa_pu) <0

dpa
pa"‘adpa < Pu

Bounding the left side of the inequality, we get:

dp, F F F 20 2
Pota—<—4+a—=— (at+a)=—< -
do x ar  ox c c

Thus, we require that % < Py, Or that ¢ > pl Thisisaready inferred from our previous result. The
lemmafollows since p, > 0.6. O

This behavior is vaidated in the smulations in Section 3.6.3. Moreover, the simulations show
that even for much smaller values of ¢ (ranging from 0.25 to 2), Drum’s propagation time increases
with o (see Figures 3.7-3.8).

352 Push

We first prove the following simple lemma.

Lemma3 Va > 0 a<j ( )<a—i—1

Proof: We show that vy > 0 < ln(1+y) < = + 1.
Define h(y) = In(1 +y) — o and gly) = ln(l + y) — y. By taking derivatives we get:

W) = w5 ~ (55~ Gre) = e > 0 >0,
g’(y):Hy 1<0, Vy>0.

Since h(0) = ¢(0) =0,y > In(1 +y) > @ +1) Therefore, £ s < (1+y) < = +1 O

We proceed to show that Push’s propagation timeislinear in x.
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Lemma 4 The expected propagation time to all processes in Push is bounded from below by:

Inn—In[(1 —a)n+1]
In (1+ Fap,)

Proof: We prove that the given bound holds even for the case where initialy al the non-attacked
processes have the message (denoted by M), in addition to the source (which is attacked). The
lemma then follows immediately.

Let the random variable M (k) denote the number of processes that have M at the beginning of
round k, and let E'[M (k)] denote its expectation. In round k, each process having M sends it to
I other processes. On average, Fa of those are attacked, and each attacked process receives the
message with probability p,. Thus, we get the coarse recursivebound E [M (k + 1)] < E [M (k)] +
E [M(k)] - Fap, with theinitial condition E' [M (0)] = M (0) = (1 —a)n+ 1. Thus, E [M (k)] <
[(1 —a)n+ 1] (14 Fap,)®. M reaches all the processes when E [M (k)] > n. To bound & from
below we use the fact that having [(1 — o) n + 1] (1 + Fap,)® < n impliesthat E [M (k)] < n.
Thus, thefirst round number % that may satisfy theinequality £ [M (k)] > n istherequired formula.
O

Corollary 1 Fixa > 0and n > % The propagation time of Push increases at least linearly with

xX.

Proof: Since « and n > % are fixed, the numerator in Lemmad4 is a positive constant. Consider the
denominator' since p, < % it holdsthat - o - p, isO(%). Thelemmafollows since, by Lemma 3,

(1+ ) isO(x). O

The above corollary explains the trend exhibited by Push in Figure 3.3(a).

353 PFull

We begin by proving the following lemma.

Lemma5 Vb € N =&y is Q(x).
Proof: We first show that 451 < ﬁ forevery a > 1,b € N.

We prove by induction onbthata%1 > “b_(a%l) Forb =1, -1 > 1 forevery a > 1. The
inductive Step: ab+1;(b(fll)b+l = a(a)bf(aa(;)lb)(a*l)b = a(aab)b + “T_liabf(jbfl)b <igpoael b o
cta="r <

Bysubsntutlng for a inthe proven inequality, we get that %= E < b_(ﬁb_F)b forevery x > F.
Therefore, ﬁ isQ(z). O

We define p as probability that the message M is propagated from the source in around.
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Lemma 6 Fix o and n. The number of rounds it takes a message to leave the source in Pull grows
at least linearly with x.

Proof: We give a gross over-estimate of p by assuming that all the other n — 1 processes choose
the source every round. (When fewer processes choose the source, M is less likely to leave the
source)) Since p, < % p < (1-— (%)"fl). The number of rounds it takes to propagate a
message beyond the message source is geometrically distributed with p. Therefore, its expectation

n—1

is+ >~ Subgtituting n — 1 for bin Lemma5, we get that & is (). O

mnfl_(x_l.?‘)nfl .
Corollary 2 Fix « and n. The propagation time of Pull grows at least linearly with z.

Figure 3.3(a) illustrates this behavior of Pull.

3.6 Simulation Results

This section presents MATLAB simulations of the three protocols under various DoS attack scenar-
ios. All group members constantly have messages to send, and we track the propagation of one of
these messages, M, from its source. Each process receives messages from at most F' = 4 other pro-
cesses each round (disregarding pull-replies). If more than F' processes try to access this process's
incoming channels, arandom F'-sized subset of them is chosen. We consider alink-loss probability
of 0.01 on al links and afan-out of F' = 4. Rounds are synchronized among all processes. Each
data point is averaged over 1000 runs, where in each run the number of rounds it takes the message
to reach 99% of the processes is measured.

In Section 3.6.1 we consider situations with no DoS attack (either no failures or only crash
failures), and validate known results about gossip protocols. We continue in Sections 3.6.2 and 3.6.3
by measuring the effect of DoS attacks on the system. In these studies, we assume that 10% of the
processes have crashed when the system started (we assume that no failure detectors are being used),
and that the DoS attack islaunched from outside the system. Since we do not assume that nodes can
detect that their gossip partners are down, assuming that nodes crash right when the system starts
has no specia effect on the results. If nodes crash later on, the system will operate as usual until the
processes crash. After that, the system will operate as analyzed with processes that have crashed
right from the start.

We measure the propagation times to the correct processes, both attacked and non-attacked. In
Section 3.6.2 we measure the impact of targeted DoS attacks, and in Section 3.6.3 we examine fixed
strength attacks and adversary strategies.
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Figure 3.2: Runs without DoS attack: Average propagation time to 99% of the correct processes
(simulations).

3.6.1 Validating Known Results

We begin by evaluating the three protocols in a failure-free scenario, and in situations where crash
failures occur. We assume that the crashes occur before M is generated, and that the source does
not crash. We also assume that the crashes are not detected by the correct processes, i.e., they try to
gossip with crashed processes as well.

Our aim is to validate two known results. (1) the propagation time of gossip-based multicast
protocolsis O(log n) [44, 25], as can be seen in Figure 3.2(a), with alogarithmic x-axis; and (2) the
performance of such protocols degrades gracefully as crash failures amount [20, 32], as depicted in
Figure 3.2(b)). We can see that Push and Pull slightly outperform Drum in these experiments. This
is due to the fact that the bounds on the pull and push channels in Drum are strict, i.e., even if in
a specific round no messages have arrived via the push channels, only requests from at most two
distinct processes will be handled, although the process is capable of handling four such requests.
Conversely, Push and Pull have only one bound, which guarantees that messages won't be discarded
if they can be processed. The ahility to perform well even when many processes crash stems from
the random choice of communication partners each round.

3.6.2 Targeted DoS Attacks

In this section we consider targeted attacks, where a subset of size an of the processes is attacked.
Figure 3.3 compares the timeit takes M to reach 99% of the correct processes for the three protocols
under various DoS attacks, with 120 and 1000 processes. Figure 3.3(a) shows that when 10% of
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Figure 3.3: Increasing attack strength: Average propagation time to 99% of the correct processes,
n = 120, 1000 (simulations).

the processes are attacked, the propagation time of both Push and Pull increases linearly with the
severity of the attack, while Drum’s propagation time is unaffected by the attack strength. Thisis
consistent with the prediction of Lemma 1 and Corollaries 1 and 2. Moreover, the three protocols
perform virtually the same without DoS attacks (see theleftmost data point). Figure 3.3(b) illustrates
the propagation time as the percentage of attacked processes (and thus B) increases. The rightmost
data point in this figure matches a scenario where only 10% of the processes are both correct non-
attacked. Although the protocols exhibit similar trends, Drum propagates messages much faster
than Push and Pull.

Figure 3.4 illustrates the standard deviation (STD) of the propagation times presented in Fig-
ure 3.3 for n = 1000. It showsthat for afixed o, Drum’'s STD is not affected by the attack strength,
whereas the other protocols STD increases linearly. Furthermore, both Drum and Push exhibit a
small STD compared to Pull. E.g., for &« = 10% and = = 128, the STDs of Drum and Push are
0.5 and 2.9 rounds (resp.), whereas Pull’'s STD is 9.3 rounds. Therefore, the behavior of Drum and
Push is more predictable. The high STD of Pull’s propagation timeis mainly due to the large STD
of the number of rounds it takes to propagate M beyond the source. The number of rounds it takes
to propagate M beyond the source is geometrically distributed with p, where p is the probability
to propagate M beyond the source in around. Thus, the STD of the number of rounds it takes to
propagate M beyond the source is @ . A numerical calculation of p according to the formula
in Section 3.10, with F' = 4 and = = 128, yields an STD of 8.17 rounds, which explains Pull’s
measured STD of 9.3 rounds mentioned above.

Figure 3.5 illustrates the cumulative distribution function (CDF) of the percentage of correct
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Figure 3.4: Increasing attack strength: STD of the propagation time to 99% of the correct
processes, n = 1000 (simulations).

processes that receive M by a given round, under different DoS attacks. As expected, Push prop-
agates M to the non-attacked processes very quickly, but takes much longer to propagate it to the
attacked processes. Again, we see that Drum significantly outperforms both Push and Pull when a
strict subset of the system is attacked.

Interestingly, on average, Push propagates M to more processes per round than Pull does (see
Figure 3.5), although the average number of rounds Pull takes to propagate M to 99% of the correct
processes is smaller than that of Push (see Figure 3.3). This paradox occurs since, with Pull, there
is a non-negligible probability that M is delayed at the source for along time. With FF = 4 and
x = 128, the probability of M not being propagated beyond the source in 5, 10, and 15 rounds
is 0.54, 0.3, and 0.16 resp. (as computed using the formula for p in Section 3.10). Once M
reaches one non-attacked process, it quickly propagates to the rest of the processes. Therefore,
even if by a certain round &, in most runs, a large percentage of the processes have M, there is
gtill a non-negligible number of runs in which Pull does not reach any process (other than the
source) by round k. This large difference in the percentage of processes reached has a significant
impact on the average depicted in Figure 3.5. In contrast, Push, which reaches all the non-attacked
processes quickly in al runs, does not have runs with such low percentages factoring into this
average. Nevertheless, Push’s average propagation time to 99% of the correct processes is much
higher than Pull’s, because Push has to propagate M to all the attacked processes, whereas Pull has
to propagate M only out of one attacked process.

Figure 3.6 illustrates this behavior: Figure 3.6(a) shows that Push propagates M much faster
than Pull to the non-attacked processes, while Figure 3.6(b) indicates that Push and Pull take the
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Figure 3.5: Targeted DoS attacks. CDF: Average percentage of correct processes that receive M,
n = 1000 (simulations).

same time to propagate M to the attacked processes. Conversely, Drum exhibits fast propagation
times both to attacked and non-attacked processes.

3.6.3 Adversary Strategies

We now evaluate the protocols under a range of attacks with fixed adversary strengths. First, we
consider severe attacks with B = 7.2n and B = 36n (corresponding to ¢ = 2 and ¢ = 10, resp.)
fabricated messages per round. If the adversary chooses to attack all correct processes, it can send
8 (resp., 40) fabricated messages to each of them in each round, because 90% of the processes
are correct. If the adversary instead focuses on 10% of the processes, it can send 72 (resp., 360)
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fabricated messages per round to each of them. Figure 3.7 illustrates the protocols’ propagation
times with different percentages of attacked processes, for system sizes of 120 and 500. It validates
the prediction of Lemma 2, and shows that the most damaging adversary strategy against Drumisto
attack all the correct processes. That is, an adversary cannot “benefit” from focusing its capacity on
asmall subset of the processes. In contrast, the performance of Push and Pull is seriously hampered
when a small subset of the processes is targeted. Not surprisingly, the three protocols perform
equally when all correct processes are targeted (see the rightmost data point).

Next, we evaluate Drum under attacks with relatively small adversary powers of B = 0.9n,
B =18nand B = 3.6n (c = 0.25, ¢ = 0.5, and ¢ = 1, resp.) and also without an attack (as a
baseline). As Figure 3.8 shows, such attacks have little impact on Drum’s propagation time.

3.7 Implementation and Measurements

We have implemented Drum, Push, and Pull in Java. The implementations are multithreaded. The
operations that occur in around are not synchronized, e.g., one process might send messages before
trying to receive messages in that round, while another might first receive a new message, and then
propagate it. We run our experiments on 50 machines at the Emulab testbed [59], on a 100Mbit
LAN, where a single process is run on each machine (i.e.,, n = 50). Asin the simulations, 10%
of the processes have crashed when the system started (these crashes go undetected), and the DoS
attack is launched from outside the system. Since we do not have a router/firewall that randomly
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selects messages according to the protocol’s needs, we have implemented the selection of messages
by sequentialy reading messages from the port at random times within the round, and discarding all
messages at the end of the round. Since rounds are locally controlled and randomly vary in duration,
the attacker cannot “aim” its messages for the beginning of around.

3.7.1 Validating the Simulation M ethodology

Our first goal for these experiments is to validate the simulation methodology. To this end, we
experiment with the same settings that were tested in Section 3.6, first for increasing values of x
and a = 10%, and then for x = 128 and increasing values of «. Asin the simulations, every
process has messages to send, and we track the propagation of one of those messages. Each data
point is averaged over 1000 runs, again, asin the ssimulations.

Dueto the lack of synchronization, messages can be propagated multiple hopsin asingle round
in some situations. We use the following method to count the number of rounds it takes to propagate
a message: when a message is created, a round counter is attached to it and initialized to 0. The
message source logs the value 0, and immediately increases the round counter to 1. Whenever a
process receives a new message, it logs the message's current round counter. Every round, each
process increments the round counters of all the messages in itslocal buffer.

Figure 3.9 depicts the results of these experiments, and compares them with the corresponding
simulation results. It shows that the experimental results are consistent with the simulation results,
indicating that the simplifying assumptions made in the analysis and simulations have negligible
effect on the results.
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3.7.2 High Throughput Experiments

We proceed to evaluate the protocols in areadistic setting, where multiple messages are sent, and
old messages are purged from processes buffers. By running on areal network, we can faithfully
evaluate latency in milliseconds (instead of rounds), as well as throughput.

In each experiment scenario, atotal of 10,000 messages are sent by asingle source, at arate of 40
messages per second. The average received throughput and latency are measured at the remaining 44
correct processes (recall that 5 of the 50 processes are faulty). The average throughput is calculated
ignoring the first and last 5% of the time of each experiment. The round duration is 1 second. Data
messages are 50 bytes long. (The evaluation in [14] used a similar transmission rate and similar
message Sizes.)

In a practical system, messages cannot reside in local buffers forever, nor can a process send
al the messages it ever received in asingle round. In our experiments, messages are purged from
processes buffers after 10 rounds, and each process sends at most 80 randomly chosen new mes-
sages to each of its gossip partners in around. These are roughly twice the buffer size and sending
rate required for the throughput of 40 messages per round in an ideal attack-free setting, since the
propagation time in the absence of an attack isabout 5 rounds. Due to purging, Some messages may
fail to reach all the processes. Since we measure throughput at the receiving end, thisis reflected by
an average throughput lower than the transmission rate (of 40 messages per second).

Figure 3.10 shows the throughput at the receiving processes for Drum, Push, and Pull, under
the same DoS attack scenarios staged above. Figure 3.10(a) indicates that, as for latency, Drum’'s
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throughput is also unaffected by increasing z, while Push shows a slight degradation of through-
put, and Pull’s throughput decreases dramatically. Figure 3.10(b) shows that Drum’s throughput
gracefully degrades as « increases, while Push exhibits a linear degradation, and Pull’s throughput
isdrastically affected for every o > 0.

Figure 3.11 depicts the CDF of the average latency of successfully received messages in two
scenarios. Each data point shows, for a given latency [, the percentage of correct processes for
which the average latency does not exceed I. We observe that Push is the fastest in delivering
messages to non-attacked processes, but suffers from substantial variation in delivery latency, as
messages take a long time to reach the attacked processes. E.g., Figure 3.11(a) shows that the 4
attacked processes (other than the source) measure an average latency 4 times longer than non-
attacked processes. While Pull exhibits almost the same average latency for al the processes, this
latency is very long. Drum combines the best of Push and Pull: it delivers messages amost as fast
as Push, while maintaining a small variation between attacked and non-attacked processes.

3.8 Other DoS-Mitigation Methods

Until now, we have evaluated the advantage of combining both the push and pull techniques as a
way to mitigate DoS attacks, in the context of a protocol that also employs resource bounds and
random ports. We now turn to examine the importance of using the other two techniques: utilizing
random ports whenever possible, and allocating separate resources for orthogonal operations.

In order to evaluate the effectiveness of random ports, we simulate Drum as described in Sec-
tion 3.6, with the difference that pull-replies are sent to a well-known port instead of to a random
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one. The adversary attacks this port by equally dividing its attack strength for the pull channels
between the pull-request port and the pull-reply port (i.e., each pull port is attacked with a quarter
of the total attack strength). Figure 3.12(a) presents simulation results comparing Drum'’s perfor-
mance with and without the use of random ports, when 10% of the processes are attacked. The
results show a linear increase in propagation time for the well-known ports variation of Drum, as
the rate of bogus messages each attacked process receives in a round increases. Thisisin contrast
to the propagation time of Drum using random ports, which is bounded by a constant.

When solely using well-known ports, the adversary can attack both pull ports, aswell asthe push
port. A process under attack experiences difficulty receiving messages both via push and through
the pull channels, since the push and pull-reply ports are attacked. The same process's ability to
send messages is only partly hampered. Although the pull-request port is attacked, the adversary
cannot directly affect the process's outgoing push channels.

Next, we measure the effect of resource separation on Drum'’s performance. To this end, we
change Drum’s implementation detailed in Section 3.7. Resources are now combined (i.e., ajoint
bound on the maximum number of processed messages per round is used) for receiving control
messages. pull-requests, push-offers, and push-replies. We do not include the reception of data
messages in this bound, since this bound may differ greatly from the bound on control messages
in actual scenarios. Figure 3.12(b) contrasts the measurements of Drum’s propagation time with
shared bounds against those with separate bounds, when 10% of the processes are attacked. The
results indicate a linear degradation of performance as the attack rate increases, when bounds are
shared. On the other hand, the unmodified version of Drum isvirtually indifferent to the increasein
attack strength.



3.9. CALCULATING Py AND Py 35

Shared bounds degrade Drum'’s performance under a DoS attack, since the fabricated control
messages sent by the adversary to the well-known push-offer and pull-request ports consume re-
sources that should be used for reading pull-requests, push-offers, and push-replies. The valid con-
trol messages are then discarded when resources are exhausted, and the attacked process becomes
less responsive.

We conclude that random ports and separate resource bounds are crucial to Drum'’s ability to
cope with DoS attacks.

3.9 Calculating p, and p,

Suppose process p; sends a message to process p;, we want to calculate the probability that process

p; accepts this message. Denote the event “process p; sends a message to process p;” by S;;.

Assumen > F', and define ¢ as the probability that process p; appears in process p;’s view, then:
n—2 n—3 n—l—F n—1-—F F

q T n—1 n—-2 n—F n—1 n—1

Let Y bethe number of valid messages received by p; in asingle round, then:

Pr(Y <0[S;) = Pr(Y >n|S;)=0

-2
0< y <n PI‘(Y =y ‘ SZ]) = <Z_ 1>qy—1(1 — q)n—l—y

Let py bethe probability that a non-attacked process, p;, discards the message sent by p;, given S;;,
then:

{ 0 Y<F
Py = Y—-1 Y-2 Y—F Y-F
T.—...iz— Y>F

Cadlculating p, gives:

Py = 1-— Zpy'Pr(Y:y\Sij)z
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If p; is attacked with x > F' messages, we get:

Y+x—1 Y+2-2 Y+ax—F 7Y—i—{lj‘—F
Y+2 Y+z2—-1 Y+z—-F+1  Y+z

Py =

And thus;
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We now give abound on p,.
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Lemma8 p, > 0.6.
Proof: Define:
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By [58], for n > 1 we get that Y given S;; can be approximated using a normal distribution
function, with x = F + 1 and 0% = F. The cumulative distribution function D(z) is thus:

D(z) =% - (1 + erf (%)) =1. (1 + erf (“—g)) where erf(z) =1— % /oo e dt
From [58] we get the following:
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Thefirst sum in formula 3.7 is approximated by D(F'). Calculating D(F') gives:
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We want to bound D(x) from above by finding for which values of F’, ¢ (F') < 0. The denominator
of ¢’ (F') isalways positive, so we ignore it when calculating the derivative:
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Once again, the denominator is positive, and we get:
(F2+F3) (VA +8F - 7) v+ 8F - 8FF <0
7+ 8F V7 £ 87F —8F - (1 1) <0
Vet < VT HEE — /T

Taking derivatives we get:
R A
VT(F+1)2 2ym+ 8F
?
2T +8F < a(F+1)?

