
Fundamental Bounds and Algorithms in Distributed
Reliable Storage

Research Thesis

In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

Alexander Spiegelman

Submitted to the Senate of the Technion – Israel Institute of Technology

Sivan 5778 Haifa June 2018

.

The research thesis was done under the supervision of Prof. Idit Keidar in the Viterbi
Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Haifa, Israel.

The generous financial help of the Technion and the Azrieli Fellowship is gratefully
acknowledged.

I wish to thank the Wolf Foundation, Dr. Jacob Isler Foundation, and the Meyer
academic excellence program for their awards.

This research thesis is dedicated to my mother who gave up on her Ph.D. in order to
give me birth.

Acknowledgment
I would like to sincerely thank the many people who made this research fruitful and

enjoyable.

• I wish to thank my advisor Idit Keidar for guiding me and teaching me how to
do research. I thank you for your endless support and for being such an inspiring
role model. Your advice is priceless, and your caring is admirable. It was a great
pleasure to work with you and to learn from you.

• I wish to thank Ittai Abraham, Eddie Bortnikov, Prof. Yuval Cassuto, Prof.Gregory
Chockler, Rati Gelashvili, Guy Golan Gueta, Eshcar Hillel, Heidi Howard, Dahlia
Malkhi, Kartik Nayak, Ling Ren, and Prof Moshe Tennenholtz for very productive
and enjoyable collaborations during my Ph.D. In particular, I wish to thank Prof.
Yuval Cassuto, Prof.Gregory Chockler and Dahlia Malkhi, who are my co-authors
on papers my thesis is based on, for your help, support, and guidance.

• I would like to thank our research group’s team members for the fun time we spent
together, and the ideas and feedbacks we shared. I enjoyed our group meetings,
the lunch times talks, and the professional discussions. In particular, I would like
to thank Kfir Lev-Ari and Alon Berger for the discussions we had and the work
we did together during my Ph.D. And of course, I wish to thank Naama Kraus for
being such a wonderful office-mate.

• I wish to thank Orly Babad-Tamir and Danit Cohen for their administrative sup-
port. Thank you for your dedication and your efficient help in any need - you
helped to make this journey pleasant.

• I wish to thank my parents, Olga Klin and Ilya Spiegelman, for raising me with
wisdom, always believing in me, and pushing me forward without pressuring.

• I thank my brother Roman Spiegelman for his interest, support, and encourage-
ment.

• I wish to thank my parents in law, Dimitry Nouzman and Irina Kaloujski for their
kind support. I am grateful for the assistance, which enabled me to invest time and
resources in my research.

• To my beloved baby, Shaked, who gave and gives me happiness. I thank you for
never crying at nights before deadlines:)

• And most importantly, I wish to thank my beloved wife Yelizabetha (Liza) Nouz-
man. Your support and sacrifice made this research possible. Thank you for being
there for me every time I needed, I am grateful and fortunate to have you by my
side.

.

.

List of Publications

Publications this thesis is based on

1. A. Spiegelman, I. Keidar, D. Malkhi, “Dynamic Reconfiguration: Abstraction and
Optimal Asynchronous Solution”, Proceedings of the 31th International Conference on
Distributed Computing (DISC 2017), Vienna, Austria, 2017.

2. G. Chockler and A. Spiegelman, “The Space Complexity of Fault Tolerant Regis-
ter Emulations”, Proceedings of the 2017 ACM Symposium on Principles of Distributed
Computing (PODC2017), Washington D.C., USA.

3. A. Spiegelman and I. Keidar, “On Wait-Free Dynamic Storage with Infinitely Many
Reconfigurations”, Proceedings of the 24th International Colloquium on Structural In-
formation and Communication Complexity (SIRROCO 2017), Porquerolles, France, 2017

4. A. Spiegelman, Y. Cassuto, G. Chockler, and I. Keidar, “Space Bounds for Reliable
Storage: Fundamental Limits of Coding”, Proceedings of the 2016 ACM Symposium
on Principles of Distributed Computing (PODC 2016), Chicago, USA.

Other publications

5. A.Berger, I. Keidar, and A. Spiegelman, “Integrated Bounds for Disintegrated Stor-
age”, Proceedings of the 32th International Conference on Distributed Computing (DISC
2018), New Orleans, USA, 2018.

6. I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman, “Solidus: An Incentive-
compatible Cryptocurrency Based on Permissionless Byzantine Consensus”, Pro-
ceedings of the 21th International Conference on Principles of Distributed Systems, OPODIS
2017, Lisbon, Portugal.

7. R. Gelashvili, I. Keidar, A. Spiegelman, and R. Wattenhofer, “Brief Announcement:
Towards Reduced Instruction Sets for Synchronization”, Proceedings of the 31th In-
ternational Conference on Distributed Computing (DISC 2017), Vienna, Austria, 2017.

9

8. A. Spiegelman and I. Keidar, “Snapshots in Dynamic Memory Models”, Proceedings
of the 20th International Conference on Principles of Distributed Systems, OPODIS 2016,
Madrid, Spain.

9. H. Howard, D. Malkhi, and A. Spiegelman, “Flexible Paxos: Quorum Intersection
Revisited”, Proceedings of the 20th International Conference on Principles of Distributed
Systems, OPODIS 2016, Madrid, Spain.

10. A. Spiegelman, G. Golan- Gueta, and I. Keidar, “Transactional Data Structure Li-
braries”, Proceedings of the 2016 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2016), Santa Barbara, USA.

11. A. Spiegelman, I. Keidar, and D. Malkhi, “Dynamic Reconfiguration: A tutorial”,
Proceedings of the 19th International Conference on Principles of Distributed Systems,
OPODIS 2015, Rennes, France.

Technical reports

11. A. Spiegelman, I. Keidar, and Moshe Tennenholtz “Game of Coins”, arXiv:1805.08979,
2018.

.

Table of Contents

Abstract 1

List of Acronyms 3

List of Symbols 4

1 Introduction 5
1.1 Storage cost . 5
1.2 Dynamic reconfiguration . 7

2 The Power of Primitives for Fault-Tolerant Register Emulations 9
2.1 Model . 13

2.1.1 Shared Objects . 13
2.1.2 Registers . 13
2.1.3 Consistency Conditions . 14
2.1.4 System Model . 14
2.1.5 Properties of the Emulation Algorithms 15

2.2 A Max-Register Emulation With One CAS 15
2.2.1 Correctness . 16

2.3 Resource Complexity of Write-Sequential k-register Emulation 18
2.3.1 Lower bound overview . 18
2.3.2 Lower Bounds . 19
2.3.3 Upper Bound . 28

2.4 Discussion and Future Directions . 33

3 Space Bounds for Reliable Storage: Fundamental Limits of Coding 34
3.1 Model . 36

3.1.1 Preliminaries . 36
3.1.2 Storage algorithm model and assumptions 38

3.2 Related work . 40
3.3 Storage Lower Bound . 41
3.4 Adaptive Regular Register . 47

ii TABLE OF CONTENTS

3.4.1 Algorithm . 47
3.4.2 Correctness Proofs . 51

3.5 A (Simple) Safe and Wait-free Algorithm 55
3.5.1 Algorithm . 56
3.5.2 Correctness proof . 56

3.6 Discussion . 58

4 On Liveness of Dynamic Storage 59
4.1 Model . 62

4.1.1 Preliminaries . 62
4.1.2 Dynamic storage . 62

4.2 Impossibility of Wait-Free Dynamic Safe Storage 65
4.3 Oracle-Based Dynamic Atomic Storage . 66

4.3.1 Dynamic failure detector . 67
4.3.2 Dynamic storage algorithm . 68
4.3.3 Correctness proof . 74

4.4 Conclusion . 79

5 Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution 80
5.1 Related Work . 83
5.2 Dynamic Model . 84
5.3 Reconfiguration Abstraction . 86
5.4 Building Dynamic Objects Using Reconfiguration 88

5.4.1 Dynamic atomic read/write register 88
5.4.2 Dynamic atomic max-register . 90
5.4.3 Read/write register correctness proof 91

5.5 The Reconfiguration Abstraction Implementation 94
5.5.1 CoS building block . 94
5.5.2 Simple Reconfiguration . 96
5.5.3 Optimal Reconfiguration . 98
5.5.4 Reconfiguration Correctness Proof 100
5.5.5 Reconfiguration Complexity Proof 103

5.6 Conclusions . 110

6 Conclusion 112

Bibliography 114
.1 Additional results of Chapter 2 . 120

List of Figures

1.1 Encoding and decoding using xor. 6

2.1 An illustration of the runs constructed in Lemma 5. 25

2.2 A possible mapping fromR to S in case n = 6, k = 5, and f = 2. 29

3.1 Clients and base objects. 36

3.2 A model for code-based storage. Encoding and decoding are captured by
oracles. 39

3.3 Black-box coding. Runs r and rv have the same trace except that write w
is invoked with u in r and with v in rv; and each base object boi’s state
(blocks and meta-data) is identical at all times in both runs, except that
blocks produced by w’s oracle in r are replaced in rv by the corresponding
blocks of v. 40

3.4 Example scenario in run of a storage algorithm with adversary Ad. In
this example, 2D/5 < ` < D. At time t, only w2 and w4 are in C−(t),
where w4 has no pending RMWs and w2 has one triggered RMW on b1 ∈
F(t) and one triggered RMW on b3 6∈ F(t). Therefore, by the first rule,
Ad schedules the response on the RMW triggered by w2 on b3. In this
example w2 overwrites w3’s block in b3, thus w3 moves from C+ to C−.
Then, at time t + 1, no response can be scheduled by rule 1 (no operation
in C−(t + 1) has a pending RMW on a base object in N \ F(t + 1)), so by
rule 2, Ad chooses w2 and lets it trigger an RMW on base object b2. Now
since w2 is the only operation that has a pending RMW on a base object
not in F(t + 2), Ad schedules the response on the RMW triggered by w2

on b2 at time t + 2. In this example w2 adds a block with ` bits to b2. Thus,
c2 is included in C+(t + 3). In addition, b2 stores more than ` bits at time
t + 3, so it belongs to F(t + 3). 44

4.1 Notation illustration. add(p) (remove(p)) represents recon f ig(〈add, p〉) (re-
spectively, recon f ig(〈remove, p〉)). 63

4.2 Illustration of the infinite run r . 67

iv LIST OF FIGURES

4.3 Flow illustration: process p2 is slow. After stabilization time, process p1

helps it by proposing its operation. Once p2’s operation is decided, it is re-
flected in every up-to-date sm. Therefore, even if p1 fails before informing
p2, p2 receives from the next process that performs an operation, namely
p3, an sm that reflects its operation, and thus returns. Line arrows repre-
sent messages, and block arrows represent operation or consensus invo-
cations and responses. 69

5.1 The Reconfiguration abstraction usage. Solid (dashed) blocks depict dy-
namic (resp. static) objects. 82

5.2 Example run of client pi of our algorithm. The dashed configuration is in
pi’s ToTrack after calling N1.CoS, and thus it is in potentialSuccessors(N1).
But it is dropped after pi calls N2.CoS, and thus it is never introduced, and
so it is not in successors(N2). 104

List of Tables

2.1 Space hierarchy: Number of base objects for f -tolerant register emulation
with k writers and n ≥ 2 f + 1 servers. 10

vi LIST OF TABLES

Abstract

In recent years we see an exponential increase in storage capacity demands, creating a
need for big data storage solutions. Additionally, today’s economy emphasizes consol-
idation, giving rise to massive data centers and clouds. In this era, distributed storage
plays a key role. This is marked by two clear trends: First, the storage market gravi-
tates towards distributed storage solutions within data centers as well as across multiple
data centers; such systems are typically made up of many cheap, low-reliability storage
nodes, and achieve durability and high availability via redundancy. Second, we see more
and more users store data in clouds that are accessed remotely over the Internet. In this
thesis, we study two fundamental aspects of reliable distributed storage: storage space
cost and dynamic storage reconfiguration.

Storage space cost. Given the inherent failure-prone nature of storage and network
components, a reliable distributed storage algorithm must store redundant information
in order to allow data to be reconstructed when some subset of the system fails. The
most common approach to achieve this is via replication, i.e., storing multiple copies
of each data block. The well-known ABD result shows that an f -tolerant storage can
be emulated using a collection of 2 f + 1 fault-prone servers, each storing a single read-
modify-write object type, which is known to be optimal. We first generalize this bound
by investigating the inherent space cost of emulating reliable storage as a function of the
object type exposed by the underlying servers. Then, we focus on read-modify-write
object type and investigate whether erasure codes can help mitigate the significant cost
of replication that results from the immense size of the data. Some previous works at-
tempted to do it, but a closer look at existing solutions reveals that they incur extra
storage costs in other places. Specifically, the use of coding creates scenarios where old
information cannot be over-written, leading the storage to grow without bound if con-
currency is high. We shed light on the fundamental tradeoff between lower redundancy
per block (as achieved by codes), concurrency, and allowing old data to be over-written
(as achieved by replication).

Dynamic reconfiguration. A key challenge for distributed storage is the problem of
reconfiguration. Clearly, any production storage system that provides data reliability
and availability for long periods must be able to reconfigure in order to remove failed

2 Abstract

or old nodes and add healthy or new ones. Reconfiguration is also essential in order
to realize the greatest advantage of distributed storage over traditional monolithic en-
terprise storage solutions, namely, that it supports elastic incremental growth- the main
motivation for the economic model of cloud computing. In this thesis we contribute to
the understanding of reconfiguration of distributed storage by showing both negative
(impossibility) and positive (algorithms) results.

List of Acronyms

RMW read modify write
MWMR multi-writer multi-reader
MWSR multi-writer single-reader
SWSR single-writer single-reader
SWMR single-writer multi-reader
RR ranked register
CoS common set

List of Symbols

3PD dynamic failure detector

Chapter 1

Introduction

Data collection and consumption is growing exponentially in recent years (see, e.g., [46]),
and is expected to continue to grow even faster [76]. This creates a demand for larger and
larger storage capacities and support for elastic growth thereof. The growth of individ-
ual disk capacities cannot match this phenomenal surge in demand, and so distributed
storage has become the method of choice. Storage solutions nowadays consist of large
interconnected collections of disks, controllers, and servers. In some cases they reside
within a single data center, while in others they are geo-distributed so as to allow local
access to geographically dispersed clients as well as for disaster recovery. In many cases
the storage is provided as a cloud-based service. In this thesis, we deal with fundamental
challenges that arise in today’s massive distributed storage. In particular, we study reli-
able asynchronous storage space cost and its dynamic reconfiguration. Part of the results
in this thesis were previously published in PODC [27, 69], DISC [73], and SIROCCO [71].

1.1 Storage cost

Reliable storage emulations seek to construct fault-tolerant shared objects, such as read/write
registers, using a collection of base objects hosted on failure-prone servers. A reliable dis-
tributed storage emulation must therefore store redundant information in order to allow
data to be reconstructed when some subset of the system fails. The most common ap-
proach to achieve this is via replication, i.e., storing multiple copies of each data block,
and most existing storage emulation algorithms are constructed from storage services
capable of supporting custom-built read-modify-write (RMW) primitives [10, 35, 41, 31,
39, 7, 64, 57], where perhaps the most famous one is ABD [10]. This algorithm emulates
an f -tolerant atomic wait-free register, accessed by an unbounded number of processes
(readers and writers), on top of 2 f + 1 servers, each of which stores a single RMW object.

The power of primitives. Since f -tolerant register emulation is impossible with less
than 2 f + 1 servers [14, 55], the ABD algorithm’s space complexity is optimal in terms of

6 Chapter 1. Introduction

(a) Encoding (b) Decoding

Figure 1.1: Encoding and decoding using xor.

number of base objects. However, support for atomic RMW is not always available: the
operations exposed by network-attached disks are sometimes limited to basic read/write
capabilities, and the interfaces exposed by cloud storage services sometimes augment
this with simple conditional update primitives similar to Compare-and-Swap (CAS). A
natural question that we study in Chapter 2 is therefore how the ABD results generalize
when only weaker primitives (e.g., read/write registers) are available. More specifically,
we are interested whether reliable storage emulations are possible with weaker primi-
tives, and if so, what their space cost in terms of number of objects is, and in particular,
does their cost depend on the number of writers and the number of servers. This ques-
tion led us to define a new space hierarchy of fault tolerant storage emulations.

Erasure codes. Given the immense size of data, the storage cost of full replication
becomes significant. A promising approach mitigates this cost via the use of erasure
codes [6, 21, 42, 23, 77, 30]. In a nutshell, erasure codes allow redundant information to
be shared among multiple data blocks. For example, it is possible to keep a single re-
dundant block constructed as the xor of k data blocks instead of holding replicas of all k
blocks. Either way, the data can be reconstructed despite the loss of any single (original
or redundant) block as illustrated in Figure 1.1. Given data of size D bits and f = 1, this
approach can ideally reduce the storage cost from 3D to (k + 1)D/k bits. If a large k is
used, the redundancy overhead with erasure codes is diminished, and the gap becomes
significant.

While this approach is appealing, a closer look at existing erasure-coded storage so-
lutions reveals that they incur extra storage costs somewhere else. Specifically, the use
of coding in lieu of replication creates a need for storing multiple versions of each data
block, and the number of version can grow without bound if concurrency is high [42, 23].
To avoid it, some keep unbounded information in channels [30, 21] while others assume
periods of synchrony [6] or allow returning obsolete values [77].

In Chapter 3 we study to what extent such a storage blowup is inevitable. We investi-
gate the fundamental limitations of coded storage and the tradeoffs between replication

1.2. Dynamic reconfiguration 7

and coding. In particular, we first prove a lower bound on the storage cost, in terms
of bits, for asynchronous algorithms under some assumptions stated in Chapter 3. Our
lower bound is presented as a function of the number of storage node failures tolerated,
the concurrency allowed by the algorithm, and the data size. Then, we also present
in Chapter 3 an algorithm that combines erasure-codes with replication to achieve an
asymptotically tight upper bound.

1.2 Dynamic reconfiguration

A second key challenge for distributed storage is reconfiguration. Clearly, any produc-
tion storage system that provides data reliability and availability for long periods must
be able to reconfigure in order to remove failed or old nodes and add healthy or new
ones. Reconfiguration is also essential in order to realize the greatest advantage of dis-
tributed storage over traditional monolithic enterprise storage solutions, namely, that it
supports elastic incremental growth– the main motivation for the economic model of cloud
computing.

The study of reconfigurable replication has been active since at least the early 1980s,
with the development of group communication and virtual synchrony (see survey in [28]).
But despite its vital real-world importance, the issue of online reconfiguration of storage
services is still not well understood; theory for this problem is in its infancy, and most
distributed storage systems in production are reconfigured manually during complete
system shutdown.

Until recently, no liveness (progress) properties for a reconfigurable storage service
were formally specified. While it has long been well-known that, in a static system,
asynchronous replication requires a majority of replicas to be operational for liveness, no
similar criterion had been formulated for the case where the set of replicas dynamically
changes. The DynaStore [8] algorithm was the first to formulate sufficient conditions
for liveness of reconfigurable storage. Nevertheless, these conditions were never shown
to be necessary. For example, DynaStore, like its predecessors [40, 41, 53, 24], ensures
progress only if the number of reconfigurations is finite.

Liveness of Dynamic Storage In Chapter 4, we prove that this is indeed inherent for
asynchronous API-based storage solutions, where the service’s API is extended with a
reconfiguration operation for changing the current configuration of participating pro-
cesses [66, 8, 50, 37, 40, 41, 24], which can be only invoked by members of the current
configuration. In addition, we define in Chapter 4 a dynamic failure detector that can
be easily implemented in eventually synchronous systems, and use it to implement dy-
namic storage algorithm that ensures liveness for all operations without restricting the
reconfiguration rate.

