Veracity Radius - Capturing the Locality of Distributed Computations

Yitzhak Birk, Idit Keidar, Liran Liss, Assaf Schuster, Ran Wolff March 12, 2006

Abstract

This paper focuses on local computations of distributed aggregation problems on fixed graphs. We define a new metric on problem instances, Veracity Radius (VR), which captures the inherent possibility to compute them locally. We prove that VR yields a tight lower bound on output-stabilization time, i.e., the time until all nodes fix their outputs, as well as a lower bound on quiescence time. We present an efficient aggregation algorithm, I-LEAG, which reaches both output stabilization and quiescence within a time that is proportional to the VR of the problem instance, and is also efficient in terms of per-node communication and memory. We empirically show that the VR metric also effectively captures the performance of previously suggested efficient aggregation protocols, and that I-LEAG significantly outperforms these protocols in several respects.

Keywords: aggregation, locality, distributed computation.

1 Introduction

Background We consider distributed computation by a large set of network nodes, which must collaboratively compute and come to know the value of a global aggregation function [23, 15] of their individual inputs. For example, testing whether the number of sensors reporting a problem exceeds a certain threshold (majority vote with threshold), determining the average processor load in a computing grid, etc. Such networks may comprise millions of nodes, and communication bandwidth as well as energy resources may be limited, requiring good scalability. An appealing approach for achieving scalability is using local computations, whereby the computation time and the amount of per-node communication are independent of the size of the network.

Unfortunately, virtually all interesting aggregation functions, e.g., majority, AND/OR, average, and minimum, cannot always be computed locally – they have instances that require some nodes to indirectly communicate with a fixed fraction of the graph nodes in order to deduce the correct result. Yet, they also have instances that intuitively should require little if any computation (e.g., when no sensor reports a problem). Indeed, recent work presents efficient solutions to interesting aggregation problems, and empirically shows that these solutions usually perform local computations [3, 22].

^{*}Electrical Engineering Department, The Technion – Israel Institute of Technology. Email: {birk,idish}@ee, liranl@tx.technion.ac.il.

[†]Computer Science Department, The Technion – Israel Institute of Technology. Email: assaf@cs.technion.ac.il.

[§]Department of Computer Science, University of Maryland, Baltimore County (UMBC).

Email: ranw@cs.umbc.edu.

Contributions We strive to formally quantify the efficiency, or achieved locality, of a distributed aggregation algorithm. We rule out the use of average-case analysis, as such analysis must assume a concrete distribution of the inputs, and we do not believe that it is possible to characterize the "typical" input distribution in a general sensor or peer-to-peer network. Instead, we seek a metric for the inherent amenability of a given *problem instance* to local computation, relative to which proposed algorithms can be evaluated.

The main contribution of this paper is such a new formal metric, the *Veracity Radius (VR)*. It is defined using the notion of an r-neighborhood of a node v, which is the set of all nodes within a radius r from v. Intuitively, if for all r-neighborhoods with $r \geq r_0$ the aggregation function yields the same value as for the entire graph, then there is apparently no need for a node to ever communicate with nodes that are farther than r_0 hops away from it, irrespective of graph size.

The formal VR metric (see Section 3) captures the notion of a minimal such radius r_0 , but allows some slack in the subgraphs over which the values of the aggregation function are examined. Specifically, it is parameterized by some slack function $0 \le \alpha(r) \le r$, and is defined based on node environments that include an $\alpha(r)$ -neighborhood and are included in an r-neighborhood.

VR provides a fine-grained classification of problem instances, which yields an intuitive tight lower bound on computation time. Specifically, for any given aggregation function F, communication graph G, $d \geq 0$, and algorithm solving F on G, there is an instance with $VR_{\alpha} \leq d$ for which at least $min\{\lfloor \alpha(d) \rfloor, Radius(G)\}$ steps are required before all nodes decide on the correct result. This bound is tight for every d such that $\alpha(d) \leq Radius(G)$: it is achieved by a simple Full Information (FI) algorithm. Unfortunately, while FI attains optimal output stabilization, nodes send messages for a number of steps equal to graph diameter. In certain systems, such as sensor networks, wherein energy-efficiency is critical and/or communication resources are limited, such a solution is inadequate. The challenge is thus to determine when it is safe to $stop\ sending\ messages$, i.e., achieve local quiescence.

We present an efficient aggregation algorithm (see Section 4), *I-LEAG* (*Instance-Local Efficient Aggregation on Graphs*), that addresses this challenge: both I-LEAG's computation and quiescence times are within a constant factor of the above lower bound. Moreover, I-LEAG is communication efficient and has low memory requirements. I-LEAG runs on a precomputed hierarchy of partitions of the graph with special locality properties, which may also be applicable elsewhere. This hierarchy only depends on the graph and not on the aggregation function or its inputs, so it only needs to be computed once. One salient feature of I-LEAG is that explicit communication (sending of messages) ceases once the output stabilizes, thereby reducing both quiescence time and communication.

Finally, we complement the aforementioned theoretical results with a simulation study (see Section 5), which (i) demonstrates that VR adequately predicts the performance of previous algorithms that were shown to be efficient in common instances [3, 22] (as well as I-LEAG's), and (ii) compares these algorithms with I-LEAG. We find that I-LEAG has superior performance by all tested measures.

Related Work Recently, there is large interest in applications of large-scale distributed systems such as sensor networks [15, 16], peer-to-peer systems [21], and computational grids [19]. Consequently, many methods for collecting and aggregating the vast amount of data contained (or generated) by these networks have been proposed, e.g., [6, 7, 2, 4]. Often, the aggregation result needs to be diffused throughout the entire network, [23]. However, this body of work has seldom focused on locality.

Locality has been considered in the context of distributed graph constructions, e.g., coloring [14, 17] and minimum vertex cover [8], which are significantly different than aggregation. In this paper, we assume a fixed graph, for which any such construction can be computed off line; specific problem instances are then specified only by the inputs at each node. Moreover, such work has primarily focused on worst-case analysis. This restrictive view of locality often limits the applicability of local computation to simplistic

problems or to restricted graph models (e.g., [9]).

The notion of an "instance-based" locality was first mentioned by the seminal work of Kutten and Peleg on Fault-local Mending [11], and was later refined by subsequent work on fault tolerance such as Tight Fault Locality [12], Time-adaptive Self-Stabilization [10], Distributed Error Confinement [1], and more. Harnessing local computation whenever possible has also been suggested for location services [13]. None of this work, however, deals with aggregation. The only previous work that addresses instance-local aggregation deals with majority voting [3, 22]. It empirically shows that even a problem that trivially requires global communication for many instances can still be computed locally in the common case, but provides no formal metric or analysis to justify this.

Finally, there are several works that attempt to find meaningful alternatives to the over-restrictive worst-case analysis as well as the often impractical average-case analysis, e.g., [5] and [20]. However, these consider neither a distributed setting nor locality.

2 Preliminaries

2.1 Model and Problem Definition

We model a distributed system as a graph, in which nodes and edges correspond to computing nodes and communication links, respectively. Nodes can exchange information only by sending messages. We assume a fixed, unweighted, undirected communication graph and synchronous operation. Given a set D, we denote a multi-set over D by $\{d_1^{n_1}...d_m^{n_m}\}$, where $n_i \in \mathbb{N}$ indicates the multiplicity of $d_i \in D$, and the absence of d_i represents $n_i = 0$. We denote the set of multi-sets over D by \mathbb{N}^D . Given a graph G = G(V, E) and an aggregation function $F: \mathbb{N}^D \to R$, the aggregation problem $P_{G,F}$ is to compute F for every input assignment $I: V \to D$, and to distribute the result $r \in R$ to all nodes.

More formally, every node v has an input value $I_v \in D$ and an output register O_v . Initially, $O_v = \bot$ and v only knows its own input. An algorithm solves $P_{G,F}$ if $\forall v \in V$: $O_v = F(I_V)$ after finite time, where I_X denotes the multi-set induced by the projection of I on a set of nodes $X \subseteq V$. Note that since F is defined over multisets, the identity of the nodes does not play a role. For brevity, we also use I to denote I_V when clear from the context.

Let $\mathcal{M}_A(I)$ denote the performance of an algorithm A on input I under measure \mathcal{M} , and consider such an execution of A. We focus on the following three known performance measures: (1) Quiescence time, $Q_A(I)$, is the time after which no more messages are sent; (2) Output-stabilization time, $OS_A(I)$, is the earliest time after which no node changes its output; and (3) Message Load, $ML_A(I)$, is the average number of messages per node sent during the execution.

In this paper, we only consider aggregation functions $F:\mathbb{N}^D\to R$ where R is a discrete totally-ordered set with at least two values and F satisfies the following properties: $Convexity - \forall X,Y\in\mathbb{N}^D$: $F(X\cup Y)\in \left[F(X),F(Y)\right]$; and Onto (in singletons) $-\forall r\in R,\exists x\in D$: F(x)=r. Convexity ensures that if the graph is partitioned such that the results of computing the aggregation function over every component (in isolation) are all the same, then these results also equal the correct (global) result. This suggests opportunities for locally computing F, based on the following intuition:

If the (global) correct result of an aggregation function is also evident in every local environment, then it is likely that every node can arrive at this result based solely on the inputs of nodes in its vicinity.