Clearly, (F + 1)? grows faster than 2y/7 + 8F. Numericaly solving for F' = 1 shows that the
inequality holds. Thus, it holds for every F' € N. Consequently, we only need to find the first F" for
which:

% <VrTSF- 7
A numerical solution for thisinequality showsthat it first holds for F' = 3. Thus, for F' > 3 we get
that ¢’ (F) < 0,and thus D(F + 1) > D(F). Assigning F' = 3 in our previous bound for D(F), we
get that forall I >3, D(F) > D(3) > 0.3968 ~ 0.4. Assuming F' > 3, we get:
i(n—Q) < F )yl (n_1_F>"1y>0.4
\v- 1 n—1 n—1
Since D(z) ismaximal at x = . = F + 1 and symmetric around it, we get the approximation:
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And finally, we conclude that:
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O

3.10 Calculating p

We now compute p, the probability that M is propagated from the sourcein around in Pull. Assume
n > F, and define ¢ as the probability that process p, appears in process pi’s view,,;, then
g = -£5. Let Y be the number of valid pull-requests received in asingle round, then:

Pr(Y <0) = Pr(Y >n)=0

_1
0<y<n Pr(Y=y) = (ny >qy(1—Q)”1y

Assume x > F, and define py as the probability that a valid pull-request is read from the buffer,
then:

Y Y Y zl- (Y +az—F)!
py =1-(1- - ). (11— ) =1
Y+ Y a1 Ytao_F4l @—F) - (Y +2)

The probability p that avalid pull-request is read from the buffer, independent of Y, is:

p= i pyPr(Y Z( y;rx(y—Jngz')) (n;l) <n1j1>y(n;1__1p>nly

y=—o00 y=0
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Chapter 4

Adaptive Drum

Denia of service (DoS) attacks are attacks that usually aim to exhaust resources by overloading an
entity with large amounts of bogus messages. The use of armies of infiltrated machines (“zombies’)
leads to distributed DoS (DDoS), in which the attacker utilizes its set of compromised machines to
launch a coordinated attack with massive strength. In this chapter, we consider application-level
DoS attacks, in which the application is overwhelmed with messages to process even when the
network is not congested. Thissituation iscommon is applications that require extensive processing
for each incoming request, e.g., cryptographic authentication.

As DoS attacks can cause severe damage and are fairly easy to deploy, it isimportant to design
communication protocols with DoS-mitigation mechanismsin place. However, designing a protocol
that performswell under acertain DoS attack does not mean that it isstill performs well asthe attack
changes. We believe that a protocol that adapts its parameters to the actual attack taking place can
perform better than a static protocol that behaves the same under al DoS attacks. To illustrate this
point, we focus on gossip-based multicast protocols as a case study.

Chapter 3 presented Drum, which is a gossip-based protocol that is designed to cope with DoS
attacks by equally dividing the available resources between push and pull. However, this allocation
is static, and does not consider the actual attack on the system. For example, even if only the push
channels are attacked, every node in Drum still allocates half of its resource to push.

We assume the adversary does not know the identity of all nodes in the multicast group (which
may be very large), and is thus restricted to attacking just a portion of the group. The attacker
uses zombies to leverage its attack, and must communicate with them to update them on the attack
strategy. Realizing that the system has adapted itself to the attack, devising a new attack plan and
updating all zombies take time. We can therefore assume that by the time the attacker reacts to our
adaptation, the system has completely reached its optimized point.

We present anovel approach that adapts a gossip-based protocol to the attack currently launched
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on the system. The adaptation is modeled as an optimization problem, which is solved using linear
programming. Every round, each node locally estimates the current state of the attack on the system
and feeds it to the linear programming algorithm, which presents the node with the new resource
distribution to use. We show, using simulations, that the local resource distribution each node
independently calculates improves the global propagation time in the system, i.e., the number of
rounds it takes a message generated at the source, to reach al nodes with high probability. Our
propagation times are better than Drum’s by up to 34%.

Adaptive Drum, like Drum, uses the important measures of combining push and pull and com-
municating using random ports. We concentrate on dynamic resource alocation using local deci-
sions to achieve better message propagation times than Drum. Adaptation in gossip-based protocols
has been explored before. For example, Rodrigues et. a [47] study adaptation in a gossip-protocol
using flow-control to avoid congestion. Kyasanur et a. [29] study adaptive gossip in sensor net-
works, where the sensors wish to limit their transmission to conserve power consumption. However,
we are the first the we know of that provide adaptation to DoS attacks.

The chapter proceeds as follows. Section 4.1 presents the assumptions we use for the adversary.
Section 4.2 details the adaptation mechanism and discusses local estimations of the system'’s state.
Section 4.3 gives simulation results that show the effectiveness of the adaptation and estimation.

4.1 Adversary Assumptions

We assume an external adversary that can cause messages to be dropped by overloading the mul-
ticast nodes with bogus requests. The adversary is not part of the multicast system, and does not
participate in the gossip protocol. We assume that al nodes in the system are correct, follow the
gossip protocol, and can differentiate between valid and bogus requests, perhaps at the cost of addi-
tional work, i.e., authentication. The adversary causes waste of resources by requiring the nodes to
verify incoming requests, and supplying many bogus requests.

The attacker has bounded capacity for sending messages in a single round. When mounting
an attack, the adversary chooses the nodes and ports to attack, out of the ones it knows, and the
number of invalid messages it wishes to send to each attacked node each round. We denote by « the
percentage of nodes being attacked, and for simplicity assume that all attacked nodes are attacked
with Cy,,,s;, bogus push messages and C,,,,;; bogus pull messages per round, i.e., every round G,
and C,,,;; bogus messages are sent to each attacked node’s push and pull ports, respectively.
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4.2 Adaptation

Each node locally adapts its behavior according to its view of the current state of the attack on the
system. To perform a useful adaptation, there are two challenges to consider:

1. How to reliably estimate the current state of the attack.
2. Given the current state of the attack, what is the best strategy to employ.

To tackle these challenges, we start by assuming that all nodes know the exact state of the attack,
and find a strategy that accommodates the attack and improves propagation time (Section 4.2.1).
We then provide means to estimate the state of the attack (Section 4.2.2).

4.2.1 Findingthe Target Strategy

The only communication elements a node controls are its push and pull channels, whether incoming
or outgoing. The distribution of the node’s limited resources among these channels constitutes the
node's strategy. We want to find the best strategy each node should use to optimize the global
propagation time when the system is under a DoS attack. Since gossip-based multicast protocols
choose communication partners uniformly at random each round, and since all attacked nodes are
attacked in the same manner, it is clear that all attacked nodes should exhibit the same behavior, and
all unattacked nodes should use the same strategy. The strategies of the attacked and unattacked
nodes will likely not be the same.

Recdll that « is the percentage of attacked nodes, and every round the attacker sends each of
these nodes C,,,..1, and Cy,,;; bogus messages to their incoming push and pull channels, respectively.
For simplicity of analysis, we transform C,,;, and C,,,;; to the concrete damage that they make,
and define:

e p, —the probability of a push message being dropped due to the attack on the push channels
(depends on Cysp)-

e p; — the probability of a pull message being dropped due to the attack on the push channels
(depends on Cy17).

We use the following notations for node strategies:

e ASO is an attacked node's push fan-out, i.e., the number of nodes randomly-chosen each
round as targets for outgoing push messages. A successful reception of an outgoing push
message sent from node A to node B results in transferring data messages from node A to
node B.
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e ASI is an attacked node's push fan-in, i.e., the maximum number of randomly selected in-
coming push messages (valid or not) that will be processed in a single round.

e ALO and ALI are the same as ASO and AST (respectively), but for pull. Unlike push,
a successful reception of an outgoing pull message sent from node A to node B results in
transferring data messages in the opposite direction — from node B to node A. That is, ALO
is responsible for outgoing pull messages, but incoming data messages. AL isresponsible
for incoming pull messages, but outgoing data messages.

e USO,USI,ULO and ULI arethe sameas ASO, ASI, ALO and ALI (respectively), but
for an unattacked node.

By definition, al fan-ins and fan-outs are non-negative integers. For example: In Drum, all fan-
insand fan-outs are equal to F', where F' is some positive integer, e.g., 4. In apush protocol, al push
fan-ins and fan-outs are equal to 2F', and al pull fan-ins and fan-outs are equal to 0. The value of
F is bounded from above due to the limited resources the node can allocate for the communication.

We now move on to finding the nodes' best strategy when under attack. We do that by solving
an optimization problem. We start by describing a set of constraints that each node must adhere to.
All constraints are normalized by F', our basic unit of reference:

Constraint 1 ALI + ASO =2
ULI+USO =2

Reasoning. Receiving pull messages and sending push messages provide the same functionality —
sending data messages from the node to the nodes it communicates with. The resources are thus
bound by 2 units, as we are essentially bounding two communication channels (push and pull)
together.

Constraint 2 ASI + ALO =2
USI+ULO =2

Reasoning. Both receiving push messages and sending pull message allow the node to receive data
messages from nodes it communicates with. Once again, the total amount of resources allocated for
this purpose is 2 units.

Additionally, we have some constraints on the system as awhole:

Congtraint 3 aAST + (1 —a)USI = aASO + (1 — a)USO
aALI + (1 —a)ULI = «ALO + (1 — a)ULO
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Reasoning. Thetotal amount of resources allocated for outgoing push messages should be equiva-
lent to the total amount of resources allocated for incoming push messages, otherwise resources are
wasted. Thisistrue for pull aswell.

Constraint 4 aASO + (1 — a)USO =2 - (1 _ p_fip,)

QALO + (1= a)ULO =2+ (1~ ;2.

Reasoning. Itisimportant to have both the push and pull operations. The push operation allows an
attacked source to propagate its message quickly viaits outgoing push channel. It has been proven
that it takes atime linear in C,,,;; to retrieve a message from an attacked source, when exclusively
using the pull protocol (see Chapter 3). Pull allows an attacked node to receive data messages easily
from an unattacked node, through the outgoing pull channel. Using push alone to deliver messages
to attacked nodes takes atime linear in G,y

Obviously, the more a channel is attacked, the less we want to use it — hence the ratio. Note
that in case only one channel is attacked, it is closed and the attack has no influence. Obviously,
this is the best strategy for such a case. Additionally, when both channels are attacked at the same
strength, it is clear that the amount of resources allocated for push and pull should be equal (from
symmetry).
Finally, we have the boundary conditions:

Constraint 5 0 < ASO, ASI, ALO, ALI, USO, USI, ULO, ULI < 2

To complete the optimization-problem statement, we still need to define the cost function to
minimize. We want to minimize losses in the system, so that more messages can be processed by
nodes, and thus data messages will be transferred faster. All messages lost due to the attack are
dropped at the incoming channels of the attacked nodes. Assuming that attacked nodes are sent at
least AST and ALI valid messages for their incoming push and pull ports, respectively, the attack-
induced losses in the system are defined by the following function:

f(fan-outs and fan-ins) = aps AST + ap;ALI

We have completed the definition of the optimization problem, and can now turn to solving it.
Since we assume that we know «, ps and p;, we get a set of linear equations and inegualities in 8
variables (the fan-outs and fan-ins). The function to minimize, f, isaso linear. Thus, we can solve
this optimization problem using linear programming.

Figures 4.1, 4.2 and 4.3 show some solutions to the optimization problem for different scenarios,
as calculated using MATLAB.
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Figure 4.1: Target strategies for p, = p; > 0, asafunction of «.

Figure 4.1(a) shows the change in the resources allocated for the incoming push channels, AST
and U ST, as afunction of the percentage of the attacked nodes, .. The system is attacked on both
push and pull channels, and the probability of a valid message being dropped due to the attack is
greater than 0 and equal for both channels, i.e., ps = p; > 0. Dueto this symmetry, exactly the same
amount of resources is alocated for the incoming pull channels, i.e.,, ALI and ULI. The actua
values of p; and p; do not matter, aslong as they are equal and positive. We can see that as soon as
the attack begins (o > 0), the attacked nodes deallocate all resources used for the incoming push
channels, which minimizes our cost function f. From Constraint 2 we can tell that these resources
are diverted to the outgoing pull channels (not shown on figure). Thisis a good adaptation, since
the attacked nodes experience problems receiving data messages via their incoming push channels
due to the attack, and it is best if they concentrate more resources on receiving data messages using
their outgoing pull channels, which do not directly suffer from the attack. Figure 4.1(b) shows the
actual fan-ins the nodes should use (whole numbers), for F' = 4.

From Figure 4.1(a) and Constraints 1 and 2, we get that as more nodes are attacked (up to
50% of the nodes), the total amount of resources allocated by attacked nodes for outgoing channels
increases, since each attacked node directs al its resources to its outgoing channels. To accommo-
date this increase in the total amount of resources allocated for outgoing channels, the unattacked
nodes increase the amount of resources alocated for their incoming channels. This conforms to
Constraint 3. When more than 50% of the nodes are attacked, the unattacked nodes can no longer
compensate for the increase in the incoming-channels' resources, asthey have aready exhausted all
their available resources. Consequently, the attacked nodes change their behavior and direct some
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resources from the outgoing channels to the incoming channels. Finally, anode's strategy in asys
tem where all nodes are attacked, and both push and pull channels are attacked at the same strength,
isequal to the node's strategy in a system in which no node is attacked at all. Thisisa consequence
of al nodes experiencing the same environment, and the equal alocation of resources to the push
and pull channels, as per Constraint 4, since both of them exhibit the same loss rate.
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Figure 4.2; Target strategies when only one of the channels is attacked, as a function of «.

Figures 4.2(a) and 4.2(b) show the nodes behavior when only push or only pull channels are
attacked. Figure 4.2 shows that when only push is attacked, the attacked nodes invest all their
resources for outgoing data messages in the incoming pull channels, and thus, by Constraint 1, do
not use outgoing push at all. We can see that the unattacked nodes do the same thing, asthe resources
they alocate for outgoing push messages immediately drop to 0 when the attack commences. Itis
easy to see that Constraint 3 means that no resources are allocated for incoming push messages
as well, and all resources are diverted to outgoing pull messages (by Constraint 2). The resulting
strategy isthe exclusive use of pull in the system. Figures 4.2(b) showsthe dual case, in which only
pull is attacked. Similarly, the system adapts itself to using push alone. These results are intuitively
appeding, asit is clear that if one channel is attacked but the other is not, we would not want to
waste our resources on the attacked channel when we can get better results by using the unattacked
channel.

Figures 4.3(a) and 4.3(b) show the nodes’ behavior when the attack on push is stronger than the
attack on pull, such that the loss probability for push, n, is 1, and the loss probability for pull, p,
is 0.5. From Constraint 4 we get that the system will try to divide the total amount of resources
alocated in the system for outgoing channels to% for push, and % for pull (out of acombined total
of 2 normalized resources). Figure 4.3(a) shows that the attacked nodes immediately cease to use
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the incoming push channels as the attack begins (to minimize the cost function f), and shift the
deallocated resources to the outgoing pull channels (Constraint 2). Similarly, Figure 4.3(b) shows
that the attacked nodes also reduce to 0 the resources they allocate for the incoming pull channels,
which means that their outgoing push channels are at full capacity (Constraint 1).

Back to Figure 4.3(a), the unattacked nodes continue to use push, to support the outgoing push
channels of the attacked nodes, but reduce the resource allocation to% of the basic unit. Similarly,
in Figure 4.3(b) we can see the unattacked nodes using pull with an alocation of% of the basic
unit. As the percentage of attacked nodes increases, the unattacked nodes need to compensate for
the increase in the total amount of resources allocated for the outgoing channels in the system, so
they start increasing the resource allocation for their incoming channels, at the expense of their
outgoing channels (cf. Figure 4.3). Once the unattacked nodes cannot allocate more resources for
the incoming channels, the attacked nodes start allocating resources for the incoming channels, to
support Constraint 3. This happens earlier for pull than for push.

4.2.2 Attack Estimation

Now that each node knows what strategy to employ based on the system'’s state, we need to devise
a way for a node to estimate that state through local observations. According to our adaptation
algorithm, a state is completely defined by «, p, and p;, so we need to find away to estimate those
variables.

A node’s perception of the system comes from its interaction with other nodes. Each round the
node performs push and pull communication with a different random subset of nodes, and can use
this communication to evaluate the system'’s state.
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An attacked node knows that it is being attacked, as it receives many bogus messages each
round. Each time an attacked node communicates with other nodes, it informs them that it is being
attacked. The estimation of « is based on the this information gained from communicating with
attacked nodes. Additionally, ps and p; are estimated based on percentage of outgoing push and pull
messages that were not replied to. This factor also contributes to the calculation of «, as we assume
that messages that were not replied to were dropped due to an attack. This method of estimating
ps and p; works well as long as the outgoing channels of the node performing the estimation and
the incoming channels of the nodes being estimated have fan-outs and fan-ins (respectively) greater
than 0. Otherwise, no meaningful data will be gathered.

To ensure that estimation is performed regardless of the fan-ins and fan-outs, we add a specia
probe message. Each node allocates static resources for incoming and outgoing probe messages.
These messages are sent to the push and pull channels of other nodes, much like the push and pull
messages. However, a probe message is like a ping message — anode that receives a probe message,
simply replies with an empty message to indicate that it is able to receive messages. This mechanism
is light-weight, and does not impose any limitations on the nodes. Specifically, it does not nearly
consume as much resources as push and pull messages do, since no validation is performed, and no
data messages are sent. The transmission rate of the probe messages to the incoming push and pull
channels allows the nodes to evaluate p, and p;. The additional static resources allocated for these
channels are used solely for answering probe messages, and not for answering push/pull messages.

We use the following notations when considering some node A’s outgoing communication in a
single round:

e SO, LO —the number of nodes A sent messages (including probes) to via the push or pull
channels, respectively.

e SOA, LOA —the number of nodes A sent messages (including probes) to viathe push or pull
channels, respectively, and the nodes replied and indicated that they were attacked.

e SOD, LOD —the number of nodes A sent messages (including probes) to via the push or
pull channels, respectively, and got no reply back. These nodes are also presumed to be under
attack.

Each round r, every node performs its local estimations as follows:

()_SOA+SOD+LOA+LOD
= SO+ LO
) = SOD
Ps\T) =904 + SOD
LOD
pi(r)

~ LOA+ LOD
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Estimations are subject to fluctuations, since the choice of nodes to communicate with is ran-
dom. In order to prevent the nodes from constantly changing their strategies even when the system’s
state remains intact, the nodes do not use single-round estimations in the calculation of their strate-
gies, but rather use the average of the last k estimations, e.g., AVERAGE(a(r — k+ 1), a(r —
k+2), ..., a(r—1), a(r)). Thelast k estimations are set to 0 when anode first joins the system.
When an estimation cannot be performed, because of the denominator being 0 in some round, that
round’s estimation is chosen to be the average of the last k estimations. Choosing a small £ means
that nodes are able to respond more rapidly to a change in the system state (a change in the attack
strength/distribution). Choosing a large k£ means that there are no fluctuations in the fan-ins and
fan-outs as long as the system’s state does not change.

4.3 Simulation Results

We test our adaptation mechanism through MATLAB simulations. Our system consists of a 1,000
nodes, communicating using agossi p-based push/pull multicast protocol. The simulation progresses
in synchronous rounds. In each round, all nodes send push/pull messages to randomly-selected
nodes. Push/pull messages that do not get dropped due to limited incoming resources or due to
an attack get answered, and then data messages are transferred. Finally, the nodes perform any
calculations they may have for that round. All rounds begin and end at the same time in all nodes.
A round is finished when all operations for that round end at all the nodes. In all experiments,
F=4.

Section 4.3.1 tests the effectiveness of the strategies computed in Section 4.2.1. o, p and p; are
assumed to be known, and the propagation time of our adaptive protocol is compared with 3 other
protocols. Section 4.3.2 evaluates the estimation procedure described in Section 4.2.2. The nodes
constantly estimate the state of the attack and change their strategies according to the solution to the
minimization problem with the perceived «, ps and p;.

4.3.1 Strategy Evaluation

We start by evaluating our solution to the adaptation problem, as described in Section 4.2.1. We
assume that «, ps and p; are known in advance to all nodes that use adaptation, and compare 4
gossip-based multicast protocols:

e Push — only uses the push channels.
e Pull —only uses the pull channels.

e Drum —divides its resources equally between push and pull.
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e Adaptive Drum — divides its resources according to the adaptation strategy described in Sec-
tion4.2.1.

To determine the exact strategy Adaptive Drum uses, we need to determine the exact values of
p,s and p; before running the simulation. p, depends on Cy,,,s;, and on AST. Similarly, p; depends on
Cpun and ALI. Wefirst assume that all fan-ins and fan-outs equal to £ (asin Drum), and calculate
ps and p;. Then, we solve the optimization problem and get the adapted AST and ALI. This might
change the values of p, and p;, so we recalculate them, and so on. When we are finished, we have
the values of p, and p; after stabilization, and the proper strategies for al nodes. These are the
strategies we use for Adaptive Drum.