8 Chapter 1. Introduction

Dynamic fault model. Moreover, DynaStore’s restrictions on failures are not defined
in an intuitive way, and do not create a clear distinction between user-controlled ac-
tions (like removing a process from the current configuration) and ones stemming from
the environment (like process failures). In Chapter 5 we first define a dynamic model
with a clean failure condition that allows an administrator to reconfigure the system and
switch off a server once the reconfiguration operation removing it completes. Our dy-
namic fault model is defined as an interplay between the object’s implementation and its
environment.

Reconfiguration abstraction and optimal solution. DynaStore is quite complex, the
reconfiguration mechanism is not clearly abstracted away from the intricacies of data
replication, its operation complexity is exponential, and it does not explicitly deal with
clients and only presents a server-side algorithm. (Follow-up work [66] extends Dyna-
Store to support client operations, but this is systems work that does not deal with the
topic formally). In Chapter 5 we also define a Reconfiguration abstraction in the client-
server model, show how it can be used to build dynamic storage, and give an optimal
asynchronous algorithm implementing the Reconfiguration abstraction, which in turn
leads to the first asynchronous storage emulation with optimal linear complexity.

Chapter 2

The Power of Primitives for
Fault-Tolerant Register
Emulations

Reliable storage emulations seek to construct fault-tolerant shared objects, such as read/write
registers, using a collection of base objects hosted on failure-prone servers. Such em-
ulations are core enablers for many modern storage services and applications, includ-
ing cloud-based online data stores [29, 61, 60, 47, 58] and Storage-as-a-Service offer-
ings [63, 67, 33, 75].

Most existing storage emulation algorithms are constructed from storage services ca-
pable of supporting custom-built read-modify-write (RMW) primitives [10, 35, 35, 41,
31, 39, 7, 64, 57], and perhaps the most famous one is ABD [10]. This algorithm emulates
an f -tolerant atomic wait-free register, accessed by an unbounded number of processes
(readers and writers), on top of 2 f + 1 servers, each of which stores a single RMW object.
Since f -tolerant register emulation is impossible with less than 2 f + 1 servers [14, 55],
the ABD algorithm’s space complexity is optimal.

However, support for atomic RMW is not always available: the operations exposed
by network-attached disks are typically limited to basic read/write capabilities, and the
interfaces exposed by cloud storage services sometimes augment this with simple con-
ditional update primitives similar to Compare-and-Swap (CAS). A natural question that
arises is therefore how the ABD results generalize when only weaker primitives (e.g.,
read/write registers) are available. More specifically, we are interested whether reliable
storage emulations are possible with weaker primitives, and if so, what their space com-
plexity is, and in particular, does their complexity depend on the number of writers and
the number of servers. These questions lead us to define a new space hierarchy of fault
tolerant register emulations.

10 Chapter 2. The Power of Primitives for Fault-Tolerant Register Emulations

Base object Lower bound Upper bound
(WS-Safe, obstruction-free) (WS-Regular, wait-free)

max-register 2 f + 1 2 f + 1
CAS 2 f + 1 2 f + 1

read/write register k f +
⌈

k
n−(f +1)

f

⌉
(f + 1) k f +

⌈ k⌊
n−(f +1)

f

⌋ ⌉(f + 1)

Table 2.1: Space hierarchy: Number of base objects for f -tolerant register emulation with
k writers and n ≥ 2 f + 1 servers.

Space hierarchy. Herlihy’s well-known consensus hierarchy [44] provides a way to
compare the power of different primitives (e.g., read/write register, T&S, CAS, etc), in
terms of computability. However, this hierarchy tells us nothing about the space com-
plexity of the corresponding emulations. A recent paper by Ellen et al. [34] sheds some
light on this topic by presenting a hierarchy classified by the space complexity required
for solving obstruction-free consensus. We follow Ellen et al. [34], and make another step
towards understanding the space requirements induced by different primitives.

We introduce a new space hierarchy, which classifies primitives by the space required
for reliable register emulations on top of fault-prone servers that support the primitives.
More specifically, we assume a collection of n fault-prone servers, each of which stores
base objects supporting the given primitive. The failure granularity is servers, mean-
ing that a server crash causes all base objects it stores to crash as well. We study three
primitives: read/write register, max-register [9], and CAS. For each primitive, we are
interested in the number of base objects required to emulate an f -tolerant register for k
writers using n servers.

To strengthen our result, we prove the lower bound under weak liveness and safety
guarantees, namely, obstruction freedom and write sequential safety (WS-Safety). The
latter is a weak generalization for Lamport’s notion of safety [52] to multi-writer regis-
ters, which we define in Section 2.1. Since atomicity usually requires readers to write,
which may induce a dependency on the number of readers, we consider regularity for
our upper bound; we define in Section 2.1 write sequential regularity (WS-Regularity),
which is a weaker form of multi-writer regularity defined in [64]. The lower bound
proved in [14, 55] on the number of servers required for f -tolerant register emulations
can be easily generalized for WS-Safe obstruction-free emulations. Therefore, we assume
that n ≥ 2 f + 1 throughout the chapter.

Table 2.1 summarizes the hierarchy. Interestingly, even though both registers and
max-registers have the lowest consensus number of 1 in Herlihy’s hierarchy [44], they
have different powers in our hierarchy, whereas CAS, which has an infinite consensus
number, has the same power as max-register in our hierarchy. As an aside, we note
that our hierarchy has implications for the standard shared memory model (without
base object failures); for example, it implies that a max-register for k writers cannot be
implemented from less than k read/write registers (proven in Theorem 3).

11

Results. Despite the fact that the original ABD emulation [10] assumes a general RMW
base object on every server, we observe that the code executed by each server in the
multi-writer ABD protocol [41, 64, 57] can be encapsulated into the write-max (for han-
dling update messages) and read-max (for handling read messages) primitives of max-register.
Therefore, the upper bound of 2 f + 1 applies to max-registers as well. In Section 2.2 we
show how to emulate a max-register from a single CAS in a wait-free manner. Thus, the
upper bound for max-register also applies to CAS.

Our main technical contribution is a lower bound on the number of read/write reg-
isters required to emulate an f -tolerant WS-Safe obstruction-free register for k clients us-
ing n servers. While the ABD [10] space complexity does not depend on the number of
writers or the number of servers, we show in Section 2.3 (Theorem 2) that when servers
support only read/write registers, the lower bound increases linearly with the number
of writers and decreases (up to a certain point) with the number of available servers. In
particular, our lower bound implies that at least k f + f + 1 registers are needed regard-
less of the number of available servers. We exploit asynchrony to show that an emulated
write must complete even if it leaves f pending writes on base registers, forcing the next
writer to use a different set of registers, even in a write-sequential run.

In Section 2.3, we also present a new upper bound construction that closely matches
our lower bound (Theorem 4). Note that the two bounds are closely aligned, and in
particular, coincide in the two important cases of n = 2 f + 1 and n ≥ k f + f + 1 where
they are equal to k f + k(f + 1) and k f + f + 1 respectively. An interesting open question
is to close the remaining small gap.

Another open question is whether our lower bound is tight for stronger regularity
definitions [65]. In the special case of n = 2 f + 1 servers and k writers, a matching upper
bound of (2 f + 1)k registers can be achieved by simply having each server implement a
single k-writer max-register from k base registers [9]. The question of the general case of
n ≥ 2 f + 1 remains open.

In Appendix .1, we show the following three additional results implied by an ex-
tended variant of our main lower bound construction: (1) a lower bound of k registers
per server for n = 2 f + 1 (Theorem 13); (2) a lower bound on the number of servers
when the maximum number of registers stored on each server is bounded by a known
constant (Theorem 14); and (3) impossibility of constructing fault-tolerant multi-writer
register emulations adaptive to point contention [2, 13] (Theorem 15).

Related work. The space complexity of fault-tolerant register emulations has been ex-
plored in a number of prior works. Afek et al. [3] consider a model where faulty servers
are responsive but may return arbitrary values, and present several storage efficient al-
gorithms for reliable registers. We prove that when faulty servers are unresponsive, the
additional storage cost is inherent. Aguilera et al. [5] present bounds on the number of
fault-prone base registers required to support a reliable multi-writer one using uniform
algorithms (i.e., algorithms that do not depend on a priori knowledge of the number of
writers). Our results, in contrast, do not assume uniformity, and provide bounds on the

12 Chapter 2. The Power of Primitives for Fault-Tolerant Register Emulations

number of base registers as a function of the number of writers, servers, and the failure
threshold. In Chapter 3 we consider the space complexity of reliable register emulations
in terms of the amount of data bits stored on fault-prone RMW servers, and since in this
chapter we are only interested in the number of stored registers and not their sizes, these
results are orthogonal.

Basescu et al. [18] describe several fault-tolerant multi-writer register emulations
from a collection of fault-prone read/write data stores. Their algorithms incorporate a
garbage-collection mechanism that ensures that the storage cost is adaptive to the write
concurrency, provided that the underlying servers can be accessed in a synchronous fash-
ion. Our results show that asynchrony has a profound impact on storage consumption
by exhibiting a sequential failure-free run where the number of registers that need to be
stored grows linearly with the number of writers.

The proof of our main result (see Lemma 2) further extends the adversarial frame-
work we use in Chapter 3 to exploits the notion of register covering (originally due to [?])
extended to fault-prone base registers as in [5]. Covering arguments have been success-
fully applied to proving numerous space lower bound results in the literature (see [12]
for a survey) including the recent tight bounds for obstruction-free consensus [38, 78],
which are at the heart of the space hierarchy of [34] discussed above.

2.1. Model 13

2.1 Model

2.1.1 Shared Objects

A shared object supports concurrent execution of operations performed by some set, C =

{c1, c2, . . . }, of client processes. Each operation has an invocation and response. An object
schedule is a sequence of the operation invocations and their responses. An invoked op-
eration is complete in a given schedule if the operation’s response is also present in the
schedule, and pending otherwise. For a schedule σ, ops(σ) denotes the set of all oper-
ations that were invoked in σ, and complete(σ) (resp., pending(σ)) denotes the subset
of ops(σ) consisting of all the complete (resp., pending) operations. Also, for a set X of
operations, we use σ|X to denote the subsequence of σ consisting of all the invocation
and responses of the operations in X.

An operation op precedes an operation op′ in a schedule σ, denoted op ≺σ op′ iff op′

is invoked after op responds in σ. Operations op and op′ are concurrent in σ, if neither
one precedes the other. A schedule with no concurrent operations is sequential. Given a
schedule σ, we use σ|i to denote the subsequence of σ consisting of the actions client ci.
The schedule is well-formed if each σ|i is a sequential schedule. In the following, we will
only consider well-formed schedules.

The object’s sequential specification is a collection of the object’s sequential schedules
in which all operations are complete. For an object schedule σ, a linearization Lσ of σ is a
sequential schedule consisting of all operations in complete(σ) along with their responses
and a subset of pending(σ), each of which being assigned a matching response, so that
Lσ satisfies both the σ’s operation precedence relation (≺σ) and the object sequential
specification.

2.1.2 Registers

A read/write register object (or simply a register) supports two operations of the form
write(v), v ∈ Vals, and read() returning ack and v ∈ Vals respectively where Vals is
the register value domain. Its sequential specification is the collection of all sequential
schedules where every read returns the value written by the last preceding write or an
initial value v0 ∈ Vals if no such write exists.

A register is multi-writer (MW) (resp., multi-reader (MR)) if it can be written (resp.,
read) by an unbounded number of clients. A k-writer register, or simply, k-register, is a
register that can be written by at most k > 0 distinct clients. A register is single-writer
(SW) (resp., single-reader (SR)) if only one process can write (resp., read) the register. For a
register schedule σ, we use writes(σ) and reads(σ) to denote the sets of all write and read
operations invoked in σ. We say that σ is write-sequential if no two writes in writes(σ) are
concurrent.

14 Chapter 2. The Power of Primitives for Fault-Tolerant Register Emulations

2.1.3 Consistency Conditions

Consistency conditions specify the shared object behaviour when accessed concurrently
by the clients. Below, we introduce a number of consistency conditions that will be used
throughout this paper. They are expressed as a set of schedules C satisfying one of the
following requirements:

Atomicity [45] For all schedules σ ∈ C, σ has a linearization.

Write-Sequential Regularity (WS-Reg) For all σ ∈ C, if σ is write-sequential, then for
each rd ∈ reads(σ) ∩ complete(σ) there is a linearization Lrd of σ|writes(σ) ∪ {rd}.

Write-Sequential Safety (WS-Safe) As WS-Reg, but only required to hold for complete
reads that are not concurrent with any writes.

2.1.4 System Model

We consider an asynchronous fault-prone shared memory system [48] consisting of a set of
shared base objects B = {b1, b2, . . . }. The objects are accessed by a collection of clients in
the set C = {c1, c2, . . . }.

We consider a slight generalization of the model in [48] where the objects are mapped
to a set S = {s1, s2, . . . } of servers via a function δ from B to S . For B ⊆ B, we will write
δ(B) to denote the image of B, i.e., δ(B) = {δ(b) : b ∈ B}. Conversely, for S ⊆ S , we
will write δ−1(S) to denote the pre-image of S, i.e., δ−1(S) = {b : δ(b) ∈ S}. Note that for
all B ⊆ B, |δ(B)| ≤ |B|, and conversely, for all S ⊆ S , |δ−1(S)| ≥ |S|. Both servers and
clients can fail by crashing. A crash of a server causes all objects mapped to that server
to instantaneously crash1.

We study algorithms emulating reliable k-writer registers to a set of clients. Clients
interact with the emulated register via high-level read and write operations. To distin-
guish the high-level emulated reads and writes from low-level base object invocations,
we refer to the former as READ and WRITE. We say that high-level operations are invoked
and return whereas low-level operations are triggered and respond. A high-level opera-
tion consists of a series of trigger and respond actions on base objects, starting with the
operation’s invocation and ending with its return. Since base objects are crash-prone, we
assume that the clients can trigger several operations in a row without waiting for the
previously triggered operations to respond.

An emulation algorithm A defines the behaviour of clients as deterministic state ma-
chines where state transitions are associated with actions, such as trigger/response of
low-level operations. A configuration is a mapping to states from system components,
i.e., clients and base objects. An initial configuration is one where all components are in
their initial states.

1Note that the original faulty shared model of [48] can be derived from our model by choosing δ to be an
injective function.

2.2. A Max-Register Emulation With One CAS 15

A run of A is a (finite or infinite) sequence of alternating configurations and actions,
beginning with some initial configuration, such that configuration transitions occur ac-
cording to A. We use the notion of time t during a run r to refer to the configuration
reached after the tth action in r. A run fragment is a contiguous sub-sequence of a run. A
run is write-only if it has no invocations of the high-level READ operations.

We say that a base object, client, or server is faulty in a run r if it fails at some time in
r, and correct, otherwise. A run is fair if (1) for every low-level operation triggered by
a correct client on a correct base object, there is eventually a matching response, and (2)
every correct client gets infinitely many opportunities to both trigger a low-level opera-
tion and execute the return actions. We say that a low-lever operation on a base object
is pending in run r if it was triggered but has no matching response in r. We assume that
the base objects are atomic (as defined in Section 2.1.3)

2.1.5 Properties of the Emulation Algorithms

Safety The emulation algorithm safety will be expressed in terms of the consistency
conditions specified in Section 2.1.3. An emulation algorithm A satisfies a consistency
condition C if for all A’s runs r, the subsequence of r consisting of the invocations and
responses of the high-level read and write operations is a schedule in C.
Liveness We consider the following liveness conditions that must be satisfied in fair runs
of an emulation algorithm. A wait-free object is one that guarantees that every high-level
operation invoked by a correct client eventually returns, regardless of the actions of other
clients. An obstruction-free object guarantees that every high-level operation invoked by
a correct client that is not concurrent to any other operation by a correct client eventually
returns.
Fault-Tolerance The emulation algorithm is f -tolerant if it remains correct (in the sense
of its safety and liveness properties) as long as at most f servers crash for a fixed f > 0.
Complexity measures The resource consumption of an emulation algorithm A in a (finite)
run r is the number of base objects used by A in r. The resource complexity [48] of A is the
maximum resource consumption of A in all its runs.

2.2 A Max-Register Emulation With One CAS

We present here a wait-free emulation of an atomic max-register on top of a single CAS
object. The pseudocode appears in Algorithm 1. The CAS object supports one operation
with two parameters, exp and new; if exp is equal to the object’s current value, then the
value is set to new. In any case, the operation returns the old value.

A max-register supports two operations, max-write(v) for some v from some domain
of ordered values V that returns ok, and max-read() that returns a value from V. The
sequential specification of max-register is the following: A max-read returns the highest
value among those written by max-write before it, or v0 in case no such values.

16 Chapter 2. The Power of Primitives for Fault-Tolerant Register Emulations

Algorithm 1 Max-register emulation from a single CAS object b

Local variables:
tmp ∈ V, initially v0

operation b.CAS(exp, new), exp, new ∈ V

prev← b
if exp = b then

b← new
return prev

1: operation Max-write(v)
2: while true do
3: tmp← b.CAS(v0, v0)
4: if tmp ≥ v then
5: return ok
6: b.CAS(tmp, v)

7: operation Max-read()
8: tmp← b.CAS(v0, v0)
9: return tmp

2.2.1 Correctness

We say that a b.CAS(exp, new) operation is successful if b is set to new.

Observation 1. Consider a successful b.CAS(exp, new) operation for some exp and new, the
the next b.CAS(exp′, new′) operation for some exp′ and new′ returns new.

The following observation follows immediately from the fact that b.CAS(exp, new) is
called only with new ≥ exp.

Observation 2. The values returned by b.CAS(exp, new) are monotonically increasing.

We next define linearization points:

Definition 1. (linearization points)

max-read: The linearization point is line 8.

max-write: If the operation performs a successful b.CAS(tmp, v) in line 6, then the lineariza-
tion point is the last time Line 6 is performed. Otherwise, the linearization point is last
time line 3 is performed.

Lemma 1. For every run r of Algorithm 1, the sequential run σr, produced by the linearization
points of operations in r, is a linearization of r.

Proof. The real time order of r is trivially preserved in σr. We need to show that σr pre-
serves max-register’s sequential specification. Let mr be a max-read() in r that returns a
value v, and let tmr be the time when b.CAS(v0, v0) (that returns v) is called by mr (line 8).
We need to show that (1) there is no max-write(v′) that precedes mr in σr s.t. v′ > v, and
(2) if v 6= v0, there is a max-write(v) that precedes mr in σr

2.2. A Max-Register Emulation With One CAS 17

1. Assume by way of contradiction that there is a max-write(v′) w that precedes mr
in σr s.t. v′ > v. Denote tw to be the linearization point of w in r, and note that
tw < tmr. Now consider two case:

(a) w performs line 6 at time tw (line 6 is w’s linearization point). In this case,
w performs a successful b.CAS(tmp, v′) in line 6 for some tmp at some time
t′ ≤ tw < tmr. Therefore, by Observations 1 and 2, b.CAS(v0, v0) called by mr
in line 8 at time tmr returns v′′ ≥ v′ > v. Hence, mr returns v′′ ≥ v′ > v. A
contradiction.

(b) w performs line 3 at time tw (line 3 is w’s linearization point). Thus, tw is the
last time w calls tmp ← b.CAS(v0, v0) in lime 3. Therefore, b.CAS(v0, v0),
called at time tw returns a value bigger than or equal to v′. Therefore, by
Observations 1 and 2, b.CAS(v0, v0) called by mr in line 8 at time tmr returns
v′′ ≥ v′ > v. Hence, mr returns v′′ ≥ v′ > v. A contradiction.