Many interesting functions have these properties. Examples include: Min, Max, Majority, Median, and Consensus (e.g., by using AND/OR functions). However, some important ones such as computing an average (violates discreteness) and counting the number of nodes that satisfy a certain predicate (violates

convexity), do not fall into this category. Nevertheless, even these two functions can practically be included in our framework: an average can be computed by rounding the result to the desired precision (regaining discreteness¹), and given an estimate of the graph size, any counting problem can be expressed as a rounded average problem (regaining convexity) by computing the fraction of the nodes (up to a fixed precision) that satisfy the desired predicate and then multiplying the result by the graph size. The term "aggregation functions" will henceforth be used to refer to functions that possess these two properties.

2.2 Graph Notions

Let G = G(V, E) be a graph. Denote G's diameter and radius by Diam(G) and Rad(G), respectively. We use the following graph-theoretic notation:

Definition 2.1 (Cluster) A cluster is a subset $S \subseteq V$ of vertices whose induced subgraph G(S) is connected. A weak cluster is a subset $S \subseteq V$ that is connected in G but not necessarily in G(S). (If G is connected, any set of nodes is a weak cluster.)

Definition 2.2 (Distance) For every two nodes $v_1, v_2 \in V$, the distance between v_1 and v_2 in G, $dist(v_1, v_2)$, is the length of the shortest path connecting them.

Definition 2.3 (Neighborhood) The r-neighborhood $(r \in \mathbb{R}^+)$ of a node v, $\Gamma_r(v)$, is the set of nodes $\{v' \mid dist(v,v') \leq r\}$. $\widehat{\Gamma}(v) = \Gamma_1(v) - \{v\}$ denotes the neighbors of a node v. For a cluster $S: \Gamma_r(S) = \bigcup_{v \in S} \Gamma_r(v)$ and $\widehat{\Gamma}(S) = \Gamma_1(S) - S$.

3 Veracity Radius: an Inherent Metric for Locality

We now introduce the Veracity Radius (VR) metric for quantifying the "attainable locality" of an instance (input) of an aggregation problem. We first give formal definitions of VR and the related notion of local complexity. We then establish a tight lower bound on output-stabilization and quiescence times using VR, thereby proving that VR is inherent to local computation.

3.1 The Veracity Radius and Local Complexity

Let $\alpha: \mathbb{R}^+ \to \mathbb{R}^+$ be a continuous, non-decreasing function such that $\alpha(r) \in [\frac{r}{K}, r]$, for some $K \geq 1$. We call such a function a K-bounded slack function.

Definition 3.1 (α -Veracity Radius) Let $P_{G,F}$ an aggregation problem. For every K-bounded slack function α and input I, the α -veracity radius of I is:

$$VR_{\alpha}(I) \triangleq \min\{r \in \mathbb{R}^+ \mid \forall r' \geq r, v \in V, S \subseteq V \text{ s.t. } \Gamma_{\alpha(r')}(v) \subseteq S \subseteq \Gamma_{r'}(v) \colon F(I_S) = F(I)\}.$$

If $F(I_v) = F(I)$ for every $v \in V$, then $VR_{\alpha}(I) = 0$. We refer to such I as a trivial input assignment. It is important to note that this metric is general enough to cover any aggregation function and graph; yet, it enables reasoning about algorithms that do not always compute their results based on exact neighborhoods. Also, it would seem that $\Gamma_{\alpha(r')}(v) \subseteq S$ should be a sufficient requirement for selecting S. However, this would allow adding arbitrary nodes to $\Gamma_{\alpha(r')}(v)$ from anywhere in the graph, causing $F(I_S)$ to be any value. The terms VR and VR_{α} are used synonymously throughout the paper.

Given a graph, VR represents a property of the input rather of the graph size, so it can be used as a "locality metric". Any algorithm whose performance depends solely on VR for any graph is infinitely scalable (in the graph's size) for all problem instances with a similar VR. We say that such algorithms have *local complexity*.

¹Note that an exact average over \mathbb{R} can seldom be computed locally.

Definition 3.2 (Local Complexity) Let \mathcal{G} be an infinite family of graphs, and \mathcal{M} a performance measure. An algorithm A on \mathcal{G} has local complexity with respect to \mathcal{M} if there exists a slack function α and a function g such that for every $G \in \mathcal{G}$ and non-trivial input $I: \mathcal{M}_A(I) \leq g(VR_\alpha(I))$. In case g(x) = cx for some $c \geq 1$, we say that A is (c, α) - \mathcal{M} local.

In the next section, we derive lower bounds of $LB_d \triangleq min\{\lfloor \alpha(d) \rfloor, Rad(G)\}$ on output stabilization and quiescence times for instances with $VR_{\alpha} \leq d$ of any aggregation problem. As proven below, both (c, α) -OS and (c, α) -Q local algorithms thus attain the lower bound to within a constant factor.

Theorem 3.3 Given a K-bounded slack function α , for every (c, α) -OS local algorithm A and every non-trivial input instance I: $OS_A(I) \leq 2cK \cdot LB_{VR_{\alpha}(I)}$. The same holds for quiescence.

Proof. Let $P_{F,G}$ be an aggregation problem. For $v \in V$ and $r' \geq 2KRad(G)$, it holds that $\Gamma_{\alpha(r')}(v) = V$ because $\alpha(r') \geq r'/K \geq 2Rad(G) \geq Diam(G)$. So, for every input instance I, $VR_{\alpha}(I) \leq 2KRad(G)$ by definition. As a result, for $\alpha(VR_{\alpha}(I)) > Rad(G)$, it holds that $VR_{\alpha}(I) \leq 2K \cdot LB_{VR_{\alpha}(I)}$. For $\alpha(VR_{\alpha}(I)) \leq Rad(G)$:

$$VR_{\alpha}(I) \leq K \cdot \alpha(VR_{\alpha}(I)) \leq K(1 + |\alpha(VR_{\alpha}(I))|) = K(1 + LB_{VR_{\alpha}(I)}).$$

If in addition I is non-trivial, $\alpha(VR_{\alpha}(I)) \geq 1$ and thus $LB_{VR_{\alpha}(I)} \geq 1$. Therefore, for every non-trivial input I we obtain that $VR_{\alpha}(I) \leq 2K \cdot LB_{VR_{\alpha}(I)}$. Since $OS_A(I) \leq cVR_{\alpha}(I)$ and $Q_A(I) \leq cVR_{\alpha}(I)$ for (c,α) -OS and (c,α) -Q local algorithms, respectively, we have the result.

We conclude that algorithms satisfying our new notion of locality are optimal within a constant factor in all cases, and are extremely appealing for problems that have many instances for which $c \cdot VR$ is substantially smaller than the graph diameter.

3.2 Lower Bound

We now show that VR provides lower bounds for both quiescence and output stabilization times. The proof is based on the renowned indistinguishability argument and builds upon the next two lemmas.

Lemma 3.4 Let F be an aggregation function. For every $c \in \mathbb{N}$, there exist $a, b \in D$ and $n_1, n_2 \in \mathbb{N}$ such that $n_1 + n_2 = c$ and $F(a) = F(a^{n_1}b^{n_2}) \neq F(a^{n_1}b^{n_2+1}) = F(b)$.

Proof. We choose $x, y \in D$ such that F(x) < F(y) are consecutive values in R. By convexity:

$$\forall k \in [0,c] \colon F(x^{c-k}y^k) = F(x^{c-(k+1)} \cup y^k \cup x) \leq F(x^{c-(k+1)} \cup y^k \cup y) = F(x^{c-(k+1)}y^{k+1}).$$

Moreover, because $F(x^c) = F(x) < F(y) = F(y^c)$, we conclude that there exists \overline{k} for which the inequality is strict, i.e., $F(x) = F(x^{c-\overline{k}}y^{\overline{k}}) < F(x^{c-(\overline{k}+1)}y^{\overline{k}+1}) = F(y)$. Convexity ensures that $F(x^{c-\overline{k}}y^{\overline{k}+1})$ is either F(x) or F(y). If it is F(y), let a = x and b = y, and $n_1 = \overline{k}$ and $n_2 = c - \overline{k}$. Otherwise, let a = y and b = x, and $n_1 = \overline{k} + 1$ and $n_2 = c - (\overline{k} + 1)$.

Lemma 3.5 Let $P_{G,F}$ be an aggregation problem. For every slack function α and every $d \geq 1$ such that $1 \leq \alpha(d) \leq Rad(G)$, there exist two inputs I and I', such that $VR_{\alpha}(I)$, $VR_{\alpha}(I') \leq d$, $F(I) \neq F(I')$, and at least one node $v_0 \in G$ cannot distinguish between I and I' in fewer than $|\alpha(d)|$ steps.

Proof. Choose $v_0 \in V$ such that $|\Gamma_{\lfloor \alpha(d) \rfloor - 1}(v_0)| = \min_{v \in V} |\Gamma_{\lfloor \alpha(d) \rfloor - 1}(v)|$. Let $S = \Gamma_{\lfloor \alpha(d) \rfloor - 1}(v_0)$. Following Lemma 3.4, we can choose $a, b \in D$ and $n_1, n_2 \in \mathbb{N}$ such that $n_1 + n_2 = |S|$ and $F(a) = F(a^{n_1}b^{n_2}) \neq 0$

 $F(a^{n_1}b^{n_2+1}) = F(b)$. Partition S into two sets of nodes, S_1 and S_2 , such that $|S_1| = n_1$ and $|S_2| = n_2$. We next construct two input assignments, I and I', as follows:

$$I_v = \begin{cases} a, & v \in S_1 \\ b, & v \in S_2 \\ b, & v \notin S \end{cases} \qquad I'_v = \begin{cases} a, & v \in S_1 \\ b, & v \in S_2 \\ a, & v \notin S \end{cases}$$

Note that $I_S = I'_S$ and $F(I_S) = F(I'_S) = F(a)$.