We assume that new data messages are constantly generated in the system, and examine the
propagation of one of those messages, i.e., the number of nodes that have the message as the rounds
progress. The message originates at an attacked node in round 0. For simplicity, we assume that
whenever nodes send data messages to one another, they send all the data messages they know
of. Thisis consistent with the assumptions used in [8, 14] and in Chapter 3. Due to the random
nature of gossip-based multicast protocols, each data point represents an average of 100 independent
experiments.

1000 & s 1000 7
—e— Adaptive —e— Adaptive
900 Ceo- E,Q{Um)* - 900 a-- Drum
g/9,9~efé -0=-Push ~0= Push

800 s o q 800 s o
% / Pull % Pull .-
g 700 g 700 RN ¢
2 2 o
E 600 - E 600 -
o o
S so0p £ so0p
g g
L 4001 L 4001 x =
n n -
4] _x 4] —x
T 300F | e T 300+ x
o o o] .
z e z

200 / g 4 200 *

.-
y _x
100 y a - = 1 100
e
=R . .
5 10 15 5 10 15
Round number Round number
@ a = 20%. (b) a = 40%.

Figure 4.4: Message propagation, Cy,s;, = Cpuy = 1,000.

Figure 4.4 shows the message propagation for all 4 protocols, when both the attacked nodes
push and the pull incoming channels are attacked with 1,000 bogus messages per channel per round
(ps = p1 = 1). The optimized strategy for this scenario was shown in Figure 4.1. Figure 4.4(a)
shows the case where 20% of the nodes are under attack, and Figure 4.4(b) depicts the message
propagation when oo = 0.4. In both cases, we can see that Adaptive Drum propagates the message to
all nodes faster than the rest of the protocols. Push quickly propagates the message to the unattacked
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nodes, but then takes time to deliver it to the attacked nodes. Pull experiences problems getting the
message out of its source, since the source is attacked. Drum starts propagating the message sl ower
than Push, since it also usesthe pull channels, but then continue to propagate the message faster than
Push, as Drum has little trouble to propagate the message to the attacked nodes. The decision of the
attacked nodes to alocate all their resources to the outgoing channels means that Adaptive Drum'’s
propagation times are similar to Push’s propagation times, at the beginning of the dissemination.
However, Adaptive Drum'’s robustness is soon realized, as it continues to propagate the message
at the same good pace, while Push’s propagation speed is significantly slowed when it is time to
deliver the message to the attacked processes.
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Figure 4.5: Breakdown of message propagation, Cp,sn, = Cpuu = 1,000, v = 40%.

Figure 4.5 is a decomposition of Figure 4.4(b) to attacked nodes (Figure 4.5(a)) and unattacked
nodes (Figure 4.5(b)). We can seethat it is hard to deliver the message to the attacked nodes when
using Push, and there is also much difficulty to extract the message from its (always) attacked
source when using Pull. These observations were made in Chapter 3. Other than that, we can
see that Adaptive Drum exhibits better propagation times than Drum right from the start, both for
attacked and unattacked nodes, because it wastes less resources on messages that get dropped due
to the attack.

Figure 4.6 compares the propagation times for Drum and Adaptive Drum. The figure shows the
number of rounds it takes a message to reach al the nodes in the system for the worst experiment.
That is, each data point is the minimal round number for which in all 100 experiments all nodes
had the message. We can see that Adaptive Drum is constantly better than Drum, when there is
an attack (recall that when there is no attack present, Adaptive Drum and Drum are exactly the
same). Adaptive Drum improves the propagation time by 13% to 34% compared to Drum. Also,
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the improvement becomes more significant as the percentage of attacked nodes increases.
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Figure 4.7: Message propagation under uneven attacks, o = 40%.

Finally, Figure 4.7 shows propagation times when the attack is uneven on the push channels and
the pull channels. Although the attack is uneven, we still get that both p, and p; are very closeto 1,
due to the adaptation of the attacked nodes. Figure 4.7(a) depicts a scenario where push is attacked
in a 10-times stronger attack than pull. We can see that indeed Pull performs better than Push, but
till, Adaptive Drum provides the fastest propagation time. Figure 4.7(b) shows the opposite case,
where the pull channels are attacked more severely than the push channels. In this case, we can see
that the propagation time of Push improves. Nevertheless, Adaptive Drum still achieves the best
propagation time. These results stem from the fact that when both channels are attacked, relying on
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just one of them is not enough when it comes to delivering messages to attacked nodes (push) or
receiving messages from attacked nodes (pull).

4.3.2 Estimation Evaluation

We proceed to evaluate the estimation mechanisms. In this set of experiments, nodes estimate «, p
and p; each round, and adjust their fan-ins and fan-outs for the next round according to the average
of the last 50 estimations. The adversary attacks 40% of the nodes, with G, = Cpun = 1,000.
The attack beginsin round 0. It isreasonable to assume that only a portion of the nodes is attacked,
as the adversary may not even know about most of the nodes. All results presented are of asingle
experiment, for two nodes chosen at random. 100 experiments and several nodes were tested, and
all provided similar results.
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Figure 4.8: Estimation of «, Cpysp, = Cpun = 1,000, o = 0.4.

Figure 4.8 shows the estimation of « as performed by a randomly-selected attacked node (Fig-
ure 4.8(a)), and a randomly-selected unattacked node (Figure 4.8(b)). We can see that in both cases
the nodes get avery close average estimation of .. Once 50 rounds pass and there are 50 estimations
of the attack, the average estimation virtually stays the same.

Figure 4.9 shows the estimation of p, as performed by a randomly-selected attacked node (Fig-
ure 4.9(a)), and a randomly-selected unattacked node (Figure 4.9(b)). Both nodes reach the same
conclusion, that ps =~ 1, which fitsthe calculation of p, performed in Section 4.3.1 for Figure 4.4(b).
In Figure 4.9(b) we have severa estimation circles on the average estimation line, meaning that the
unattacked node could not calculate a new estimation for that round (no data was available, due to
the randomness in selecting the communication partners), and chose the average estimation as its
estimation. The results for p; are similar, and thus we do not show them here.
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Figure 4.9: Estimation of p,, Cpysh = Cpun = 1,000, o = 0.4.

The application of the average estimations shown in Figure 4.8 and Figure 4.9 is presented in
Figure 4.10. Figure 4.10(a) shows the push fan-ins resulting from solving the optimization problem
using the average estimations. Figure 4.10(b) shows the pull fan-out for the same solution. The fan-
ins presented are used by a randomly-selected attacked node, and a randomly-selected unattacked
node. Since the average estimations were fairly accurate, the resulting fan-ins are the same ones
used when the attack is known (cf. data point for o« = 0.4 in Figure 4.1(b)). Thus, we get that using
local decisions and incomplete knowledge at each node, the whole system adapts itself to using the
fan-ins (and thus also the fan-outs) that solve the optimization problem when the attack parameters
are fully known.

Since the adversary takes time to realize that the system has adapted its behavior and inform
al the zombies to change the attack strategy, our protocol should resist even attackers that change
their attack strategy. We chose to measure the average for the last 50 rounds, and indeed, after 50
rounds the system stabilizes. Essentially, parts of the system may stabilize before others do, e.g., the
attacked nodes reach their final fan-ins immediately, since as soon as they sense an attack they drop
the allocated resources for their incoming channels to 0 (see in Figure 4.1). Thus, the propagation
time can be improved even before 50 rounds pass. Averaging can also be made on less than 50
rounds, to reach the fina strategy faster. Either way, rounds are short in nature (may be less than a
second), and 50 rounds only take several seconds.

Figure 4.11 examines the use of various averages for the estimation of a. The figure shows
the average estimated value of « for different numbers of data points per average. Figure 4.11(a)
shows the averages as calculate for a randomly-selected attacked node, and Figure 4.11(b) shows
the calculated averages for an unattacked node. These figures correspond to Figure 4.8. We can
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Figure 4.10: Adaptation of fan-ins, C,y,s;, = Cpun = 1,000, o = 0.4.

see that the smaller the length of the average, the more it fluctuates, although it reaches the area of
a = 0.4 more rapidly. The fluctuations are less evident for the attacked node, since the attacked
node has its outgoing channels at full capacity, and thus gets more samples for the estimation. In
contrast, the unattacked node is mainly focusing on the incoming channels, so the little resources it
uses for the outgoing channels provide him with little information for the estimation.
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Figure 4.11: Estimation of « using various averages, G, s, = Cpun = 1,000, oo = 0.4.
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Chapter 5

o-Hopper

Denial of service (DoS) attacks have proliferated in recent years, causing severe service disrup-
tions [12]. The most devastating attacks stem from distributed denial of service (DDoS), where an
attacker utilizes multiple machines (often thousands) to generate excessive traffic [39]. Due to the
acuteness of such attacks, various commercial solutions and off-the-shelf products addressing this
problem have emerged. The main goal of all solutions is to provide lightweight packet-filtering
mechanisms that are adequate for use in high-speed networks, where per-packet analysis must be
efficient.

The most common solution uses an existing firewall/router (or protocol stack) to perform rate-
limiting of traffic, and to filter messages according to header fields like address and port number.
Such mechanisms are cheap and readily available, and are therefore very appealing. Neverthe-
less, rate-limiting indiscriminately discards messages, and it is easy to spoof (fake) headers that
match the filtering criteria: an attacker can often generate spoofed packets containing correct source
and destination |P addresses, and arbitrarily chosen values for aimost all fields used for filtering!
Therefore, the only hope in using such efficient filtering mechanisms to overcome DoS attacks lies
in choosing values that are unknown to the adversary. E.g., TCP'suse of arandom initial sequence
number isasimple version of this approach, but isinadequate if the attacker has some (even limited)
eavesdropping capability.

More effective DoS solutions are provided by expensive commercial devices that perform state-
ful filtering [42, 43, 45]. These solutions specialize in protecting a handful of commonly-used
stateful protocols, e.g., TCP,; they are less effective for stateless traffic such as UDP [45]. Such
expensive solutions are not suitable for all organizations.

Finally, the most effective way to filter out offending traffic is using secure source authentication

1An exceptionisthe TTL field of 1P packets, which is automatically decremented by each router. Thisis used by some
filtering mechanisms, e.g. BGP routers that receive only packets with maxima TTL value (255) to ensure the packets
were sent by a neighboring router, and the Hop Counter Filtering proposal [22].
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with message authentication codes (MAC), as in IPSec [3]. However, this requires computing a
MAC for every packet, which can induce significant overhead, and thus, this approach may be even
more vulnerable to DoS attacks. Specifically, it is inadequate for use in high-speed networks with
high volumes of traffic.

Our goal isto address DoS attacks on end hosts, e.g., in corporate networks, assuming the net-
work leading to the hosts is functional. (A complementary solution protecting the end network can
be deployed at the ISP) In this chapter, we focus on fortifying the basic building block of two-party
communication. Specifically, we develop a DoS-resistant datagram protocol, similar to UDP or
raw |P. Our protocol has promising properties, especialy in overcoming realistic attack scenarios
where attackers can discover some of the control information included in protocol packets, as also
described in [1]. We assume that a redlistic adversary can detect whether its attack is successful or
not, and adjust its behavior accordingly. However, this adjustment takes some time, as it involves
gathering information from the system, processing it to decide on the proper adjustment, and then
notifying all the attacking nodes (massive attacks employ many nodes). We believe that our ideas,
with some practica adjustments, have the potentia to find their way into future DoS protection sys-
tems. E.g., these ideas can be integrated into IPSec [3]. Our formal analysis proves the effectiveness
of our ideas, and thus shows that their realization into aworking system is highly beneficial.

The key to exploiting lightweight mechanisms that can filter high-speed traffic is using a dual-
layer approach: On the one hand, we exploit cheap, simple, and readily-available measures at the
network layer. On the other hand, we leverage these network mechanisms to provide sophisticated
defense at the application layer. The latter allows for more complex algorithms as it has to dea
with significantly fewer packets than the network layer, and may have closer interaction with the
application. The higher layer dynamically changes the filtering criteriaused by the underlying layer,
e.g., by closing certain ports and opening others for communication. It isimportant to note that the
use of dynamically changing portsinstead of a single well-known port does not increase the chance
of a security breach, asasingle application is listening on all open ports.

The main contribution of our work is in presenting a formal framework for understanding and
analyzing the effects of proposed solutions to the DoS problem. The main challenges in attempting
to formalize DoS-resistance for thefirst timeare: coming up with appropriate modelsfor the attacker
and the environment, modeling the functionality that can be provided by underlying mechanisms
such as firewalls, and defining meaningful metrics for evaluating suggested solutions. We capture
the functionality of a simple network-level DoS-mitigation solution by introducing the abstraction
of a port-based rationing channel. It is important to note that our use of ports just serves as an
example. In fact, any field that appears on all packets can be used as the filtering criterion, and our
analysis and suggested protocol apply to all such fields. For simplicity, we henceforth use the term
‘port’ to refer to any filtering criterion that can be dynamically changed by the application level.
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Our primary metric of an end-to-end communication protocol’s resistance to DoS attacks is success
rate, which is the worst-case expected portion of valid application messages that successfully reach
their destination, under a defined adversary class.

Having defined our model and metrics, we proceed to give a generic analysis of the communi-
cation success rate over a port-based rationing channel in different attack scenarios. We distinguish
between directed attacks, where the adversary knows the port used, and blind attacks, in which the
adversary does not know the port. Not surprisingly, we show that directed attacks are extremely
harmful: with as little as 100 machines (or a sending capacity 100 times that of the protocol) the
success rate is virtually zero. On the other hand, the worst-case success rate that an attacker can
cause in blind attacks in redlistic scenarios iswell over 90% even with 10,000 machines.

Our god is therefore to “keep the attacker in the dark”, so that it will have to resort to blind
attacks. Our basic idea is to change the filtering criteria (i.e., ports) in a manner that cannot be
predicted by the attacker. This port-hopping approach mimics the technique of frequency hopping
spread spectrum in radio communication [49]. We assume that the communicating parties share a
secret key unknown to the attacker; they apply a pseudo-random function [18] to this key in order
to select the sequence of ports they will use. Note that such port-hopping has negligible effect
on the communication overhead for realistic intervals between hops, and thus can be used even in
high-speed networks. The remaining challenge is synchronizing the processes, so that the recipient
opens the port currently used by the sender. We present aprotocol for doing so in arealistic partialy
synchronous model, where processes are equipped with bounded-drift bounded-skew clocks, and
message latency is bounded.

The chapter proceeds as follows: Section 5.1 details related work. Section 5.2 details our mod-
€els for the communication channel and the adversary. Section 5.3 provides generic DoS analysis.
Section 5.4 describes our port-hopping protocol and analyzes its effectiveness.

5.1 Related Work

Our work continues the line of research on prevention of Distributed Denial of Service attacks,
which focuses on filtering mechanismsto block and discard the offending traffic. Our work isunique
in providing rigorous model and analysis, which constitute the first step in formally modeling and
evaluating the effectiveness of possible filtering and rate limiting mechanisms. Since our formal
framework is not restricted to port-based filtering, but rather operates with any filtering based on
per-packet fields, our model and analysis can be used in evaluating future protocols, and may assist
in examining and comparing the solutions that exist now.

Most closely related is the work on SOS [27], followed by the work on Mayday [1]. Both
propose redlistic and efficient mechanisms that do not require global adoption, yet allow a server
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to provide services immune to DDoS attacks. These solutions, like ours, utilize efficient packet-
filtering mechanisms between the server and predefined, trusted ‘ access point’ hosts. The basicideas
of filtering based on ports or other simple identifiers (‘keys'), and even of changing them, aready
appear in [1, 27], but without analysis and details. Additionally, [1] provides a discussion of attack
types and limitations, justifying much of our model, including the assumption that the exposure of
the identifier (port) number may be possible but not immediate. Furthermore, [1] mentions blind
and targeted attacks (where blind attacks are attacks in which the adversary does not know the valid
identifier), and asserts that the damage to the system is much more severe when targeted attacks
are launched. We prove that this is indeed the case, and give exact quantities for the maximum
performance degradation in both attack scenarios. Both SOS and Mayday require the setup of an
overlay network consisting of several nodes, and use several levels of indirection to obscure the
identity of the nodes that may prove to be a promising attack target. These levels of indirection may
increase latency by afactor of 5 or even 10 [27]. In contrast, our solution does not require additional
hosts, preserves communication characteristics, and is simple to construct and maintain.

Additiona work [52] employs an overlay network similar to SOS, which uses spread-spectrum-
like path diversity to counter DoS attacks. The system also uses secret keys to authenticate valid
messages. Like SOS, it requires additional nodes to construct the overlay network, and the addi-
tional overhead has an impact on message throughput and latency.

There are other several proposed methods to filter offending DoS traffic. Some proposals, e.g.,
by Krishnamurthy et al. [28, 23], filter according to the source |P address. Thisis convenient and
efficient, allowing implementation in existing packet filtering routers. However, |P addresses are
subject to spoofing; furthermore, using a white-list of source addresses of legitimate clients/peers
is difficult, since many hosts may have dynamic |IP addresses due to the use of NAT, DHCP and
mobile-1P. Some proposals try to detect spoofed senders, using new routing mechanisms such as
‘path markers' supported by some or all of the routers en route, asin Pi [60], SIFF [61], AITF[2],
and Pushback [34], but global router modification is difficult to achieve. Few proposals try to detect
spoofed senders using only existing mechanisms, such as the hop count (TTL), as in HCF [22].
However, empirical evaluation of these approaches show rather disappointing results [11].

A different approach is to perform application-specific filtering for pre-defined protocols [24,
41]. Such protection schemes are cumbersome, only work for a handful of well-known protocols,
and are usually restricted to attackers that transmit invalid protocol packets.

IPSec [3] performs filtering at the IP layer, by authenticating messages using message authen-
tication codes (MACSs), based on shared secret keys. |PSec ensures that higher-level protocols only
receive valid messages. However, the work required to authenticate each message is invested for
each incoming packet that has a valid SPI. Once the SPI, which is sent in the clear, is known, an
attacker can perform a DoS attack by overloading |PSec with many bogus packets to authenticate.
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In contrast, our solution ensures that the authentication phase is reached only for packets that are
valid w.h.p., by constantly changing the cleartext filtering identifier, e.g., the SPI.

In Chapter 3, we have presented Drum — a gossip-based multicast protocol resistant to DoS
attacks. Drum does not use pseudo-random port-hopping, and it heavily relies on well-known ports
that can be easily attacked. Therefore, Drum is far less resistant to DoS attacks than the protocol
we present here. Finally, Drum focuses on multicast only, and as a gossip-based protocal, it relies
on a high level of redundancy, whereas the protocol presented herein sends very little redundant
information.

Independently of our work, Lee and Thing [30] examined the use of port-hopping to mitigate the
effect of DoS attacks. However, they concentrated more on implementation and empirical results,
providing only avery brief analysis of their method. Even so, their empirical results do not state the
strategy the attacker employs for its attack, and it is not clear whether the adversary cannot launch
a better attack against their protocol. Conversely, we provide a thorough formal anaysis of the
environment and our protocol. We formally model the communication channel and the adversary,
and provide rigorous proofs for the correctness and effectiveness of our protocol under the best
attack the adversary can possibly launch.

Wang, Liu and Chien [54] provide simulation results for various DDaoS attacks on general proxy
networks, and the applications protected by them. However, they do not provide any theoretical
analysis, and only deal with general proxy networks.

5.2 Modd and Definitions

521 Overview

We consider arealistic semi-synchronous model, where processes have continuously-increasing lo-
cal clocks with bounded drift ® from real time. Each party may schedule events to occur when its
local clock reaches a specific value (time). Thereisabound A on the transmission delay, i.e., every
packet sent either arrives within A time units, or is considered lost. Notice that while we assume
messages always arrive within A time, thisis only asimplification, and our results are valid even if
afew messages arrive later than that; therefore, A should really be thought of asthe typical maximal
round trip time, and not as an absolute bound on a message's lifetime (e.g., a second rather than 60
seconds).

Our goal is to send messages from a sender A to arecipient B, in spite of attempts to disrupt
this communication by an adversary. The basic technique available to the adversary is to clog the
recipient by sending many packets. The standard defense deployed by most corporations is to rate-
limit and filter packets, typicaly by afirewall. We capture this type of defense mechanism using
a port-based rationing channel machine, which models the FIFO communication channel between
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A and B as well as the filtering mechanism. To send a message, A invokes a ch send(m) event, a
message is received by the channel in anet recv(m) event, and B receives messages via ch recv(m)
events. We assume that the adversary cannot clog the communication to the channel, and that there
is N0 message loss other than in the channel. The channel discards messages when it performs
rate-limiting and filtering.