2. Assume that v 6= v0. By the code and by the CAS properties, there is a max-write(v)
operation w that calls a successful b.CAS(tmp, v) (line 6) for some tmp at time tw <

tmr. Therefore, by Observations 1 and 2, the next call to b.CAS(v0, v0) (in line 3) by
w returns tmp ≥ v, and thus w does not perform line 6 again. We get that tw is the
linearization point of w, and thus w precedes mr in σr.

Theorem 1. Algorithm 1 emulates wait-free atomic max-register.

Proof. Atomicity follows from Lemma 1. We left to show wait-freedom:

• Max-read(): Since b.CAS(exp, new) is wait free, Max-read() is wait-free.

• Max-write(v): Note that Max-write(v) returns in the iteration in which b.CAS(v0, v0)

in line 3 returns a value bigger than or equal to v. Therefore, by Observations 1
and 2, Max-write(v) returns in the following iteration after a successful b.CAS(tmp, v)

in lime 6. Now assume in a way of contradiction that Max-write(v) do not have
a successful b.CAS(tmp, v) in lime 6. By the code and Observations 1 and 2, if
b.CAS(tmp, v) in lime 6 do not succeed, then the following b.CAS(v0, v0) in line 3
returns a bigger value that what it returned in the previous iteration. Now let v′

be the value returned by the first b.CAS(v0, v0) in line 3, and assume w.l.o.g. that
there are k values bigger than v′ and smaller than v in V. Therefore, after at most k
iteration Max-write(v) returns.

18 Chapter 2. The Power of Primitives for Fault-Tolerant Register Emulations

2.3 Resource Complexity of Write-Sequential k-register Em-
ulation

In Section 2.3.1 we give an overview and intuition for our lower bound, and in Sec-
tion 2.3.2 we prove it. In Section 2.3.3 we present a closely matching upper bound algo-
rithm.

2.3.1 Lower bound overview

We prove that any f -tolerant emulation of an obstruction-free WS-Safe k-register from
of a collection of MWMR atomic registers stored on a collection S of crash-prone servers

has resource complexity of at least k f +
⌈

k f
|S|−(f +1)

⌉
(f + 1).

Our proof exploits the fact that the environment is allowed to prevent a pending low-
level write from taking effect for arbitrarily long [5]. As a result, a client executing a high-
level WRITE operation cannot reliably store the requested value in a base register that
has a pending write as this write may take effect at a later time thus erasing the stored
value. At the same time, the client cannot wait for all base registers on which it triggers
low-level operations to respond, since up to f of them may reside on faulty servers. It
therefore must be able to complete a high-level write without waiting for responses from
up to f registers. Consequently, the next high-level write (by a different client) cannot
reliably use these registers (as they might have outstanding low-level writes), and is
therefore forced to use additional registers thus causing the total number of registers
grow with each subsequent write.

In our main lemma (Lemma 2), we formalize this intuition as follows: Starting from
a run r0 consisting of an initial configuration, we build a sequence of consecutive exten-
sions r1, . . . , rk so that ri is obtained from ri−1 by having a new client invoke a high-level
write Wi of some (not previously used) value. We then let the environment behave in an
adversarial fashion (Definition 4) by blocking the responses from the writes triggered on
at most f base registers as well as the prior pending low-level writes. In Lemma 4, we
show that Wi must terminate without waiting for these responses to arrive. Furthermore,
in Lemma 5, we show that Wi must invoke low-level writes on at least 2 f + 1 base reg-
isters (residing on ≥ 2 f + 1 different servers) that do not have any prior pending writes.
This, combined with Lemma 4, implies that by the time Wi completes, there are at least f
more registers on at least f servers with pending writes after Wi completes. Thus, by the
time the kth high-level write completes, the total number of covered registers is at least
k f (see Lemma 2(a)).

To obtain a stronger bound, our construction is parameterized by an arbitrary subset
F of servers such that |F| = f + 1. We show that the extra storage available on these
servers cannot in fact, be utilized by an emulation (see Lemma 2(b)) forcing it to use at
least k f registers on the remaining S \ F servers to accommodate the same number k
of writers. We use this result in Theorem 2, to show that the number of base registers

2.3. Resource Complexity of Write-Sequential k-register Emulation 19

required for the emulation is a function of k and |S|.

2.3.2 Lower Bounds

For any time t (following the tth action) in a run r of the emulation algorithm we define
the following:

• Covering write: Let w be a low-level write triggered on a base register b at times≤ t.
We will refer to w as covering at t, and to b as being covered by w at t if w is pending
at t.

• C(t) ⊆ C: the set of all clients that have completed a high-level write operation at
times ≤ t.

• Cov(t) ⊆ B: the set of all base registers being covered by some low-level write at
time t.

We first prove the following key lemma:

Lemma 2. For all k > 0, f > 0, let A be an f -tolerant algorithm that emulates a WS-
Safe obstruction-free k-register using a collection S of servers storing a collection B of wait-free
MWMR atomic registers. Then, for every F ⊆ S such that |F| = f + 1, there exist k failure-free
runs ri, 0 ≤ i ≤ k, of A such that (1) r0 is a run consisting of an initial configuration and t0 = 0
steps, and (2) for all i ∈ [k], ri is a write-only sequential extension of ri−1 ending at time ti > 0
that consists of i complete high-level writes of i distinct values v1, . . . , vi by i distinct clients
c1, . . . , ci such that:

a) |Cov(ti)| ≥ i f b) δ(Cov(ti)) ∩ F = ∅

Fix arbitrary k > 0, f > 0, and a set F of servers such that |F| = f + 1. We proceed
by induction on i, 0 ≤ i ≤ k. Base: Trivially holds for the run r0 of A consisting of t0 = 0
steps. Step: Assume that ri−1 exists for all i ∈ [k− 1]. We show how ri−1 can be extended
up to time ti > ti−1 so that the lemma holds for the resulting run ri. For the remainder
of the Lemma 2’s proof, we will assume without loss of generality that every low-level
write operation is linearized simultaneously with its respond step. Formally:

Assumption 1 (Write Linearization). For every extension r of ri−1 and a base object b ∈
B, let Lr|b be a linearization of r|b. Then, Lr|b does not include any low-level write opera-
tions in pending(r|b), and for any two low-level writes w1, w2 ∈ complete(r|b) such that
respond(w1) ≺r|b respond(w2), w1 ≺Lr|b w2.

Note that the above implies that no low-level write w that is covering some register
b at a time t in r will be observed by any low-level reads from b as having taken effect
until after w’s respond event occurs.

We proceed by introducing the following notation:

20 Chapter 2. The Power of Primitives for Fault-Tolerant Register Emulations

Definition 2. Let r be an extension of ri−1. For all times t ≥ ti−1 in r, let

1. Tri(t): the set of all base registers which have a low-level write triggered on between ti−1

and t.

2. Rri(t) ⊆ Tri(t) be the set of all base registers which had a low-level write triggered on and
responded (took effect) between ti−1 and t.

3. Covi(t) = Cov(t) \ Cov(ti−1) be the set of all base registers that have been newly covered
between ti−1 and t. Note that Covi(t) ⊆ Tri(t).

4. Qi(t) ⊆ S be the set of all servers such that Qi(t) = δ(Covi(t)) \ F if |δ(Covi(t)) \ F| ≤
f , and Qi(t) = Qi(t− 1), otherwise. Intuitively, Qi(t) is a set of at most f servers, each
of which is not in F and has at least one newly covered registers (between ti−1 and t).

5. Fi(t) , {s ∈ F | δ−1({s}) ∩ Rri(t) 6= ∅}, i.e., Fi(t) is the set of all servers in F having a
register that responded to a low-level write invoked after ti−1.

6. Mi(t) , δ(Covi(t)) ∩ (F \ Fi(t)), i.e., Mi(t) is the set of all servers in F with at least
one register covered by a low-level write invoked after ti−1 and without registers that have
responded to the low-level writes invoked after ti−1.

7. Gi(t) ⊆ S be the set of all servers such that Gi(t) = Mi(t) if |Qi(t)| < |Fi(t)|, and
Gi(t) = ∅, otherwise.

Below we will introduce the adversary Adi, which causes A to gradually increase the
number of base registers covered after ti−1 by delaying the respond actions of some of
the previously triggered low-level writes.

Definition 3 (Blocked Writes). Let r be an extension of ri−1. For all times t ≥ ti−1 in r, let
BlockedWritesi(t) be the set of all low-level covering writes w satisfying either one of the following
two conditions:

1. w was triggered by a client in C(ti−1), or

2. w was triggered on a base register in δ−1(Qi(t) ∪ Gi(t)).

We say that a pending low-level write w is blocked in an extension r of ri−1 if there
exists a time t ≥ ti−1 such that for all t′ > t in r, op ∈ BlockedWritesi(t′). The following
definition specifies the set of the environment behaviours that are allowed by Adi in all
extensions of ri−1:

Definition 4 (Adi). For an extension r of ri−1 we say that the environment behaves like Adi

after ri−1 in r if the following holds:

1. There are no failures after time ti−1 in r.

2.3. Resource Complexity of Write-Sequential k-register Emulation 21

2. For all t ≥ ti−1 in r, if a low-level write w ∈ BlockedWritesi(t), then w does not respond
at t.

3. If r is infinite then:

(a) Every pending low-level read or write that is not blocked in r eventually responds.

(b) Every trigger or return action that is ready to be executed at a client c in r is eventu-
ally executed.

For a finite extension r of ri−1, we will write 〈r, Adi〉 to denote the set of all extensions
of r in which the environment behaves like Adi after ri−1; and we will write 〈r, Adi, t〉
to denote the subset of 〈r, Adi〉 consisting of all runs having exactly t steps. For X ∈
{Qi, Fi, Mi} and a run r ∈ 〈ri−1, Adi, t〉, we say that X is stable after r if for all t′ ≥ t for
all extensions r′ ∈ 〈r, Adi, t′〉, X(t′) = X(t).

The following lemma asserts several technical facts implied directly by Definitions 2
and 4.

Lemma 3. For all t ≥ ti−1 and r ∈ 〈ri−1, Adi, t〉, all of the following holds at time t in r:

1. Qi(t) ⊆ δ(Covi(t)) \ F

2. Qi(t) ⊆ Qi(t + 1)

3. Fi(t) ⊆ Fi(t + 1)

4. |Fi(t)| − |Qi(t)| ≤ 1

5. |Qi(t)| ≤ f

6. |Fi(t)| ≤ f + 1

7. Fi(t) = Fi(t + 1) =⇒ Mi(t) ⊆
Mi(t + 1)

8. |Mi(t)| ≤ f + 1

9. |δ(Covi(t)) \ F| ≥ f =⇒ |Qi(t)| ≥ f

10. |δ(Covi(t)) \ F| < f =⇒ δ(Rri(t)) \
F = ∅

11. (Qi(t) ∪Mi(t)) ∩ δ−1(Rri(t)) = ∅

Proof. By induction on t ≥ ti−1.
Base: If t = ti−1, then Tri(t) = Rri(t) = Covi(t) = Fi(t) = ∅. Furthermore, since
|δ(Covi(t)) \ F| = 0 ≤ 1 ≤ f , Qi(t) = δ(Covi(t)) \ F. Thus, all the claims hold.
Induction step: Suppose all the claims hold for all t ≥ ti−1, and consider the time t + 1:

3.1: If |δ(Covi(t + 1)) \ F| ≤ f , then by Definition 2.4, Qi(t + 1) = δ(Covi(t + 1)) \ F
as needed. Otherwise, Qi(t + 1) = Qi(t). Consider an arbitrary server s ∈ Qi(t + 1), and
towards a contradiction, suppose that s /∈ δ(Covi(t + 1)) \ F. Since s ∈ Qi(t + 1) = Qi(t),
by the induction hypothesis, s ∈ δ(Covi(t)) ∧ s /∈ F. Since s /∈ δ(Covi(t + 1)) \ F, we get
that either (1) s /∈ δ(Covi(t + 1)) or (2) s ∈ δ(Covi(t + 1)) ∩ F. Since s /∈ F, (2) is false,
and therefore, s /∈ δ(Covi(t + 1)). Hence, there exists a base register in δ−1({s}) that
responded at t to a low-level write w triggered after ti−1. Since s ∈ Qi(t), by Definition 3,

22 Chapter 2. The Power of Primitives for Fault-Tolerant Register Emulations

w ∈ BlockedWrites(t). However, since the environment behaves like Adi after ri−1, by
Definition 4.2, w does not respond at t. A contradiction.

3.2: Towards a contradiction, suppose that there exists s ∈ S such that s ∈ Qi(t)∧ s 6∈
Qi(t + 1). By Definition 2.4, |δ(Covi(t + 1)) \ F| ≤ f as otherwise, Qi(t + 1) = Qi(t)
contradicting the assumption. Thus, Qi(t + 1) = δ(Covi(t + 1)) \ F, and therefore, either
(1) s 6∈ δ(Covi(t + 1)) or (2) s ∈ δ(Covi(t + 1)) ∩ F. By the induction hypothesis for
3.1, s ∈ δ(Covi(t)) ∧ s 6∈ F. Hence, (2) is false, and it is only left to consider the case
s 6∈ δ(Covi(t + 1)). Thus, s ∈ δ(Covi(t)) and s 6∈ δ(Covi(t + 1)), which implies that there
exists a base register in δ−1({s}) that responded at time t to a low-level write w invoked
after ti−1. Since s ∈ Qi(t), by Definition 3, w ∈ BlockedWrites(t). However, since the
environment behaves like Adi after ri−1, by Definition 4.2, w does not respond at t. A
contradiction.

3.3: Let s ∈ Fi(t). By Definition 2.5, there exists a base register b ∈ δ−1({s}) that
responded to a low-level write triggered on b after ti−1 at time t′ such that ti−1 < t′ ≤
t < t + 1. Since t < t + 1, the b’s response has also occurred before t + 1, and therefore,
b ∈ Rri(t + 1). Hence, b ∈ (δ−1(S) ∩ Rri(t + 1)) = Fi(t + 1) as needed.

3.4: Toward a contradiction, suppose that |Fi(t + 1)| − |Qi(t + 1)| > 1. Since we
already proved that Qi(t) ⊆ Qi(t + 1), |Qi(t)| ≤ |Qi(t + 1)|. In addition, we know that
||Qi(t + 1)| − |Qi(t)|| ≤ 1, ||Fi(t + 1)| − |Fi(t)|| ≤ 1, and by the induction hypothesis
|Fi(t)| − |Qi(t)| ≤ 1. Thus, |Fi(t + 1)| − |Qi(t + 1)| > 1 implies that (1) |Fi(t)| − |Qi(t)| =
1 (i.e., |Fi(t)| > |Qi(t)|), (2) |Qi(t + 1)| = |Qi(t)|, and (3) |Fi(t + 1)| = |Fi(t)|+ 1. Since
we already proved that Fi(t + 1) ⊇ Fi(t), (3) implies that there exists s ∈ S such that
s ∈ Fi(t + 1) \ Fi(t). Since by Definition 2.5, Fi(t + 1) ⊆ F, s ∈ F. Thus, s ∈ F \ Fi(t).
This means that either no low-level writes have been triggered on registers in δ−1({s})
after ti−1, or there is a register b ∈ δ−1({s}) that responds to a low-level write triggered
on b after ti−1. In the first case, no register on s can respond at time t, and therefore,
s 6∈ Fi(t + 1), which is a contradiction. In the second case, we obtain that b satisfies
b ∈ Covi(t), b ∈ δ−1({s}), s ∈ F \ Fi(t), and b responds at t to a covering write w
triggered after ti−1. Thus, by Definition 2.6, s ∈ Mi(t) and since |Fi(t)| > |Qi(t)|, by
Definition 2.7, s ∈ Gi(t). Thus, by Definition 3, w ∈ BlockedWrites(t), and since the
environment behaves like Adi after ri−1, by Definition 4.2, w does not respond at t. A
contradiction.

3.5: Assume by contradiction that |Qi(t + 1)| > f . Since by 3.1, |Qi(t + 1)| ⊆
δ(Covi(t + 1)) \ F, |δ(Covi(t + 1)) \ F| > f . By Definition 2.4, Qi(t + 1) = Qi(t), and
therefore, |Qi(t)| > f . A contradiction to the inductive assumption.

3.6: By Definition 2.5, Fi(t + 1) ⊆ F. Since |F| = f + 1, |Fi(t + 1)| ≤ f + 1.

3.7: Suppose Fi(t) = Fi(t + 1). Consider s ∈ Mi(t), and toward a contradiction,
suppose that s 6∈ Mi(t + 1). Since by Definition 2.5, Fi(t) ⊆ F and Fi(t + 1) ⊆ F, F \
Fi(t) = F \ Fi(t + 1). This together with the fact that s ∈ F \ Fi(t) implies that s ∈
F \ Fi(t + 1) as well. Thus, it must be the case that s ∈ δ(Covi(t)) ∧ s 6∈ δ(Covi(t + 1)).
Thus, by Definition 2.3, there exists a base register b ∈ δ−1({s}) that responds to a low-

2.3. Resource Complexity of Write-Sequential k-register Emulation 23

level write invoked after ti−1 at time t which implies that b ∈ Rri(t + 1). Hence, by
Definition 5, s ∈ Fi(t + 1). However, since s ∈ F \ Fi(t + 1), s 6∈ Fi(t + 1). A contradiction.

3.8: Since F is fixed in advance and |F| = f + 1, we receive |Mi(t + 1)| = |δ(Covi(t +

1)) ∩ (F \ Fi(t + 1))| ≤ |F \ Fi(t + 1)| ≤ |F| = f + 1.

3.9: If |δ(Covi(t)) \ F| < f and |δ(Covi(t + 1)) \ F| ≥ f , then there exists a base
register on a server in S \ F that is newly covered after t. Thus, we get |δ(Covi(t)) \ F| =
f − 1 and |δ(Covi(t + 1)) \ F| = f . By Definition 2.4, Qi(t + 1) = δ(Covi(t + 1)) \ F,
and therefore, |Qi(t + 1)| = f . Otherwise, by the induction hypothesis, |Qi(t)| ≥ f .
Since |δ(Covi(t + 1)) \ F| ≥ f , we have that either (1) |δ(Covi(t + 1)) \ F| = f , or (2)
|δ(Covi(t + 1)) \ F| > f . Applying Definition 2.4 to (1) and (2), we get the following: for
(1), Qi(t + 1) = δ(Covi(t + 1)) \ F, which implies |Qi(t + 1)| = |δ(Covi(t + 1)) \ F| = f ,
and for (2), Qi(t + 1) = Qi(t), and therefore, |Qi(t + 1)| ≥ f .

3.10: Toward a contradiction, suppose that |δ(Covi(t + 1)) \ F| < f and δ(Rri(t +

1)) \ F 6= ∅. By the induction hypothesis, |δ(Covi(t)) \ F| < f =⇒ δ(Rri(t)) \ F = ∅.
We first consider the case |δ(Covi(t)) \ F| ≥ f . Thus given |δ(Covi(t + 1)) \ F| < f ,
there exists a server in δ(Covi(t)) \ F such that some register on that server responds to a
low-level write w that was triggered after ti−1. Moreover, |δ(Covi(t)) \ F| = f , and thus,
by Definition 2.4, Qi(t) = δ(Covi(t)) \ F. Since the environment behaves like Adi after
ri−1, by Definition 3, w ∈ BlockedWrites(t), and therefore, by Definition 4.2, w does not
respond at t. A contradiction.

Thus, we know that |δ(Covi(t)) \ F| < f and δ(Rri(t)) \ F = ∅. And since δ(Rri(t +

1)) \ F 6= ∅, there exists a server s ∈ δ(Covi(t)) \ F such that some object on s responded
at t to a low-level write w triggered after ti−1. Since |δ(Covi(t)) \ F| < f , by Definition 2.4,
Qi(t) = δ(Covi(t)) \ F. Thus, s ∈ Qi(t). However, by Definition 3, w ∈ BlockedWrites(t),
and since the environment behaves like Adi after ti−1, by Definition 4.2, w does not re-
spond at t. A contradiction.