We first claim that for every $v \in V$, $r \geq d$ and $T \subseteq V$ such that $\Gamma_{\alpha(r)}(v) \subseteq T \subseteq \Gamma_r(v)$, it holds that $F(I_T) = F(b)$. Clearly, the number of a values in I_T is at most n_1 . From the choice of S and the fact that S does not cover the entire graph, it holds that $|T| \geq |S| + 1$. As a consequence, the number of S values in S values in S is at least S to S in S i

As a result, we obtain that F(I) = F(b) and $VR_{\alpha}(I) \leq d$ by definition. Similarly, we have F(I') = F(a) and $VR_{\alpha}(I') \leq d$. Since all nodes in S have exactly the same input in both assignments, it is obvious that v_0 cannot distinguish between I and I' before $\lfloor \alpha(d) \rfloor$ steps take place.

Theorem 3.6 (Lower Bound) Let $P_{G,F}$ be an aggregation problem. For every $d \geq 0$, every slack function α and every deterministic algorithm A that solves P, there exists an input I with $VR_{\alpha}(I) \leq d$ for which $OS_A(I) \geq min\{|\alpha(d)|, Rad(G)\}$. The same holds for quiescence.

Proof. If $\alpha(d) < 1$ the claim holds trivially, so assume that $\alpha(d) \ge 1$. If $\alpha(d) \le Rad(G)$, let I and I' be the inputs, and $v_0 \in V$ the node from the construction in Lemma 3.5. We initially focus on output stabilization. Consider the input I. If $OS_A(I) \ge \lfloor \alpha(d) \rfloor$ we are done. Otherwise, there exists a time $t' < \lfloor \alpha(d) \rfloor$ such that for every $t \ge t'$, it holds that $O_{v_0} = F(I)$. Since v_0 cannot distinguish between I and I' before $\lfloor \alpha(d) \rfloor$, for every t such that $t' \le t < \lfloor \alpha(d) \rfloor$, $O_{v_0} = F(I)$ for I' as well. Therefore, in I', O_{v_0} must change from F(I) to F(I') at $\lfloor \alpha(d) \rfloor$ or later because A correctly solves P.

For quiescence, assume by contradiction that both $Q_A(I)$ and $Q_A(I')$ are less than $\lfloor \alpha(r) \rfloor$. Therefore, v_0 cannot distinguish between I and I' at all times. As a consequence, O_v must be identical upon reaching output-stabilization (as A solves $P_{G,F}$, it must do so in finite time) for both inputs, contradicting the correctness of A.

If $\alpha(d) > Rad(G)$, consider an input I that satisfies the lemma with respect to output stabilization (quiescence) for a value of d' such that $\alpha(d') = Rad(G)$. Since α is a monotone non-decreasing function, the fact that $\alpha(d') < \alpha(d)$ implies that d' < d. Therefore, I also satisfies the lemma for d because $VR_{\alpha}(I) < d$, and A requires at least $Rad(G) = min\{\lfloor \alpha(d) \rfloor, Rad(G)\}$ steps to reach output stabilization (quiescence).

Clearly, prior knowledge of VR would enable every node to obtain the correct result by collecting only the input values in its VR-neighborhood. Unfortunately, such knowledge is not available and is impossible to obtain without communication. Nevertheless, a simple Full Information protocol (FI), in which every node broadcasts its input to all other nodes and outputs the result of the aggregation function over the inputs it heard so far, achieves the output-stabilization lower bound for every d such that $\alpha(d) \leq Rad(G)$, thereby showing that the lower bound is tight. (For a formal description of FI and a proof of its output-stabilization time, see Appendix A.) However, FI does not achieve the quiescence bound: its quiescence time is Diam(G) for every input I, irrespective of $OS_{FI}(I)$. FI also sends $O(|E| \cdot Diam(G))$ messages, and has a high memory consumption of O(|V|) per node.

4 Efficient Local Aggregation

Can we do better than FI in terms of memory consumption, communication cost, and quiescence time while still maintaining nearly optimal output stabilization? We now present I-LEAG, an efficient algorithm for solving any aggregation problem, which achieves (c, α) -local output-stabilization and quiescence

times. In addition, I-LEAG is communication efficient, achieving a local message load in many cases, and has a low memory usage.

We begin by describing a locality-preserving partition hierarchy required by I-LEAG (in Section 4.1), followed by a formal statement of the algorithm itself (in Section 4.2). Next, we prove I-LEAG's correctness (in Section 4.3) and analyze its output-stabilization and quiescence times, message load, and memory usage (in Section 4.4).

4.1 Local Partition Hierarchy (LPH) Construction

Let G = G(V, E) be a graph, and let $\Lambda_{\theta} = \lceil \log_{\theta}(Diam(G)) \rceil$. I-LEAG can solve any aggregation function F on G, given a certain pre-construction of partitions, pivot nodes, and some additional information on G. This information can be pre-computed once for G and subsequently used to solve any instance of $P_{G,F}$. Moreover, the pre-construction does not depend on F, so it can be used for other aggregation functions (on the same graph). The pre-construction must form a partition hierarchy:

Definition 4.1 (Partition Hierarchy) An m-level partition hierarchy is a triplet $\{\{S_i\}, \{\mathcal{P}_i\}, \{\mathcal{T}_i\}\}, 0 \leq i \leq m$, where:

- $\{S_i\}$ is a set of partitions, in which for every cluster $S' \in S_{i-1}$ there exists a cluster $S \in S_i$ such that $S' \subseteq S$. The topmost level, S_m , contains a single cluster equal to V.
- $\{\mathcal{P}_i\}$ is a set of pivot sets. \mathcal{P}_i includes a single pivot for every cluster $S \in \mathcal{S}_i$. $S_i(p) \in \mathcal{S}_i$ denotes the cluster S for which $p \in S$.
- $\{\mathcal{T}_i\}$ is a set of forests. For every $p \in \mathcal{P}_i$, \mathcal{T}_i contains a directed tree $T_i(p)$ whose root is p and whose leaves are either the nodes $\{p' \in \mathcal{P}_{i-1} \mid S_{i-1}(p') \subseteq S_i(p)\}$ or the nodes in $S_0(p)$ if i = 0.

Definition 4.2 (Logical Tree) For every i > 0 and every $p \in \mathcal{P}_i$, denote by $\widetilde{T}_i(p)$ the logical tree formed recursively by concatenating $T_i(p)$ and $\widetilde{T}_{i-1}(p')$ at every leaf p' of $T_i(p)$, where $\forall p' \in \mathcal{P}_0 \colon \widetilde{T}_0(p') \triangleq T_0(p')$.

Note that a logical tree $\tilde{T}_i(p)$ spans all nodes in $S_i(p)$, and its underlying physical graph may contain cycles due to multiple roles of the same node in different levels of the hierarchy.

In addition, the partition hierarchy used by I-LEAG must be (θ, α) -local for some θ, α :

Definition 4.3 ((θ, α) -Local Partition Hierarchy (LPH)) Let $\theta \geq 2$ and let α be a slack function. A Λ_{θ} -level partition hierarchy $\langle \{S_i\}, \{\mathcal{P}_i\}, \{\mathcal{T}_i\} \rangle$ is called (θ, α) -local if for every $p \in \mathcal{P}_i$, it holds that $\Gamma_{\alpha(\theta^i)}(p) \subseteq S_i(p) \subseteq \Gamma_{\theta^i}(p)$, and $\widetilde{T}_i(p)$'s height is at most θ^i .

Thus, in contrast to other known partition hierarchies [18], which impose upper bounds on cluster radii, an LPH also enforces lower bounds.

As an example, we present a centralized algorithm, MESH-P, for constructing a $(2,\alpha)$ -LPH with minimal slack for mesh neighborhoods, where $\alpha(r) = \max\{r-1,r/2\}$ is a 2-bounded slack function. MESH-P is detailed in Algorithm 1. For comparison, the "natural" partition hierarchy for meshes (based on squares) results in a larger slack of $\alpha(r) = r/2$. Given a positive integer L and an arbitrary node $p_0 \in \mathbb{N}^2$ of an infinite mesh G_{∞} (node labels are cartesian coordinates), MESH-P constructs recursively an (L+1)-level hierarchy, $\langle \{S_i\}, \{\mathcal{P}_i\}, \{\mathcal{T}_i\} \rangle$ for $i \in [0, L]$, which covers 2^{2L+1} nodes of G_{∞} around p_0 . More specifically, the graph G covered by this hierarchy is the induced subgraph:

$$G = G_{\infty} \Big(\Gamma_{2^{L}-1}(p_{0}) \cup \Gamma_{2^{L}-1}(p_{0} + \langle 0, 1 \rangle) \Big),$$