The channel machine is formally defined in Subsection 5.2.2. We now provide an intuitive
description of its functionality. Since we assume that the attacker can spoof packets with valid
addresses, we cannot use these addresses for filtering. Instead, the channel filters packets using port
numbers, allowing deployment using existing, efficient filtering mechanisms. Specifically, let the
set ¥ of port numbersbe {1, ..., }. Our solutions can be used with larger values of 1), however this
may require modified filtering mechanisms. The buffer space of the channel is a critical resource.
The channel’s interface includes the alloc action, which allows B to break the total buffer space of
R messages into a separate alocation of R; messages per porti € W, aslongas R > Z;”Zl R;. For
simplicity, we assume that the buffers are read and cleared together in asingle deliver event, which
occurs exactly once on every integer time unit. If the number of packets sent to port ¢ since the last
deliver exceeds R;, auniformly distributed random subset of R; of them is delivered.

We define several parameters that constrain the adversary’s strength. The most important pa-
rameter is the attack strength, C, which is the maximal number of messages that the adversary may
inject to the channel between two deliver events.

As shown in [1], attackers can utilize different techniques to try to learn the ports numbers
expected by the filters (and used in packets sent by the sender). However, these techniques usually
require considerable communication and time. To simplify, we alow the adversary to eavesdrop by
exposing messages, but we assume that the adversary can expose packets no earlier than £ time after
they are sent, where £ isthe exposure delay parameter. The exposure delay reflects the time it takes
an attacker to expose the relevant information, as well as to distribute it to the (many) attacking
nodes, possibly using very limited bandwidth (e.g., if sending from a firewalled network). Our
protocol works well with aslittleas £ > 5A.

Since the adversary may control some behavior of the parties, we take a conservative approach
and let the adversary schedule the app. send(m) eventsin which the application (at A) asksto send m
to B. To prevent the adversary from abusing these abilities by simply invoking too many app send
events before adeliver event, we define the throughput, T' > 1, as the maxima number of app send
eventsin asingle time unit. We further assumethat R > A - T, i.e., that the capacity of the channel
is sufficient to handle the maximal rate of app.send events.

Since we focus on connectionless communication such as UDP, our main metric for resiliency
to DoS attacks isits success rate, namely the probability that amessage sent by A isreceived by B.

Definition 1 (Successrate 1) Let E be any execution of a given two-party protocol operating over
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a given port-based rationing channel with parameters U, R, C, ®, A £ and T, with adversary
ADV. Letend(E) bethetime of thelast deliver eventin E. Let sent(E) (recv(E)) be the number
of messages sent (resp., received) by the application, in app. send (resp., app. recv) events during
E, prior to end(E) — A (resp, end(E)). The success rate i of E is defined as u(E) = ZZS;E%

The success rate of adversary ADV is the average success rate over all executions of ADV. The
success rate of the protocol, denoted u(¥, R, C, ®, A, E,T), isthe worst success rate over all ad-

versaries ADV.

Finally, aprotocol can increase its success rate by sending redundant information, e.g., multiple
copies or error-correcting codes. We therefore also consider a system’s message (bit) complexity,
which is the number of messages (resp. redundant bits) sent on the channel per each application

message.

5.2.2 Formal Model and Specifications

VARIABLES: rcvd, initialy 0 /I Number of last received message (for FIFO)
m(i)ien, initially /1 it" message sent
port(i)en, initialy // port of i*" message
t(7)ien, initialy 0 // time when " message was sent
time, initialy 0 Il Current time
{ In(port) }porteqa,....y), initidly @ // Buffer of messages to processor g, per port
{ Rport Yporte{1,...u} // Ration of each port, set by recipient
sent, initialy 0 [/ Count of messages sent
ing, initialy 0 /I Count of messages injected since last deliver
HANDLING OF EVENTS:
On ch_send(m, port): m(++sent) «— m, port(sent) «— port, t(sent) — time
On net_recv: add m(++rcvd) to In(port(rcvd))
On alloc(port,r): if (R>r— Rport + Zj}:l R;)then Ryort < 1
On deliver: inj «— 0
for port € {1,...,9} do: /1 Deliver up to R .+ messages from In(port)

let M berandom R,,,» messages from In(port)
for m € M do: ch_recv(m, port)

In(port) < 0 /I Clear buffer
On inj(m, port): if inj++< C then add m to In(port)
On expose(i): if time > t(i) + £ then return (m(2), port(i))
On advance(d): time «— sent > rcvd ? min{time + ||, t(rcvd + 1) + A} : time + |0|

Figure 5.1: Port-based rationing channel for given v, R, C, &, A, £.

We model the system as acollection of interacting state machines. Each state machineis defined
by itsstate (variables), set of possibleinitial states, and deterministic state transitions associated with
input and output events. To alow machines to make random choices, initial states include random

tapes.
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We model the adversary as one of the deterministic state machines of which the system is com-
posed. The adversary controls, among other things, the scheduling of events. That is, it defines the
next event that will occur in any system state, aswell asthe progress of time (viathe advance event).
Thus, an execution of the system is completely defined by itsinitial state and number of steps? The
possible choices of random tapes define a probability space on executions.

A port-based rationing channel models a FIFoO-ordered rate-limited communication channel
with port-based message filtering. Figure 5.1 provides specifications for a channel from A to B; we
assume an equivalent channel isused from B to A. The net recv event modelsthe arrival of the next
message from A (in FIFO order) to the channel’s buffer, allowing the adversary control of network
latency (up to A).

Therecipient usesthe alloc operation to designate ration values R, for ports: € ¥ = {1,...,¢}.
If R; > 0 we say that port 7 is open. We use In(7) to denote the set of messages in the input buffer
designated with port i. The channel delivers all messages from In(i) if |[In(i)| < R, and arandom
subset of R; messages from In(:) if |[In(i)| > R;.

The adversary can inject messages directly into the buffer using inj events, and can snoop on the
contents of messages using expose events, under the restrictions above.

5.3 Analyzing the Success Ratein a Single Slot with a Single Port

This section provides generic analysis of the probability of successfully communicating over a port-
based rationing channel under different attacks, when messages are sent to a single open port, p.
Thisanalysis is independent of the timing model and the particular protocol using the channel, and
can therefore serve to analyze different protocols that use such channels, e.g., the one we present
in the ensuing section. We focus on a single deliver event, and analyze the channel’s delivery
probability, which is the probability for a valid message in the channel’s buffer to be delivered, in
that event. Since every ch_send(m) event eventually results in m being added to the channel’s buffer,
we can use the channel’s delivery probability to analyze the success rates of higher level protocols.

Let R, denote the ration allocated to port p in the last alloc event, and let In(p) be the contents
of the channel’s buffer for port p (see Subsection 5.2.2 for more details). Consider a deliver event
of achannel from A to B, when A sends messages only to port p. We introduce some notations:

R, = R isthe value of the channel’s R, when deliver occurs.

a, = a isthe number of messages whose source is A in the channel’s In(p) when deliver occurs.
Weassumea < R. If a, < R, (i.€.,, a < R), we say that there is over-provisioning on port p.

2\We encapsulate all non-determinism and randomness in the choice of random tapes.
®Note that for simplicity of notation only, we remove the , subscript from R, and a,. All results are valid with the
subscripts in place as well.
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¢p 1S the number of messages whose source isnot A in In(p) when deliver occurs.

Assumethat 1 < a < R. If ¢, < R —a + 1 then B receives A’s messages, and the attack
does not affect the communication from A to B on port p. Let us now examine what happens when
cp > R—a+1.

Lemma9 If ¢, > R — a + 1, then the channel’s delivery probability is

R
cpta’
Proof: The channel delivers m € In(p) if it is part of the R messages read uniformly at random
from the ¢, + a available messages. Thus, the delivery probability iscp%. a

If the attacker knows that B has opened port p, it can direct al of its power to that port, i.e.,
¢y = C,whereweassume C' > R — a + 1. Wecall this adirected attack.

Corollary 3 Inadirected attack at rate C' on B’s port p, the delivery probability for messages sent
to the attacked port p isCL;a, assumingl <a < RandC > R —a + 1.

Lemma 10 For fixed R and ¢, suchthat 1 < a < Rand ¢, > R — a + 1, the probability of B
receiving only invalid messages on port p decreases as a increases.

Proof: The channel delivers only invalid messages, if no message of the a valid messages is read.

: ilitg i S0 . _cp—1  cp—R+1 ; fA
The corresponding probability is: ol ey W ey o which clearly decreases as a in
creases. [

5.3.1 Blind Attack

We define a blind attack as a scenario where A sends messages to a single open port, p, and the
adversary cannot distinguish this port from arandom one. We now analyze the worst-case delivery
probability under ablind attack.

In general, an adversary’s strategy is composed both of timing decisions and injected messages.
The timing decisions affect a, the number of messages from A that are in the channel at a given
delivery slot. Given that a is aready decided, we define the set of all strategies of an attacker with
sending rate C as:

Y
S(C) 2 {{eikicw | VieW: ceNU{} A Y a=C)
=1
Each strategy s € S is composed of the number of messages the attacker sends to each port. Note
that since the adversary wishes to minimize the delivery probability, we restrict the discussion to
the set of attacks that fully utilize the attacker’s capacity for sending messages.
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Consider somefixed a, C, and R. Wedefine up(a, C, R, s) asthe channel’s delivery probability
under attack strategy s € S. Since S is afinite set, up has at least one minimum point, and we
define the delivery probability to be that minimum:

C,R) = C, R,
pp(a,C,R) = Sglgl(g) ns(a, s)
We sometimes use p instead of up(a,C, R) when a, C, and R are clear from context. We want
to find lower bounds on 3, depending on the attacker’s strength. We say that port p is attacked
in strategy s if ¢,, > 0. We partition S(C') according to the number of ports being attacked, as
follows:

Sk = {s € S(C) | Exactly k ports are being attacked in s}

Consider afixed s, € Sk, and denote by p1, ps, . . ., pi. the ports that the attacker attacks under
strategy sy, at rates of ¢, ¢p,, . . . , ¢, Messages, respectively, where S ¢, = C, ¢,, > 0. Then
we assume that Vi c,, > R — a + 1 (otherwise, even if p; = p, the probability of B receiving A’s
messages is exactly 1).

We now find alower bound on 1.5 asfollows: Wefirst derive alower bound on {uz(a, C, R, si)|si €
S }; this lower bound is given as a function of & in Corollary 4. Incidently, the worst degradation
occurs when the attacker divides its power equally among the attacked ports, i.e., when it sends
% messages to each attacked port (this is proven in Lemma 11). Then, we show lower bounds on
up(a,C, R) by finding the k that yields the minimum value.

Proposition 1 Consider some fixed k, a, C, R, and s;, € S, and denote the ports attacked under

sk by p1,p2,. .., pr With attacking rates of ¢,,, ¢, , . . . , ¢, , respectively. Then pg(a,C, R, si,) =

1Z}k:
¥ wzllcera

Proof: The probability that B does not deliver A’s messageis: Zf 1 Pripi =p]- (1 ~ o +a> =
%Zle (1 - Cpﬁa) =k_1 ZZ 1z + . Thus, the delivery probability |s¢ + - ZZ 15, +a

The proofs of the following lemmas appear in Section 5.5.

Lemma 1l Consider some fixed &, a, C, R, and s, € S, and denote the ports attacked under s
by p1,p2, ..., pr With attacking rates of ¢,,, ¢, , . . ., ¢, , respectively. Then under a blind attack
with strategy s, the worst (i.e., minimal) expected delivery probability of the system is achieved
when Vi c,, = %

From Proposition 1 and Lemma 11 we get:
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Corollary 4 Under ablind attack, if &, a, C, and R are fixed, then the expected delivery probability

for s, € Sy is bounded from below as follows: pz(a,C, R, s;) > 1" ko 3 Zleﬁ =
;k_i_%' kR _ w k k2R

T T 0 TRk

We now define (k) £ ming, es, 1p(sk). We get that for each k:

v—k R K

welk) = Tty Ot ka

To find alower bound, we continue this analysis as if k is continuous. The derivative of 1z (k) is
then:
k) = —1+R 2k(C +ka) —k’a R 2kC+k’a 1 R—-1 R C*+(2kC+FKa)(a—1)
1B v Y (Ctka? Y (Ctke)? ¥ 0 W (C + ka)?
We now state two lemmas that show that 13 (a, C, R) is bounded from below by the function
f(a,C, R) presented in Equation 5.1 below.

Lemmal2 Let R = q, then an adversary with C' > 1 cannot decrease the expected delivery
probability lower than c - w ,
probability lower than 1 —

and an adversary with C' < 1) cannot decrease the expected delivery

(1+a)

Lemmal3 Let a < R. Then an adversary with C' >

cannot decrease the expected

R a

delivery probability lower than %, and an adversary with ¢’ < ——— cannot decrease the

R a

. 2
expected delivery probability lower than w_c(i—’%_l) + 2. C(fi;)
a R—a

We conclude the following corollary:

Corallary 5 pp(a,C, R) isbounded from below by the following function f(a, C, R):

o ifR=aandC >
YR if R>aqand C > ——%2
C+da I a =

fla,C,R) =

-— 2
wa—c(iaﬁﬂ) + B °(yrta) if R>aandC <

0 otherwise
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Corollary 5 provides us with some insights of the adversary’s best strategy and of the expected
degradation in delivery probability. If no over-provisioning is used (i.e., R = a), then the adver-
sary’s best strategy is to attack as many ports as possible. Thisis due to the fact that even asingle
bogus message to the correct port degrades the expected delivery probability. When the adversary
has enough power to target al of the available ports with at least one message, it can attack with
more messages per attacked port, and the delivery probability asymptotically degrades much likethe
function % When not all ports are attacked, the adversary would like to use its remaining resources
to attack more ports rather than target a strict subset of the ports with more than one bogus message
per port. The degradation of the expected delivery probability isthen linear as the attacker’s strength
increases.

When over-provisioning isused (R > a), it affects the attack and its result in two ways. Firgt,
the attacker’s best strategy may not be to attack as many ports asit can, since a single bogus message
per port does not do any harm now. Second, for an adversary with a given strength, the degradation
in delivery probability islower when over-provisioning isused than when it isnot employed. We can
seein Equation 5.1 that if the attacker has enough power to attack all the ports, the over-provisioning
ratio % is also the ratio by which the delivery probability isincreased, compared to the case where
R =a.

5.3.2 Actual Values

— Blind,R=2a=2

Delivery Probability
g 2 H

-- Blind, R=a=1

— Blind, R=a=1
- - Directed, R=a=1

— Blind, C = 10000
- - Blind, C/R = 10000

Delivery Probability
Delivery Probability

o L L L L n L L
50 60 70 8 % 100 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
CIR CIR R

(8 Blind vs. Directed, R = a = 1. (b) Blind, a = 1. (o) Blind, a = 1.

Figure 5.2: Delivery probability per slot in various attack scenarios on asingle port, ¢ = 65536.

Figure 5.2 shows the expected worst-case delivery probabilities for various attack scenarios on
asingle port. For directed attacks, we show the actual delivery probability, and for blind attacks, the
lower bound f(a,C, R) is shown. We chose ¢) = 65536, the number of ports in common Internet
protocols, e.g., UDP. Figure 5.2(a) illustrates the major difference between a directed attack and a
blind one: even for areatively weak attacker (C' < 100), the delivery probability under a directed
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—— = 4294967296 (SPls)
- -y =65536 (Ports)

Delivery Probability
2
8

©
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Figure 5.3: Blind mode delivery probability per slot for different values of ¢, R = a = 1.

attack approaches 0, whereas under a blind attack, it virtually remains 1.

Figure 5.2(b) examines blind attacks by much stronger adversaries (with C' up to 10,000 for
R =1, and up to 20,000 for R = 2). We see that the delivery probability gradually degrades down
to alow of 92.5% when R = 1. If we use an over-provisioned channel, i.e.,, have a = 1 (one
message from A) when R = 2, the delivery probability improves to amost 95% for C' = 20,000.
(Theratio % isthe same for both curves). Figure 5.2(c) shows the effect of larger over-provisioning.
We see that the cost-effectiveness of over-provisioning diminishes as% increases.

The idea of hopping can essentially be applied to any changeable header field. For instance,
other than the port numbers used in the TCP and UDP protocol, one may decide to use the SPI
field of 1PSec, which consists of 32 bits, or the Key field of GRE, as suggested in WebSOS [40].
Figure 5.3 shows the effect of hopping using 1PSec’s SPI field instead of using TCP/UDP ports. We
can see that doubling the number of bits used for the filtering index has a substantial effect on the
delivery probability. Using IPSec aso has the added bonus of protecting al higher-level protocols,
e.g., ICMPB, TCP, UDBP  etc.

54 DoS-Resistant Communication

We now describe aprotocol that allows for DoS-resistant communication in a partially-synchronous
environment. The protocol’s main component is an ack-based protocol. B sends acknowledgments
(acks) for messagesit receives from A, and these acks allow the parties to hop through ports together.
However, although the ack-based protocol works well as long as the adversary fails to attack the
correct port, once the adversary identifies the port used, it can perform a directed attack that renders
the protocol useless. By attacking the found data port, or simultaneously attacking the found data
and ack ports, the adversary can effectively drop the success rate to 0, and no port hopping will
occur. To solve this matter, there is a time-based proactive reinitialization of the ports used for the
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ack-based protocol, independent of any messages passed in the system.

54.1 Ack-Based Port Hopping

We present an ack-based port-hopping protocol, which uses two port-based rationing channels, from
B to A (with ration Rp4) and vice versa (with ration R4p). For simplicity we assume R p =
2RpA = 2R. B dways keeps two open ports for data reception from A, and A keeps one port open
for acksfrom B. The protocol hops ports upon a successful round-trip on the most recent port used,
using a pseudo-random function, PRE**. In order to avoid hopping upon adversary messages, all
protocol messages carry authentication information, using asecond pseudo-random function, PRF',
on {0, 1}*. (Weassume that PRF and PRF™ use different parts of A and B’s shared secret key.)

The protocol’s pseudocode appears in Figure 5.4. Both A and B hold a port counter P, initial-
ized to some seed (e.g., 1). Each party usesits counter P in order to determine which ports should
be open, and which ports to send messages to. B opens port p,;4 using the (P — 1) dement in
the pseudo-random sequence, and py..,, Using P. A sends data messages to the P port in the
sequence, and opens the P** port in a second pseudo-random sequence designated for acks. When
B receives a valid data message from A on port p,4, it sends an ack to the old ack port. When it
receives a valid message on port p,..,, it sends an ack to the P** ack port, and then increases P.
When A receives avalid ack on port p,.x, it increases P. We note that several data messages may
be in transit before a port hop takes place, since it takes at least one round-trip time for a port hop
to take effect, and in a high-speed network, multiple messages are sent within this time span.

The proof of the next theorem is given in Section 5.6:

Theorem 1 When using the ack-based protocol, the probability that a data message that A sends
to port p arrives when p is open is 1 up to a polynomially-negligible factoP.

In order to compute the throughput that the protocol can support in the absence of a DoS attack
(i.e.,, when C' = 0), we need to take latency variations into consideration. Since messages sent up
to A time apart can arrive in the same delivery slot, athroughput 7' < R/A ensuresa < R. Since
the protocol uses 2 incoming ports with the same rations, we require T’ < £& ,i.e,, a < &,

We now analyze the protocol’s success rate under DoS attacks. We say that the adversary isin
blind mode if it cannot distinguish the ports used by the protocol from random ports. We first give
a lower bound on the success rate in blind mode, and then give a lower bound on the probability

I ntuitively, we say that fie, (data) is pseudo-random function (P RF™) if for inputs of sufficient length, it cannot be
distinguished efficiently from atruly random function  over the same domain and range, by a PPT adversary which can
receive g(z) for any values of z, where g = r with probability half and g = f with probability half. For definition and
construction, see [18].

*Namely, for every polynomia g > 0, there is some r, St. when x > &, then the probability > 1 — g(k).
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PROTOCOL FOR SENDER A:

On ack_init(seed): On app_send(data): On ch_recv(ack, pack):
P = seed m = data| PRFs ,,(P|“data”) if ack.auth = PRFs, ,(P|“ack”) then
Pack = PRF§, (P|“ack™) ch_send(m, PRF3, (P|“data”)) alloc(pack, 0)
alloc(pack, RBa) Pack = PRF, (P +1[“ack”)
alloc(pack, RBA)
P=P+1

PROTOCOL FOR RECIPIENT B:

On ack_init(seed): On ch_recv(m, ppew):
P = seed if m.auth = PRFs,,, (P|“data”) then
Pola = PRFS, (P —1|“data”) app_recv(m.data)
Pnew = PRFS, _(P|“data”) alloc(poid, 0)
alloc(polda RAB/2) Pold = Pnew
alloc(prew, Rap/2) Pnew = PRF§, (P + 1|“data”)
alloc(pnew, Rap/2)
On ch_recv(m, poid): ack = PRFg,,(P|“ack”)
if m.auth = PRFs,, (P — 1|“data”) then ch_send(ack, PRF3, _(P|“ack™))
app-recv(m.data) P=P+1

ack = PRFs, (P — 1|“ack”)
ch_send(ack, PRFS, (P — 1|“ack”))

Figure 5.4: Two-party ack-based port-hopping.
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to be in blind mode at a given time ¢. Finally, u is bounded by the probability to be in blind mode
throughout the execution of the protocol, times the success rate in blind mode.