3.11: Toward a contradiction, suppose that (Qi(t + 1) ∪Mi(t + 1)) ∩ δ(Rri(t + 1)) 6=
∅. We will consider the following two cases separately: (1) Qi(t + 1)∩ δ(Rri(t + 1)) 6= ∅,
and (2) Mi(t + 1) ∩ δ(Rri(t + 1)) 6= ∅.

(1) Suppose Qi(t + 1) ∩ δ(Rri(t + 1)) 6= ∅, and let s ∈ Qi(t + 1) ∩ δ(Rri(t + 1)). If
s ∈ Qi(t), then by the induction hypothesis s 6∈ δ(Rri(t)). This means that either (a)
δ−1({s}) ∩ Tr(t) = ∅, or (b) there exists a base register in δ−1({s}) that responds to a
low-level write w triggered after ti−1. If (a) holds, then no base register can respond to
a low-level write before t + 1, and therefore, s /∈ δ(Rri(t + 1)), which is a contradiction.
If (b) is the case, then since s ∈ Qi(t), by Definition 3, w ∈ BlockedWrites(t). Since the
environment behaves like Adi after ti−1, by Definition 4.2, w does not respond at t, which
is also a contradiction.

If s /∈ Qi(t), then since s ∈ Qi(t + 1), by Definition 2.4, the only action that can follow
t is a trigger of a low-level write on some register in δ−1({s}). Since s ∈ δ(Rri(t + 1)),
and the action executed at t is not a respond, s ∈ δ(Rri(t)). Thus, Qi(t + 1) 6= Qi(t)
which by Definition 2.4, implies that Qi(t + 1) = δ(Covi(t + 1)) \ F, and |Qi(t + 1)| =

24 Chapter 2. The Power of Primitives for Fault-Tolerant Register Emulations

|δ(Covi(t + 1)) \ F| ≤ f . Since Qi(t) ⊂ Qi(t + 1), |Qi(t)| < f , and by the induction
hypothesis for 3.9, we have |δ(Covi(t + 1)) \ F| < f . Thus, by the induction hypothesis
for 3.10, we conclude that no registers on servers in S \ F have responded to any low-
level writes triggered between ti−1 and t. However, since s ∈ δ(Rri(t)) and, by the
induction hypothesis for 3.1, s /∈ δ(Rri(t)), s ∈ S \ F has a register that responded to a
low-level write triggered after ti−1. A contradiction.

(2) Suppose that Mi(t + 1) ∩ δ(Rri(t + 1)) 6= ∅, and let s ∈ Mi(t + 1) ∩ δ(Rri(t +

1)). By Definition 2.5, we know that s ∈ F \ Fi(t + 1), and therefore, s ∈ F and s /∈
Fi(t + 1). Thus, s ∈ F ∩ δ(Rri(t + 1)), and therefore, by Definition 2.5, s ∈ Fi(t + 1). A
contradiction.

The following corollary follows immediately from the claims 2–3 and 5–8 of Lemma 3.

Corollary 1. There exists a run r ∈ 〈ri−1, Adi〉 such that Fi, Qi, and Mi are all stable after r.

We first show that ri−1 can be extended with a complete high-level write Wi by a
new client ci such that the environment behaves like Adi until Wi returns. Roughly, the
reason for this is that Adi guarantees that after ri−1, ci would only miss responses from
for the writes invoked on at most f servers (see Claim 1) as well as those that might have
been invoked in ri−1 by other clients {c1, . . . , ci−1}, which ci is unaware of. As a result,
the involved servers and clients would appear to ci as faulty after ri−1, and therefore,
to ensure obstruction freedom, it must complete Wi without waiting for the outstanding
writes to respond.

Lemma 4. Let r ∈ 〈ri−1, Adi〉 be a run consisting of ri−1 followed by a high-level write invo-
cation Wi by client ci 6∈ C(ti−1). Then, there exists a run rr ∈ 〈r, Adi〉 in which Wi returns.

By Corollary 1, there exists an extension r′ ∈ 〈r, Adi, t′〉 where t′ > ti−1 such that Qi,
Fi, and Mi are all stable after r′. If Wi returns in r′, we are done. Otherwise, we will first
bound the number of servers |Qi(t′) ∪Mi(t′)| controlled by Adi as follows:

Claim 1. Consider a time t > ti−1, and a run r ∈ 〈ri−1, Adi, t〉. If Mi is stable after r, then
|Qi(t) ∪Mi(t)| ≤ f .

Proof. By Lemma 3.5, |Qi(t)| ≤ f . Thus, if Mi(t) = ∅, then |Qi(t) ∪ Mi(t)| ≤ f as
needed. Otherwise (Mi(t) 6= ∅), we show that |Fi(t)| = |Qi(t)|+ 1. Suppose to the con-
trary that |Fi(t)| 6= |Qi(t)|+ 1. Since by Lemma 3.4, |Fi(t)| ≤ |Qi(t)|+ 1, the only pos-
sibility for |Fi(t)| 6= |Qi(t)|+ 1 is if |Fi(t)| ≤ |Qi(t)|. Thus, by Definition 2.7, Gi(t) = ∅,
and hence, by Definition 3, no writes on the registers in δ−1(Mi(t)) are blocked. How-
ever, since Mi(t) 6= ∅, at least one register in δ−1(Mi(t)) must have an outstanding write.
Therefore, by Definition 4.3(a), there exists time t′, and an extension r′ ∈ 〈r, Adi, t′〉 such
that one of the registers on some server s ∈ Mi(t) responds at time t′. Thus, s ∈ Fi(t′),
and therefore, s 6∈ Mi(t′). Hence, Mi is not stable after r. A contradiction to the assump-
tion.

2.3. Resource Complexity of Write-Sequential k-register Emulation 25

Since Fi(t) ⊆ F, |F \ Fi(t)| + |Fi(t)| = |F| = f + 1. Hence, |F \ Fi(t)| = f + 1 −
|Fi(t)| = f − |Qi(t)|. Since by Definition 2.6, Mi(t) ⊆ (F \ Fi(t)), |Mi(t)| ≤ |F \ Fi(t)| =

f − |Qi(t)|. Thus, we receive |Qi(t) ∪Mi(t)| ≤ |Qi(t)|+ |Mi(t)| ≤ f as needed.

We are now ready to complete the proof of Lemma 4:

Proof of Lemma 4. By Claim 1, |Qi(t′) ∪ Mi(t′)| ≤ f , and by Lemma 3.11, no base reg-
isters on servers in Qi(t′) ∪ Mi(t′) have ever responded to any low-level writes issued
after ti−1. Thus, there exists a finite run r′′, which is identical to r′ except all servers in
Qi(t′)∪Mi(t′) crash immediately after r and each client c1, . . . , ci−1 fails before any of its
covering writes on registers in Cov(ti−1) responds. By f -tolerance and obstruction free-
dom, there exists a fair extension r′′σ of r′′ (i.e., r′′σ /∈ 〈r′′, Adi〉) such that Wi returns in
r′′σ. Since Qi ∪Mi is stable after r′, the set of registers precluded by Adi from responding
in r′ is identical to that in r′′, and by Assumption 1, no write with a missing response is
linearized, r′ is indistinguishable from r′′ to ci. Thus, r′σ ∈ 〈r, Adi〉, and since σ includes
the return event of Wi, r′σ satisfies the lemma.

We next show that in order to guarantee safety in the face of the environment behaving
like Adi, Wi must trigger a low-level write on at least one non-covered register on each
server in a set of 2 f + 1 servers. An illustration of the runs constructed in the proof
appears in Figure 2.1.

Figure 2.1: An illustration of the runs constructed in Lemma 5.

Lemma 5. Consider a run r ∈ 〈ri−1, Adi, tr〉 where tr > ti−1, consisting of ri−1 followed by
a complete high-level write invocation by client ci 6∈ C(ti−1) that returns at time tr. Then,
|δ(Tri(tr) \ Cov(ti−1))| > 2 f .

Proof. Denote X , δ(Tri(tr) \ Cov(ti−1)), and assume by contradiction that |X| ≤ 2 f .
Let S1 = Fi(tr), S2 = Qi(tr), S3 = X ∩ (F \ Fi(tr)) and S4 = X \ (S1 ∪ S2 ∪ S3). Note that
S1, S2, S3, S4 are pairwise disjoint, and X = S1 ∪ S2 ∪ S3 ∪ S4.

26 Chapter 2. The Power of Primitives for Fault-Tolerant Register Emulations

We first show that |S1 + S4| ≤ f . By Lemma 3.6, |S1| ≤ f + 1. However, if |S1| = f +

1, then by Lemma 3.4, |S1| − |S2| = f + 1− |S2| ≤ 1, and therefore, |S1|+ |S2| ≥ 2 f + 1
violating the assumption. Hence, |S1| ≤ f . By Lemma 3.5, |S2| ≤ f . If |S2| = f , then
by assumption, |S1 ∪ S3 ∪ S4| = |S1|+ |S3|+ |S4| ≤ f , and therefore, |S1 + S4| = |S1|+
|S4| ≤ f . And if |S2| < f , then by Definitions 2.4 and 4, |S4| = 0. Hence, |S1 + S4| =

|S1|+ |S4| ≤ f .
Now let r′ be a fair extension of ri−1 consisting of t′c steps in which ri−1 is followed by

(1) the crash events of all servers in S1 ∪ S4, and (2) the respond steps of all the covering
writes in ri−1 and (and no other steps). Extend r′ with an invocation of a high-level read
operation R by client crd 6= ci at time t′c. Since |S1 + S4| ≤ f , by obstruction freedom and
f -tolerance, there exists time trd > ti−1 at which R returns. Since r′ is write-sequential,
by WS-Safety, R must return vi−1.

Next, let r′′ be an extension of r consisting of all steps in r up to the time tr followed
by (1) the crash events of all servers in the set S1 ∪ S4, and (2) the respond steps of
all covering writes in ri−1 (and no other steps). Let t′′c > tr be the number of steps in
r′′. By Assumption 1, the values that can be read from the base registers in Cov(ti−1)

at time t′′c in r′′ are identical to those that can be read at time t′c in r′. Furthermore,
by definitions 2.5 and 4, low-level writes triggered on registers in δ−1(S2 ∪ S3) do not
respond before tr in r. Thus, by Assumption 1, the values that can be read from the base
registers in δ−1(S2 ∪ S3) at time t′c in r′ are also the same as those that can be read at
time t′′c in r′′. Thus, all registers in non-faulty servers at time t′c in r′ will appear to the
subsequent reads as having the same content as at the time t′′c in r′′c .

We now extend r′′ by letting client crd invoke high-level read R at time t′′c . Since r′ is
indistinguishable from r′′ to crd, and R has no concurrent high-level operations, we get
that R returns vi−1 in r′′. However, since Wi is the last complete write preceding R in r′′,
by WS-Safety, the R’s return value must be vi 6= vi−1. A contradiction.

The following corollary follows immediately from Lemma 5, Definitions 2.4 and 4, and
the choice of |F| = f + 1:

Corollary 2. Consider a run r ∈ 〈ri−1, Adi, tr〉 where tr > ti−1, consisting of ri−1 followed
by a complete high-level write invocation by client ci 6∈ C(ti−1) that returns at time tr. Then,
|Qi(tr)| = f .

We are now ready to complete the proof of the induction step of Lemma 2:

Proof of the induction step (Lemma 2). By Lemma 4, there exists a run r ∈ 〈ri−1, Adi, tr〉,
tr > ti−1, in which ri−1 is followed by a complete high-level write invocation Wi by client
ci 6= ci−1 writing a value vi 6= vi−1 and returning at time tr. By Corollary 2, |Qi(tr)| = f ,
and therefore, by Lemma 3.4, |Fi(tr)| = f + 1. Since Fi(tr) ⊆ F and |F| = f + 1, we
conclude that Fi(tr) = F. Hence, by Definition 2.6, Mi(tr) = ∅, which by Definition 2.7,
implies that Gi = ∅. Thus, by Definition 3, no writes on the registers in δ−1(F) triggered
after ti−1 are blocked.

2.3. Resource Complexity of Write-Sequential k-register Emulation 27

Hence, by Definition 4.3(a), there exists an extension r′ ∈ 〈r, Adi, t′〉, for some t′ ≥
tr, such that δ(Covi(t′)) ∩ F = ∅. We now show that ri = r′ and ti = t′ satisfy the
lemma. By the induction hypothesis and the construction of extension r′, r′ is a write-
only failure-free sequential extension of ri−1 ending at time t′ that consists of i complete
high-level writes of values v1, . . . , vi by i distinct clients c1, . . . , ci. It remains to show that
the implications (a)–e) hold for ti = t′:

a) |Cov(t′)| ≥ i f : By the induction hypothesis |Cov(ti−1)| ≥ (i− 1) f , and by Defi-
nition 4, Cov(ti−1) ⊆ Cov(t′). Therefore, we left to show that |Cov(t′) \Cov(ti−1)| ≥
f . Since by Corollary 2, |Qi(tr)| = f , and by Lemma 3.2, Qi(tr) ⊆ Qi(t′), we
get |Qi(t′)| = f . By Definition 2.4, |Covi(t′)| ≥ |Qi(t′)|, and by Definition 2.3,
|Cov(t′) \ Cov(ti−1)| = |Covi(t′)|. Therefore, we get |Cov(t′) \ Cov(ti−1)| ≥ f .

b) δ(Cov(t′)) ∩ F = ∅: By the induction hypothesis we get that δ(Cov(ti−1)) ∩ F =

∅, and by construction of r′ we get that δ(Covi(t′)) ∩ F = ∅. By Definition 2.3,
Cov(t′) = Covi(t′) ∪ Cov(ti−1). Therefore, δ(Cov(t′)) ∩ F = ∅.

Resource Complexity. We will now use Lemma 2 to characterize the minimum re-
source complexity of the algorithms implementing an f -tolerant obstruction-free WS-
Safe k-register as a function of the number |S| of available servers. First, it is easy to see
that if |S| ≤ 2 f , then no such algorithm can exist. This result is implied by an extended
statement of Lemma 2 (see Theorem 12 in Appendix ??), and can also be shown directly
by a straightforward application of a partitioning argument as discussed in [55, 14]. If
|S| > 2 f , then we have the following:

Theorem 2. For all k > 0, f > 0, let A be an f -tolerant algorithm emulating an obstruction-
free WS-Safe k-register using a collection S of servers such that |S| ≥ 2 f + 1. Then, A uses at

least k f +
⌈

k f
|S|−(f +1)

⌉
(f + 1) base registers (i.e., |δ−1(S)| ≥ k f +

⌈
k f

|S|−(f +1)

⌉
(f + 1)).

Proof. Let G ⊆ S be the set consisting of all servers that store at least
⌈

k f
|S|−(f +1)

⌉
base

registers (i.e., ∀s ∈ G, |δ−1({s})| ≥
⌈

k f
|S|−(f +1)

⌉
and ∀s ∈ S \G, |δ−1({s})| <

⌈
k f

|S|−(f +1)

⌉
).

We first show that |G| ≥ f + 1. Suppose toward a contradiction that |G| < f + 1, and
pick a set F, such that |F| = f + 1 and S ⊃ F ⊃ G. By Lemma 2.a)-b), there exists a
run r of A consisting of t steps such that |Cov(t)| ≥ k f and δ(Cov(t)) ∩ F = ∅. Thus, by
the pigeonhole argument, and since |S \ F| = |S| − (f + 1), there is at least one server in

S \ F that stores at least
⌈

k f
|S|−(f +1)

⌉
. Therefore, since F ⊃ G and the number of objects

stored on a server is an integer, we get that there is at least one server in S \G that stores

at least
⌈

k f
|S|−(f +1)

⌉
base registers. A contradiction.

We get that |δ−1(G)| ≥
⌈

k f
|S|−(f +1)

⌉
(f + 1). Now, again by Lemma 2.a)-b), there

exists a run r′ of A consisting of t′ steps such that |Cov(t′)| ≥ k f and δ(Cov(t′))∩G = ∅,

28 Chapter 2. The Power of Primitives for Fault-Tolerant Register Emulations

meaning that |δ−1(S \G)| ≥ k f . Therefore, we get that |δ−1(S)| ≥ k f +
⌈

k f
|S|−(f +1)

⌉
(f +

1).

The following bound on the number of registers required to emulate a single (i.e.,
non-fault-tolerant) max-register is a direct consequence of Theorem 2:

Theorem 3 (Resource Complexity of k-max-register). For all k > 0, any algorithm im-
plementing a wait-free k-writer max-register from a collection of wait-free MWMR atomic base
registers uses at least k base registers.

Proof. Suppose to the contrary that there exists an algorithm A implementing a k-writer
max-register using ` < k base MWMR wait-free atomic registers. Consider a fault-prone
shared memory system consisting of n = 2 f + 1 servers each of which stores ` MWMR
wait-free atomic registers. Run n copies A1, . . . , An of A, one on each server, to obtain
n = 2 f + 1 copies of k-writer max-register. Run a generic protocol of [64] to obtain an f -
tolerant emulationA of a wait-free k-writer regular register. By assumption, the resource
complexity of A is (2 f + 1)` < (2 f + 1)k base registers. However, by Theorem 2, for
n = 2 f + 1, it must be at least k f + k(f + 1) = (2 f + 1)k. A contradiction.

In Appendix .1, we prove an extended statement of Lemma 2, and use it to show
three additional lower bounds as discussed above.

2.3.3 Upper Bound

In this section we present an f -tolerant construction emulating a wait-free WS-Regular
k-register for all combinations of values of the parameters k > 0, f > 0, and n where
n > 2 f . Our construction is carefully crafted to deal with the adversarial behaviour
(Definition 4) that was exploited in the proof of Lemma 2 while minimizing the resource
complexity. Similarly to multi-writer ABD [41, 64, 57], our algorithm uses read and write
quorums to read from and write to registers. However, since RMW objects are replaced
with read/write registers, and covering low-level writes belonging to old WRITEs can
overwrite registers at any time, the quorums in our case must have a larger intersection.

Let z ,
⌊ n−(f +1)

f
⌋

and y , z f + f + 1, we construct a collectionR of m =
⌊ k

z
⌋

disjoint
sets R0, . . . , Rm−1, each of which consist of y registers, and if k/z is not an integer, then
we add to R another disjoint set Rm of (k −

⌊ k
z
⌋
z) f + f + 1 registers. Intuitively, z is

the maximum number of writers that can be supported by a single set of y registers as
can be deduced from Lemma 2’s argument. If z divides k, then exactly k/z such sets
are needed to accommodate the total of k writers. Otherwise, the remaining k mod z
writers are moved to an overflow set Rm. Note that for all Ri ∈ R, 2 f + 1 ≤ |Ri| ≤ n.
Then, we distribute the registers in each set Ri on servers in S so that every register in Ri

is mapped to a different server (i.e., |δ(Ri)| = |Ri|). Figure 2.2 demonstrates a possible
mapping from registers to servers. All in all, we use ΣRi∈R|Ri| =

⌊ k
z
⌋
y + (k−

⌊ k
z
⌋
z) f +

(f + 1)(
⌈ k

z
⌉
−
⌊ k

z
⌋
) = · · · = k f +

⌊ k
z
⌋
(f + 1) = k f +

⌈ k⌊
n−(f +1)

f

⌋ ⌉(f + 1) registers.

2.3. Resource Complexity of Write-Sequential k-register Emulation 29

Figure 2.2: A possible mapping from R to S in case
n = 6, k = 5, and f = 2.