Algorithm 1 (MESH-P)

```
Input: L \in \mathbb{N}, p_0 \in \mathbb{N}^2
Output: a (2, \alpha)-LPH \langle \{S_i\}, \{P_i\}, \{T_i\} \rangle, i \in [0, L], \text{ for } \alpha(r) = \max\{r - 1, r/2\}
Variables: partition set \{S_i\}, set of pivot sets \{P_i\} and forest set \{T_i\}, all initially \emptyset
  1: mesh-part(L, p_0)
 2: return \langle \{\mathcal{S}_i\}, \{\mathcal{P}_i\}, \{\mathcal{T}_i\} \rangle, i \in [0, L]
Function mesh-part: (i \in \mathbb{N}, p \in \mathbb{N}^2)
    S_i \leftarrow S_i \cup \{ \Gamma_{2^i-1}(p) \cup \Gamma_{2^i-1}(p+\langle 0,1\rangle) \}
    \mathcal{P}_i \leftarrow \mathcal{P}_i \cup \{p\}
    if i = 0 then
        T \leftarrow \{ \langle p + \langle 0, 1 \rangle, p \rangle \}
    else
         T \leftarrow \emptyset
         for all \Delta \in \{\langle 0, 2^{i-1} \rangle, \langle 0, -2^{i-1} \rangle, \langle 2^{i-1}, 0 \rangle, \langle -2^{i-1}, 0 \rangle\} do
              \operatorname{mesh-part}(i-1,p+\Delta)
              T \leftarrow T \cup \{\overrightarrow{e} \in \mathbb{N}^2 \times \mathbb{N}^2 \mid \overrightarrow{e} \text{ is an edge in the direct path from } p + \Delta \text{ to } p\}
    \mathcal{T}_i \leftarrow \mathcal{T}_i \cup \{T\}
```

which has a diameter of $2^{L+1} - 1$ and resembles a neighborhood of radius of 2^L on a mesh (some of the border nodes are left out to enable tiling).

Figure 1 shows the resulting construction for L=2 and $p_0=\langle 0,0\rangle$. The level 2 pivot, which serves as the root of the logical tree that spans the whole graph, is located at $\langle 0,0\rangle$. The x and y coordinates of G increase to the right and up, respectively. As can be seen from the figure, the clusters at every level form a partition: level-0 clusters include a pivot and its neighbor to the right; level-1 clusters are marked by ellipses; and the (single) cluster at level 2 comprises the whole graph. In addition, every cluster of level 0 or 1 is fully contained in some cluster of the next (higher) level. Note that $\forall i \in [0,2], p \in \mathcal{P}_i$: $\Gamma_{2^i-1}(p) \subseteq S_i(p) \subseteq \Gamma_{2^i}(p)$ and the height of $\widetilde{T}_i(p)$ is at most 2^i as required. It is easy to verify that MESH-P generates an LPH for any $L \geq 0$.

Finally, we refer to a hierarchy whose clusters may be weak as a weak partition hierarchy. I-LEAG works even with a weak LPH. In Appendix B, we show how to construct a weak $(5, \alpha)$ -LPH for any graph, for $\alpha(r) = r/5$.

4.2 I-LEAG

I-LEAG is given in Algorithm 2. $O_v[u]$ holds the value of O_u as known to v. $Tree^+$ is the edge set comprising the (underlying, undirected) edges of the graph induced by the logical tree. I-LEAG executes Λ_{θ} sequential phases. Each phase i corresponds to partition S_i in the hierarchy and consists of three sequential operations, which are executed concurrently in every cluster $S_i(p) \in S_i$, where $p \in \mathcal{P}_i$:

- Lines 3-5: Check for conflicts among the clusters of S_{i-1} that constitute $S_i(p)$ by comparing outputs of neighboring nodes along $T_i(p)^2$. We prove by induction that upon commencing phase i, all nodes within a cluster of level i-1 have the same result. Thus, the absence of conflicts indicates that the aggregate value of every $S_{i-1} \subseteq S_i(p)$ is the same, and convexity ensures that this value equals the global result. Detected conflicts are reported to p over the edges of $T_i(p)$. Clearly, nodes in the tree only need forward to p the first notification they receive.
- $\langle conflict \rangle$ message handler: If a conflict is detected, calculate $F(I_{S_i(p)})$ using a simple converge-cast

²If $T_i(p)$ also connects nodes outside $S_i(p)$, conflicts with them will be reported as well.

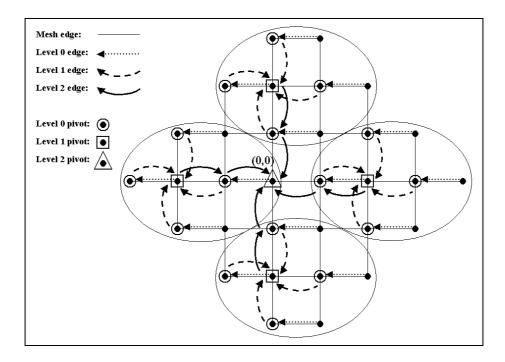


Figure 1: MESH-P partition hierarchy for L=2.

procedure based on the logical tree of p, $\widetilde{T}_i(p)$. (See detailed description below.) The result is multicast to $S_i(p)$ over the same tree. In addition, every node in $S_i(p)$ forwards the result to its neighbors in $Tree^+$ (excluding nodes in $S_i(p)$).

• $\langle p, val \rangle$ message handler: Finally, if $F(I_{S_i(p)})$ was explicitly calculated, every $v \in S_i(p)$ updates O_v . In addition, every neighbor u of v such that $u \in S_i(p)$ or $(u, v) \in Tree^+$ updates $O_u[v]$ accordingly. This information exchange enables conflict detection in subsequent phases without communication.

The timer in line 2 and the 'wait' instruction in line 6 ensure that the next phase is not started before all messages of the current phase subside (see Lemma 4.5). If there are no conflicts starting from a certain phase i, then I-LEAG reaches output stabilization at phase i. Moreover, it reaches quiescence at the same time because subsequent conflict checks are done without communication.

The converge-cast procedure assumes that the aggregation function $F:\mathbb{N}^D \to R$ can be represented as a tuple $\langle \widehat{R}, F_I, F_{agg}, F_O \rangle$, where: \widehat{R} is some internal representation, and $F_I:D \to \widehat{R}$, $F_{agg}:\widehat{R}^n \to \widehat{R}$ and $F_O:\widehat{R} \to R$ are functions such that for every set of nodes $V = \{v_1, ..., v_n\}$ and an input I:

$$F(I_V) = F_O\Big(F_{agg}(F_I(I_{v_1}), ..., F_I(I_{v_n}))\Big).$$

For example, a simple majority vote can be represented as follows: $D = R = \{0, 1\}$; \widehat{R} is an ordered pair $\mathbb{N} \times \mathbb{N}$; $F_I(bit)$ returns $\{1, 0\}$ if bit is 1 and $\{0, 1\}$ otherwise; F_{agg} returns the sum of its inputs; and given $\{x, y\} \in \widehat{R}$, F_O returns 1 if $x \geq y$ and 0 otherwise. When invoked at a pivot p, the converge-cast procedure computes F recursively over the inputs of $S_i(p)$ based on the logical tree of p, as described in Algorithm 3 using remote procedure call (RPC) semantics.

4.3 Correctness

Theorem 4.4 I-LEAG correctly solves every aggregation problem $P_{G,F}$, given a (θ, α) -LPH of G.

Algorithm 2 (I-LEAG) for node $v \in V$

```
Parameters: F: \mathbb{N}^D \to R, (\theta, \alpha)-local hierarchy \langle \{S_i\}, \{P_i\}, \{T_i\} \rangle, 0 \le i \le \Lambda_\theta of G(V, E)
Input: I_v \in D
Output: O_v \in R, initially F(I_v)
Variables: \forall u \in \widehat{\Gamma}(v) : O_v[u] \in R \cup \{\bot\}, \text{ initially } \bot; i \in \mathbb{N}
Definitions: Tree^+ \triangleq \bigcup_{i,p \in \mathcal{P}_i} T_i(p) ignoring edge directions (i.e., Tree^+ \subseteq E)
Synchronous phases:
                                                 /* phase i corresponds to \langle S_i, \mathcal{P}_i, \mathcal{T}_i \rangle */
 1: for phase i = 0 to \Lambda_{\theta} do
         set timer to 4 \cdot \theta^i + 1
         for every p \in \mathcal{P}_i s.t. v \in T_i(p) do
 3:
             if \exists u \in \Gamma(v) s.t. u is v's parent in T_i(p) and O_v[u] \neq O_v then
 4:
                 send \langle p, \mathsf{conflict} \rangle to u
 5:
 6:
         wait until timer expires
Message handlers:
upon receiving the first \langle p, \text{conflict} \rangle message during phase i:
   if v = p then
      val \leftarrow \text{converge-cast}(F, \widetilde{T}_i(p)) /* see Algorithm 3 */
       multicast \langle p, val \rangle to S_i(p) \cup \{w \in \widehat{\Gamma}(S_i(p)) \mid \exists u \in S_i(p) : (u, w) \in Tree^+\}
       forward \langle p, \text{conflict} \rangle to v's parent in T_i(p)
upon receiving \langle p, val \rangle during phase i:
   if v \in S_i(p) then O_v \leftarrow val
   \forall u \in \widehat{\Gamma}(v): if u \in S_i(p) then O_v[u] \leftarrow val
```

The proof follows immediately from the following three lemmas; the first two are technical, and are deferred to Appendix C.

Lemma 4.5 If a conflict is detected at the beginning of some phase i (line 4), then all messages sent during the phase reach their destination by the end of the phase (line 6). Otherwise, no messages are sent during phase i.

Lemma 4.6 At the end of every phase i, for every node $v \in V$ and every neighbor u of v such that $(u,v) \in Tree^+$: $O_u[v] = O_v$.