Suppose B opens port p with reception rate R, and that a < R, messages from A are waiting
in its channel, along with ¢, messages from the adversary (¢, > 0). By Lemma 9, the success
rate monotonically non-increases with a. Since the adversary can control a by varying the network
delays, it can set a as high as possible for a delivery slot. Therefore, the worst case occurs when
a = TA. Using Equation 5.1, we get that the success rate in blind mode is bounded from below by
f(TA,C,R).

Note that the protocol begins in blind mode. We now analyze the probability that the protocol
keeps the adversary in blind mode. The only way the adversary can learn of a port used by the
protocol is using an expose event £ time after a message is sent to that port. Thisinformation is
only useful for an attack if the port is still in use. Let us trace the periodic sequence of events
that causes the data port to change (once it changes, acks for the old port are useless). Assume A
continuously sends messages m;y , ms, . . . to B starting at time 0, and consider an execution without
an attack: (1) By time A, B receives avalid message from the channel and sends an ack to A; (2)
By time 2A, A receives the ack and changes the sending port; (3) B gets the last message destined
for the old port at most at time 3A.

If £ > 3A, the adversary remains in blind mode. Now let us examine what happens under
attack. In order to prevent the port from changing, the adversary must either prevent B from getting
valid data messages or prevent A from receiving acks. By Lemma 10, the probability that all valid
messages are dropped decreases when a increases. Thus, (as opposed to the previous analysis), in
order to increase the probability that al valid messages are dropped, the adversary would like to
decrease a to its minimum. Obviously, the attacker would like to get out of blind mode, and for that,
it needs A to send at least one message to B to expose the port being used, and so a = 1. We get
that the lower bound on the probability of a single message to be received on asingle port, as given
inSection 5.3.1,ispup = f(1,C, &).

Lemmal4 If £ = 2kA for k > 0, and A sends messages to B at least every 2A time units, then
the probability that the port changes while the attacker is till blind isat least 1 — (1 — 1&)".

Proof: The probability that the port does not change in asingle round-trip is at most 1 — /. Since
A sends messages to B every 2A time units, at the conclusion of each maximal time round-trip,
thereis at least one new message on its own round-trip. In order for the port not to change while the
adversary is still blind, every round-trip needs to fail. Since the attacker can react only after 2kA
time, there is time for & round-trips in which the attacker is blind, even if none of them succeed.
The probability that all of them fail islessthan (1 — ;2)*. If one succeeds, the port changes. And
so, the probability that the port changesisat least 1 — (1 — 12)*. O
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The lower bound above isillustrated in Figure 5.5(a).
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(d) Markov chain for computing the lower bound in Figure 5.5(b).

Figure 5.5: The effect of £ on the ack-based protocal, 1) = 65536.

We now bound the probability to bein blind mode at time ¢, by assuming that once the attacker
leaves the blind mode it never returns to it. The bound is computed using a Markov chain, where
each state is the number of round-trips that have failed since the last port change. In the last state,
all round-trips have failed before the exposure, and thus the attacker is no longer blind. The Markov
chain for £ = 4A is shown in Figure 5.5(d). We use the chain’s transition matrix to compute the
probability ¢(¢, &, C, R) for remaining in blind mode at time ¢. Figure 5.5(b) shows values of g for
& = 4A. We can see that the protocol works well only for alimited time.

Finally, we note that the protocol’s message complexity is 2, since it sends an ack for each
message, and its bit complexity isconstant: log, (1)) bitsfor the port plus  bitsfor the authentication
code.

5.4.2 Adding Proactive Reinitializations

We now introduce a proactive reinitialization mechanism that allows choosing new seeds for the
ack-based protocol depending on time and not on the messages passed in the system. We denote by
ta(t) and tp(t) thelocal clocks of A and B, resp., where ¢ isthe real time. From Subsection 5.2.1
wegetthat 0 < [ta(t) —t| < ®,0 < |tp(t) — t| < . Weasoassumety,tp > 0.
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PROTOCOL ADD-ON FOR SENDER A: PROTOCOL ADD-ON FOR RECIPIENT B (CONTINUED):

Whenever t4(t) € {0,6,20,...}: Whenever (t5(t) + 2®) € {6,26,30,...}:

ack_init(ta(t)/9) Create a new ack-based protocol instance

For that instance, ack _init((tp(t) + 2®)/4)
PROTOCOL ADD-ON FOR RECIPIENT B:
4® + A time after creating a new ack-based protocol instance

When tp(t) = 0: or A time after receiving the first msg for this new instance:

Create the first ack-based protocol instance Terminate al older protocol instances

For that instance, ack_init(0)

Figure 5.6: Proactive reinitialization of the ack-based protocol.

If A reinitializes the ack-based protocol and then sends a message to B at time t4(ty), this
message can reach B anywhere in thereal timeinterva (1, to + A]. Therefore, the port used by A
at t4(tg) must be open by B at least throughout this interval. To handle the extreme case where A
sends a message at the moment of reinitialization, B must use the appropriate port starting at time
tp(to) — . (Wenotethat ¢y may also be ® time unitsapart from4(¢y).) Wedefine § as the number
of time units between reinitiaizations of the protocol, and assume for simplicity and effectiveness
of resource consumption that § > 4® + A (see Figure 5.6 for more details).

Every 4 time units, A feeds a new seed to the ack-based protocol, and B anticipates it by creat-
ing anew instance of the protocol, which waits on the new expected ports. Once communication is
established using the new protocol instance, or once it is clear that the old instance is not going to
be used anymore, the old instance is terminated. The pseudocode for the proactive reinitialization
mechanism can be found in Figure 5.6. We do not detail the change in port rations at the recipient’s
side as protocol instances are created or terminated. We also note that there is anegligible probabil-
ity that more than one ack-based protocol instance will share the same port. Even if this happens,
differentiating between instances can be easily done by adding the instance number (i.e., the total
number of times areinitialization was performed) to each message.

The proof of the next theorem is given in Section 5.7:

Theorem 2 When using the ack-based protocol with proactive reinitializations, the probability that
a data message that A sends to port p arrives when p isopen is 1 up to a polynomially-negligible
factor.

Proactive reinitialization every § time units allows us to limit the expected degradation in suc-
cess rate for a single ack-based protocol instance. Choosing ¢ is therefore an important part of the
combined protocol. A small § allows us to maintain high success rate in the ack-based protocol, but
increases the average number of ports that are open in every time unit (due to running several proto-
col instances in parallel). When several ports are used the ration for each one of them is decreased,
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and so might the success rate. On the other hand, choosing a high ¢ entails lower success rate be-
tween reinitializations. We conclude the discussion above and the results presented in Section 5.4.1
with the following theorem:

Theorem 3 Assumethat if A sends a message to B in a single reinitialization period, then A keeps
sending messages to B at least every 2A time units, or until that period ends. Then the success
rate of the proactively reinitialized ack-based protocol with reinitialization periods of length ¢ is
bounded frombelow by: ¢(6 + A,E,C, R) - f(T'A,C, R) up to a polynomially-negligible factor.

Figure 5.5(c) shows the value of g(§ + 1,&,10000,1) - f(1,10000,1,1). We can see that the
proactively reinitialized protocol’s success rate stays over 90% even for § = 1004, i.e., even for
relatively long periods between reinitializations.

5.4.3 Feasbility Discussion

A router/firewall that has 1PSec support can be easily modified to support our hopping protocols.
Such a router/firewall already has properties we can use: it is able to filter packets according to
their SPI field, it has integrated authentication and hash functions (that can be used as PRFs), and
it supports secret, shared keys. The only thing that is left to do is to perform SPI hopping. Thus,
combining our hopping protocols with 1PSec alows for ease of implementation, while providing
IPSec’s strong authentication capabilities for higher-level protocols, along with our robustness to
DoS attacks, since hopping ensures that only packets that are valid w.h.p. go through the expensive
authentication stage. We therefore believe that an integration of our hopping protocols with 1PSec
is an attractive choice.

The two-party communication protocols we presented use a shared secret, known only to the
two parties. Each pair of communicating parties shares a different secret. An integration of our
protocols with 1PSec in tunnel mode on a gateway, means that the gateway might have to deal with
severa parties. The number of secrets that are stored on the gateway is thus linear in the number of
parties. However, using a hash table, every SPI lookup takes O(1), and so filtering isdone at O(1)
per packet. All packets that do not contain the correct SPI are dropped at this filtering stage.

5.5 Channel Ddlivery Probability Analysis— Proofs of Lemmas

We now prove the lemmas from Section 5.3. Since a, C, and R are constants, denote pz(si) =
pe(a, C, R, si).

Lemma 11. Fix k, a, C, R, and s, € Sk, and denote the ports attacked under s, by p1,po, ..., Dk
with attacking rates of ¢, , cp,, . .., cp,, respectively. Then under a blind attack with strategy s,
the worst (i.e., minimal) expected delivery probability of the systemis achieved when Vi ¢, = %
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Proof: By Proposition 1, ug(sx) = % + %Ziﬂl %. Calculating the partia derivatives

of pp(sy) we get that 8“3(5’“) =3 e fa)g, i.e., up(sy) is monotonically decreasing as we
increase ¢, and keep c,, the same for j ;zé i. Thus, the attacker wants to increase ¢,, to decrease
the communication channel’s delivery probability. However, we have the constrai ntZi:1 Cp; =
C. Integrating this constraint into our delivery probability function using a Lagrange coefficient
denoted by 5 gives:

k k

1 R
pp(Sk) = —— £l +60 ey = C)
wz lcpZ =1

We now look for an extremum point by comparing the partial derivatives of 1/ (i) to zero:

Oppr (sk) 0
dep,
1 -R
- - 0
¥ (cp +a)? o

| R
Cp;, = W—CL

Putting the values of c,, into the constraint equation C = Y% ¢, gives:

© - 2()

8 =

Going back to the equation for ¢,, we get:

o= i () o

This result aso fits our constraint ¢,, > 0, and we have an extremum point for up(sy) at ¢y, = %
(We note that % might not be an integer, but since we want a lower bound, this does not make a
difference.) We denote this extremum point by s;. Now we need to show that s; is a minimum
point. If weshow that 1z (sy,) is convex, then from Kuhn-Tucker Theorem we get that s isaglobal

minimum point. We proceed by showing that ,uB(sk) is convex.

We have already shown that a"%ﬁ’“) = % . W We get that 115 (sy) is twice continuously
differentiable, and the second derivativeis:
Pup(s) |0 i F ]
a. a.  — 2(c .+a .
dcp, Ocy, % . ﬁ =
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We get that the Hessian of 15(s) is apositive diagonal matrix. Thus, uz(sk) is convex, and from
Kuhn-Tucker Theorem, 15(sy) is aglobal minimum of the delivery probability function s (sy).
O

Lemma 12. Let R = a, then an adversary with C' > ¢ cannot decrease the expected delivery
probability lower than c a w ,
probability lower than 1 —

(1+a)
Proof: Let R = a. We get that pip(k) = 52 — & CQ“”&QI:ZI)?(R*U. We now show that
pp(k) <0
R—1 R C*+(2kC+KR)(R—-1) 2o
v (C 1 kR)?
,
0 < C?

Clearly, the last inequality holds, and we get that 1z (k) monotonically decreases as k increases.
Thus, the adversary wants to choose k aslarge aspossible. Idedlly, k = ¢, C > ¢Yp(R—a+1) =1
and we get:
P Ya

- 1,b C+ ¢a C +va

However, this attack requires substantial strength from the adversary, i.e., the adversary needs
to be more than ¢ times stronger than B. If C < ¢Y(R —a+ 1) = ¢ wegetthat k = s—5 = C.
The resulting degraded delivery probability is:

up(a, R,C) >

v—C a C? Y(1+a)—C(l+a)+aC C P 1
JR,C) > —. = =1- >1— =1-
upla B, C) = = =+ i oy (1 +a) (1 +a) (1 + a) 1+a
O
Lemma 13. Let a < R. Then an adversary with C' > cannot decrease the expected
R a
delivery probability lower than Cﬁﬁ , and an adversary with C < cannot decrease the
R a

a—C R _ _

expected delivery probability lower than - (ij-“ Y WR z 1> .

Ra

Proof: Sincea < R, weget R > 2. Let usfind the vaJue of k that minimizes the delivery
probability:

pp(k) = 0
R-1 R C*+(2kC+ka)a—1) _ 0
P P (C + ka)? N
CQ

ak2+20k—R = 0
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Since k > 0, we get that the solution is:

C2q Cc? R

. 20+ a0 4 i 20+ [T (i -1)
2a 2a a
Obvioudly, this value of & is not an integer. However, we use it to bound the minimum delivery
probability under ablind DoS attack. First, we need to show that this value of & isindeed aminimum
point. We do this by showing that the second derivative of 15 (k) is always positive:
(k) = R 2¢(C + kz) [C? + (2kC + k*a)(a — 1)] — (2C + 2ka)(a — 1)
(G (C + k)

It suffices to show that the numerator is always positive. 1.e., we need to show:

a(2C + 2ka) [C* + (2kC + k*a)(a — 1)] > (2C + 2ka)(a — 1)

Thisisclearly true, sincea > 1,k > 1,C > 1, andweget a [C? + (2kC + k*a)(a — 1)] > a—1.
Thus, 1/} (k) is dways positive, and we have found a minimum point.
We also need the found % to bein range. Clearly, k > 0. We still need to show that k& < -5

— R—a+1"
? C
< -
ks R—a+1
c ( lea - 1) ; C
a - R—a+1
? 1
< —
a < R I
Thelast inequality holds since a < R, a isaninteger, and R > 2. Thus, k < 2.
We can now bound the expected delivery probability p.(a, R, C') from below. For the case where
c(ya1)
k= ———— <Y weget:
—_— — 2 2
C(y/ -1 C? (/71
( RC)>7’b_ (\/(;a )+R (\/1;2*‘1 ) QIZ)CL—C< lea_1>+RC< lea_1>
uBla, Iz, fel - — = -
¥ Vo W), va N
o /B -1
For the casewhere@ > 1), since pp (k) hasjust one extremum point, and it isaminimum
point with k& > 1, we get that the attacker’s best strategy isto choose & = 1, and we get:
. 2
/J’B(av R7 C) Z QIZ) ¢ + QIZ) i = wR

0 Y(C +va)  C+va
Note that we got the same result for R = a and k£ = . However, the conditions for choosing
k = i are different. For R = a wechoose k = w if C > w. For R > a we choose k = ) if

() sy
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5.6 Ack-Based Protocol — Proof of Correctness

Invariant 1 Let P4, and P be the P counters that A and B hold in the ack-based protocol, re-
spectively. The probability that Pz — P4 € {0, 1} is1 up to a polynomially-negligible factor.

Proof: After theinitialization stage P4 = Pg, and the property Ps — P4 € {0,1} holds.
When the counters are equal, the part of the protocol that may update them proceeds as follows:

1. A sendsamessageto B on port PREy, ,(Pa|“data”).

2. If the message reaches B in avalid state, B adds 1 to Pz and sends an acknowledgment back
to A onport PRFg, , (Pg|“ack”).

3. If theack reaches A inavalid state, A adds 1 to Py.

If steps 2 and 3 complete successfully, both counters advance by 1 and remain equal to each
other. If step 2 fails (message dropped or modified in transit), both counters remain unchanged. If
step 2 succeeds but step 3 fails (ack lost or changed in transit), B isincremented by 1, but Py
remains the same. Thus, if P4 = Pg, the next change of counters will still maintain the property
Pp — Py € {0,1}.

Now suppose we have reached the state where P; = P4 + 1. The portion of the protocol that
may update the counters proceeds as follows:

1. A sendsamessageto B on port PREy, ,(Pa|“data”).

2. If the message reaches B in avalid state, B sends an ack back to A on port PRFs, ,(Pp —
1|“ack”).

3. If theack reaches A inavalid state, A adds 1 to Py.

If steps 2 and 3 complete successfully, Py advances by 1 and the counters become equal to
each other. If steps 2 or 3 fail (messages dropped or are not valid), both counters remain unchanged.
Thus, if Pg = P4+ 1, the next change of counterswill still maintain the property A — P4 € {0, 1}.

The only way to break this invariant isif the attacker makes just one party advance its counter.
This means that the adversary has to fabricate a message so one party will think it is valid. Thus,
the attacker needs to guess both the port number and the authentication information attached to each
message. The probability that the attacker succeeds in doing so is a polynomially-negligible factor.
O

Theorem 1. When using the ack-based protocol, the probability that a data message that A sends
to port p arrives when p isopenis 1 up to a polynomially-negligible factor.
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Proof: According to Invariant 1, when A sends a data message to B, either Py = Pg or Pg =
P4 + 1, with probability 1 up to a polynomially-negligible factor.

For the first case, let M be amessage A sendsto B when Py = Pg. Since B always opens
two ports for data, we need to show that Pz does not increase by more than one until M actually
reaches B. Since the link maintains the FIFO semantics, messages sent after M was sent cannot
change the value of Py before M reaches B. The only messages that can change Fs are messages
that preceded M but reached B only after M was sent.

According to the protocol, Pg increases by one iff B receives a data message from A that was
sent using the counter P4 = Pg. Furthermore, all messages preceding M were sent using a counter
that isless than or equal to Py. It followsthat Pg can only increase by one from the time M leaves
A until it reaches B.

Consider now the second case where M was sent when P = P4 + 1. Since B only opens
two ports for data, we need to show that Pz does hot change at al. Again, since the link has FIFO
semantics, Pp can only change by messages preceding M that reach B after M was sent but before
it reaches B. However, such messages have counters that are less than or equal to P, and thus
gtrictly less than Pg. According to the protocol, messages sent with such counters do not affect the
value of Pg. O

5.7 Ack-Based with Reinitializations — Proof of Correctness

Theorem 2. When using the ack-based protocol with proactive reinitializations, the probability that
a data message that A sends to port p arrives when p is open is 1 up to a polynomially-negligible
factor.

Proof: From Theorem 1 we get that if A and B both use the ack-based protocol initialized with
seed, then messages sent by A arrive to open ports at B. To complete the proof, we need to show
the following:

1. When A reinitializes the protocol with anew seed, B hasaready started running an ack-based
protocol instance using the same seed.

2. B does not terminate a protocol instance while it may still receive messages corresponding to
that instance.

For the first property, let us look at some real time ! when A reinitializes the protocol, where
ta(t2) = nd, n € N. From the bounded drift assumption we get the bound #! > nd — ®. The seed
corresponding to theinitialization at #} is% = n. Now let uslook at thereal timetZ inwhich B
starts anew ack-based protocol instance with the seed n. Thishappenswhen tz(t2)+2® = né, i.e,
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whentp(t8) = nd—2®. Using the bounded drift assumption we get the bound 2 < nd—2® -+ =
nd — & <t

For the second property, let us look at seed n again. A terminates the instance with seed n at
real time ¢/} 1~ Thelast packet sent using the ack-based protocol initialized with seed n inevitably
reaches B beforereal timet;!, | + A. B terminates the ack-based protocol instance in either one of
the following two cases:

1. Attimetp(t5 ;) + 49 + A.
2. A time units after receiving the first message for a newer ack-based protocol instance.

For thefirst case, weget t2 | > (n+1)6 =20 — @ +4®+ A= (n+1)§+ P+ A >t + A,
For the second case, we observe that if amessage for a newer instance of the ack-based protocol has
arrived, then A is no longer sending messages with instances initialized with older seeds. However,
the varying message propagation delay means that messages from older protocol instances can take
up to A time units to arrive, while the new message might have taken negligible timeto arrive. [
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Chapter 6

o-Hopper | mplementation and
M easurements

The effectiveness of a DoS-mitigation solution can be quantified through mathematical analysis and
empirical results. These two methods complement each other, as the analysis can provide results
for all possible attacks, but these results are only applicable for a model of the system, which may
or may not correctly reflect the real world. Both Chapter 5 and this chapter deal with using hopping
to mitigate the effects of DoS attacks. But while Chapter 5 concentrated on mathematical analysis
and modeling, this chapter focuses on actual implementation and concrete measurements.

The ¢-Hopper implementation presented here is a refinement of the port-hopping mechanism
that we presented and analyzed using a simplified network model in Chapter 5. The refinement sup-
ports communication from many clients to a server (can be extended to a server farm). We describe
an implementation of ¢-Hopper in two variations: (1) by modifying a Linux kernel’s IPSec [3] im-
plementation, and (2) by inserting code in aWindows NDIS layer. Our experimental results validate
the analytical results presented in Chapter 5.