The resulting layout is then used to de-
rive the read and write quorums as follows:
for every set Ri ∈ R, any subset of Ri

of size |Ri| − f is a write quorum for all
writers cj such that j =

⌊ i
z
⌋
; and any sub-

set of registers consisting of all registers
mapped to n− f servers is a read quorum
(i.e., the set of the read quorums is {B ⊆
B : ∃S ∈ S s.t. |S| = 2 f + 1 ∧ δ−1(S) =

B}). Observe that by construction of R,
for every set Ri ∈ R, (1) the number of

clients mapped to write quorums in Ri is
⌊ |Ri |−(f +1)

f
⌋

= |Ri |−(f +1)
f , and (2) any write

quorum in Ri intersects with any read quorum on at least |Ri| − f registers. Therefore,
in a write-sequential run, the latest written value is always guaranteed to be available
to subsequent READs provided every writer c executing a high-level WRITE W leaves no
more than f pending low-level writes upon W’s completion. To enforce the latter, c is
precluded from triggering new low-level writes on registers on which it still has writes
pending from preceding high-level WRITEs invocations. In addition, since the registers
in every (read or write) quorum are mapped to exactly n− f servers, each quorum ac-
cess is guaranteed to terminate, and thus, the algorithm is wait-free. The algorithm’s
pseudo-code appear in Algorithm 2.

30 Chapter 2. The Power of Primitives for Fault-Tolerant Register Emulations

Algorithm 2 ∀ f > 0 ∀k > 0, ∀n = |S| ≥ 2 f + 1.

Types:
TSVal = N×V, with selectors ts and val.
States = TSVal × 2TSVal × 2B × 2B with selectors tsVal, rdSet, wrSet and coverSet.

Base Objects and Servers:
∀b ∈ δ−1(S), b ∈ TSVal, initially, 〈0, v0〉.
Let z ,

⌊ n−(f +1)
f

⌋
, y , z f + f + 1, and m ,

⌈ k
z
⌉
.

R = {R0, . . . , Rm−1} ⊂ 2δ−1(S) s.t.
1. ∀i ∈ {0, . . . , m − 2}, |Ri| = y. If

⌈ k
z
⌉

=
⌊ k

z
⌋
, then |Rm−1| = y. Else, |Rm−1| =

(k−
⌊ k

z
⌋
z) f + f + 1.

2. ∀Ri, Rj ∈ R, R1 ∩ Rj = ∅.
3. ∀Ri ∈ R, |δ(Ri)| = |Ri|.

Clients states:
∀i ∈ [k], Statei ∈ States, initially,
〈〈〈0, 1〉, v0〉, ∅, Rj, ∅〉, where j =

⌊ i
z
⌋
.

Code for client ci, 1 ≤ i ≤ k:

1: operation WRITE(v)
2: value← collect()
3: Statei.tsVal.val ← v
4: Statei.tsVal.ts← value.ts + 1
5: j←

⌊ i
z
⌋

. do not handle responds between lines 6
to 10

6: Statei.coverSet← Rj \ Statei.wrSet
7: Statei.wrSet← ∅
8: || for each b ∈ Rj
9: if b /∈ Statei.coverSet

10: trigger b.write(Statei.tsVal)
11: wait until |Statei.wrSet| ≥ |Rj| − f
12: return ack

13: scan(s)
14: for each b ∈ δ−1(s) do
15: trigger b.read()
16: wait for the matching response

17: operation READ()
18: value← collect()
19: return value.val

20: collect()
21: Statei.rdSet← ∅
22: || for each s ∈ S do
23: scan(s)
24: wait for n− f scans to complete
25: ts← max({ts′ | 〈ts′, ∗〉 ∈ Statei.rdSet})
26: return 〈v, ts′〉 ∈ Statei.rdSet : ts′ = ts

27: upon receiving b.read() respond res do
28: Statei.rdSet← Statei.rdSet ∪ {res}

29: upon receiving b.write(∗) respond do
30: if b ∈ Statei.coverSet then
31: Statei.coverSet ← Statei.coverSet \
{b}

32: trigger b.write(Statei.tsVal)
33: else
34: Statei.wrSet← Statei.wrSet ∪ {b}

The registers store values in V each of which is associated with a unique timestamp.
(Note that since safety is required only in write-sequential runs, we do not need to break
ties with clients’ ids.) To write a value v to the emulated register, a client ci first accesses a
read quorum (via collect() in lines 22–26) and selects a new timestamp ts which is higher
than any other timestamp that has been returned. It then proceeds to trigger low-level
writes of 〈ts, v〉 on registers in Rj =

⌊ i
z
⌋
, so as to ensure that (1) 〈ts, v〉 is stored in a write

quorum wq (lines 8–11), and (2) no more than f registers in Rj are left covered by ci’s

2.3. Resource Complexity of Write-Sequential k-register Emulation 31

writes (the current and the previous operations). The latter is achieved by preventing ci

from triggering a new low-level write on every register that has not yet responded to the
previously triggered one (lines 9–10). To read a value, a client simply reads all registers
in a read quorum, via collect(), and returns the value having the highest timestamp.

Correctness proof

The space complexity of the algorithm is ΣRi∈R|Ri| =
⌊ k

z
⌋
y + (k−

⌊ k
z
⌋
z) f + (f + 1)(

⌈ k
z
⌉
−⌊ k

z
⌋
) = · · · = k f +

⌊ k
z
⌋
(f + 1) = k f +

⌈ k⌊
x−(f +1)

f

⌋ ⌉ registers. Below, we prove that the

algorithm satisfies wait-freedom and write-sequential regularity. The following obser-
vation follows from code and the construction of the sets in R; (1) writers never trigger
low-level writes on base object with pending low-lever writes from previous WRITEs, (2)
writers wait for n− f base objects to reply (line 24), and for every set Ri ∈ R, the number
of client that write to registers in Ri is

⌊ |Ri |−(f +1)
f

⌋
= |Ri |−(f +1)

f .

Observation 3. For every 0 < i ≤ k for every time t in a run r, if writer ci have no pending
WRITE at t then it covers at most f base objects at time t.

Lemma 6. Consider a write-sequential run r of the algorithm, and consider two sequential
WRITEs Wi, Wj in r s.t. Wi precedes Wj. Then Wj’s value is associated with a bigger timestamp
than Wi’s value.

Proof. Since Wi precedes Wj, Wj starts the collect in line 2 after Wi returns. Wi triggers
low level writes with its value and timestamp on base objects in Rl (l =

⌊ i
z
⌋
) that are

not covered by its previous WRITEs, and waits for |Rl | − f low level writes to respond
(line 11) before it returns. Thus, since |δ(Rl)| = |Rl |, Wj starts its collect after Wi writes its
timestamp to at least |Rl | − f base objects in different servers, none of which is covered
by low-level write of Wi previous WRITEs.

Moreover, since the number of writers excluding Wi that write to base objects in Rj is⌊ |Rl |−(f +1)
f

⌋
− 1 = |Ri |−(f +1)

f − 1, readers do not write, and each writer covers at most f
base objects, we get that at least f + 1 servers has a base object that stores Wi’s timestamp
when Wj begins its collect. Now since collect reads all base object in at least n− f servers
(line 24), Wj sees Wi’s timestamp and picks a bigger one (line 4).

Corollary 3. Consider a write-sequential run r of the algorithm. If WRITE Wi precedes WRITE

Wj, then Wj is associated with a bigger timestamp than Wi.

Lemma 7. Consider a write-sequential run r of the algorithm, and a read operation rd and a
WRITE W in r. Let ts be the timestamp associated with W. If W precedes rd, than rd returns a
value associated with timestamp ts′ ≥ ts.

Proof. Let t be the time when W returns, and assume w.l.o.g that W is performed by
client ci s.t.

⌊ i
z
⌋

= j. Before W returns it ci triggers low level writes with its value and

32 Chapter 2. The Power of Primitives for Fault-Tolerant Register Emulations

timestamp on base objects in Rj that are not covered by its previous WRITEs, and waits
for |Rj| − f low level writes to respond. The number of clients excluding ci that trigger

low-level writes on base objects is Rj is
⌊ |Rl |−(f +1)

f
⌋
− 1 = |Ri |−(f +1)

f − 1, and by Ob-
servation 3, each client covers at most f base objects at time t. By Corollary 3 and since
readers do not write, every low level write in r that is triggered after time t is associ-
ated with a bigger timestamp than ts. Therefore, since |δ(Rl)| = |Rl |, there is a set of
f + 1 base objects, each of which mapped to a different server, s.t. at any time t′ ≥ t the
timestamp each of them stores is bigger than or equal to ts.

Since W precedes rd, rd starts the collect after time t. And since collect reads all base
object in at least n− f servers, rd sees at least one value associated with timestamp bigger
than or equal to ts, and thus, returns a value associated with timestamp ts′ ≥ ts.

Definition 5. For every write-sequential run r, for every read rd in r that returns a value
associated with timestamp ts we define the sequential run σrrd as follows: All the completed write
operations in r are ordered in σrrd by their timestamp, and rd is added after the WRITE operation
that is associated with ts.

In order to show that the algorithm simulates a write-sequential regular register we need
to proof that for every write-sequential run r, for every read rd, σrrd preserves the real
time order of r and the sequential specification. Note that the sequential specification is
satisfied by construction, and we prove the real time order in the next lemma.

Lemma 8. For every write-sequential run r, for every complete read rd that returns a value
associated with timestamp ts in r, σrrd preserves r’s operation precedence relation (real time order).

Proof. By Corollary 3, the real time order of r between every two WRITE operations is
preserved in σrrd . We left to show that the real time order of r between rd and any WRITE

W in σrrd is preserved. Consider two cases:

• W precedes rd in r. By Lemma 7, W is associated with a timestamp smaller than or
equal to ts, and thus, by construction of σrrd the real time order between rd and W
is preserved.

• rd precedes W in r. Let Wts be the WRITE operation associated with timestamp ts.
Since rd returns a value associated with timestamp ts, Wts starts before rd com-
pletes, and since r is write-sequential, wts precedes W in r. Thus, by lemma 6, W
is associated with bigger timestamp than ts. Therefore, by construction of σrrd the
real time order between rd and W is preserved.

Corollary 4. For every write-sequential run r, for every complete read rd in r, there is a lin-
earization of rd and all the WRITE operations in r.

2.4. Discussion and Future Directions 33

Theorem 4. For all k > 0, f > 0, and n > 2 f , there exists an f -tolerant algorithm emulating a
wait-free WS-Regular k-register using a collection of n servers storing k f +

⌈ k
z
⌉
(f + 1) wait-free

z-writer/multi-reader atomic base registers where z =
⌊ n−(f +1)

f
⌋
.

Proof. By Corollary 4, the code in Algorithm 2 satisfies WS-regularity. Now notice that
in both WRITE and READ operations clients never wait for more than n − f servers to
respond, and thus, wait-freedom follows. We conclude that Algorithm 2 satisfies the
theorem.

2.4 Discussion and Future Directions

We introduced a new hierarchy, which classifies object types by the number of base ob-
jects of a given type required to emulate an f -tolerant register, as a function of the num-
ber of writers k and the number of available servers n. Interestingly, our hierarchy can
be used to derive resource complexity bounds in the standard shared memory model
(i.e., without object failures) as evidenced by our proof of a lower bound on the number
of registers required for implementing a max-register for k writers. Our main technical

contribution comprises the lower bound of
⌈

k
n−(f +1)

f

⌉
(f + 1) + k f and the upper bound

of
⌈

k
b n−(f +1)

f c

⌉
(f + 1) + k f on the resource complexity of emulating an f -tolerant k-writer

register from n fault-prone servers storing read/write registers. To strengthen our lower
bound, it was proved for emulations satisfying weak liveness and safety properties.

Future directions. First, for some choices of k and n, our bounds leave a small gap that
can be closed. Second, an interesting question that arises is whether our lower bound is
tight for stronger properties. In the special case of n = 2 f + 1 servers, emulation with
stronger regularity [65] is possible with (2 f + 1)k registers (tight to our lower bound).
However, the question of the general case (n ≥ 2 f + 1) remains open. In addition, since
atomicity usually requires readers to write, it is interesting to investigate whether the
space complexity (assuming read/write registers) in this case also linearly depends on
the number of readers.

Another possible direction is to extend the hierarchy with more types (e.g., multiple
assignment), and to also consider the time complexity of the emulations. For example,
we showed that although a max-register can be implemented from a single CAS, the time
complexity of the implementation is high. An interesting open question is to determine
whether this tradeoff is inherent.

Chapter 3

Space Bounds for Reliable
Storage: Fundamental Limits of
Coding

In recent years we have seen an exponential increase in storage capacity demands, creat-
ing a need for big data storage solutions. In this era, distributed storage plays a key role.
Data is typically stored on a collection of nodes accessed asynchronously by clients over
a network. By storing redundant information, data remains available following failures.
The most common approach to achieve this is via replication [10]; in asynchronous set-
tings, 2 f + 1 replicas are needed in order to tolerate f failures [10]. Given the immense
size of data, the storage cost of replication is significant. Previous works have attempted
to mitigate this cost via the use of erasure codes [6, 21, 42, 23, 77, 30].

Indeed, codes can reduce the storage cost as long as data is not accessed concurrently
by multiple clients. For example, if the data size is D bits and a single failure needs to
be tolerated, erasure-coded storage ideally requires (k + 2)D/k bits for some parameter
k > 1 instead of the 3D bits needed for replication. But as concurrency grows, the cost
of erasure-coded storage grows with it: when c clients access the storage concurrently,
existing asynchronous code-based algorithms [21, 42, 23, 30] store O(cD) bits in storage
nodes or communication channels. Intuitively, this occurs because coded data cannot be
reconstructed from a single storage node. Therefore, writing coded data requires coor-
dination – old values cannot be deleted before ensuring that sufficiently many blocks of
the new value are in place. This is in contrast to replication, where written values can al-
ways be read coherently from a single copy, and so old values may be safely overwritten
without coordination.

In this Chapter we prove that this extra cost is inherent: Given three problem param-
eters: f , c, and D, where f is the number of storage node failures tolerated (client failures
are unrestricted), c is the concurrency allowed by the algorithm, and D is the data size,

35

we prove that the storage complexity is Θ(min(f , c) · D). Asymptotically, this means ei-
ther a storage cost as high as that of replication, or as high as keeping as many versions
of the data as the concurrency level.

Lower bound Our results are proven for emulations of a lock-free multi-reader multi-
writer regular register [52, 65]; see Section 3.1 for definitions. Interestingly, the lower
bound does not hold for the weaker safe register semantics; in Section 3.5 we present
a simple storage-efficient wait-free algorithm that ensures safe semantics, but not regu-
larity. we consider algorithms that use (arbitrary) black-box encoding schemes, i.e., pro-
duce and manipulate code blocks of a given value independently of other values and
meta-data; as formalized in Section 3.1.2. The storage consists of such code blocks, in
addition to possibly unbounded data-independent meta-data, (e.g., timestamps), which
we do not count as part of the storage cost. Our black-box assumption excludes storage-
reduction techniques like de-duplication, which do require data-dependent meta-data.
In Section 3.2 we survey how this assumption holds in related work on popular storage
algorithms [6, 21, 42, 23, 30, 43], and compare it with assumptions made in proving other
lower bounds [22]. Yet, the question whether there is a more storage-efficient algorithm
that circumvents our result by taking stored values into consideration remains open; see
further discussion in Section 3.6.

We prove the bound in Section 3.3: we first use a fundamental pigeonhole argument
to show that as long as no ongoing write operation contributes code blocks consisting
of D or more bits to the storage, no write operation can complete. We then define a
parameter 0 < ` ≤ D. For a given `, we devise a particular adversary behavior, which
we prove drives the storage to a state where either (1) f + 1 storage nodes hold at least
` bits each, or (2) the storage holds more than D − ` + 1 bits in distinct code blocks for
each of c different operations. Now, picking ` = D/2 implies our lower bound.

Algorithm To prove our bound tight, we present in Section 3.4 a reliable storage al-
gorithm whose storage cost is O(min(f , c) · D). We achieve this by combining the ad-
vantages of replication and erasure coding. Our algorithm does not assume any a priori
bound on concurrency; rather, it uses erasure codes when concurrency is low and adap-
tively switches to replication when it is high.

36 Chapter 3. Space Bounds for Reliable Storage: Fundamental Limits of Coding

3.1 Model

3.1.1 Preliminaries

We consider an asynchronous fault-prone shared memory system [4, 1, 48] consisting
of set B = {boi, . . . , bon} of n base objects (typically residing at distinct storage nodes)
supporting arbitrary atomic read-modify-write (RMW) access by clients from some infinite
set Π (see Figure 3.1). Any f out of n base objects and any number of clients may fail by
crashing, for some predefined f < n/2.

Figure 3.1: Clients and base objects.

An algorithm defines the behavior of clients as deterministic state machines, where
state transitions are associated with actions such as RMW trigger/response. A configu-
ration is a mapping to states from system components, i.e., clients and base objects. An
initial configuration is one where all components are in their initial states.

A run of algorithm A is a (finite or infinite) alternating sequence of configurations and
actions, beginning with some initial configuration, such that configuration transitions
occur according to A. For a run r, trace(r) is the subsequence of r consisting of all the
operation invocation and returns in r. We use the notion of time t during a run r to
refer to the configuration reached after the tth action in r. A run fragment is a contiguous
subsequence of a run starting and ending with a configuration. We assume that runs are
well-formed, in that each client’s first action is an invocation, and a client has at most one
outstanding operation at any time.

We say that a base object or client is faulty in a run r if it fails any time in r, and
otherwise, it is correct. A run is fair if (1) for every RMW triggered by a correct client on a
correct base object, there is eventually a matching response, (2) every correct client gets
infinitely many opportunities to trigger RMWs.

We study algorithms that emulate a shared register [52], which stores a value v from
some domain V, where D = log2 |V|. Initially, the register holds some initial value v0 ∈
V. Clients interact with the emulated register via high-level read and write operations. A
client that performs a write operation is called a writer, and a client performing a read is
a reader.

3.1. Model 37

To distinguish the high-level emulated operations from low-level base object access,
we refer to the latter as RMWs. We say that RMWs are triggered and respond, whereas
operations are invoked and return. A (high-level) operation is emulated via a series of
trigger and respond actions on base objects, starting with the operation’s invocation and
ending with its return. In the course of an operation, a client triggers RMWs separately
on each boi ∈ B. The state of each boi ∈ B changes atomically, according to the RMW
triggered on it, at some point after the time when the RMW is triggered but no later than
the time when the matching response occurs. To distinguish incomplete invocations to
the emulated register from incomplete RMWs triggered on base objects, we refer to the
former as outstanding operations and to the latter as pending RMWs.

A parameter c defines the write concurrency level, that is, at most c write operations
are outstanding at a given time. We next define the safety and liveness properties we use
in this chapter.

Liveness There is a range of possible liveness conditions, which need to be satisfied
in fair runs. A wait-free object is one that guarantees that every correct client’s opera-
tion completes, regardless of the actions of other clients. A lock-free object guarantees
progress: if at some point in a run there is an outstanding operation of a correct client,
then some operation eventually completes. An FW-terminating [1] register is one that has
wait-free write operations, and in addition, if there are finitely many write invocations in
a run, then every read operation completes.

Safety In order to define regularity, we first introduce some terminology: Operation
opi precedes operation opj in a run r, denoted opi ≺r opj, if opi’s return occurs before
opj’s invoke in r. Operations opi and opj are concurrent in a run r if neither one precedes
the other. A run with no concurrent operations is sequential. Two runs are equivalent if
every client performs the same sequence of operations in both, where operations that are
outstanding in one can either be included in or excluded from the other. A linearization of
a run r is an equivalent sequential run that preservers r’s operation precedence relation
and the object’s sequential specification. The sequential specification for a register is as
follows: A read returns the latest written value, or v0 if none was written. A write w in a
run r is relevant to a read rd in r [65] if rd 6≺r w; rel-writes(r, rd) is the set of all writes in r
that are relevant to rd.