Lemma 4.7 At the end of every phase i, for every $p \in \mathcal{P}_i$ and every node $v \in V$: $O_v = F(I_{S_i(p)})$.

Proof. By induction on i. We distinguish between two cases. Let $p \in \mathcal{P}_i$. If a conflict was detected in line 4 for p, then $F(I_{S_i(p)})$ is calculated explicitly and assigned to the output register of every $v \in S_i(p)$ by the end of the phase (Lemma 4.5). Since all clusters experience a conflict in phase 0, this observation also establishes the induction base.

Otherwise, the connectivity of $T_i(p)$ and Lemma 4.6 ensure that for every $u, v \in T_i(p)$: $O_u = O_v$. According to our assumption on phase i-1, for every $S \in \mathcal{S}_{i-1}$ and every $v \in S$ it holds that $O_v = F(I_S)$. We thus also have that for every $S', S'' \in \mathcal{S}_{i-1}$ such that $S', S'' \subseteq S_i(p) : F(I_{S'}) = F(I_{S''})$ because $T_i(p)$ contains at least one representative from every such cluster. Therefore, the lemma holds by convexity.

4.4 Complexity

We begin by analyzing I-LEAG's output stabilization and quiescence times. Given an input I, denote I-LEAG's veracity phase, i.e., the last phase in which I-LEAG detects a conflict, by VP(I).

```
Algorithm 3 (Converge-cast RPC) given F \triangleq \langle \widehat{R}, F_I, F_{agg}, F_O \rangle
```

 $\overline{\mathbf{Function}} \ \mathsf{converge\text{-}cast:} (F, \mathit{Tree}) \to R$

return $F_O(v.\mathsf{converge\text{-}cast\text{-}internal}(F, \mathit{Tree}))$

Function converge-cast-internal: $(F, Tree) \rightarrow \widehat{R}$

if v is a leaf in Tree then return $F_I(I_v)$

for $k=1,...,K_v$ parallel do $/*\{u_1,...,u_{K_v}\}$ are v's children in $\mathit{Tree}\ */$

 $tmp[k] \leftarrow u_k.\mathsf{converge\text{-}cast\text{-}internal}(F,\mathit{Tree})$

return $F_{aqq}(tmp[1],...,tmp[K])$

Lemma 4.8 Let $P_{G,F}$ be an aggregation problem. Given a (θ, α) -LPH of G, it holds for every non-trivial input I that: $VP(I) < \log_{\theta}(VR_{\alpha}(I)) + 1$.

Proof. Let I be a non-trivial input assignment with $VR_{\alpha}(I) = d$. Denote VP(I) by n and assume in contradiction that $n \geq \log_{\theta} d + 1$. Lemma 4.7 ensures that when conflict detection is performed at the beginning of phase n, every node holds the aggregate value of its cluster at level n-1 (note that $n \geq 1$ for non-trivial inputs). In addition, every two neighboring nodes u, v in $Tree^+$ hold the aggregate value of each other according to Lemma 4.6.

Since conflicts are only detected between neighboring nodes in $Tree^+$, for any such pair of nodes u,v that detect a conflict during phase n, it follows that u and v belong to different clusters at level n-1 with different aggregate values. Thus, there exists $p \in \mathcal{P}_{n-1}$ such that $F(I_{S_{n-1}(p)}) \neq F(I)$. Since $\Gamma_{\alpha(\theta^{n-1})}(p) \subseteq S_{n-1}(p) \subseteq \Gamma_{\theta^{n-1}}(p)$, we obtain that $VR_{\alpha}(I) > \theta^{n-1} \ge \theta^{\log_{\theta} d + 1 - 1} = d$. A contradiction.

Theorem 4.9 Let $P_{G,F}$ be an aggregation problem. Given a (θ, α) -LPH of G, for every non-trivial input I, I-LEAG's output stabilization and quiescence times are at most: $\left(\frac{4\theta^2}{\theta-1}\right) \cdot VR_{\alpha}(I) + \log_{\theta}(VR_{\alpha}(I)) + 2$.

Proof. Let I be a non-trivial input assignment with $VR_{\alpha}(I) = d$. According to Lemma 4.5, I-LEAG is quiescent once no more conflicts are detected. Since every phase i takes $4\theta^{i} + 1$ time, we obtain from lemma 4.8 that:

$$Q_{I-LEAG}(I) = \sum_{i=0}^{VP(I)} (4\theta^i + 1) = 4\left(\frac{\theta^{VP(I)+1} - 1}{\theta - 1}\right) + VP(I) + 1 < 0$$

$$\left(\frac{4\theta^{\log_{\theta}d+2}-1}{\theta-1}\right) + \log_{\theta}d + 2 < \left(\frac{4\theta^2}{\theta-1}\right)d + \log_{\theta}d + 2.$$

As nodes change their outputs only in response to multicasts, $OS_{I-LEAG}(I) \leq Q_{I-LEAG}(I)$.

Corollary 4.10 Let \mathcal{G} be a family of graphs. Given a (θ, α) -LPH for every $G_i \in \mathcal{G}$, I-LEAG is a $(\frac{5\theta^2}{\theta-1}, \alpha)$ -OS/Q local algorithm for computing any aggregation function F on \mathcal{G} .

Proof. For every $d \ge 1$ and $\theta \ge 2$, it holds that $\left(\frac{4\theta^2}{\theta-1}\right)d + \log_{\theta}d + 2 < \left(\frac{5\theta^2}{\theta-1}\right)d$. Therefore, the proof is immediate from Theorem 4.9.

For any aggregation problem $P_{G,F}$, the number of bits required to represent a single value from the input domain (log |D|), output range (log |R|) or an internal representation (log $|\hat{R}|$) obviously depends on the aggregation function F, and in certain cases also on the graph size. However, F is a parameter rather than a property of the algorithm. For brevity, we therefore use the so called "word model" for evaluating both communication (in the form of the average per-node message load ML) and memory usage, and assume that these values practically fit in O(1) memory words. We also make the same assumption for

pivot identifiers. Consequently, all of I-LEAG's messages have a size of O(1) memory words. (Results in the "bit model" can be obtained by multiplying by $\max\{\log |D|, \log |R|, \log |\widehat{R}|, \log |V|\}$.) Due to lack of space, we defer the proofs to Appendix D.

Theorem 4.11 Let $P_{G,F}$ be an aggregation problem. Given a (θ, α) -LPH for G, for every input I, it holds that $ML_{I-LEAG}(I) = O(\log^2(VR_{\alpha}(I)))$ if $Tree^+$ is a tree in G, and $ML_{I-LEAG}(I) = O(\log(VR_{\alpha}(I)) \cdot \Lambda_{\theta})$ otherwise.

Note that when the (undirected) edge set induced by the LPH's logical tree, $Tree^+$, forms a tree in G, I-LEAG achieves a *local* message load, as the number of messages that a node sends (on average) depends only on VR. Many simple partitions can be constructed with this property, especially for regular graphs (e.g., our mesh construction in Section 4.1).

Theorem 4.12 Let $P_{G,F}$ be an aggregation problem. Given a (θ, α) -LPH for G, I-LEAG requires $O(\Lambda_{\theta}|V|)$ total memory, and O(Deg(v)) memory per node v, where Deg(v) is the number of edges incident to v in the logical tree induced by the hierarchy.

5 Veracity Radius vs. Practical Performance

In this section, we illustrate that VR explains why previously-suggested algorithms are efficient in "common" instances by linking VR with these instances. To this end, we conducted an empirical study. We considered binary majority voting (with a threshold of 50%) on a mesh topology, which is typical of sensor networks. We used the construction of Section 4.1 to generate a $(2, \alpha)$ -LPH for a graph G of 128K nodes, 255K edges, and a diameter of 511. $(\alpha(r) = max\{r - 1, r/2\}.)$

We compared the performance of I-LEAG with that of two previously-suggested algorithms for local majority-voting: MV [3], and MV-TREE [22]. To achieve good coverage, we experimented with two radically different input-distribution models with respect to locality: uncorrelated and correlated. An input assignment was generated as follows. In the uncorrelated model, we first chose a probability for voting '1', P_1 , and then drew the votes according to P_1 in an i.i.d. fashion (i.e., every node votes '1' with probability P_1 and '0' with probability $1-P_1$). Thus, votes of neighboring nodes are uncorrelated. In the correlated model, we fixed $P_1 = 0.9$, and chose a radius $R \in [0, Rad(G)]$ and a node $v_0 \in V$ uniformly at random. Subsequently, every node $v \in V$ drew its vote according to P_1 if $dist(v, v_0) \leq R$ and according to $1-P_1$ otherwise. By biasing P_1 , this model simulates a scenario in which v_0 is the focal point of an event that arouses every node at distance R away from it, which otherwise would be idle. We ran all algorithms over numerous input assignments that ensured a wide range of VR values.

Output stabilization times are depicted in Fig. 2(a-b). (For all algorithms, quiescence times were practically the same as output stabilization times.) We observe an apparent correlation between output stabilization and VR in all simulations. I-LEAG's operational phases are also evident from the graphs. Clearly, I-LEAG outperforms the other algorithms in both models. Notice that MV, which was designed for i.i.d inputs, achieves good output stabilization times in the uncorrelated model, but performs badly in the correlated model.