Cryptographic mechanisms ¢-Hopper uses efficient, shared-key pseudorandom functions.
Our usage of these cryptographic mechanisms is standard. Therefore, in this chapter, we omit their
definitions and simplify their behavior; for details and definitions see, e.g., [18]. We explicitly use
the following mechanisms in this chapter:

Pseudorandom function (PRF) PRF": afunction PRF : {0,1}* x D — R, with range R and
two parameters: key k € {0,1}" and datax € D. The key k is a (random) binary string of
sufficient length x, e.g., x = 100. The function is pseudorandom if it cannot be efficiently
distinguished from a random function  from domain D to range R. Namely, let g, ,(z) =
{r(z)if b=1,PRFy(x)if b = 0}. Given ‘black box’ (oracle) access to g, ;, for random
b, k, r, feasible adversaries cannot guess b with significant advantage (over%).
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For simplicity, for the rest of this chapter we neglect the probability that the adversary can forge
the PRF without knowing the secret key.

6.1 ¢-Hopper

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

| Rate
i | Limiter

i

””””” ¢-Hopper
Figure 6.1: Communicating using ¢-Hopper (Alice’s view).

¢-Hopper leverages existing, cheap, network-level packet-filtering and rate-limiting solutions,
along with more complex algorithms at a higher layer, which determine the filtering criteriaand rate
limits. Filtering is based on afiltering identifier (FI, or ¢), which is some message field value that
can be changed by the communicating parties, and is preserved en route. For example, it can be
a combination of P address and ports [30], as shown in Chapter 5, or IPSec’s security parameter
index (SPI) field [3]. The FI can also be an artificial field appended to the message. The FI's size
can be set according to the wanted DoS-resi stance guarantees.

At each communicating party, ¢-Hopper has two parts: a front-end that performs fast packet-
filtering, rate-limiting, and FI adding, and a back-end that controls the front-end’s parameters, e.g.,
filtering criteria and rates. Figure 6.1 shows the decomposition of ¢-Hopper and the interaction
between its various components.

The two parties wishing to communicate share a secret. This secret is used to create pseudo-
random sequences of Fls. Each message transmitted between the parties carries a Fl taken from an
appropriate pseudorandom sequence. The receiver’s front-end anticipates the FlI according to the
pseudorandom sequence, and filters out all messages carrying invalid FIs. The FIs change in order
to maintain DoS-resilience. Otherwise, the adversary could eavesdrop on messages and discover
the FI in use. Hopping using an appropriate FI size ensures that with high probability, the adversary
cannot discover the Fl (see Chapter 5).

Thefront-end The front-end can be a gateway or firewall, alayer in the end host’s protocol
stack, or even a dynamically programmable NIC that allows fast filtering at wire-speed [57]. In
fact, the front-end’s components do not all have to be deployed on the same machine. The first
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component is simple and handles fast filtering of incoming packets. Its purpose is to defend the
recipient from being flooded with spoofed messages.

The second front-end component rate-limits incoming valid traffic according to its source. The
rationale behind this component is that registered clients can also get corrupted, or try to receive
better service at the expense of other valid clients. The rate-limiter ensures that the server does not
receive more requests than it can handle, and that all clients receive their fair share of the server’'s
time.

We use two types of rate-limiters: simple and round-robin (RR) based. When using the smple
rate-limiter, each source is allocated a maximum alowed rate that can change during the session.
This method is simple and fast. For example, a client may be alowed to send 10 requests every
second. Note that when the server performs costly processing per each client request, the rate
that needs to be limited is the rate of incoming requests, and not the rate of incoming bytes. Our
simple rate-limiter approximates this by counting packets (indeed, in our experiments, each packet
corresponds to a single request). However, even if the average rate of requests is adequate, but the
client sends its traffic as bursts, packets will get dropped.

The RR late-limiter strives to use resources more efficiently, by sharing them among al clients.
In RR rate-limiting, each source-destination pair has limited-size queues for incoming/outgoing
messages. Messages arriving to afull queue are dropped. ¢-Hopper sends messages from the queues
to their destination in a RR fashion, provided that the total maximum allowed rate of messages is
not exceeded. If a queue is empty, it is skipped for that RR cycle. Thisis very similar to Fair
Queueing, which uses RR at the byte level [50]. RR rate-limiting handles bursty traffic well, but
incurs an increase in latency, due to its periodic and cyclic nature. The importance of using RR to
compensate for bursts of one client with idle time of others increases with the number of clientsin
the system.

Rate-limiting has been dealt with extensively in the literature [15, 50, 34], and the usage of rate-
limiting with ¢-Hopper is orthogonal to ¢-Hopper’s other functions. We therefore do not conduct a
more detailed study of rate-limiting in this chapter beyond illustrating that ¢-Hopper can work with
various technigues.

The third front-end component is quite trivial, as it only adds the appropriate Fl to outgoing
packets, so that they will be accepted by the recipient.

Theback-end Figure 6.2 showsthe pseudocode for ¢-Hopper’s back-end. Each party commu-
nicating via ¢-Hopper maintains avirtual time (line 5), which determines its current position in the
pseudorandom sequence for outgoing messages (lines 7 and 16), and for incoming messages (lines
8 and 17). Every fixed time interva ¢, ¢-Hopper performs a hop (line 13), which locally changes
the virtua time (line 15). A ¢-Hopper session between two parties is initialized using a seed that
is used as the initial virtual time, and a shared secret key used for generating the pseudorandom
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@ Initidly:
(2 VB out(B) «— L
3) VB in(B) «— L

(4) initHopper Session(seed, key, B)

(5) wvirt(B) « seed

6)  key(B) < key

(1) out(B) « PRFy.,p)(virt(B)||A||B)

®  in(B) « in(B) U PRFy.,p (virt(B)||B||A)
(9  Settimer(‘close’, B, virt(B)) to closeTimeout
(10)  Inform rate-limiter of ‘initSession(B)’

(11) On wakeup of timer(‘close’, B, virt)
(12 in(B) — in(B)\PRFyey s (virt|| B||A))

(13) every ¢ time units

(14)  for all B st. out(B) # L do

(15) virt(B)++

(16) out(B) « PREjcyp) (virt(B)||Al|B)

@n in(B) « in(B) U PREy.,p)(virt(B)||B||A))
(18) Set timer(‘ close’, B, virt(B)) to closeTimeout

(19) endHopper Session(B)
(200  out(B)«— L
(1) in(B)«— L
(22)  Inform rate-limiter of ‘endSession(B)’
Figure 6.2: ¢p-Hopper's back-end protocol for A (communicating with B).

sequence (line 4).

During session initialization, each party allocates bounded resources for communication in this
session. ¢-Hopper alocates separate resources for each active client (line 10), which are freed
when the session for that client ends (line 22). Whenever aclient becomes active/inactive, resources
allocated to ather clients might change, e.g., to achieve fairness or better utilization of the server. We
note that, in general, since the server seperately allocates bounded resources for each active client,
compromised clients cannot significantly drain the server’s resources by sending it an excessive
number of requests, and thus valid clients get their share of the server’s resources.

We say that each party opens Flsfor communication when these Fls are added to thelist of valid
FIs(lines8 and 17), and closes FIswhen these FIsare invalidated (line 12), closeT'imout time after
they were created (lines 9 and 18). ¢-Hopper uses two parameters that determine closeT imeout:
A, the message latency, and &, representing the synchronization gap between the parties. Roughly
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speaking, the synchronization gap is the maximum differential between the times at which the par-
ties decide to open the same FI in the pseudorandom sequence. It is the sum of the difference
between the session starting time and the maximum clock drift during a ¢-Hopper session. If the
session timeis so long that the clock drift might become aproblem, i.e., ® istoo big, reinitialization
is needed.

To compensate for the loose time synchronization between the paries, each party keeps mul-
tiple open Fls at the receiving end, corresponding to all virtua times the other party might be in.
The recipient opens a new Fl every § time, and closes a Fl 4® + A time after opening it, i.e.,
closeTimeout = 4® + A. For example, if A = 100ms, § = 200ms, and & = 250ms, we get that
there are at most 6 open Fls at agiven time. A simple optimization that reduces the number of open
Flsisclosing aFl (if itisstill open) A time after receiving amessage on the next FI in the sequence.

6.2 Implementation and Measurements

Implementation We present two implementations of ¢-Hopper. The first installs the front-end on
gateways as amodified IPSec layer in aLinux kernel. The IPSec layer operates in tunnel mode, and
the FI is the 32-bit SPI field. IPSec first checks the SPI, and if it is valid, performs authentication
using HMAC-SHA-1. Thisis also the setting for our rate-limiting experiments, where the 1PSec
gateway performs the rate-limiting. The second implementation installs the front-end on the com-
munication end-points as an NDIS hook driver on a Windows system, and checks packets for an
appended 160-bit FI. The hook only filters packets, and authentication is performed by the server,
using a simple SHA-1 hash of the data and the secret key. This simulates server-side authentica-
tion, as done, e.g., in SSL. In both scenarios, we install the back-end on the same machine as the
front-end.

Essentialy, systemsthat use ¢-Hopper do not need to perform cryptographic per-packet authen-
tication to ensure that the probability of receiving invalid messages is negligible. This means that
the processing of packets is fast. We use authentication in our experiments to show that even if a
system requires authentication, it is better off using ¢-Hopper as its DoS-prevention method, rather
than relying solely on the authentication mechanism to filter DoS-attackers.

Our implementations use a shared secret of 160 bits. At each Fl hop, we increase the virtua
time by 1, and calculate the 160-bit SHA-1 hash of the current virtua time concatenated with the
shared secret. We then truncate the hash value to fit the FI's size.

In our IPSec implementation, at each hop we add new entries to IPSec’s list of valid states, and
remove old states from the list. An IPSec state consists of a security association (SA) for two end-
points. We utilize IPSec’s tunnel mode to encapsulate the end-points packets on their path between
the gateways. The states we add have the same SA as the previous states for that session, except for
achanging SPI. In our NDIS implementation, we simply save alist of all valid FI values per client,
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and update this list every hop.

¢-Hopper is easy to implement and deploy. Our prototype implementations take only a few
hundred lines of simple code.

Measurements We measure the effect authentication and hopping have on the resistance to
DoS. We experiment with a TCP/UDP HTTP server, an appropriate client, and an adversary (im-
plemented using one to three machines), all connected to a 100Mbps LAN through a switch. In
each experiment, the adversary sends bogus requests at an average constant rate to the web server.
At the same time, the client sends valid requests to the server. The server processes each request,
and dynamically forms a response, while consuming CPU power. Every UDP request or response
fitsinto a single UDP packet. We measure the latency (round-trip time), and delivery probability,
i.e., the probability that a client’s valid request is processed by the web server, as a function of the
attacker’s strength. Each data point represents 100 experiments.

UDP/Linux In our first setting, we measure the advantages ¢-Hopper offers, as compared to
IPSec [3], when deployed on gateways. For this setting, we have a client, connected to gateway
A, where gateway A is connected to gateway B, which in turn is connected to a web server. The
gateways run Linux with IPSec in tunnel mode, with or without ¢-Hopper installed, according to
the experiment. The gateways have a Pentium 3 650MHz CPU, and 256MB of RAM.

We compare 4 different scenarios: (1) The server has no DoS protection at al; (2) the gateways
run IPSec in Authenticated Header (AH) mode, and the adversary knows the SPI used; (3) the gate-
ways run IPSec in AH mode, and the adversary does not know the SPI used; and (4) the gateways
run IPSec in AH mode with ¢-Hopper. When attacking, the attacker sends bogus requests at a con-
stant rate. In scenario (2), the bogus requests carry the correct SPI field, but fail authentication. In
scenarios (3) and (4), the bogus requests carry an incorrect (arbitrary) SPI field (w.h.p., for scenario
(4)), and so the bogus requests do not reach the authentication phase.

Scenario (3) protects the server well from DoS attacks as long as the SPI used cannot be easily
guessed, and the session time is short. However, if the session time exceeds the exposure delay £,
the adversary has ample time to discover the SPI, e.g., by ARP-poisoning a LAN, or by sniffing
packets in intermediate routers. Once the adversary obtains the SPI, scenario (3) transforms into
scenario (2). Since we assume relatively long sessions, we include scenario (3) mainly to quantify
the overhead of port hopping.

Figure 6.3(a) depicts the delivery probability as the attacker’s strength increases. We see that
¢-Hopper achieves the same delivery probability exhibited when the adversary does not know the
SPI used, as filtering in these cases is based on a simple comparison of a header field. However,
¢-Hopper does not rely on keeping the SPI, which is sent in the clear, secret. ¢-Hopper signicantly
outpeforms 1PSec when the SPI is compromised. The delivery probability is much lower when
the SPI is known to the attacker, since this case requires complete authentication of every packet.
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Figure 6.3 DoS attacks on IPSec on Linux, with and without ¢-Hopper (UDP). ¢-Hopper achieves
the same results as 1PSec with an unknown SPI, without requiring the cleartext SPI to remain
Secret.

This difference is most evident for relatively weak attacks (80,000 requests/sec), where ¢-Hopper
maintains 100% delivery, but the delivery for IPSec with aknown SPI drops sharply to 44%. We can
further see that having any form of protection is better than having no protection at all. When the
server has no protection, it crashes even when the attack is very weak, reducing delivery probability
to 0.

Figure 6.3(b) shows the effect of increasing-strength attacks on latency. In this experiment the
server does not really process the request, but rather returns areply immediately. We measure this
parameter since we want to isolate the effect the algorithms run by the gateways have on latency.
We can see that unless the SPI is known, the latency stays the same even when the attack strength
increases, with some dlight incline for severe attacks. Additionally, the latency is virtually equal for
¢-Hopper and for 1PSec when the SPI is unknown. Thisis also the same latency measured when
IPSec and ¢-Hopper do not run at all (not shown on graph). Thus, as opposed to overlay networks,
¢-Hopper ensures DoS-resilience with no or small penalty in latency. Conversely, when only |PSec
is used and the SPI is known, the latency exhibited is double the one for ¢-Hopper even for mild
attacks, and it increases significantly for more severe attacks. Since the delivery probability is low
for attacks stronger than the ones plotted, it is meaningless to calculate the latency for such attacks.

Figure 6.3(c) displays the delivery probability under a bursty DoS attack, where bogus requests
are not sent at constant intervals, but rather as bursts. The attack strength is measured as the average
number of bogus requests per second. Comparing these results to Figure 6.3(a), we observe that a
bursty attacker induces less damage than an attacker whose sending times are uniformly distributed
over time. This can be explained by the fact that at times in which the attacker does not send any
bogus message, the client’s regquests can be easily processed.

300

(c) Delivery praobability, bursty attacker.
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Figure 6.4: DoS attacks on |PSec on Linux, with and without ¢-Hopper (TCP).

TCP/Linux Having seen the benefits p-Hopper offers for UDPtraffic, weturn to test its effects
on TCP traffic. We start by noting that using TCP with no IPSec protection is problematic for two
reasons. First, if the adversary discovers or guesses the sequence numbers used in TCP, it can bring
down the connection by sending a single RST packet [56]. We validated this in an experiment
in which our attacker software sniffed a single packet sent by the client to the server over a TCP
connection. The attacker then discovered the sequence numbers used in the TCP connection, and
sent a single RST packet to the server with an appropriate sequence number. This packet brought
down the connection immediately, as that is the purpose of an RST packet, when the sequence
number falls inside the range of numbers the server expects.

The second problem when using TCP without client authentication, is that bogus clients can
connect and overload the server. Thus, for both reasons, TCP without authentication is insufficient.
We therefore experiment with TCP over 1PSec with AH, asin our UDP setting.

Figure 6.4(a) shows the delivery probability of TCP traffic over IPSec, with and without ¢-
Hopper. TCP's retransmission mechanism ensures that all messages eventually arrived to their
destination. The figure shows the percentage of requests for which the client receives a response
within 7 seconds of the moment the request was sent. As expected, when no protection isin use,
the server crashes due to the heavy load. We can see that using ¢-Hopper provides better delivery
probability compared to |PSec with a compromised SPI, for attacks stronger than 100,000 requests
per second. For weaker attacks, all packets are delivered within 7 seconds in both scenarios.

Figure 6.4(b) shows the cumulative distribution function (CDF) of TCP latencies (RTT) for ¢-
Hopper and | PSec with acompromised SPI, for an attack power of 100,000 requests per second. We
can see that ¢-Hopper provides better RTTs than IPSec with a compromised SPI. While over 80%
of the messages passing through ¢-Hopper had no latency penalty (cf. data point 0 in Figure 6.3(b)),
I PSec managed to deliver only 60% of the messages with no delay. This corresponds to about 20%

1400
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message loss in the first transmission when using ¢-Hopper, compared to about 40% message loss
in the first transmission for 1PSec with a known SPI (cf. Figure 6.3(a).) Furthermore, ¢-Hopper
managed to deliver 99% of the messages within 250 msecs, while IPSec delivered only about 82%
of the messages by that time, and had overall delays of up to 3.5 seconds in delivery. We can clearly
see TCP'sexponential backoff in action, as delays get about 2 times longer for each retransmission.

Figure 6.4(c) depicts the CDF of TCP latencies for a stronger attack, of 240,000 requests per
second. Notice that the latency in the figureis given in secs, and not in msecs, as before. The figure
clearly shows that ¢-Hopper provides reasonable latency for 85% to 90% of the messages, while
IPSec’s latency starts deteriorating at about 75% to 80%. Moreover, the delivery of some messages
in 1PSec takes over 20 minutes — about 4.5 times worse than the longest delay in ¢-Hopper.
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Figure 6.5: Delivery probability under DoS attacks.

UDP/Windows In our second setting, the client communicates directly with the web server,
and we measure the effect p-Hopper haswhen it runs on the server’s machine, and not on adedicated
machine. The server runs on a Windows machine along with ¢-Hopper (in the appropriate experi-
ments), which performs user-level filtering of packets through akernel-level NDIS hook driver. The
server machine has a Pentium 4 3.2GHz CPU, and 1GB of RAM.

Figure 6.5(a) showsthe delivery probability with and without ¢-Hopper, where authentication is
performed at the server. At arelatively weak attack strength (6,200 requests/sec) thereis a dramatic
drop in delivery to 20% when ¢-Hopper is not used, whereas ¢-Hopper allows for 100% delivery
even for much stronger attacks. Here too, attacking an unprotected server crashes it (not shown in
figure).

Theoretical Values We compare our results to analytical results for the delivery probability
under DoS attacks, as taken from Chapter 5 (see Figure 6.5(b)). The theoretical analysis assumes
the attacker’s sending times are uniformly distributed, and thus the results shown in the figure can
be compared to figures 6.3(a) and 6.5(a). Indeed, we can see that the actual measurements closely



94 CHAPTER 6. ¢-HOPPER IMPLEMENTATION AND MEASUREMENTS

match the theoretical analysis.

Rate-Limiting Figure 6.5(c) shows the effect of rate-limiting on the delivery probability for
UDP traffic on IPSec/Linux. In this experiment, we have two clients. one valid client, and one
compromised client. The valid client sends requests at a rate of 10 requests per second. The com-
promised client tries to load the server. We measure the delivery probability for the valid client asa
function of the rate of requests sent by the compromised client. We can see that when rate-limiting
is not enforced, the delivery probability drops rapidly due to the load on the server. Limiting the
rate of each client to at most 12 requests per second suffices to ensure a delivery probability of 1.

We now turn to compare this simple rate-limiting to the round-robin-based rate-limiting algo-
rithm. In our experiments, we have 3 clients that send 100 messages per second on average, for
atotal of 1000 messages each. All clients send their messages either at constant intervals, as a
Poisson process, or as bursts. The effectiveness of the simple rate-limiting and the RR rate-limiting
technigues are measured in these 3 scenarios, for atotal of 6 experiments. The tota rate allowed
by the server is set to 315 messages per second. When using simple rate limiting, we allow each
client a rate of 105 messages per second. For RR rate-limiting, we give each session a queue of
300 messages, and wake the RR dispatcher every 100 ms. The dispatcher sends messages from the
gueues in a cyclic fashion, and goes back to sleep after sending roughly 30 messages, or when all
the queues are empty.

Table 6.1 shows the difference in delivery probability and latency (RTT) for a client chosen
arbitrarily from the 3 clients communicating with the server. We can see that, although RR rate-
limiting imposes higher latency due to its periodic and cyclic nature, it handles bursty traffic much
better than simple rate-limiting. While the delivery probability drops down to 11% for simple
rate-limiting in conjunction with bursty traffic, RR rate-limiting manages to deliver al messages
contained in the bursts. RR rate-limiting's superiority is achieved beacause RR alows all queuesto
share a single pool of resources, and so if a queue is empty, the other flows gain better maximum
rates.