Following Lamport [52], we consider a hierarchy of safety notions. Lamport [52]
defines regular and safe single-writer registers. Shao et al. [65] extend Lamport’s notion
of regularity to MWMR registers, and give four possible definitions. Here we use two of
them. The first is the weakest definition, and we use it in our lower bound proof. The
second, which we use for our algorithm, is the strongest definition that is satisfied by
ABD [10] in case readers do not change the storage (no write-back):

A MWMR register is weakly regular, (called MWRegWeak in [65]), if for every run r and
read rd that returns in r, there exists a linearization of the subsequence of r consisting of

38 Chapter 3. Space Bounds for Reliable Storage: Fundamental Limits of Coding

rd and the writes in r. A MWMR register is strongly regular, (called MWRegWO in [65]),
if it satisfies weak regularity and the following condition: For all reads rd1 and rd2 that
return in r, for all writes w1 and w2 in rel-writes(r, rd1) ∩ rel-writes(r, rd2), it holds that
w1 ≺Lrd1

w2 if and only if w1 ≺Lrd2
w2.

We extend the safe register definition and say that a MWMR register is strongly safe if
there exists a linearization σw of the subsequence of r consisting of the write operations
in r, and for every read operation rd that has no concurrent writes in r, it is possible to add
rd at some point in σw so as to obtain a linearization of the subsequence of r consisting of
the write operations in r and rd.

3.1.2 Storage algorithm model and assumptions

We first give a formal model for coded storage algorithms, then define the notion of stor-
age cost in this model, and finally state our assumptions that the encoding is symmetric
and algorithms use it as a black-box.

We consider algorithms that use (arbitrary) encoding schemes, which produce code
blocks in some domain E , so that each value is coded independently of other values. The
coding scheme is based on two functions: The encoding function E : V×N→ E maps
value/natural number pairs to code blocks. We denote the number of bits in block e ∈ E
as |e|. The decoding function D : 2E → V ∪ {⊥} takes as a parameter a set of code
blocks and returns a value in V, or ⊥ in case no value can be decoded. For example, in
a replication approach, each block e can be a full value v, so D({e}) simply returns v.
Another example is k-of-n erasure codes, where for any value v and any subset S of size
k of the set {ei | ei = E(v, i), 1 ≤ i ≤ n}, D(S) = v. We capture rateless codes [62], in
which an encoder can generate a limit-less sequence of blocks, by using N as the domain
for block numbers.

We encapsulate the encoder and decoder into two oracles, oracleE and oracleD as
illustrated in Figure 3.2. The interaction with these oracles is as follows:

Definition 6 (Encoding/Decoding Oracles). A w=write(v) (read()) invocation at a client ck

initializes an oracleE(ck, w) (oracleD(ck, w), resp.), which expires when w completes. oracleE(ck, w)

exposes a get(i) operation, which returns
E(v, i) for i ∈N; and oracleD(ck, w) exposes two operations, push(e, i) and done(i), such that
for all i ∈N, if ci calls done(i), then its read operation completes and returns D({e | push(e, i)
previously occurred}). We omit the parameters ck, w when they are clear from the context.

Writers produce code blocks via oracleE and store them in the storage, whereas read-
ers try to obtain enough blocks to decode legal values via oracleD. In addition to code
blocks, clients and base objects can store unbounded meta-data, e.g., program counters
and timestamps. But to avoid trivializing the problem, the meta-data must be data-
independent, as formally defined below.

Information is represented as list of code blocks and meta-data, 〈e1, e2, . . . , ek; m〉,
where ∀i, ei ∈ E and the meta-data m is from some arbitrary domain. The state of a

3.1. Model 39

(a) A writer and its oracle. (b) Run rv

Figure 3.2: A model for code-based storage. Encoding and decoding are captured by
oracles.

client that has an outstanding operation consists of the information stored at the client as
well the parameters of its pending RMWs that have not yet taken effect. The state of a
client with no outstanding operation is empty. A base object’s state consists of the infor-
mation stored at the base object and all the responses of pending RMWs that took effect
on it. For a base object boi (client ci), we denote the list of code blocks in boi’s (ci’s) state
at time t in run r as bor

i (t) (resp. cr
i (t)).

Let S be an ordered set including all base objects and clients, i.e., B ∪ Π ordered
in some arbitrary way. For S = {bo1, . . . , bok, c1, . . .} ⊆ S , Sr(t) is the list of lists
bor

1(t), . . . , bor
k(t), cr

1(t), . . . sorted according to their order in S . A block instance b ∈ Sr(t)
is a triple 〈i, j, e〉 so that e is stored in the jth position in the ith list in S. We refer to the
block contents as b.e.

Storage cost We count the number of bits stored in blocks in base objects as well as in
clients, and neglect meta-data size. Note that oracle states are not counted as part of the
storage cost, since we wish to measure the additional space required for making the data
available for shared access, beyond its (trivial) existence at its sources and readers.

Definition 7 (Storage Cost). The storage cost at time t in a run r is Σb∈Sr(t)|b.e|. The
storage cost of an algorithm A is the maximum storage cost at any point t in any run r of A.

Assumptions To make sure that the encoding does not leak information using block
sizes, we assume symmetry, in the sense that output block sizes do not depend on input
values. (Otherwise, we could for example, represent three values 0, 1, and 10 using a
single coded block e1 of size at most 1 bit by having |e1| = 0 encode 10). Formally:

Definition 8 (Symmetric Encoding). An encoding function E is symmetric if for every
v, v′ ∈ V and for all i ∈N, |E(v, i)| = |E(v′, i)|. We denote size(i) , |E(v, i)|.

Note that different block numbers (of all values) may have different sizes.

40 Chapter 3. Space Bounds for Reliable Storage: Fundamental Limits of Coding

(a) Run r (b) Run rv

Figure 3.3: Black-box coding. Runs r and rv have the same trace except that write w is
invoked with u in r and with v in rv; and each base object boi’s state (blocks and meta-
data) is identical at all times in both runs, except that blocks produced by w’s oracle in r
are replaced in rv by the corresponding blocks of v.

We next state our assumption that the storage treats the coding as a black-box. First,
we define the notion of a source function, which we shall use to prohibit generation of
code blocks by any source other than oracleE:

Definition 9 (Source Function). A function is a source function for a run r if it maps every
(b, t) s.t. b ∈ S r(t) to a pair 〈w, i〉 s.t. b.e was returned by get(i) in oracleE(w).

We use a source function to trace blocks in the storage to operations that produced
them. To capture the restriction that the algorithm’s decision what to store does not rely
on block contents, we stipulate that we can replace the value written by a write operation
w in a run r by an arbitrary value v, yielding the same sequence of states and actions,
except that all stored block instances whose source is 〈w, i〉 are replaced with E(v, i). For
clarity, we refer to the operation as w in both runs (see Figure 3.3).

Definition 10 (Black-Box Coding). An algorithm A is black-box coding if for every run r
there is a source function sourcer s.t. for every w = write(u) operation in r, ∀u ∈ V, there is
run rv satisfying the following:

1. rv has the same sequences of invocations and returns as r except that w = write(v) (possi-
bly with no change) and return values of read operations may be different; and

2. client and base object states at every time t in rv are the same as at time t in r except
that the contents of every b ∈ S r(t) s.t. sourcer(b, t) = 〈w, i〉 for some i is replaced by
e′ = E(v, i).

In the following, we will only consider source functions satisfying Definition 10. In case
multiple such source functions for r exist, we fix an arbitrary one and refer to it as sourcer.

3.2 Related work

Our model captures numerous existing distributed storage algorithms, including ones
that use replication [10], and erasure codes [6, 21, 42, 23, 30, 43]. We note that some

3.3. Storage Lower Bound 41

of them report a storage cost below O(cD) [6, 21, 77, 30]. This is sometimes achieved
by assuming periods of synchrony [6]. Other works shift the cost from storage nodes
to the network and keep unbounded information in channels [30, 21]. However, since
we define parameters and responses of pending RMWs to be part of clients’ and base
objects’ states, information in channels is counted in our storage cost model and hence
these algorithms are subject to our bound. The only non-black-box storage algorithm we
are aware of is [77], where multiple values are encoded jointly, saving space, but also
forfeiting regular register semantics. It is as of now unclear whether lifting the black-box
assumption suffices in order to circumvent our result.

In [68] we showed a special case of the result in this chapter for infinite concurrency.
Cadambe et al. [22] prove closely related lower bounds for coded storage algorithms.
First, they show that asynchronous fault-tolerant storage algorithms require strictly more
storage than synchronous erasure-coded algorithms. Second, similarly to this work, they
extend the result given in In [68] to show that the storage cost must grow linearly with
min(f , c), but their result is proven under a different set of assumptions than ours. In par-
ticular, while both papers make certain “black box” assumptions about the storage, [22]
does not rule out joint coding as we do, but instead restricts protocol actions in a way
that forbids them from depending on a written value in more than one communication
round; this affords the protocol more freedom than our model in one communication
round, and less freedom in all other rounds. On the face of it, the two sets of assumptions
appear to be incomparable, though they both achieve the same end result, as we dis-
cuss in Section 3.6 below. Additionally, our bound allows algorithms to use unbounded
(data-independent) meta-data and is proven for lock-free register emulations, whereas
the bound in [22] includes meta-data and is shown for wait-free registers.

In Chapter 2 we showed that the number of fault-prone read/write registers needed
to emulate a reliable multi-writer register grows linearly with the number of clients that
can write to the register (even in sequential runs). Here, on the other hand, we consider
storage nodes supporting fully general read-modify-write, for which that lower bound
does not apply.

The challenge of providing a lower bound on stored data when meta-data is poten-
tially unbounded was also previously addressed in the context of byzantine storage [25].
That paper has shown that certain storage algorithms cannot be “amnesic”, i.e., cannot
“forget” values written to them. Like our black-box assumption, the notion of amnesia
was defined in terms of runs. However, it did not yield explicit bound on storage cost.

3.3 Storage Lower Bound

We now show a lower bound of O(min(f , c) · D) bits on the storage cost of any lock-free
algorithm that uses symmetric black-box coding to simulate a weakly regular register:

Theorem 5. Consider a lock-free algorithm A that uses symmetric black-box coding to simulate
a weakly regular register. The storage cost of A is Ω(min(f , c) · D).

42 Chapter 3. Space Bounds for Reliable Storage: Fundamental Limits of Coding

For the sake of our proof, we quantify the number of bits in blocks contributed by client
ci’s operation w to base objects and clients other than ci.

Definition 11. Let S ⊂ S , and consider a time t and an operation w by client cj in a run r. We
define Sr(t, w) , {i ∈ N | ∃b ∈ (S \ {cj})r(t): sourcer(b, t) = 〈w, i〉}, and ||Sr(t, w)|| ,
Σi∈Sr(t,w)size(i).

For I ⊆ N, we say that two values v′ 6= v′′ in V are I-colliding if ∀i ∈ I, E(v′, i) =

E(v′′, i). We next use the pigeonhole argument and the assumption of symmetric black-
box coding in order to show that write operations cannot return until some write stores
enough bits in different blocks in every set of n− f base objects.

Claim 2. Let w be a write operation invoked in a run r of A, and t be a point in r. Consider a set
of values U ⊂ V, |U| < 2D−1, and a set of base objects S ⊂ S . If ||Sr(t, w)|| < D, then there
are two Sr(t, w)-colliding values u 6= u′ in V \U.

Proof. Since |V \U| > 2D−1 and ||Sr(t, w)|| < D, the claim follows from the pigeonhole
argument.

Lemma 9. Consider a run r of algorithm A that begins with the invocation of c concurrent write
operations. Let S be a set of at least n− f base objects and assume that at every time t in r for
every operation w in r, ||Sr(t, w)|| < D. Then no write operation returns in r.

Proof. Let Wops = {w1, . . . , wc} be the set of c concurrent writes invoked in r. Assume
by contradiction that there exists a complete write in Wops. Let w be the first such write,
and t be the time when it returns. Next we inductively build a sequence of sets of values
U0, U1, . . . , Uc, where |Ui| = i:

• U0 = {}

• ∀i ∈ {0, . . . , c− 1}, we use Ui to build Ui+1. By the lemma premise, ||Sr(t, wi+1)|| <
D. Now since |Ui| < c < 2D−1, by Claim 2, there are two Sr(t, wi+1)-colliding values
uwi+1 6= u′wi+1

in V \Ui. We let Ui+1 = Ui ∪ {uwi+1}.

The set Uc contains exactly c (different) values s.t. for every operation wi ∈Wops there
is a value uwi ∈ Uc that has a Sr(t, wi)-colliding value u′wi

∈ V. By applying Definition 10
(c times), there is a run r′ that begins with the invocation of c concurrent write operations,
in which every operation wi ∈ Wops writes uwi s.t. w returns at time t, and for every
operation wi ∈ Wops, Sr(t, wi) = Sr′(t, wi). Next, let clients with outstanding operations
and all base objects in B \ S fail at time t in r′ (note that by assumption |S| ≥ n− f , so
|B \ S| ≤ f), and let some client cj invoke a solo read operation at time t + 1. By lock-
freedom, cj’s read operation completes, and by regularity, it returns a value u ∈ Uc at
some time t′ > t.

Let w′ be the operation that writes u in r′. Since u has a Sr(t, w′)-colliding value u′

and since Sr(t, w′) = Sr′(t, w′), u and u′ are Sr′(t, w′)-colliding. By Definition 10, there is

3.3. Storage Lower Bound 43

a run r′′ with the same operations as in r′ except that w′ writes u′ (instead of u) s.t. every
client’s and base object’s state at time t in r′ is identical to its state at time t in r′′ (note
that clients with outstanding operations and all base objects in B \ S fail at time t) except
that for every block instance b ∈ S r′(t) s.t. sourcer′(b, t) = 〈w′, i〉, b.e is replaced with a
block E(u′, i). In particular, states of base objects in S at time t are identical to their states
at time t in r′ except that for every block instance b ∈ Sr′(t) s.t. sourcer′(b, t) = 〈w′, i〉, b.e
is replaced with a block E(u′, i).

Now since u and u′ are Sr′(t, w′)-colliding, states of base objects in S at time t in r′′

are identical to their states at time t in r′. In addition, since clients with outstanding
operations and all base objects in B \ S fail at time t, the solo reader cj cannot distinguish
between r′ and r′′, and thus, it pushes the same blocks to its oracle and calls done with
the same number in r′′ as in r′, and therefore, its read operation returns u at time t′′ in
run r′′. However, since the clients invoke write operations with different values in r′, u
is not written in r′′. A contradiction to weak regularity.

Having shown a condition under which write operations cannot complete, we define
an (unfair) adversary behavior that takes advantage of this in order to prevent progress.
We introduce some notation, and then use it in order to define the adversary. We define
a parameter 0 < ` ≤ D, and for any time t in a run r of algorithm A we define the
following sets, as illustrated in Figure 5.2. For convenience, from now on we omit the
superscript r.

• C(t): the set of outstanding write operations at time t.

• C−` (t) = {w ∈ C(t) | ||S(t, w)|| ≤ D − `}: The set of write operations each of
which has at most D− ` bits in blocks, produced by its oracle with different num-
bers, in the storage (excluding the client performing it) at time t.

• C+
` (t) = C(t) \ C−` (t).

• F`(t) = {boi ∈ B | Σb∈{boi}(t)|b.e| ≥ `}. Base objects that store blocks that consist
(together) of more than ` bits at time t. These are base objects that we will “freeze”
in our counter-example because they are already “full”, i.e., consume enough space
for our lower bound.

We fix the parameter ` throughout the proof and omit subscript ` from the notation. The
next observation on storage cost immediately follows from the definitions.

Observation 4. At any point t in every run r of A, the storage cost is at least |C+(t)|(D− `+

1).

We next define a particular adversary behavior that schedules actions in a way that pre-
vents progress. Note that the adversary controls the scheduling of client actions and
RMW responses.

44 Chapter 3. Space Bounds for Reliable Storage: Fundamental Limits of Coding

Figure 3.4: Example scenario in run of a storage algorithm with adversary Ad. In this
example, 2D/5 < ` < D. At time t, only w2 and w4 are in C−(t), where w4 has no
pending RMWs and w2 has one triggered RMW on b1 ∈ F(t) and one triggered RMW on
b3 6∈ F(t). Therefore, by the first rule, Ad schedules the response on the RMW triggered
by w2 on b3. In this example w2 overwrites w3’s block in b3, thus w3 moves from C+

to C−. Then, at time t + 1, no response can be scheduled by rule 1 (no operation in
C−(t + 1) has a pending RMW on a base object in N \ F(t + 1)), so by rule 2, Ad chooses
w2 and lets it trigger an RMW on base object b2. Now since w2 is the only operation that
has a pending RMW on a base object not in F(t + 2), Ad schedules the response on the
RMW triggered by w2 on b2 at time t + 2. In this example w2 adds a block with ` bits to
b2. Thus, c2 is included in C+(t + 3). In addition, b2 stores more than ` bits at time t + 3,
so it belongs to F(t + 3).

Definition 12. (Ad) At any time t, Ad schedules an action as follows:

1. If there is a pending RMW on a base object in B \ F(t) by a client performing an operation
in C−(t), then choose the longest pending of these RMWs, allow it to take effect on the
corresponding base object, and schedule its response.

2. Else, choose in a fair order an operation by a client ci ∈ Π and schedule its action (trigger
RMW, call its oracle, get response from its oracle, or return), without allowing it to affect
the base object yet. By fair order we mean any order in which every client is chosen infinitely
often (e.g., c1, c1, c2, c1, c2, c3 . . .).

In other words, Ad delays RMWs triggered by operations in C+(t) (for which the storage
already holds D− ` bits) as well as RMWs on “frozen” base objects in F(t) (which store
at least ` bits), and fairly schedules all other actions. We demonstrate Ad’s behavior
in Figure 5.2. Though this behavior may be unfair, in every infinite run of Ad, every
correct client gets infinitely many opportunities to take steps. We use Ad to build an
unfair run with no progress (no write returns), and then build an indistinguishable fair
run to contradict lock-freedom. The following observation immediately follows from the
adversary’s freezing of base objects in F.

Observation 5. Assume run r of algorithm A in which the environment behaves like Ad. For
each base object bo, if bo ∈ F(t) at some time t, then bo ∈ F(t′) for all t′ > t in r.

3.3. Storage Lower Bound 45

Another consequence of Ad’s behavior is captured by the following:

Lemma 10. Consider a run r of algorithm A. If the adversary behaves like Ad, then for every
time t and for every write operation w in r, ||(S \ F(t))(t, w)|| < D.

Proof. Assume by way of contradiction that there is time t and write operation w per-
formed by client cj s.t. ||(S \ F(t))(t, w)|| ≥ D. The definition of (S \ F(t))(t, w) takes
into account only blocks returned by w’s oracle that are stored outside of cj(t). Thus, w
triggered at least one RMW that has a matching response before time t in r. Let t′ ≤ t
be the time when the last RMW triggered by w responded, and denote this RMW by
rmw and the base object on which rmw was triggered by bo. By Ad, w ∈ C−(t′ − 1), and
therefore, by definition, ||(S \ F(t′ − 1))(t′ − 1, w)|| ≤ D− `. Now consider two cases:

• First, rmw adds blocks (possibly overwriting other blocks) with less than ` bits to
bo. In this case, since bo is the only storage component that changed at time t′,
|(S \ F(t′))(t′, w)| < D.

• Second, rmw adds blocks (possibly overwriting other blocks) with at least ` bits
to bo. In this case, bo ∈ F(t′). Now since ||(S \ F(t′ − 1))(t′ − 1, w)|| ≤ D, by
Observation 5, F(t′ − 1) ⊆ F(t′), and given bo ∈ F(t′) and it is the only storage
component that changed at time t′, we get ||(S \ F(t′))(t′, w)|| ≤ ||(S \ F(t′ −
1))(t′ − 1, w)|| < D.