Message load is presented in Fig. 2(c-d). In general, for every given VR, all algorithms demonstrate a higher ML in the uncorrelated model, which has considerably more nodes with minority votes than the correlated model. In addition, ML basically increases monotonically with VR. Except for small VRs, in which I-LEAG and MV-TREE have a similar ML, I-LEAG outperforms the other algorithms.

We conclude that VR succeeds in identifying the instances for which the algorithms perform well in practice. Moreover, although the output-stabilization (or quiescence) lower bound presented in Section 3.2 is a *worst case* over over all instances with a certain VR or less, practically none of the algorithms

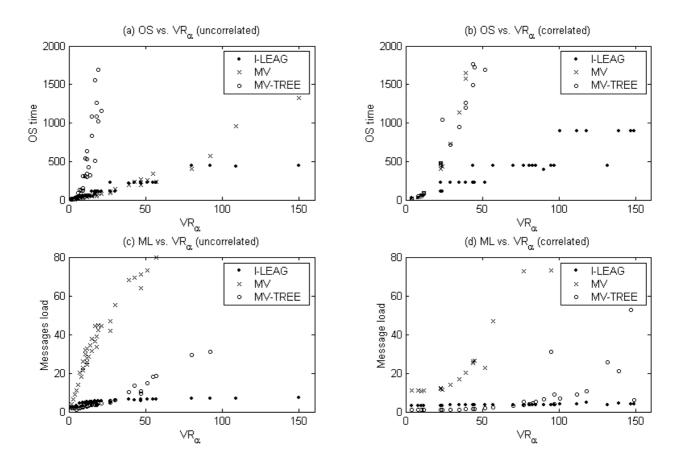


Figure 2: Output stabilization times and message load of I-LEAG, MV, and MV-TREE as a function of VR. All experiments were conducted on a mesh of 128K nodes and a diameter of 511.

performed better on *any* instance. Intuitively, this can be attributed to the fact that none of the algorithms are biased towards a specific set of instances, which might enable them to perform better than VR for these instances at the expense of others.

6 Conclusions

This work was motivated by the observed gap between the de facto good performance of efficient local-aggregation algorithms and the theoretical "worst-case" impossibility of local aggregation. We have provided a theoretical instance-based metric, $Veracity\ Radius\ (VR)$, which serves as a lower bound on computation time. We have shown the bound to be tight, and provided an efficient algorithm, I-LEAG, whose quiescence and output stabilization times are both within a constant factor of the lower bound. (The exact factor depends on the LPH pre-construction used by I-LEAG.)

Our notion of local algorithms, namely algorithms whose performance provably depends on an inherent metric of the input instance rather than on the graph size, has implications that go beyond aggregation algorithms. Topology maintenance in wireless mesh networks, load balancing in global computational grids, and cache management in wide-area application services, are all problems that have global instances, but must operate locally whenever possible to achieve good performance. In such systems, VR (or an equivalent metric) can prove invaluable for designing and evaluating efficient algorithms.

References

- [1] Y. Azar, S. Kutten, and B. Patt-Shamir. Distributed error confinement. In *Proc. of the 22nd Annual Symp. on Principles of Distributed Computing*, July 2003.
- [2] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani. Estimating aggregates on a peer-to-peer network. Technical report, Stanford University, Database group, 2003. Available from: http://www-db.stanford.edu/~bawa/publications.html.
- [3] Y. Birk, L. Liss, A. Schuster, and R. Wolff. A local algorithm for ad hoc majority voting via charge fusion. In *Proc. of DISC*, October 2004.
- [4] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate aggregation techniques for sensor databases. In *Proc. of ICDE*, 2004.
- [5] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. *Journal of Computer and System Sciences*, pages 614–656, 2003.
- [6] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and robust communication paradigm for sensor networks. In *In Proc. of the Sixth Annual Intl. Conf. on Mobile Computing and Networking*, August 2000.
- [7] David Kempe, Alin Dobra, and Johannes Gehrke. Computing aggregate information using gossip. In *Proc. of Fundamentals of Computer Science*, 2003.
- [8] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed locally! In *Proc. of the 23rd Symposium on Principles of Distributed Computing (PODC)*, July 2004.
- [9] F. Kuhn, T. Moscibroda, and R. Wattenhofer. On the locality of bounded growth. In *Proc. of the 24th Annual Symposium on Principles of Distributed Computing (PODC)*, July 2005.
- [10] S. Kutten and B. Patt-Shamir. Time-adaptive self-stabilization. In *In Proc. of the 16th Annual ACM Symposium on Principles of Distributed Computing*, pages 149–158, August 1997.
- [11] S. Kutten and D. Peleg. Fault-local distributed mending. In *Proc. of the 14th Annual ACM Symposium on Principles of Distributed Computing*, August 1995.
- [12] S. Kutten and D. Peleg. Tight fault-locality. In *Proc. of the 36th IEEE Symposium on Foundations of Computer Science*, October 1995.
- [13] J. Li, J. Jannotti, D.S.J. De Couto, D.R. Karger, and R. Morris. A scalable location service for geographic ad hoc routing. In *Proc. of the 6th ACM Intl. Conf. on Mobile Computing and Networking*, August 2000.
- [14] N. Linial. Locality in distributed graph algorithms. SIAM J. Computing, 21:193–201, 1992.
- [15] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. Tag: a tiny aggregation service for adhoc sensor networks. In *Proc. of the 5th Annual Symposium on Operating Systems Design and Implementation (OSDI)*, December 2002.
- [16] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wireless sensor networks for habitat monitoring. In *Proc. of the ACM Workshop on Sensor Networks and Applications*, 2002.

- [17] M. Naor and L. Stockmeyer. What can be computed locally? 25th ACM Symposium on Theory of Computing, pages 184–193, 1993.
- [18] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications, 2000.
- [19] The Condor Project. http://www.cs.wisc.edu/condor/.
- [20] D.A. Spielman and Shang-Hua Teng. Smoothed analysis: Why the simplex algorithm usually takes polynomial time. *Journal of the ACM*, pages 385 463, 2004.
- [21] R. van Renesse, K.P. Birman, and W. Vogels. Astrolabe: A robust and scalable technology for distributed system monitoring, management, and data mining. *ACM Transactions on Computer Systems*, 2003.
- [22] R. Wolff and A. Schuster. Association rule mining in peer-to-peer systems. In *Proc. of ICDM*, November 2003.
- [23] J. Zhao, R. Govindan, and D. Estrin. Computing aggregates for monitoring wireless sensor networks. In *Proc. of SNPA*, 2003.

Algorithm 4 Full Information (FI) protocol for $F: \mathbb{N}^D \to R$ for node $v \in V$

```
Input: I_v \in D
Output: O_v \in \mathbb{R}
```

Variables: X_v - a set of tuples $\langle v, d \rangle \in V \times D$, initially $\{\langle v, I_v \rangle\}$

```
1: for step i = 0 to Diam(G) do
```

- 2: for every set X_u received from $u \in \widehat{\Gamma}(v)$: $X_v \leftarrow X_v \cup X_u$
- 3: $O_v \leftarrow F(X_v \perp D)$ /* $X_v \perp D$ is the multiset obtained by projecting X_v on D^* /
- 4: send X_v to $\widehat{\Gamma}(v)$

A The Full Information Protocol

Algorithm 4 describes FI formally. Intuitively, FI is optimal in terms of output-stabilization because it actually defines VR:

Theorem A.1 For every aggregation problem $P_{G,F}$, every slack function α and every d > 0 such that $\alpha(d) \leq Rad(G)$, FI has an optimal output stabilization time for instances with $VR \leq d$.

Proof. Let I be an arbitrary input with $VR_{\alpha}(I) = d' \leq d$. It is straightforward from the algorithm that at the end of every time step t, every node v knows the inputs of all nodes in $\Gamma_t(v)$. For every $r \geq d'$ and every $v \in V$, it follows from the definition of VR_{α} that $F(I_{\Gamma_{\alpha(r)}(v)}) = F(I)$. Since in unweighted graphs $F(I_{\Gamma_{\alpha(r)}(v)}) = F(I_{\Gamma_{\alpha(r)}(v)})$, FI ensures that $O_v = F(I)$ after time step $t = \lfloor \alpha(d') \rfloor$. Consequently, for every input I such that $VR_{\alpha}(I) \leq d$:

$$OS_{FI}(I) \le |\alpha(VR_{\alpha}(I))| \le |\alpha(d)| = LB_d,$$

where LB_d denotes the lower bound.

B LPH Construction for General Graphs

In Algorithm 5, we present our hierarchal partitioning algorithm, HPART, for constructing a weak LPH on any given graph. HPART is a centralized algorithm that accepts a graph G and a constant $\theta \geq 5$ and returns a (θ, α) -local weak partition hierarchy of G, where $\alpha(r) = r/\theta$ is a θ -bounded slack function. At level 0, every node is defined as its own cluster (line 1). Subsequently, HPART operates in phases, constructing a partition level in each phase. The construction itself is done in two loops:

- Lines 4 12: Build a group of clusters that fulfill the requirements for the current level. These clusters do not necessarily cover the whole graph.
- Lines 13 18: Expand the clusters until all the entire graph is covered, while maintaining the partition requirements. The resulting clusters may be weak.

During the first loop, \overline{V} holds uncovered nodes, and $\overline{P} \subseteq \overline{V}$ holds only those uncovered nodes that are pivots of the previous level. In every iteration, a new cluster S is added to the current level i based on a completely uncovered θ^{i-1} -neighborhood of some node p (line 5), which serves as the new cluster's pivot. S comprises the nodes of all clusters of level i-1 that intersect this neighborhood (lines 6-7), and its spanning tree T is formed by connecting the pivots of these clusters to p using shortest paths while avoiding cycles (lines 8-10). Finally, S, T and p are added to the current level (line 11), and \overline{P} and \overline{V} are updated.