Our rate-limiting experiments show the flexibility and modularity of ¢-Hopper. ¢-Hopper works
well with different rate-limiting approaches suitable for various systems. Of course, one can employ
more elaborate rate-limiting approaches as well [15, 50].

Sending Type Simple Rate-Limiting Round-Robin Rate-Limiting
Del. Prob. | Avg. RTT (ms) | Std. Dev. || Del. Prob. | Avg. RTT (ms) | Std. Dev.
Constant 1 0.925 0.07 1 148.82 0.33
Poisson 1 0.89 0.05 1 150.45 2.38
Bursty 0.11 3.06 0.32 1 632.83 20.147

Table 6.1: Simplevs. RR rate-limiting.
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6.3 Related Work

The idea of repeatedly changing authentication credentials to avoid suffering damage due to expo-
sure, has been used in different contexts, e.g., in the SIKEY authentication method [21]. ¢-Hopper
is based on ideas that have been suggested in Chapter 5 and in [30]. However, these previous
suggestions lacked in several areas, and so ¢-Hopper differs from them in the following ways:

1. Instead of using the current time as the seed to the pseudorandom sequence, the initial seed
used to start the sequence is given to the protocol and used as virtua time. Thus, there
should only be means for the parties to share the seed (which is not secret), and no time
synchronization between the communicating parties is needed, but rather a bounded clock
drift.

2. ¢-Hopper supports communication between many clients and a single server, and not just
two-party communication.

3. ¢-Hopper uses redligtic rate-limiting techniques, as opposed to the purely theoretical analysis
in Chapter 5 that assumed a simplified model of rate-limiting at the network level. Addition-
ally, rate-limiting is performed per client, and not per FI. The protocol described in [30] uses
no rate-limiting at all.

4. ¢-Hopper isimplemented in two variations, and we provide measurements of the actual pro-
tocol implementation, and not of its simulated behavior [30] or of an analytical anaysis of the
protocol (as given in Chapter 5).

The analysis in Chapter 5 shows that the basic idea of hopping is very effective against DoS
attacks, but does so under simplified network and rate-limiting models. Other work simulates the
effect port-hopping has on the delivery probability under attack, and shows that using it is expected
to decrease the load on the server [30]. In Section 6.2 we have shown that the analysis in Chapter 5
gives a good estimate of realistic results, using areal implementation of all of p-Hopper's compo-
nents. Our results not only show that ¢-Hopper provides strong resistance against DoS attacks, they
also show that relying merely on authentication to provide DoS protection is futile.
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Chapter 7

Beaver

We consider the problem of protecting legacy servers from (Distributed) Denia of Service (DoS)
attacks by realistic adversaries. There are many methods for DoS attacks, e.g. exploiting different
application vulnerabilities. We focus on the family of flooding DoS attacks, which try to disrupt
services by sending a very large number of packets concurrently (a “flood”). To obtain sufficient
bandwidth and fail filtering, these attacks often originate from many clients concurrently; this is
referred to as a Distributed Denial of Service (DDoS) flooding attack. Currently, attackers are often
able to control avery large number of corrupted personal computers (“zombies’), resulting in many
DDosS flooding attacks, and significant over-allocation of networking resources as a crude, wasteful
defense mechanism. Our goal isto investigate more efficient defense mechanisms, which will avoid
excessive costs or overheads (e.g., no significant added latency).

Existing DoS solutions deployed in firewalls or gateways typically use two methods:. filtering
according to packet header fields like addresses and ports, and rate-limiting traffic. These simple
methods are very efficient, but are insufficient. Header fields can be spoofed to match filtering
criteria. Cryptographically-authenticated traffic cannot be spoofed, but causes significant overhead
to all traffic. Rate-limiting of legitimate traffic along with spoofed traffic is not effective, as valid
packets are indiscriminately discarded, (esp. when applications are very sensitive to packet loss,
e.g., due to TCP's congestion control mechanism).

Our measurements show that even when the network is not loaded, a large nhumber of bogus
requests can kill a server that does not require authentication, and can virtually drop to zero the
reliability of client-server communication when the server does require authenticated requests. In
this chapter we address this challenge — we present Beaver, ahighly-efficient, low-overhead filtering
mechanism to resist spoofed packets. This mechanism avoids expensive cryptographic authentica-
tion of each packet, by requiring packets of each legitimate client to include a “fresh”, pseudoran-
dom Filtering Identifier (FI) ¢.

97
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In most DDoS flooding attacks, the attacker controls and utilizes a very large number of cor-
rupted computers (“zombies’), but amuch smaller number of legitimate user accounts. That iswhy
it isimportant to make sure only authorized clients are allowed to communicate with the server, by
using registration and admission procedures.

Beaver is composed of two main components. (1) ¢-Hopper — enforces filtering and rate-
limiting, using the filtering identifier ¢. (2) The admission servers — responsible for registering
clients and authorizing new client-server sessions. Beaver's components can be implemented in
severa different ways, depending on the required deployment scenario and capabilities.

7.1 Design Goals

We consider the problem of protecting the following basic client-server communication from DoS
attacks:

e A client registers with the system before being able to use it. During the registration process,
the client may receive a unique secret to allow the server to authenticate its requests. We
assume the use of public/private key pairs and certificates at this stage.

e A server, or a server farm, provides service to authorized clients. Client-server sessions are
relatively long, and consist of severa transactions, potentially using authenticated communi-
cation.

The number of registered clients may be very large, e.g., 1,000,000, but it is expected that only
asmall number of them, e.g., 1,000, will communicate with the server simultaneously. These basic
properties are found in many web-based services, e.g., banking, stock trading, and online auctions.
DoS attacks on these services may degrade the service so much that clients lose money due to its
unavailability.

Our goals in protecting the basic system against DoS-attacks are as follows:

e Session DoSresistance. Protect ongoing client-server sessions. Moreover, separate the “war
zones’ — attacking the admission and registration processes should not affect ongoing ses-
sions.

e Admission DoSresistance. Protect the admission process in which registered clients create
new sessions with the server.

o Best-effort registration availability. Implement a registration process that allows new clients
to obtain the required shared secrets, but allow this service to degrade due to DoS.

e Fast communication. Do not harm communication latency for established client-server ses-
sions.

One might argue that authenticating client-server communication alone is enough to filter out
invalid packets sent by DoS attackers. But although authentication is enough to discriminate bogus
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messages from valid ones, the validation itself is costly. Thisis especially a problem if the server is
the one performing the validation, as happens when using SSL. Since the server should be mainly
busy with answering requests, we would like to minimize the number of invalid packets that reach
the server and cause extra processing. Our measurements in Chapter 6 show that by avoiding per-
packet authentication we can resist much stronger DoS attacks.

7.2 Environment and Adversary Assumptions

Timing and communication Beaver isimplemented in arealistic network setting, where all parties
have monotonically increasing clocks, local events may be scheduled according to local time (clock
value), and timestamps may be read from clocks. Clocks are not synchronized among parties, but
the synchronization gap, @, is bounded. Messages arrive within A seconds from the moment that
they are sent, or are otherwise considered lost. Beaver is implemented at the level of datagram
protocols such as raw |P, where message latency is generally bounded, and some messages are lost.
Higher-level protocols such as TCP compensate for message 10ss using retransmissions.

Adversary In a DDoS attack, the attacker often controls many compromised workstations
(“zombies’), from which it sends its attack traffic. Beyond controlling these zombie machines,
which are not part of the system, we assume that the adversary can also control some of the clients
and admission servers. The set of machines the attacker controls determines its capacity for sending
messages, and its a-priori knowledge of the private information used in the system. The number of
messages the adversary can send per second is bounded by a parameter, C, representing its capacity.
The adversary has aglobal view of the compromised machines, but it cannot modify messages sent
by correct parties. As the purpose of Beaver is essentially to protect the server, there is no point
in assuming the server may be compromised. Furthermore, we assume that machines that are not
communication endpoints, e.g., gateways and routers, are not compromised.

Some of the zombies may be able to eavesdrop to some of the legitimate traffic. For example,
a zombie may be able to eavesdrop, when it is on the same LAN as the server or as a legitimate
client (e.g., by deploying an ARP-poisoning attack). However, even if the attacker controls a proxy
which can eavesdrop on all traffic, it would still incur a substantial delay in forwarding the captured
information to many zombies, so as to generate enough traffic. We assume a lower bound of £
seconds from the time a message is sent until its contents can be incorporated into the adversary’s
decision process. £ is called the exposure delay. Once the adversary decides to act, though, it may
send arbitrarily crafted messages with zero latency.

We assume that feasible adversaries are bounded in their computational resources (e.g., proba-
bilistic polynomial time machines).

Cryptographic mechanisms Beaver uses cryptography to protect against feasible adversaries.
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Whereas for the registration process we use public key signatures and encryption schemes, for ¢-
Hopper and the admission process we use efficient, shared-key pseudorandom functions. Shared
key cryptography is much more efficient, and often implemented by one or two applications of a
cryptographic hash function (such as SHA-1).

Our usage of these cryptographic mechanisms is standard. Therefore, in this chapter, we omit
their definitions and simplify their behavior; for details and definitions see, e.g., [18]. We explicitly
use the following mechanisms in this chapter:

Public key encryption scheme (K G, E, D): decryption recoversplaintext, i.e., for every message
m and random keys (e, d) € KG(1%) holdsm = Dy(E.(m)). Furthermore, adversary does
not learn anything from ciphertext. Namely, for every feasible adversary A and every two
messages my, and mg holds Prob (A(e, E.(mr)) = L) < Prob(A(e, E.(mg)) =L) +
e(k), where e isanegligible function.

Public key signature scheme (K G, Sign, Valid): properly signed messages validate correctly, i.e.,
for every message m and random keys (s,v)z € KG(1%) holds Valid,(m, Signs(m)) =
True. Furthermore, feasible adversaries cannot generate valid signatures for unsigned mes-
sages (with non-negligible probability).

M essage Authentication Code (MAC): efficient, shared-key function M AC' : {0,1}* x D — R.
We assume that it is infeasible to forge the MAC for a message m, even if attacker can
receive the correct values of the MACs for every other message n{ # m. Notice that every
pseudorandom function isalso aMAC.

For simplicity, for the rest of this chapter we neglect the probability that the adversary can forge
the cryptographic functions without knowing the secret key.

7.3 Beaver’s Architecture

We present Beaver — arobust architecture and method to protect servers from DoS attacks. Beaver
employstwo DoS-protection mechanisms: onefor registration and admission of new client sessions,
and another for protecting ongoing sessions. The former uses dedicated admission servers (ADMS).
Thelatter is ¢p-Hopper —atwo-party communication protocol that mitigates DoS attacks by filtering
packets based on dynamic, “ pseudorandom hopping” fields [30] (see Chapters 5 and 6).

The ADMs can be provided as a common Internet service to multiple legacy servers, and there-
fore, they are not al trusted. The use of ADMSs takes the registration and admission load off the
server, so that the server is not concerned with DoS attacks on clients trying to be admitted into the
system.
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¢-Hopper protects client-server communication from DoS, but does not authenticate the com-
munication by itself. The choice of the authentication method to use, if at al, and its implemen-
tation, is left entirely to the server. ¢-Hopper only provides dynamic filtering and rate-limiting
facilities. Naturaly, ¢-Hopper can be easily integrated with an authentication component, as done
in our IPSec implementation, described in Chapter 6. Together, the ADMs and ¢-Hopper are very
effective against DoS attacks.

7.4 Admission Servers

The ADM hastworoles. Firgt, it allows clientsto register to the service. Second, the ADM performs
the admission process — authenticating registered clients before authorizing them to communicate
with the server. We now detail these two roles.

7.4.1 TheRegistration Process

A new client that wishes to use the service needs to first register to it through an ADM. To be
able to register, a client needs to hold a valid certificate, which binds the client’s public key to the
client’s identity. The certificate should be signed by an external Certificate Authority (CA). The CA
isresponsible for validating that the client is entitled to the service, possibly by receiving a payment
and/or deposit from the client. This certification service can be based on authentication as complex
as a biometrics match, or as simple as a credit card number, and is beyond our scope; Beaver just
needs to know that it is hard for the same client to obtain many valid identities, or to impersonate
another client.

As part of the registration process, the client obtains a unique client 1D and shared secrets with
the ADM and the server, Scapay, and Scg, respectively. The ADMs do not know Sgg, asit is
encrypted with the client’s public key. Different clients have different secrets, and the same client
may have different secrets with multiple ADMs.

To register, a client contacts an ADM, and provides it with a certificate. The ADM rate-limits
registration regquests, and hence may decline the request if it exceeds its quota of registrations at a
giventime. If the ADM does handle the request, it first validates the certificate and checks whether
itisnew. If itisinvalid, the request is declined. If it isvalid but not new, the ADM replays to the
client the response it previously sent for that request. Otherwise, the ADM creates & apys and
storesitinitslocal client database. The certificate includes the client’s public key, which the ADM
uses to encrypt Scapas before sending it to the client. The ADM then informs the server of the
new client’s registration.

The server also rate-limits incoming registration regquests, and hence may declineit. If the server
handles the request, then it also validates the certificate, and if it is valid and new, generates &g
for the client. The server then encrypts Sog with the client’s public key, and sends it back the the
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ADM, which forwards it to the client.

Both the ADM and the server rate-limit registration requests in order to continue functioning
even while under a DoS attack. This makes the registration process a best-effot procedure, but does
not pose aproblem, since the registration process needs to be performed only once per several years,
aslong asthe client’s private key is kept secret.

7.4.2 The Admission Process

The ADM authenticates registered clients before authorizing them to communicate with the server.
This is called the admission process. There may be multiple admission servers, and all of them
are identical, except for a unique secret, Ssapas (of a specific ADM), each of them shares with
the server. The use of many admission servers protects the admission process from DoS attacks,
as the client can initiate the admission process with an arbitrary ADM. A DoS-attacker that wishes
to severly harm the admission process needs to launch a massive attack that targets most, if not
al of the ADMs. Thisidea is very similar to the one used for SOS SOAPs [27, 52], and it can
be employed here since replicating an ADM is cheap and easy, as opposed to, say, replicating the
server.

Admission
Servers ¢-Hopper
(ADMs)
(1)
Client

Figure 7.1: Beaver's admission process, where ¢-Hopper operates in tunnel mode (marked in bold
lines).

Figure 7.1 illustrates Beaver's architecture, and shows the admission process in action: (1) A
pre-registered client requests an ADM to start a new session with the server. The client can choose
the ADM arbitrarily. Specificaly, a client that fails to start a session through some ADM may
choose adifferent ADM for the admission process. (2) The ADM communicates with the client via
¢-Hopper and authenticates the client. Communication via ¢-Hopper is marked in bold lines. The
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figureillustrates ¢-Hopper in tunnel mode, i.e., hopping between gateways. (3) The ADM contacts
the server through a constant ¢-Hopper session that they share, and asksit to start anew session with
the client. The server then opens Flis for the new session with the client. (4) The ADM notifies the
client that it can start communicating with the server. (5) The client communicates with the server
via ¢-Hopper. More generaly, there can be multiple servers (e.g., a server farm), and an ADM can
direct the client to any one of them.

Figure 7.2 provides pseudocode for the admission process. Each message sent in the admission
process contains fields of 3 categories: 1) meta-data (source/destination/message type) — omitted in
the pseudocode; 2) data fields, and 3) MACs. In Figure 7.2, MAC refers to the MAC field of the
appropriate message. If also followed by parentheses, MAC means calculating the MAC field by
running the MAC function on the input given in parentheses. For brevity, newmsg «— (data «
msg.data) means copying all the data fields of message msg to fields with the same name in the
NEW Mmessage newmsg.

The specific stages and messages used in the admission process are (see Figure 7.2):

1. Connection request. The client sends the ADM a connection request containing the client’s
ID, the current local timestamp, and a random x-bit number, requestID, used along with the
client’s ID to uniquely identify this admission process. « is a security parameter, e.g., 128. If
no challenge is received within some timeout period < &, the client terminates the admission
process. The client may restart the admission process to start a session in spite of transient
failures.

2. Challenge. If the connection request is valid and its timestamp is more recent than the last
saved timestamp for that client, the ADM saves the new timestamp and request ID for that
client. Then, the ADM sends the client a challenge comprised of a random nonce. If no
response is received within responseTimeout< & seconds, the ADM effectively terminates
the admission process, which must be restarted for that client to be admitted into the system.

The challenge and timeout are used to prevent an adversary from launching a replay attack
after dropping the client’s messages. Without this mechanism, it would have been possible
for the adversary to accumulate dropped client connection requests over along period of time
(even hours), and then replay messages from many clients at once, which would all be deemed
valid by the ADM, and cause the server to start many new client sessions. Note that we do not
assume that the client and ADM'’s clocks are synchronized with each other, hence, the ADM
cannot check the freshness of connection requests.

3. Response. The client proves it holds Scapas by responding with a MAC on the challenge
sent by the ADM.

4. Admission request. If the response is valid, the ADM trusts the authenticity of the client and
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CLIENT
open:

clientTS— local time
requestl D« random x-bit number
connectionRequest— ( data < { clientID, requestID, clientTS }, MACs,. , ,, (data) )
send connectionReguest to ADM
if no valid challenge received within timeout then

invalidate requestID

return connection failure

Upon receiving challenge from ADM:
if challenge.clientID = clientID and challenge.requestiD isvalid and
challenge MACs. , p» = MACs,. , ., (Challenge.data) then
response < ( data < challenge.{clientID, requestID, clientTS, nonce}, MACs,. , ,,, (data), MACs_ . (data) )
send response to ADM
if no valid admission completion received within timeout then
invalidate requestID
return connection failure

Upon receiving admissionCompletion from ADM:
if admissionApproval.clientlD = clientlD and admissionCompletion.requestID is valid and
admissionCompletion.MACs,., = MACs,. . (admissionCompl etion.data) then
seed— admissionApproval.clientI D || admissionApproval.requestiD || admissionApproval .clientTS
initHopperSession(seed, S¢ s, admissionCompletion.server|D)

SERVER
init(ADM s):
for each ADM in ADM s do
initHopperSession(0, ADM .S s Apa, ADM.ADMID)

Upon receiving admissionRequest from ADM for client A «+ admissionRequest.clientlD:
if A isauthorized to connect through ADM and no session with A is pending or in progress and
(admReqTH A] is uninitialized or admissionRequest.clientTS > admRegTJ A] ) and
admissionRequest. MACs; , oy = MACsg , 1, (@dmissionRequest.data) and
admissionRequest. MACs., = MACs_. , (admissionRequest.data) then
admReqTH A] < admissionRequest.clientTS
seed — admissionRequest.clientID || admissionRequest.requestID || admissionRequest.clientTS
initHopperSession(seed, S¢ g, serveriD)
admissionApproval — ( data < { admissionRequest.data, serverID }, MACs, , ,,, (data), MACg,, . (data) )
hopperSend(admissionApproval, ADM)
if no session with A begins within sessionlnitTimeout secondsthen
endHopperSession(A)

Figure 7.2: Pseudocode for the admission process (continued on next page).
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ADMISSION SERVER
init(serveriD):
initHopperSession(0, Ssapas, serveriD)

Upon receiving connectionRequest from client A < connectionRequest.clientlD:
if (connRegTH A] isuninitialized or connectionRequest.clientTS > connReqTH A] ) and
connectionRequest. MACs,. , .., = MACs,. , 5, (CONnectionRequest.data) then
connRegT A] « connectionRequest.clientTS
connRegl D[ A] + connectionRequest.requesti D
nonce«— random x-bit number
connRegNonce[ A] < nonce
challenge— ( data — { connectionRequest.{clientI D, requestID, clientTS}, nonce }, MAC 5. , ,,, (data) )
send challengeto A
if no valid response received within responseTimeout seconds then
connRegNonce[ A] «— null

Upon receiving response from client A «response.clientlD:
if response.clientTS= connRegTY A] and response.requestID = connReqID[A] and
connRegNonce[ A] = null and response.nonce = connRegNonce A] and
response.MACs , o = MACs, , 5., (response.data) then
admissionRequest — ( data < response.{clientID, requestID, clientTS, nonce}, response MAC s, MACs, , ,,, (data) )
hopperSend(admi ssionRequest, server)

Upon receiving admissionApproval from server for client A « admissionApproval.clientID:
if admissionApproval.requestID = connRegl D[ A] and
admissionApproval. MACs. , ,,, = MACs. , ., (@dmissionApproval .data) then
admissionCompletion — ( data — admissionApproval.data, MACs,. , ,,,, (data) )
send admissionCompletionto A

Figure 7.2 (continued). Pseudocode for the admission process.
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sends an admission request with the client’s ID to the server.