So far we showed that ||(S \ F(t′))(t′, w)|| < D. By Observation 5, and since no RMW
by w takes effect after time t′, (S \ F(t′′))(t′′, w) ⊆ (S \ F(t′))(t′, w), ∀t′′ ≥ t′. Therefore,
we get ||(S \ F(t))(t, w)|| < D. A contradiction.

The next corollary uses Lemmas 9 and 10 in order to conclude that Ad can prevent
progress of write operations.

Corollary 5. Consider a run r of algorithm A that begins with the invocation of c concurrent
write operations. If the adversary behaves like Ad and |F(t)| ≤ f for all t in r, then no write
operation returns in r.

Proof. By Lemma 10, for every time t for every write operation w in r, ||(S \ F(t))(t, w)|| <
D. And since B ⊂ S , for every time t for every write operation w in r, ||(B \ F(t))(t, w)|| <
D. Now since |F(t)| ≤ f for every time t in r, |B \ F(t)| ≥ n− f . Therefore, by Lemma 9,
no write operation returns in r.

We have shown that Ad can prevent completion of write operations in algorithms that
store ` bits in less than f + 1 base objects. However, this does not directly imply a storage
bound, since Ad is not fair. In the next lemma we close this gap by showing a fair run
in which lock-freedom must be satisfied , i.e., operations invoked by correct clients must
eventually complete, in order to blow up the storage. We show that for every algorithm,

46 Chapter 3. Space Bounds for Reliable Storage: Fundamental Limits of Coding

we can build a run where at some point the algorithm either stores ` bits in each of f + 1
base objects (namely, ∃t : |F(t)| > f), or there are c concurrent operations each of which
adds at least D− ` + 1 bits to the storage cost (i.e., |C+(t)| = c).

Lemma 11. There is a run r of A and a time t in r when |C+(t)| = c or |F(t)| > f .

Proof. Assume by way of contradiction that there is no such run of algorithm A. We first
build a run r of A with c clients that concurrently write different values, in which the
environment behaves like adversary Ad. By the contradiction assumption, |C+(t)| < c
and |F(t)| ≤ f for all t in r. We start with the invocation of c concurrent write operations,
and allow the run to proceed indefinitely according to Ad. We say that a client c, which
performs write operation w, is stuck in r if there is a time t in r s.t. for all t′ ≥ t, w ∈ C+(t′)
(and so no RMWs triggered by c take effect after time t). By Observation 5 and the
assumption that |F(t)| ≤ f for all t, there is a time t1 in r s.t. for every time t2 ≥ t1,
F(t1) = F(t2).

Now we build a run r′ that is identical to r but every base object bo ∈ F(t1) fails at
time t1 (|F(t1)| ≤ f), and every stuck client fails after its last RMW takes effect. Since
by Ad, RMWs do not take effect on base objects in F(t1) after time t1, runs r and r′

are indistinguishable to all correct clients and base objects. Now notice that by Ad’s
behavior, each correct client in r′ gets infinitely many opportunities to trigger RMWs.
In addition, since (1) for every correct client ci in r′ there are infinitely many times t
when ci ∈ C−(t), (2) Ad picks responses from base objects not in F(t) in the order they
are triggered, and (3) there are no correct base objects in F(t′) for all t′ > t1, every
RMW triggered by a correct client on a correct base object has a matching response in
r′. Therefore, run r′ is fair.

By the contradiction assumption |C+(t)| < c for all t in r. Therefore, there is at least
one client that is not stuck in r, and thus, there is at least one client that is correct in r′.
Hence, by lock-freedom, some client eventually completes its write operation in r′. Now
since r and r′ are indistinguishable to all clients that are correct in both, the same is true
in r. However, by Corollary 5, no write operation completes in r. A contradiction.

So far we have shown that every algorithm has a run where at some point either ` bits
are stored in f + 1 base objects, or there are c concurrent operations each of which adds
at least D− ` + 1 bits to the storage cost. We now combine this result with Observation
4 to conclude our lower bound:

Proof (Theorem 5). Let ` = D/2. By Lemma 11, there is a run r of A and a time t in r
when |C+(t)| = c or |F(t)| > f . If |F(t)| > f , then the storage cost at time t in r is
(f + 1)` = (f + 1)D/2 = Ω(f D). Otherwise, |C+(t)| = c, and so by Observation 4, the
storage cost at time t in r is at least c(D− `) = cD/2 = Ω(cD). The theorem follows.

3.4. Adaptive Regular Register 47

By picking ` = D, we get a second conclusion from Lemma 11 and Observation 4. The
following corollary proves that any coding scheme short of full replication must exhibit
storage growth linear in the concurrency.

Corollary 6. The storage cost of any algorithm that uses a black-box coding scheme to simulate
a weakly regular lock-free register, and does not store D bits (enough to represent a full replica)
in f + 1 base objects, grows linearly with the concurrency.

3.4 Adaptive Regular Register

We present here a storage algorithm that combines full replication with erasure coding
in order to achieve the advantages of both.

3.4.1 Algorithm

erasure codes. A k-of-n erasure code takes a value from V and produces a set S of n
blocks from E s.t. the value can be restored from any subset of S that contains no less than
k different blocks. We assume that the size of each block is D/k. OracleE and OracleD are
encapsulated by two functions encode and decode, respectively: encode gets a value v ∈ V

and returns a set of n ordered elements W = {〈e1, 1〉, . . . , 〈en, n〉}, where e1, . . . , en ∈ E ,
and decode gets a set W ′ ⊂ E ×N and returns v′ ∈ V s.t. if |W ′| ≥ k and W ′ ⊆ W, then
v = v′. We use k = n− 2 f . Note that when k = 1, we get full replication.

The main idea behind our algorithm is to have base objects store blocks from at most
k different writes, and then turn to store full replicas. Our algorithm satisfies strong
regularity and FW-termination. In the next section we prove the following:

Theorem 6. There is an FW-terminating algorithm that simulates a stringly regular register,
whose storage cost is min((c + 1)(2 f + k)D/k, (2 f + k)2D) bits. Moreover, in a run with a
finite number of writes, if all the writers are correct, the storage is eventually reduced to (2 f +

k)D/k bits.

Notice that k is a parameter of the algorithm, and if we pick k = f , then asymptoti-
cally the storage cost of our algorithm is O(min(cD, f D)) = O(min(c, f) · D).

The algorithm’s pseudocode appears in Algorithms 3-5. The algorithm uses a set of
n shared base objects bo1, . . . , bon each of which holds three fields Vp, Vf , and storedTS.

48 Chapter 3. Space Bounds for Reliable Storage: Fundamental Limits of Coding

Algorithm 3 Definitions.

1: TimeStamps = N×Π, with selectors num and c, ordered lexicographically.
2: Pieces = (E ×N)
3: Chunks = Pieces× TimeStamps, with selectors val, ts
4: encode : V → 2E×{1,2,...,n}, decode : 2E×{1,2,...,n} → V s.t. ∀v ∈ V, encode(v) =
{〈∗, 1〉, . . . , 〈∗, n〉}∧ ∀W ∈ 2E×N, if W ⊆ encode(v) ∧ |W| ≥ k, then decode(W) = v

5: base objects:
6: ∀i ∈ {1, . . . , n}, boi = 〈storedTS, Vp, Vf 〉 s.t.

Vf , Vp ⊂ Chunks, and storedTS ∈ TimeStamps,
initially 〈〈0, 0〉, {〈〈0, 0〉, 〈v0i , i〉〉}, {}〉.

The Vp field holds a set of timestamped code blocks so that the ith block of a value can
be stored in the Vp field of object boi. The Vf field stores a timestamped replica of a
single value, (represented as a set of k code blocks). And storedTS holds a timestamp, as
explained below.

Write operation and storage efficiency The write operation (lines 3–14) consists of
3 sequentially executed rounds: read timestamp, update, and garbage collection; and, the
read consists of one or more sequentially executed read rounds. At each round, the client
invokes RMWs on all base objects in parallel, and awaits responses from at least n− f
base objects. The read rounds of both write and read rely on the readValue routine (lines
21–28) to collect the contents of the Vp and Vf , fields from n − f base objects, as well
as to determine the highest storedTS known to these objects. The implementations of
the update and garbage collection rounds are given by the update (lines 29–36) and GC
(lines 37–42) routines, respectively.

The write implementation starts by encoding v into k code blocks (line 4) and in-
voking the read round where the client uses the combined contents of the Vp, Vf and
storedTS fields returned by readValue to determine the timestamp ts to be stored along-
side v’s code blocks on the base object; ts is set to be higher than all returned timestamps
thus ensuring that the order of the timestamps associated with the stored values is com-
patible with the order of their corresponding writes, (which is essential for regularity).

The client then proceeds to the update round where it attempts to store the ith code
block 〈e, i〉 of v in boi.Vp if the size of boi.Vp is less than k (lines 33), or its full replica
in boi.Vf if ts is higher than the timestamp associated with the value currently stored in
boi.Vf (line 35). Storing 〈e, i〉 in boi.Vp coincides with an attempt to reduce its size by re-
moving stale code blocks of values whose timestamps are smaller than storedTS (line 33).
This guarantees that the size of Vp never exceeds the number of concurrent writes, which
is a key for achieving our adaptive storage bound. Lastly, the client updates boi.storedTS
so as its new value is at least as high as the one returned by the readValue routine. This
allows the timestamp associated with the latest complete update to propagate to the base
object being written, in order to prevent future writes of old blocks into this base object.

In the write’s garbage collection round, the client attempts to further reduce the stor-

3.4. Adaptive Regular Register 49

age usage by (1) removing all code blocks associated with timestamps lower than ts from
both boi.Vp and boi.Vf (lines 38–39), and (2) replacing a full replica (if it exists) of its writ-
ten value v in boi.Vf with its ith code block 〈e, i〉 (line 41). It is safe to remove the full
replica and values with older timestamps at this point, since once the update round has
completed, it is ensured that the written value or a newer written value is restoreable
from any n − f base objects. This mechanism ensures that all code blocks except the
ones comprising the value written with the highest timestamp are eventually removed
from all objects’ Vp and Vf sets, which reduces the storage to a minimum in runs with
finitely many writes, which all complete. The garbage collection round also updates the
boi.storedTS field to ensure its value is at least as high as ts.

Algorithm 4 regular register emulation. Algorithm for client cj.

1: local variables:
2: storedTS, ts ∈ TimeStamp, WriteSet ∈ Pieces

3: operation Write(v)
4: WriteSet← encode(v)

. round 1: read timestamps
5: 〈storedTS, ReadSet〉 ← readValue()
6: tmp← max(storedTS.num,

max{tmp′ | 〈〈tmp′, ∗〉, ∗〉 ∈ ReadSet})
7: ts← 〈n + 1, j〉

. round 2: update
8: || for i = 1 to n
9: update(boi, WriteSet, ts, storedTS, i)

10: wait for n− f responses
. round 3: garbage collect

11: || for i = 1 to n
12: GC(boi, WriteSet, ts, i)
13: wait for n− f responses
14: return “ok”

15: operation Read()
16: 〈storedTS, ReadSet〉 ← readValue()
17: while @ts ≥ storedTS s.t.

|{〈ts, v〉 | 〈ts, v〉 ∈ ReadSet}| ≥ k do
18: 〈storedTS, ReadSet〉 ← readValue()
19: ts′ ← max

ts≥storedTS
(|{〈ts, v〉 | 〈ts, v〉 ∈ ReadSet}| ≥ k)

20: return decode({v | 〈ts′, v〉 ∈ ReadSet})

Key Invariant and read operation The write implementation described above guar-
antees the following key invariant: at all times, a value written by either the latest com-
plete write or a newer write is available from every set consisting of at least n− f base
objects (either in the form of k code blocks in the objects’ Vp fields, or in full from one of
their Vf fields). Therefore, a read will always be able to reconstruct the latest completely
written or a newer value provided it can successfully retrieve k matching blocks of this
value. However, a read round may sample different base objects at different times (that

50 Chapter 3. Space Bounds for Reliable Storage: Fundamental Limits of Coding

is, it does not necessarily obtain an atomic snapshot of the base objects), and the number
of blocks stored in Vp is bounded. Thus, the read may be unable to see k matching blocks
of any single new value, as long as new values continue to be written concurrently with
the read.

Nevertheless, for FW-Termination, the reads are only required to return in runs where
a finite number of writes are invoked. Our implementation of read (lines 15–20) proceeds
by invoking consecutive rounds of RMWs on the base objects via the readValue routine.
After each round, the reader examines the collection of returned values and timestamps
to determine if any value has k code blocks and is also associated with a timestamp that is
at least as high as storedTS (line 17). If any such value is found, the one associated with
the highest timestamp is returned (line 20). Otherwise, the reader proceeds to invoke
another round of base object accesses. Note that returning values associated with older
timestamps may violate regularity, since they may have been written earlier than the
write with timestamp storedTS, which in turn may have completed before the read was
invoked.

Algorithm 5 Functions used in regular register emulation.

21: procedure readValue()
22: ReadSet← {}, T ← {}
23: || for i=1 to n
24: tmp← read(boi)
25: ReadSet← ReadSet ∪ tmp.Vf ∪ tmp.Vp
26: T ← T ∪ {tmp.storedTS}
27: wait for n− f responses
28: return 〈max(T), ReadSet〉

29: update(bo, WriteSet, ts, storedTS, i) ,
30: if ts ≤ bo.storedTS
31: return
32: if |bo.Vp| < k

. write a piece and remove old pieces
33: bo.Vp ← bo.Vp \ {〈ts′, v〉 ∈ bo.Vp | ts′ < storedTS}

∪{〈ts, 〈e, i〉〉 | 〈e, i〉 ∈ WriteSet}
34: else if bo.Vf = {} ∨ ∃ts′ < ts : 〈ts′, ∗〉 ∈ bo.Vf

. write a piece and remove old pieces
35: bo.Vf ← {〈ts, 〈e, j〉〉 | 〈e, j〉 ∈ WriteSet

∧j ∈ {1, . . . , k}}
36: bo.storedTS← max(bo.storedTS, storedTS)

37: GC(bo, WriteSet, ts, i) ,
. keep only new pieces

38: bo.Vp ← {〈ts′, v〉 ∈ bo.Vp | ts′ ≥ ts}
39: bo.Vf ← {〈ts′, v〉 ∈ bo.Vf | ts′ ≥ ts}
40: if 〈ts, ∗〉 ∈ bo.Vf

. Vf holds a full replica of my write

. Vf keep only one piece of it
41: bo.Vf ← {〈ts, 〈e, i〉〉 | 〈e, i〉 ∈ WriteSet}
42: bo.storedTS← max(bo.storedTS, ts)

3.4. Adaptive Regular Register 51

3.4.2 Correctness Proofs

Note that we prove here that the algorithm satisfies strong regularity and FW-termination,
which are stronger safety and liveness properties than the one used in our lower bound.

We start by proving the storage cost.

Observation 6. For every run of the algorithm, for every base object boi, boi.ts monotonically
increasing.

Lemma 12. Consider a run r of the algorithm, and two writes w1, w2, where w1 writes with
timestamp ts1. If w1 ≺r w2, then w2 sets its t̂s, to a timestamp that is not smaller than ts1.

Proof. By Observation 6, for each base object bo, bo.ts is monotonically increasing. There-
fore, after w1 finishes the garbage collection phase, there is a set S consisting of n − f
base objects s.t. for each boi ∈ S, boi.ts ≥ ts. Recall that n = 2 f + k, thus every two sets of
n− f base objects have at least one base object in common. Therefore, w2 gets a response
from at least one base object in S in its first phase, and thus sets t̂s = ts′ s.t. ts′ ≥ ts.

Lemma 13. For any run r of the algorithm, for any base object bo at any time t in r, bo.Vp does
not store more than one piece of the same write.

Proof. The writes perform the second phase at most one time on each base object bo, and
in each update they store at least one piece in bo.Vp. And since they does not store in
bo.Vp during the third phase, the lemma follows.

Lemma 14. Consider a run r of the algorithm in which the maximum number of concurrent
writes is c < k− 1. Then the storage at any time in r is not bigger than (2 f + k)(c + 1)D/k
bits.

Proof. Recall that we assume that n = 2 f + k and the size of each piece is D/k. Thus it
suffices to show that there is no time t in r s.t. some base object stores more than c + 1
pieces at time t.

Assume by way of contradiction that the claim is false. Consider the time t when
some bo ∈ N stores c + 2 pieces for the first time. Notice that |bo.Vp| ≤ c + 1 < k till
time t, and therefore, bo.Vp does not contain more then one piece from the same write,
and bo.Vf = ⊥ till time t′. Now consider the write w that was invoked last among all the
writes that store pieces in bo.Vp at time t, denote its piece by p. Since bo stores c + 2 pieces
at time t′, by Lemma 14, there must be two writes w1 and w2 whose pieces p1, p2 are
stored at time t in bo.Vp, and both returns before w is invoked. Denote their timestamps
ts1 and ts2, and assume without loss of generality that ts1 > ts2. By Lemma 12, w sets its
t̂s to ts′ s.t. ts′ ≥ ts1 > ts1. Now consider two cases. First, if p was added before p2, then
bo.ts > ts2 when p2 was added. A contradiction. Otherwise, p was added after p2. Thus,
p2 was deleted in line 33 of the update when p was added. A contradiction.

52 Chapter 3. Space Bounds for Reliable Storage: Fundamental Limits of Coding

Lemma 15. The storage is never more than (2 f + k)2D bits at any time t in any run r of the
algorithm.

Proof. Each base object stores no more than 2k pieces at any time t in r. The lemma
follows.

Lemma 16. Consider a run r of the algorithm with finite number of writes, in which all writes
correct. Then the storage is eventually reduced to (2 f + k)D/k bits.

Proof. Consider a write w with the biggest timestamp ts in r. Since w is correct, and
since writes are wait-free, w returns, and eventually performs free on every base object.
Consider a base object bo s.t. w performs free on bo at time t. Notice that w deletes all
pieces with smaller timestamps than ts and set bo.ts = ts at time t. Now recall that bo
ignore all updates with timestamp less than bo.ts, and therefore, bo store only w’s piece
at any time after time t. The lemma follows.

From Lemmas 14, 15, and 16 we get:

Corollary 7. The storage of the algorithm is bounded by (2 f + k)2D bits, and in runs with at
most c < k concurrent writes the storage is bounded by (c + 1)D/k bits. Moreover, in a run
with a finite number of writes, if all the writes are correct, the storage is eventually reduced to
(2 f + k)D/k bits.

We next prove the liveness property.

Lemma 17. Consider a fair run r of the algorithm. Then every write w invoked by a correct
client ci eventually completes.

Proof. Consider a correct client ci. The write w is divided into three phase s.t. in each
phase, ci invokes operations on all the base objects, and waits for n− f responses. The
run r is fair, so every action invoked by ci on a correct base object eventually returns, and
no more than f base objects fail in r. Therefore, eventually ci receives n− f responses in
each of the phases and returns.

Observation 7. When a piece from bo.Vp is deleted, bo.ts is increased.

Lemma 18. If at time t, ci completes the second phase of write with timestamp ts, then for every
t′ > t for every S ⊆ N s.t. |S| ≥ n− f , exist write w with ts′ ≥ ts s.t. at least k pieces of w are
stored in S.

Proof. Consider time t′. Let t̂s be the highest timestamp written by a write w that com-
pleted the second phase by time t. It is sufficient to show the lemma hold for t̂s.

First note that ∀bo, bo.ts ≤ t̂s before time t, because no write with a larger timestamp
than t̂s started the third phase. This means that w’s update left at lest one piece in which

3.4. Adaptive Regular Register 53

bo it occurred. Now consider a set S of n − f base objects, and since n = 2 f + k, w’s
update occurred in set S′ that contains at least k base objects in S.