Algorithm 5 (HPART)

```
Input: a connected graph G(V, E) and an integer \theta > 5
Output: a (\theta, \alpha)-LPH \langle \{S_i\}, \{P_i\}, \{T_i\} \rangle, i \in [0, \Lambda_{\theta}], \text{ for } \alpha(r) = r/\theta
Variables: partition set \{S_i\}, set of pivot sets \{P_i\} and forest set \{T_i\}, all initially \emptyset
 1: S_0 \leftarrow \{\{v\} \mid v \in V\}, P_0 \leftarrow V, T_0 \leftarrow \emptyset
 2: for level i = 1 to \Lambda_{\theta}) do
            \overline{P} \leftarrow \mathcal{P}_{i-1}, \ \overline{V} \leftarrow V
             while \exists v \in \overline{V} s.t. \Gamma_{\theta^{i-1}}(v) \subseteq \overline{V} do
                                                                                              /* build initial clusters */
  4:
                  let p \in \{v \in \overline{V} \mid \Gamma_{\theta^{i-1}}(v) \subseteq \overline{V}\}
 5:
                  P \leftarrow \{ p' \in \overline{P} \mid \mathcal{S}_{i-1}(p') \cap \Gamma_{\theta^{i-1}}(p) \neq \emptyset \}
 6:
                  S \leftarrow \bigcup_{p' \in P} S_{i-1}(p')T \leftarrow \emptyset
 7:
 8:
 9:
                  for all p' \in P do
                        T \leftarrow T \cup \{e \in L \mid L \subseteq E \text{ is some shortest path from } p' \text{ to } p \text{ s.t. } T \cup L \text{ has no cycles}\}
10:
                  \underline{\mathcal{S}_i} \leftarrow \underline{\mathcal{S}_i} \cup \{\hat{S}\}, \ \mathcal{P}_i \leftarrow \mathcal{P}_i \cup \{p\}, \ \mathcal{T}_i \leftarrow \mathcal{T}_i \cup \{T\}
\overline{P} \leftarrow \overline{P} - P, \ \overline{V} \leftarrow \overline{V} - S
12:
             while \overline{P} \neq \emptyset do /* expand clusters to include all clusters of S_{i-1} */
13:
                  let p' \in \overline{P} and p \in \mathcal{P}_i s.t. dist(p, p') = min_{p \in \mathcal{P}_i} \{ dist(p, p') \}
14:
                  S \leftarrow S_i(p), S' \leftarrow S \cup S_{i-1}(p')
15:
                  T \leftarrow T_i(p), T' \leftarrow T \cup \{e \in L \mid L \text{ is some shortest path from } p' \text{ to } p \text{ s.t. } T \cup L \text{ has no cycles}\}
16:
                  \underline{S_i} \leftarrow (\underline{S_i} - \{S\}) \cup \{S'\}, \, \mathcal{T}_i \leftarrow (\mathcal{T}_i - \{T\}) \cup \{T'\}
\overline{P} \leftarrow \overline{P} - \{p\}
17:
18:
19: return \langle \{\mathcal{S}_i\}, \{\mathcal{P}_i\}, \{\mathcal{T}_i\} \rangle, i \in [0, \Lambda_{\theta}]
```

In the second loop, each iteration selects one uncovered cluster (of the previous level) to be covered by one of the newly created clusters of the current level i. Specifically, HPART selects a yet uncovered cluster with pivot $p' \in \mathcal{P}_{i-1}$, and adds its nodes to a cluster $S \in \mathcal{S}_i$ whose pivot $p \in \mathcal{P}_i$ is closet to p'(lines 14-15). After updating the corresponding tree T (line 16), HPART adjusts level i's cluster and tree sets (line 17), and updates \overline{P} . (\overline{V} is not used in this loop.) It is easy to see that HPART has polynomial execution time. Moreover, devising a corresponding distributed implementation for it is straightforward.

Correcntess The proof is based on the next three lemmas, which establish several properties that hold after each of the algorithm's two main loops. Following the conventions of [18], we define the radius of a (possibly weak) cluster S with respect to a node $v \in S$ as $WRad(v, S) \triangleq max_{u \in S}(dist(u, v))$, the radius of S as $WRad(S) \triangleq max_{v \in S}(WRad(v, S))$, and the distance between a node v and a cluster S as $dist(v, S) \triangleq min_{u \in S}(dist(u, v))$. All distances in the definitions above are taken in G.

Lemma B.1 For every level i, S_i is a partition.

Proof. By induction on i. S_0 is trivially a partition. We next assume that the lemma holds for level i-1 and prove for level i. During the first loop, whenever a new cluster S is formed (line 7), every pivot $p' \in \mathcal{P}_{i-1}$ whose cluster $S_{i-1}(p')$ is added to S is removed from \overline{P} . We refer to such pivots as covered by S. As a result, each new cluster covers disjoint sets of pivots. Since S_{i-1} is a partition, every covered pivot uniquely identifies a cluster that does not overlap with any other cluster of level i-1. Hence, upon completing the first loop, all clusters in S_i are disjoint. As the second loop only expands these cluster by covering any remaining (uncovered, disjoint) clusters from S_{i-1} , we conclude that S_i is a partition.

Lemma B.2 For every level i > 0 and every $p \in \mathcal{P}_i$, $T_i(p)$ is a tree that connects every $p' \in \mathcal{P}_{i-1}$ such that $p' \in S_i(p)$ to p by a shortest path.

Proof. Let i > 0 and $p \in \mathcal{P}_i$ be a pivot. Because $T_i(p)$ is initialized to \emptyset and cycles are avoided at all times, $T_i(p)$ is always a tree. The algorithm attempts to attach to $T_i(p)$ every $p' \in \mathcal{P}_{i-1}$ such that $p' \in S_i(p)$ in lines 10 and 16, using shortest paths. Therefore, we only need to show that whenever these lines are executed, either $T_i(p)$ already includes a path from p' to p, or there exists a shortest path from p' to p that does not create a cycle in $T_i(p)$.

Consider a pivot $p' \in \mathcal{P}_{i-1}$ that is about to be added to $T_i(p)$. If $T_i(p)$ already includes a path from p' to p, we are done. Otherwise, denote by L' some shortest path from p' to p. (L' exists because the graph is connected.) If L' does not introduce cycles to $T_i(p)$, we are done. Otherwise, L' must cross at least one node that is already spanned by $T_i(p)$. Let v be the first such node (in the direction from p' to p). Denote the path in $T_i(p)$ that connects v to p by L''. Since every part of a shortest path is also a shortest path, the distance from v to p along L'' must equal that along L'. Therefore, the path L formed by concatenating the path from p' to v (along L') and L'' is also a shortest path, which does not introduce any cycles to $T_i(p)$.

Lemma B.3 For every level i, $\forall p \in \mathcal{P}_i$: (1) $\Gamma_{\theta^{i-1}}(p) \subseteq S_i(p)$; (2) $Height(T_i(p)) \leq 4\theta^{i-1}$; and (3), $S_i(p) \subseteq \Gamma_{\theta^i}(p)$.

Proof. By induction on i. The lemma holds trivially for S_0 . We next assume that the lemma holds for level i-1 and prove for level i. It follows immediately from the construction of a new cluster in line 7 and the fact that S_{i-1} is a partition that $\forall p \in \mathcal{P}_i$: $\Gamma_{\theta^{i-1}}(p) \subseteq S_i(p)$ upon completing the first loop. Since the second loop does not introduce new clusters nor reduce existing ones, (1) holds.

To prove (2) and (3), we initially claim that upon completing the first loop, $\forall p \in \mathcal{P}_i$: $WRad(p, S_i(p)) \leq 3\theta^{i-1}$. To see this, let p be the node specified in line 4, let P be the set of level i-1 pivots defined in line 6, and let S be the cluster constructed in line 7. For every $p' \in P$: $dist(p, S_{i-1}(p')) \leq \theta^{i-1}$ by construction. In addition, $WRad(S_{i-1}(p')) \leq \theta^{i-1}$ according to the induction hypothesis. Thus, it holds that:

$$WRad(p, S) = max_{v \in S}(dist(p, v)) = max_{p' \in P} \Big(max_{v \in S_{i-1}(p')}(dist(p, v)) \Big) \le max_{p' \in P} \Big(dist(p, S_{i-1}(p')) + 2WRad(S_{i-1}(p')) \Big) \le 3\theta^{i-1}.$$

For every cluster (created in the first loop) that is not expanded in the second loop, both (2) and (3) follow immediately from the claim and Lemma B.2. For the remaining clusters, we show that the lemma holds after every iteration of the second loop (which expands some existing cluster $S \in \mathcal{S}_i$). Let $p' \in \overline{P}$ and $p \in \mathcal{P}_i$ be the pivots chosen in line 14 in some iteration. Observe that upon completing the first loop, for every $v \in \overline{V}$: $min_{S \in \mathcal{S}_i}(dist(v,S)) \leq \theta^{i-1}$. (If $\exists v \in \overline{V}$ such that $\forall S \in \mathcal{S}_i : dist(v,S) > \theta^{i-1}$, it holds that $\Gamma_{\theta^{i-1}}(v) \subseteq \overline{V}$ contradicting the fact that the first loop had terminated.) Specifically, this observation holds for p'. Therefore, $\exists p'' \in \mathcal{P}_i$ such that $dist(p', \widetilde{S}_i(p'')) \leq \theta^{i-1}$, where $\widetilde{S}_i(p'')$ denotes p'''s cluster just before beginning the second loop. Consequently,

$$\operatorname{dist}(p,p') \leq \operatorname{dist}(p'',p') \leq \operatorname{dist}(p',\widetilde{S}_i(p'')) + \operatorname{WRad}(p'',S_i(p'')) \leq \theta^{i-1} + 3\theta^{i-1} = 4\theta^{i-1}.$$

Since p' is connected to p in $T_i(p)$ by a shortest path (Lemma B.2), this bounds $Height(T_i(p))$, proving (2). Noting that $\theta \geq 5$ and $WRad(S_{i-1}(p')) \leq \theta^{i-1}$, we also have that: $\forall v \in S_{i-1}(p')$: $dist(p,v) \leq dist(p,p') + WRad(S_{i-1}(p')) \leq 5\theta^{i-1} \leq \theta^i$, which implies (3).