5. Admission approval. If the server does not currently have resources allocated for a session

with that client, and the client’s request is fresh, the server iswilling to start a session with the
client. The server then sends back to the ADM a message approving the client’s admittance,
and allocates Hopper resources for communicating with that client. If the client does not com-
municate with the server within sessionlnitTimeout seconds from this stage, these resources
are freed. Thetimeout is used to free resources alocated by acompromised ADM that delays
the transmission of admission requests for valid clients, and then sends these requests once
the clients no longer try to communicate with the server. In that sense, sessionlnitTimeout is
much shorter than the timeout for session expiration, which is used after the client communi-
cates with the server.

6. Admission completion. The ADM sends a message to the client indicating that communica-

tion with the server can take place.

7. Session. Upon receiving an admission completion message, the client starts a communication

session with the server.

Client Admission Server Servel Client Admission Server Servel Client Admission Server Server.

awil

noaw | asuodsas

Delete Nonce

(a) Correct execution. (b) Message loss. (c) Delayed client.

Figure 7.3: Admission process.

Figure 7.3(a) shows the messages passed during the admission processif al procedures succeed.

Figure 7.3(b) shows a case where the admission completion message is lost, and so the client never
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knows that it can connect to the server. After sessionlnitTimeout seconds expire, the server releases
the resources alocated for the session.

Figure 7.3(c) shows a case where the client delays its response to the ADM’s challenge, perhaps
due to some unexpected multitasking processing. The ADM maintains the nonce used in the chal-
lenge for responseTimeout time, but if that time passes and no response is received by the ADM,
the ADM invalidates the nonce and effectively terminates the admission process. When the client
responds later, its message is silently discarded by the ADM.

7.5 Security Analysis

We now analyze Beaver’s robustness against different attacks. We consider the goals presented in
Section 7.1, and show that the adversary, athough able to utilize many methods, cannot prevent
Beaver from achieving these goals. We start by giving some definitions (Section 7.5.1). We then
study the load induced by authorized communication sessions in Beaver, (Section 7.5.2), and pro-
ceed to discuss DoS attacksin detail, (Section 7.5.3). Theformal proofs can be found in Section 7.7.

7.5.1 Definitions
Definition 2 (Client validity) Aclient isvalid if it possesses valid registration information. Other-
wise, the client isinvalid.

Definition 3 (Message validity) A message is valid if it can be successfully authenticated by the
receiving party. Otherwise, the message isinvalid.

Definition 4 (Session establishment) A session is established if the server has resources allocated
for that session, and has received at least one valid message from the corresponding client. Other-
wise, the session is not established. When the server receives the client’s first valid message for that
server, the client establishes the session.

Definition 5 (Session validity) Asessionisvaid if it is established or already has resources allo-
cated for it at the server and can be established. Otherwise, the session isinvalid.
7.5.2 SessionsLoad on Server

The following lemmaand corollary show that the server does not initiate invalid ¢-Hopper sessions.

Lemma 15 Aninvalid client that requests admission from a correct ADM can never successfully
pass step 3 (response) of the admission process.

Corollary 6 If no ADM is malicious, then no server ever allocates resources for communicating
with invalid clients.
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Recall that ¢-Hopper requires only a small maximum number of open FIs per session, typically
ne = 6. We use this to bound the number of Fls used by invalid sessions.

Lemma 16 Letn4pys bethe number of ADMsin Beaver, of which &k ADMs are compromised. Let
A be the anticipated maximum rate of incoming connection requests, let sessionlnitTimeout= T,
and let n, be the maximum number of FIs each party opens in a single session. At any given time

Ak . .
there are no more than ~=""% open Fls for invalid sessions.

sessionlnitTimeout is at least 3A, as only 3 transmissions after opening the Fls can the server
receive acorrect client’s first message. In that case, we get:

Corollary 7 Let p bethe fraction of compromised ADMsin Beaver. Then for sessionlnitTimeout=
3A, at any given time there are no more than 3\pAny open Fisfor invalid sessions.

7.5.3 Reslienceto DoS Attacks

We now guantify the adversary’s maximum probability to cause admission DoS as a function of its
ability to disrupt communication and cause message loss. Such message dropping can be caused
by network-level DoS attacks, whereby the adversary floods the network with traffic.\We denote by
L op s the probability of dropping messages from client A to the ADM, and by I~ the probability

of dropping a message destined to A.

Lemma 17 (Admission DoS-resistance) Let £ > 2A, and let A be some valid and correct client.
If A isabout to execute an admission process with a correct ADM exactly once, then an adversary
that does not possess A’s registration information cannot prevent A from establishing a session with
the server with probability better than 1 — (1 — Lapas)?(1 — Le).

Lemma 17 gives an upper bound on admission failures. This upper bound is depicted in Fig-
ure 7.4, for various values of L4 pys and L. We observe that the failure probability is proportional
to the loss rates. For example, when both loss rates are 10%, the failure probability is bounded by
roughly 15%.

We next show that Beaver achieves session DoS-resistance.

Lemma 18 (Session DoS-resistancel) Let ¢ > 1 be the number of bits representing a Fl, and
assume the adversary knows the identity of at least one client who has an established session with

the server. If the adversary sends the server C' invalid messages per second, then on average the
noC

server's load will increase by at most —;

messages per second.

Lemma 19 (Session DoS-resistance 1) If no ADM is malicious, a compromised valid client that
does not impersonate other valid clients cannot load the server with more messages per second than
the server rate-limits each session.
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Figure 7.4: Admission failure probability as afunction of the message loss probability.

7.6 Related Work

The use of multiple ADMs resembles the use of overlay (proxy) networksin SOS[27], Mayday [1],
and other work [52, 54]. However, these systems also screen DoS attacks by hiding the server’'s
identity and making it known only to a few nodes in the overlay network. Thus, in these solutions,
al client messages, including those for ongoing sessions, are routed through the overlay, causing the
latency of the client-server communication to increase by afactor of 5 or even 10 [27]. Additionally,
thisisaform of security-by-obscurity. Once the filtering criteria are reveaed, spoofed packets that
match the server’sfiltering criteria can penetrate the system’s defenses and reach the server. Another
drawback of Mayday and SOSis that overlay networks are more complex to set up and update.

In contrast, Beaver only uses the ADMs to authenticate new connections, and does not need the
use of an overlay network. It does not hide the server’s identity, and enables clients to communicate
with the server directly, once their admission request is approved. On the other hand, SOS and
Mayday protect the server and its gateway from network-level and application-level DoS attacks,
whereas we concentrate solely on application-level DoS mitigation, assuming that some method of
protecting the network from DoS attacks is already in place. Our motivation stems from the fact
that, as we show in Chapter 6, it is easy to launch an application-level DoS attack that renders the
server useless, but does not congest the network.

7.7 Security Analysis. Proofs

Lemma 15. Aninvalid client that requests admission from a correct ADM can never successfully
pass step 3 (response) of the admission process.

Proof: Let A be an invalid client. Specifically, A does not possess Soapy. Suppose A has
managed to pass step 1 (connection request) of the admission process, masgquerading as a valid
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client A*. In step 2 (challenge) the ADM provides A with a fresh nonce, and requires A in step
3 (response) to use Scapys to compute the MAC of a message containing that nonce, the client’s
ID, the request 1D, and the client’s fresh timestamp. A cannot compute the MAC directly, because
it does not hold Scapas. A cannot even watch a legitimate client’s traffic to gather many pairs
of nonces and their corresponding MACS, as the content being authenticated is unique — the ADM
makes sure the client’s timestamp was not previously received.

Since A cannot generate a proper response of its own, it must perform the following actions: (1)
wait for A* to reach step 3 and send avalid response; (2) intercept the response (read it while making
sure the server does not receive it); and (3) masquerade as A* and replay the response to the server
at some later time. Evenif A can perform these actions, it takes at least £ seconds from the time the
legitimate client sends a response until the ADM receives A’s replayed response. However, by that
time, responseTimeout< £ seconds have passed from step 2 (challenge), and the ADM has aready
terminated the admission process by invalidating the nonce. Therefore, A cannot successfully pass
step 3 (response) of the admission process. [

Corollary 6. If no ADM is malicious, then no server ever allocates resources for communicating
with invalid clients.

Proof: A server allocates resources for communicating with a client only after receiving an admis-
sion request for that client from an ADM. The admission request is sent in step 4 of the admission
process. Since the client does not possess Ssapas, it cannot impersonate an ADM and communi-
cate with the server, since its fabricated message will not pass the server’s validity checks. Since no
ADM is malicious, from Lemma 15 we get that an invalid client does not pass step 3 (response) of
the admission process. Therefore, an admission request for that client is never sent, and the server
never alocates resources for communicating with that client. O

Lemma 16. Let n4pys be the number of ADMs in Beaver, of which £ ADMs are compromised. Let
A be the anticipated maximum rate of incoming connection requests, let sessionlnitTimeout= T,
and let n, be the maximum number of FIs each party opens in a single session. At any given time
there are no more than % open Flsfor invalid sessions.
Proof: Flsfor sessionsthat are not yet established are opened only in step 5 of the admission process
(admission approval). If the ADM reaching step 5 is correct, then from Lemma 15 we get that the
client isvalid. Valid clients create valid sessions, so we can disregard them. We thus consider only
compromised ADMs. A compromised ADM does not need any client interaction to reach step 5, so
we can disregard all clients.

The server allows each compromised ADM to send admission requests at a maximum rate of
nA’; — requests per second. Each such request opens asingle Fl at the server, and more Fls are open
as needed, up to ny Fls. Since the session &ffiliated with these FIs can never be established, the FIs
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are closed T seconds after they are opened. That is, each compromised ADM isthe cause of at most
ATng
NADM

Flswaiting for invalid sessionsis

open Fls at the server. Since there are & compromised ADMs, the maximum number of open
AkTng

nApm”

Lemma 17. (Admission DoS-resistance) Let £ > 2A, and let A be some valid and correct client.
If A isabout to execute an admission process with a correct ADM exactly once, then an adversary
that does not possess A’s registration information, with probability sy, of dropping messages
from A to the ADM and probability L~ of dropping a message destined to A, cannot prevent A from
establishing a session with the server with probability better than 1 — (1 — Lypas)?(1 — Le).

Proof: In the admission process, once A’s response is validated by the ADM (when step 3 com-
pletes), there is nothing to stop A from establishing a session with the server — the communication
of the ADM or the client with the server cannot be disrupted with no DoS attacks thanks to ¢-
Hopper, and A is going to try and establish a session with the server regardless of whether or not
the admission completion message from the server has been received or not.

To prevent the client from establishing a session with the server, the adversary must sabotage
the admission process before step 3 is over. The probability of A successfully completing step 3
of the admission process, when considering only message loss induced by the adversary, is (1 —
Lapnm)*(1 — L¢), asthe connection request and response must be received by the ADM, and the
challenge must be received by A. We are left to show that the adversary cannot use other methods
to interfere with steps 1 through 3 of the admission process.

Let us first examine step 1, the connection request. Each new valid connection request termi-
nates any pending admission processes and starts a new admission process. A connection request is
considered valid if it can be authenticated, and if the timestamp on the request is more recent than
the last timestamp received on a valid connection request from A. The adversary may try to send a
connection request with a new timestamp to tear down A’s current admission request, or to cause
the ADM to discard future connection requests due to an “old” timestamp. However, the adversary
does not possess A’s registration information. Specificaly, it does not posses & apar, and thus
cannot fabricate a connection request message that passes the ADM’s authentication.

Other than message loss, the only way the adversary can harm step 2 is by sending A awrong
nonce that will be considered instead of the correct nonce sent from the ADM. However, in order
for A to accept the nonce, the challenge message must carry the same requestI D randomly chosen
by A and sent in the connection request message. Since £ > 2A, the adversary cannot eavesdrop to
the connection request, see the value of requestI D, and send a fake challenge with the appropriate
requestI D to A before A receives the correct challenge from the ADM. Thus, the adversary needs
to guess the value of requestI D, and the probability that this guess succeeds is negligible.

Finally, the adversary cannot disrupt step 3, as its message will again not pass the ADM’s
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authentication procedure. the ADM will continue waiting for A’s correct answer, regardless of the
number of invalid answers sent to the ADM by the adversary, supposedly on behalf of A, until
responseTimeout seconds expire. By that time, A will surely send the correct response.

We get that, other than inducing message loss, the adversary cannot disrupt steps 1 through 3
with non-negligible probability, and so A is able to establish a session with the server with proba-
bility 1 — (1 — Lapm)*(1 — Le). O

Lemma 18. (Session DoS-resistance I) Let £ > 1 be the number of bits representing a FI, and
assume the adversary knows the identity of at least one client who has an established session with
the server. If the adversary sends the server C invalid messages per second, then on average the
server’s load will increase by at most ”;’—f messages per second.

Proof: All communication with the server is via ¢-Hopper. ¢-Hopper filters messages at the gate-
way according to a matching between client IDs and FIs open for those clients. To pass the filter,
amessage must contain a client ID for a client that has an established session with the server. The
message must also contain a Fl that is open for that client. This matching between client IDsand Fls
means that the number of active clients the adversary knows is irrelevant, as long as the adversary
knows at least one such client.

For each session the server maintains at most ny open Fls. In total, there are 2¢ potential Fls,
and the FIs to open are chosen by hashing different values. Since communication is via ¢-Hopper,
the adversary needs to guess FI numbers when sending invalid messages. By our hash-functions
assumption, the attacker cannot distinguish the open FIs from Fls chosen uniformly at random.
The probability that a single invalid message hits an open Fl is% Since the adversary sends C'
independent messages, the expected number of messages that will hit an open FI and make its way

to the server is ”;';ZC and this is the maximum average increase in server load. (O

Lemma 19. (Session DoS-resistance I1) If no ADM is malicious, a compromised valid client that
does not impersonate other valid clients cannot load the server with more messages per second than
the server rate-limits each session.

Proof: The server's load increases by messages that are not filtered out by ¢-Hopper, i.e., by mes-
sages that potentialy belong to an active session. Clearly, a compromised valid client can establish
a session and send messages to the server. The server is then loaded in accordance with the rate by
which each session is limited. We are left to show that the client cannot load the server with any
other message.

As mentioned in Section 7.4.2, the server allows a client to have only one valid session at a
time. Therefore, the client cannot load the server more by creating another session, and is limited
to having a single session. Every message the client sends to the server is rate-limited according
to this session, and so if the client wishes to load the server by performing a DoS attack, it must
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use other client IDs. However, since no ADM is malicious, we get from Corollary 6 that only valid
clients can load the server. Since the compromised client does not impersonate other valid clients,
it cannot load the server with more messages than it does with its single established session. [
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Chapter 8

Discussion, Results and Conclusions

We presented 3 novel systems and protocols that deal with DoS attacks:

1. Drum — a DoS-resistant Gossip-based multicast protocol that maintains typical propagation
times even when under a DoS attack. Adaptive Drum is an extension of this protocol, that
also locally adapts node behavior according to their local perceived state of the attack, and
thus achieves better propagation times under attack.

2. ¢-Hopper — atwo-party communication protocol that uses pseudorandom hopping of header
field values in packets in order to provide DoS resistance. We have also shown an extension
of this protocol that supports client-server communication.

3. Beaver —amethod and architecture to protect legacy servers from DoS attacks.

Drum and Adaptive Drum

We have conducted the first systematic study of the impact of DoS attacks on multicast protocals,
using asymptotic analysis, simulations, and measurements. Our study has exposed weaknesses of
traditional gossip-based multicast protocols. although such protocols are very robust in the face of
process crashes, we have shown that they can be extremely vulnerable to DoS attacks. In particular,
an attacker with limited attack strength can cause severe performance degradation by focusing on a
small subset of the processes.

We have suggested a few simple measures that one can take in order to improve a system's
resilience to DoS attacks. (i) combining pull and push operations; (ii) bounding resources sepa
rately for each operation; and (iii) random port selection for each communication channel. We
have presented Drum, a simple gossip-based multicast protocol that uses these measures in order to
eliminate vulnerabilities to DoS attacks. Our closed-form mathematical analysis, simulations, and

115



116 CHAPTER 8. DISCUSSION, RESULTSAND CONCLUSIONS

empirical tests have proven that these measures go along way in fortifying a system against DoS at-
tacks. We have shown that, as the attack strength increases asymptotically, the most effective attack
against Drum is one that divides the attack power among all the correct processes in the system.
As expected, the inevitable performance degradation due to such a broad attack is identical for al
the studied protocols. However, protocols that use only pull or only push operations perform much
worse under more focused attacks, which have little influence on Drum.

We expect our proposed methods for mitigating the effect of DoS attacks to be applicable to
various other systems operating in different contexts. Specifically, the use of well-known ports
should be minimized, and each process should be able to choose some of its communication partners
by itself. Our analysis process and its corresponding metric can be used to generaly quantify the
effect of DoS attacks. We hope that other researchers will be able to apply similar techniques in
order to quantitatively analyze their system'’s resilience to DoS attacks.

We presented a novel approach to dealing with DoS attacks — adapting the protocol’s behavior
according to the perceived attack. Adaptation isdone locally at each node, but aglobal improvement
is achieved. The adaptation is based on a set of constraints that compose an optimization problem,
which is solved using linear programming. Our simulations showed that in our case study adaptation
increases performance by up to 34%. We believe that our work is thefirst step in designing adaptive
protocols that deal with DoS attack better than static protocols.

¢-Hopper

We have presented amodel for port-based rationing channels, and a protocol robust to DoS attacks,
for communication over such channels. Our protocol is simple and efficient, and hence can sustain
high loads of traffic, as happens, e.g., in high-speed networks. At the same time, our analysis
shows that the protocol is highly effective in mitigating the effects of DoS attacks. Our formal
framework and suggested protocol apply not only to port-based filtering, but to a much broader
category of filtering based on any packet identifier. Thus, our work constitutes the first step in
evaluating existing filtering and rate-limiting mechanisms.

As the important field of application-level DoS mitigation is relatively new, there is much re-
search space to explore. While our worst case analysisisvaluable, it can befollowed by simulations,
experiments, and common case analysis. Moreover, the system aspects of deploying such a proto-
col in today’s Internet are yet to be dealt with. We now describe several exemplary future research
directions.

Our moddl isredlistic, asit only requires the underlying channel to provide port-based filtering;
therefore, it can be efficiently implemented using existing mechanisms, typically at a gateway fire-
wall or router. This raises an interesting question regarding the trade-off between the cost and the
possible added value of implementing additional functionality by the channel (e.g., at the firewall).
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We hope that future work will take further strides towards defining realistic yet tractable models of
the channel and the adversary that will aid in answering this question.

This work has focused on two parties only. It would be interesting to extend it to multiparty
scenarios, such as client-sever and multicast. These scenarios may require a somewhat different
approach, and will obviously necessitate analyses of their own. Furthermore, we required the parties
to share a secret key; we believe we can extend the solution to establish this key using additional
parties, e.g., akey distribution center, or using ‘proof of work’ [17].

Our work has focused on resisting DoS attacks; however, it could impact the performance and
reliability properties of the connection; infact, it isinteresting to explore combinations between our
model and problem, and the classical problems of reliable communication over unreliable channels
and networks. Furthermore, since our work requires ashared secret key, it may be desirable to merge
it with protocols using shared secret keys for confidentiality and authentication, such as SSL/TLS
and IPSec.

Beaver

We presented Beaver, a method and architecture to protect applications from DoS attacks. Beaver
uses the following ideas to provide strong protection against DoS attacks:

e A best-effort registration process that distributes shared secrets (keys). Only pre-registered
clients can start sessions with the server, and it is hard to fake many identities.

e Anadmission process that authorizes clients to communicate with the server. The server does
not allocate resources for a client that was not authorized. The admission servers are a seper-
ate entity and so provide seperation of “war zones’ — attacking the admission servers does
not harm ongoing client-server sessions. Additionally, having redundant admission servers
makes it hard for the attacker to easily harm the admission process.

e Filtering based on a pseudorandom number that is hard to guess, and changing the pseudoran-
dom number periodically (“hopping”), so that even if afilter isrevealed, it becomesirrelevant
before the attacker has the opportunity to load the server with bogus requests.

e Rate-limiting each authorized client to make sure compromised or selfish clients cannot con-

sume much of the server’s resources, at the expense of other clients.

We formally proved Beaver's good properties in withstanding DoS attacks. The measurements we
presented in this work show that indeed Beaver isapromising solution.
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Summary

Our results show that it is not enough to protect just the network layer from DoS attacks, but the
application layer should also be protected. Additionally, we show that using authentication alone to
mitigate the effects of DoS attacks is insufficient, and may effectively shift the DoS problem from
the prospective target to the authenticator.

In contrast, our robust systems leverage existing, cheap components such as packet filters and
rate-limiters to perform efficient DoS-mitigation. We have analyzed our systems and proved their
good properties in facing DoS attacks. In addition to the analytical framework we have devised,
we aso implemented and tested our systems in real conditions, and provided measurements that
support our analysis and show that our systems continue to function properly, or gracefully degrade
in the face of massive DoS attacks.
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