Theorem B.4 For every $\theta \geq 5$, HPART constructs a weak (θ, α) -LPH hierarchy for $\alpha(r) = r/\theta$.

Proof. We first note that in every level i, both loops terminate in finite time because of their dependence on the (finite) pivot set \overline{P} , from which at least one element is removed in every iteration. (In the first loop, each removal of a pivot from \overline{P} implies removal of nodes from \overline{V} , which determines the stopping

condition.) Lemma B.1 ensures that for every level i, S_i is a partition. The fact that the partitions form a refinement hierarchy, i.e., every cluster of S_{i-1} is subsumed in some cluster of S_i , is immediate from the construction. Radii guarantees are ensured by Lemma B.3. Finally, we bound the heights of logical trees. Let $Height(i) \triangleq max_{p \in \mathcal{P}_i}(Height(\widetilde{T}_i(p)))$. According to Lemma B.3(2), we have the following recursion for every level i:

$$Height(i) \leq 4\theta^{i-1} + Height(i-1) = 4\sum_{n=0}^{i-1} \theta^i + Height(0) = 4\left(\frac{\theta^{i-1}}{\theta-1}\right).$$

For $\theta \geq 5$, we obtain that $Height(i) \leq \theta^i$, concluding that the hierarchy is (θ, α) -local.

C Lemmas from I-LEAG's Correctness Proof

Proof. (Lemma 4.5) For every $p \in \mathcal{P}_i$, the height of $T_i(p)$ is at most θ^i . Hence, it takes at most θ^i time for a conflict message to reach its intended pivot, $2\theta^i$ time to conduct a converge-cast [18], and $\theta^i + 1$ time for a multicast to span a cluster in S_i and its direct neighbors. Since multicasts are initiated at pivot nodes upon completion of converge-cast operations, and these are triggered in response to conflict messages that are sent simultaneously at the beginning of a phase, it takes at most $4\theta^i + 1$ time for all messages to subside. Therefore, if a conflict was detected at the beginning of a phase then the 'wait' statement in line 6 ensures that there are no messages in flight when the phase ends. Otherwise, no conflict messages would be sent, and thus no converge-cast or multicast operations would be initiated either.

Proof. (Lemma 4.6) By induction on i. Let $p \in \mathcal{P}_i$ such that $v \in S_i(p)$. If $val = F(I_{S_i(p)})$ is explicitly calculated in phase i, lemma 4.5 ensures that both u and v receive a message containing a $\langle p, val \rangle$ tuple before the end of the phase. (u receives it either as a member of $S_i(p)$ itself or as a neighbor of v because $(u, v) \in Tree^+$). In this case, v sets $O_v = val$, u sets $O_u[v] = val$, and the lemma holds. Since F is calculated explicitly in all clusters at phase 0, this observation also establishes the base of the induction. Otherwise, both O_v and $O_u[v]$ are left unchanged and the lemma follows from our assumption on i-1.

D I-LEAG: Message Load and Memory Consumption

We begin with two technical lemmas. For every $p \in \mathcal{P}_i$, denote by $|T_i(p)|$ the number of edges in $T_i(p)$.

Lemma D.1 Let G = G(V, E) be a graph. For every (θ, α) -local partition of G, it holds for every $i \in [0, \Lambda_{\theta}]$ that $\sum_{p \in \mathcal{P}_i} |T_i(p)| \leq \theta^2 |V|$.

Proof. For facility of exposition, let $\mathcal{P}_{-1} = V$ and let $S_{-1} = \{\{p'\} \mid p' \in \mathcal{P}_{-1}\}$. For every $p' \in \mathcal{P}_{i-1}$, the length of the path connecting p' to its root $p \in \mathcal{P}_i$ in some level-i tree is at most θ^i . Therefore, for every $p \in \mathcal{P}_i$, the fact that $T_i(p)$ is a tree ensures that:

$$|T_i(p)| \le \theta^i \cdot \Big| \{ p' \in \mathcal{P}_{i-1} \mid S_{i-1}(p') \subseteq S_i(p) \} \Big|.$$

Consequently, $\sum_{p \in \mathcal{P}_i} |T_i(p)| \leq \theta^i |\mathcal{P}_{i-1}|$. For i = 0, 1, 2, the claim holds because $|\mathcal{P}_{i-1}| \leq |V|$ (there cannot be more pivots than nodes in a single partition). Otherwise, for every $p \in P_{i-1}$, the LPH requirements guarantee that $\Gamma_{\theta^{i-2}}(p) \subseteq S_{i-1}(p)$. Since G is connected, it follows that $|S_{i-1}(p)| \geq \theta^{i-2}$, so:

$$|V| = \sum_{p' \in \mathcal{P}_{i-1}} |S_{i-1}(p')| \ge \theta^{i-2} |\mathcal{P}_{i-1}| \implies \theta^i |\mathcal{P}_{i-1}| \le \theta^2 |V|.$$

Thus, $\sum_{p \in \mathcal{P}_i} |T_i(p)| \le \theta^i |\mathcal{P}_{i-1}| \le \theta^2 |V|$ as required.

Lemma D.2 Given a (θ, α) -local partition hierarchy of a graph G(V, E), for every phase i, I-LEAG sends at most $(4i\theta^2 + 2)|V|$ messages if $Tree^+$ is a tree and $(4i + 2\Lambda_{\theta})\theta^2|V|$ otherwise.

Proof. Denote by $\widetilde{T}(\mathcal{P}_i)$ the logical forest comprising the logical trees of every $p \in \mathcal{P}_i$. We begin by inspecting the communication that takes place over $\widetilde{T}(\mathcal{P}_i)$. According to lemma D.1, every level $j \leq i$ of the partition hierarchy introduces at most $\theta^2|V|$ (logical) edges to $\widetilde{T}(\mathcal{P}_i)$. Therefore, the number of edges of $\widetilde{T}(\mathcal{P}_i)$ is at most $i\theta^2|V|$. During phase i, every (logical) edge of $\widetilde{T}(\mathcal{P}_i)$ is traversed at most 4 times: once in conflict detection, twice in converge-cast, and once during multicast.

In addition, I-LEAG can send messages over edges of $Tree^+$ that are not part of $\widetilde{T}(\mathcal{P}_i)$, when nodes forward output changes to some of their direct neighbors during multicasts. Such edges are traversed at most twice (once in each direction). If $Tree^+$ is a tree, then obviously $|Tree^+| = |V| - 1$. Otherwise, Lemma D.1 ensures that $|Tree^+| \leq \Lambda_\theta \theta^2 |V|$. Hence, we conclude that in phase i, I-LEAG sends at most $(4i\theta^2 + 2)|V|$ messages if $Tree^+$ is a tree, and $(4i + 2\Lambda_\theta)\theta^2 |V|$ otherwise.

I-LEAG's average message load follows directly from lemma D.2:

Proof. (Theorem 4.11) In the general case, we obtain from Lemma D.2 that:

$$ML_{I-LEAG}(I) = \frac{1}{|V|} \sum_{i=0}^{\log(VR_{\alpha}(I))} (4i + 2\Lambda_{\theta})\theta^{2}|V| =$$

$$O(\log^2(VR_{\alpha}(I)) + \log(VR_{\alpha}(I)) \cdot \Lambda_{\theta}) = \log(VR_{\alpha}(I)) \cdot \Lambda_{\theta}).$$

If $Tree^+$ is a tree, it holds that:

$$ML_{I-LEAG}(I) = \frac{1}{|V|} \sum_{i=0}^{\log(VR_{\alpha}(I))} (4i\theta^2 + 2)|V| = O(\log^2(VR_{\alpha}(I))).$$

To evaluate I-LEAG's memory usage, we assume that the partition hierarchy's topological information is fully distributed: every node only needs to know its incident tree edges (per tree root) in every level of the partition hierarchy:

Proof. (Theorem 4.12) I-LEAG requires O(1) memory per node to hold its input value and output result. All the other memory requirements can be attributed to the costs incurred by each logical edge: topological information (whether this edge is a child or parent; the pivot whose tree this edge belongs to), remembering whether a conflict message has been forwarded during conflict detection, and holding an internal representation received from a peer node during converge-cast, all require O(1) memory. According to Lemma D.1, there are at most $O(\Lambda_{\theta}|V|)$ logical edges. The proof follows.