If w wrote to Vp, it was not overwritten by time t, because (1) no other write began free
with timestamp bigger than t̂s, and (2) since there is no base object bo s.t. bo.ts ≥ t̂s, no
write delete w’s piece in the second phase. Therefore if w wrote to Vp in all base objects
in S′, the lemma holds.

Otherwise, w wrote k pieces to Vf in base objects in some set S′′ ⊆ S′. Consider
two cases: First, there is base object bo′ ∈ S′′ s.t. some write overwritten w’s pieces in
bo′.Vf before time t. Since there is no write with timestamp bigger than t̂s that started
the third phase before time t, it is guarantee that k pieces with timestamp ts′ > t̂s stored
in bo′.Vf at time t, and the lemma holds. Else, since w’s pieces stored in S′ \ S′′ does not
overwritten before time t, the lemma holds (no matter if w performed the third phase or
not).

Invariant 1. For any run r of the algorithm, for any time t in r, for any set S of n − f base
objects. Let ˆtss = max{bo.ts | bo ∈ S}. Then there is a timestamp ts′ ≥ ˆtss s.t. there are at least
k different pieces associated with ts′ in S.

Proof. We prove by induction. Base: the invariant holds at time 0. Induction: Assume
that the induction holds before the tth action is scheduled, we show that it holds also at
time t. Assume that the tth action is RMW on a base object bo, and consider any set S
of n− f base objects. If bo /∈ S then the invariant holds. Else, consider the two possible
RMW actions:

• The tth action is update. If no pieces are deleted, the invariant holds. If bo.ts is
increased, then consider the write with timestamp ts that is the the biggest times-
tamp among all writes that complete the second phase before time t. Notice that
bo.ts ≤ ts at time t, and by Lemma 18, the invariant holds. The third option is that a
piece p with timestamp ts′ > bo.ts of a write w is deleted and bo.ts is not increased.
Note that by Observation 7, such piece can be deleted only from bo.Vf , and since p
is overwritten by k pieces with bigger timestamp, the invariant holds.

• The tth action is free. If bo.ts is not changes, then the invariant holds. Else, Consider
the write with the biggest timestamp ts among all writes that complete the second
phase before time t. Note that bo.ts is set to a timestamp ts′ ≤ ts, so by Lemma 18,
the invariant holds.

Lemma 19. Consider a fair run r of the algorithm. If there is a finite number of write invocations
in r, then every read operation rd invoked by a client ci eventually returns.

Proof. Assume by way of contradiction that rd does not return in r. By Lemma 17, the
writes are wait-free, and since the number of write invocations in r is finite, there is a

54 Chapter 3. Space Bounds for Reliable Storage: Fundamental Limits of Coding

time t in r s.t. no write performs actions after time t. Therefore, any read that invokes
readValue() procedure after time t receives a set S of values that is stored in a set of n− f
base objects at time t. By invariant 1, there is a timestamp ts s.t. there is at least k different
pieces in S associated with ts, and ts > bo.ts for all bo ∈ S. Now since the every correct
read rd invokes readValue() infinitely many times in r, rd returns. A contradiction.

The next corollary follows from Lemmas 17, 19.

Corollary 8. The algorithm satisfies the WF-termination property.

We now prove that the algorithm satisfies strong regularity.

Definition 13. For every run r, σr is a sequential run s.t. the writes in r are ordered in σr by
their timestamp, and every read in r that returns a value associate with timestamp ts, is ordered
in σr immediately after the write that is associate with timestamp ts.

For simplicity we say the that v0 was written by write w0 that associated to timestamp 0
at time 0.

Lemma 20. Consider a run r, and a read rd that returns a value v. Consider also the timestamp
ts′ that rd obtains in line 19 (Algorithm 4). Then v is the value written by a write associated
with timestamp ts′ or v0 if ts′ = 0.

Proof. By the code, if ts′ = 0, then rd returns v0. Now notice that rd obtains at least k
different pieces associated with timestamp ts′, thus by decode definition, rd returns v.

Corollary 9. For every run r, σr satisfies the sequential specification.

Observation 8. Consider a write w that obtains ts and t̂s in the first phase, then ts > t̂s.

Lemma 21. For every run r, for every two writes w1, w2 with timestamp ts1, ts2. If w2 was
invoked after w1 finished the second phase, then ts1 < ts2.

Proof. First notice that for every base object bo, if a write w overwrites pieces of a write
w′ in bo, Vf , that w’ timestamp is bigger than w′’s. And by Observation 8, if w deletes
w′’s piece from bo.Vp, then it stores a piece with bigger timestamp than w′’s timestamp.
Therefore, the maximal timestamp in each base object is monotonically increasing. Now
recall that in the second phase w1 performed update on n− f base object, and notice that
after w1 performs update on base object bo the maximal timestamp in bo is at lest as big
as ts1. Now since two sets of n− f base object have at least one base object in common,
w2 picks ts > ts1.

Lemma 22. For every run r, for every two writes w1, w2 in r, if w1 ≺r w2, then w2 is not
ordered before w1 in σr.

3.5. A (Simple) Safe and Wait-free Algorithm 55

Proof. Follows immediately from Lemma 21.

Lemma 23. For every run r, for every read rd and write w1, if rd ≺r w1, then w1 is not ordered
before rd in σr.

Proof. Assume that rd returns value that is associated with timestamp ts belonging to
some write w, and w1 is associated with timestamp ts1. Since rd returns w’s value, w
begins the third phase before rd returns. And since w1 was invoked after rd returns, w1

was invoked after w’s second phase. Therefore, by Lemma 21, ts1 > ts, and thus w1 is
ordered after w in σr. Recall that by the construction of σr, rd is ordered immediately
after w in σr, hence, rd is ordered before w1 in σr.

Lemma 24. For every run r, for every read rd and write w1, if w1 ≺r rd, then rd is not ordered
before w1 in σr.

Proof. Consider a write w1 with timestamp ts1 and a read rd s.t. w1 ≺r rd. Assume by
way of contradiction that rd is ordered before w1 in σr. Then rd returns a value with a
timestamp ts that is associated with a write w that is ordered before w1 in σr. By the con-
struction of σr, ts1 > ts. Now since w1 completed the third phase before rd invoked, and
since by Observation 6, for each bo, bo.ts is monotonically increasing, when rd invoked,
for every set S of n− f base objects, the maximal bo.ts of all bo ∈ S is bigger than or equal
to ts1, and thus bigger than ts. Therefore rd set t̂s, in the first phase, to timestamp bigger
than ts, and thus does not return w’s value. A contradiction.

The next corollary follows from Corollary 9, and Lemmas 22, 23, 24.

Corollary 10. The algorithm simulates a strongly regular register.

The following theorem stems from Corollaries 7, 8, and 10.

Theorem 7. There is a FW-terminating algorithm that simulates a strongly regular register,
which storage is bounded by (2 f + k)2D bits, and in runs with at most c < k concurrent writes,
the storage is bounded by (c + 1)D/k bits. Moreover, in a run with a finite number of writes, if
all the writes are correct, the storage is eventually reduced to (2 f + k)D/k bits.

3.5 A (Simple) Safe and Wait-free Algorithm

We present here a simple storage-efficient algorithm that ensures safe semantics, but not
regularity. Although this algorithm has no practical use, it shows that the impossibility
result of Section 3.3 does not apply to a weaker safety property.

56 Chapter 3. Space Bounds for Reliable Storage: Fundamental Limits of Coding

3.5.1 Algorithm

This algorithm simulates a wait-free and strongly safe MWMR register using erasure
codes (see Section 3.4). It stores exactly n pieces of the data, one in each base object. The
algorithm’s definitions we use here are the same as in section 3.4 (Algorithm 3), and the
pseudocode of client cj can be found in Algorithm 6.

Since memory is fault-prone, actions are triggered in parallel on all base objects. This
parallelism is denoted using ||for in the code. Operations then wait for n− f base objects
to respond. Recall that n = 2 f + k, so every two sets of n− f base objects have at least k
pieces in common. Thus, if a write completes after storing pieces on n− f base objects,
a subsequent read accessing any n− f base objects finds k pieces of the written value (as
needed for restoring the value), provided that they are not over-written by later writes.

A write(v) operation (lines 1–8) first produces n pieces from v using encode, then reads
from n− f base objects to obtain a new timestamp, and finally, tries to store every piece
together with the timestamp at a different base object. For every base object bo, cj triggers
the update RMW function, which overwrites bo only if cj’s timestamp is bigger than the
timestamp stored in bo.

A read (lines 12–17) reads the values stored in n − f base objects, and then tries to
restore valid data as follows. If cj reads at least k values with the same timestamp, it
uses the decode function, and returns the restored value. Otherwise, it returns v0. The
latter occurs only if there are outstanding writes, that had updated fewer than n − f
base objects before the reader has accessed them. Therefore, these writes are concurrent
with cj’s read, and by the safety property, any value can be returned in this case. The
algorithm’s correctness is formally in the next section.

Algorithm 6 Safe register emulation. Algorithm for client cj.

1: operation write(v)
2: W ← encode(v)
3: R← readValue()
4: ts← 〈max({ts|〈〈ts, ∗〉, ∗〉 ∈ R}) + 1, j〉
5: || for all 〈v, i〉 ∈ W
6: update(boi, 〈v, i〉, ts) . trigger RMW

on boi
7: wait for n− f responses
8: return “ok”
9: update(bo, w, ts) ,

10: if ts > bo.ts
11: bo ← 〈w, ts〉

12: operation read()
13: R← readValue()
14: if ∃ts s.t. |{v | 〈ts, v〉 ∈ R}| ≥ k
15: ts′ ← ts s.t. |{v | 〈ts, v〉 ∈ R}| ≥ k
16: return decode({v | 〈ts′, v〉 ∈ R})
17: return v0

18: procedure readValue()
19: R← {}
20: || for i=1 to n
21: R = R∪ read(boi)
22: wait until |R| ≥ n− f
23: return R

3.5.2 Correctness proof

Lemma 25. The storage of the algorithm is nD/k.

3.5. A (Simple) Safe and Wait-free Algorithm 57

Proof. The size of each piece is D/k. We have n base objects, and each base object stores
exactly one piece.

Lemma 26. The algorithm is wait-free.

Proof. There are no loops in the algorithm, and the only blocking instructions are the
waits in lines 7 and 22. In both cases, clients wait for no more than n− f responses, and
since no more than f base objects can fail, clients eventually continue. Therefore, a client
that gets the opportunity to perform infinitely many actions completes its operations.

We now prove that the algorithm satisfies strongly safety. We relay on the following
single observation.

Observation 9. The timestamps in the base objects are monotonically increasing.

Definition 14. For every run r, we define the sequential run σwr as follows: All the completed
write operations in r are ordered in σwr by their timestamp.

Lemma 27. For every run r, the sequential run σwr is a linearization of r.

Proof. Since σwr has no read operations, the sequential specification is preserved in σwr .
Thus, we left to show the real time order: For every two completed writes wi, wj in r, we
need to show that if wi ≺r wj, then wi ≺σr wj.

Denote wi’s timestamp by ts. By Observation 9, at any point after wi’s return, at
least n − f base objects store timestamps bigger than or equal to ts. When wj picks a
timestamp, it chooses a timestamp bigger than those it reads from n − f base objects.
Since, n > 2 f , wj picks a timestamp bigger than ts, and therefore wj is ordered after wi

in σrd.

Definition 15. For every run r, for every read rd that has no concurrent write operations in r,
we define the sequential run σrrd by adding rd to σwr after all the writes that precede it in r.

In order to show that the algorithm simulates a safe register, we proof in Lemmas 28
and 29 that the real time order and sequential specification respectively, are preserved in
σrrd .

Lemma 28. For every run r, for every read rd that has no concurrent write operations in r, σrrd

preserves r’s operation precedence relation (real time order).

Proof. By Lemma 27, the order between the writes in σrrd are preserved, and by construc-
tion of σrd the order between rd and write operations is also preserved.

58 Chapter 3. Space Bounds for Reliable Storage: Fundamental Limits of Coding

Lemma 29. Consider a run r and any read rd that has no concurrent writes in r. Then rd returns
the value written by the write with the biggest timestamp that precedes rd in r, or v0 if there is
no such write.

Proof. In case there is no write before rd in r, since there are also no writes concurrent
with rd, rd reads pieces with timestamp 〈0, 0〉 from all base objects, and thus, returns v0.
Otherwise, let w be the write(v) associated with the biggest timestamp ts among all the
writes invoked before rd in r. Let t be the time when rd is invoked. Recall that rd has no
concurrent writes, so all the writes invoked before time t complete before time t and store
there pieces in n− f base objects unless the base objects already hold a higher timestamp.
By Observation 9 and the fact that w has the highest timestamp by time t, we get that at
time t there are at least n− f base objects that store a piece of v. Since n = 2 f + k, every
two sets of n− f base objects have at least k base objects in common. Therefore, rd reads
at least k pieces of v, and thus, restores and returns v.

Corollary 11. There exists an algorithm that simulates a safe wait-free MWMR register with a
worst-case storage cost of nD/k = (2 f /k + 1)D.

3.6 Discussion

We studied the inherent space requirements of reliable storage in asynchronous dis-
tributed settings. We proved an asymptotic bound of Ω(min(f , c) · D) for any storage
algorithm using a symmetric black-box coding scheme, which produces code blocks of
values independently of other values. We then presented an algorithm that combines
replication and erasure codes, whose storage cost is O(min(f , c) · D).

Our work leaves open questions for future work. First, it is unclear whether the same
lower bound still applies when stored bits are allowed to depend on multiple concurrent
write values. The main requirement for extending our proof to general coding is a model
that correctly accounts for the information stored in the base objects and clients when
the clients code jointly. Our black-box assumption rules out such joint coding. Whereas
in principle, [22] allows stored information to depend on multiple input values, their
assumption that only one round of the protocol depends on the written value essentially
forces clients to “forget” the value they used in such joint coding. For example, if the
algorithm stores v1 + v2 instead of either v1 or v2, it cannot reproduce the original values,
rendering such joint coding useless. Second, while asymptotically optimal, the constants
in our bound are not tight, and it could be interesting to close this gap. Finally, we believe
that our model and adversary definitions can yield additional lower bounds.

Chapter 4

On Liveness of Dynamic Storage

Many works in the last decade have dealt with dynamic reliable distributed storage em-
ulation [66, 8, 40, 41, 24, 17, 53, 19, 50, 16, 15, 37, 49, 74]. The motivation behind such
storage is to allow new processes (nodes) to be phased in and old or dysfunctional ones
to be taken offline. From a fault-tolerance point of view, once a faulty process is removed,
additional failures may be tolerated. For example, consider a system that can tolerate one
failure: once a process fails, no additional processes are allowed to fail. However, once
the faulty process is replaced by a correct one, the system can again tolerate one failure.
Thus, while static systems become permanently unavailable after some constant num-
ber of failures, dynamic systems that allow infinitely many reconfigurations can survive
forever.

Previous works can be categorized into two main types: Solutions of the first type
assume a churn-based model [51, 59] in which processes are free to announce when
they join the storage emulation [17, 15, 16, 11] via an auxiliary broadcast sub-system
that allows a process to send a message to all the processes in the system, (which my
be unknown to the sending processes). The second type solutions extend the register’s
API with a reconfiguration operation for changing the current configuration of partic-
ipating processes [66, 8, 50, 37, 40, 41, 24], which can be only invoked by members of
the current configuration. In this paper we consider the latter. Such an API allows ad-
ministrators (running privileged processes), to remove old or faulty processes and add
new ones without shutting down the service; once a process is removed from the current
configuration, a system administrator may shut it down. Note that in the churn-based
model, in contrast, if processes have to perform an explicit operation in order to leave
the system (as in [17, 11]), a faulty process can never be removed. In addition, since in
API-based models only processes that are already within the system invoke operations,
it is possible to keep track of the processes in the system, and thus auxiliary broadcast is
not required.

Though the literature is abundant with dynamic storage algorithms in both mod-
els, to the best of our knowledge, all previous solutions in asynchronous and eventually

60 Chapter 4. On Liveness of Dynamic Storage

synchronous models restrict reconfigurations in some way in order to ensure comple-
tion of all operations. Churn-based solutions assume a bounded churn rate [17, 15, 11],
meaning that there is a finite number of joining and removing processes in a given time
interval. Some of the API-based solutions [66, 8, 50, 37] provide liveness only when
the number of reconfigurations is finite, whereas others discuss liveness only in syn-
chronous runs [40, 41, 24]. Such restrictions may be problematic in emerging highly-
dynamic large-scale settings.

Baldoni et al. [15] showed that it is impossible to emulate a dynamic register that
ensures completion of all operations without restricting the churn rate in asynchronous
churn-based models in which processes can freely abandon the computation without an
explicit leave operation. Since a leave and a failure are indistinguishable in such models,
the impossibility can be proven using a partition argument as in [10].

In this chapter we revisit this question in the API-based model. First, we prove a
similar result for asynchronous API-based dynamic models, in which one unremoved
process can fail and successfully removed ones can go offline. Specifically, we show that
even the weakest type of storage, namely a safe register [52], cannot be implemented so
as to guarantee liveness for all operations (i.e., wait-freedom) in asynchronous runs with
an unrestricted reconfiguration rate. Note that this bound does not follow from the one
in [15] since a process in our model can leave the system only after an operation that
removes it successfully completes.

Second, to circumvent our impossibility result, we define a dynamic failure detector
that can be easily implemented in eventually synchronous systems, and use it to imple-
ment dynamic storage. We present an algorithm, based on state machine replication, that
emulates a strong shared object, namely a wait-free atomic dynamic multi-writer, multi-
reader (MWMR) register, and ensures liveness for all operations without restricting the
reconfiguration rate. Though a number of previous algorithms have been designed for
eventually synchronous models [40, 41, 24, 17, 15, 53, 19], to the best of our knowledge,
our algorithm is the first to ensure liveness of all operations without restricting the re-
configurations rate.

In particular, previous algorithms [40, 41, 24, 53, 19] that used failure detectors, only
did so for reaching consensus on the new configuration. For example, reconfigurable
Paxos variants [53, 19], which implement atomic storage via dynamic state machine
replication, assume a failure detector that provides a leader in every configuration. How-
ever, a configuration may be changed, allowing the previous leader to be removed (and
then fail) before another process p (with a pending operation) is able to communicate
with it in the old configuration. Though a new leader is elected by the failure detector in
the ensuing configuration, this scenario may repeat itself indefinitely, so that p’s pending
operation never completes.

We, in contrast, use the failure detector also to implement a helping mechanism,
which ensures that eventually some process will help a slow one before completing
its own reconfiguration operation even if the reconfiguration rate is unbounded. Such

61

mechanism is attainable in API-based models since only members of the current con-
figuration invoke operations, and thus helping process can know which processes may
need help. Note that in churn-based models in which processes announce their own join,
implementing such a helping mechanism is impossible, since a helping process cannot
possibly know which processes need help joining.

The remainder of this chapter is organized as follows: In Section 4.1 we present the
model and define the dynamic storage object we seek to implement. Our impossibility
proof appears in Section 4.2, and our algorithm in Section 4.3. Finally, we conclude the
paper in Section 4.4.

62 Chapter 4. On Liveness of Dynamic Storage

4.1 Model

In Section 4.1.1, we present the preliminaries of our model, and in Section 4.1.2, we define
the dynamic storage service.

4.1.1 Preliminaries

We consider an asynchronous message passing system consisting of an infinite set of
processes Π. Processes may fail by crashing subject to restrictions given below. Process
failure is modeled via an explicit fail action. Each pair of processes is connected by
a communication link. A service exposes a set of operations. For example, a dynamic
storage service exposes read, write, and reconfig operations. Operations are invoked
and subsequently respond.

An algorithm A defines the behaviors of processes as deterministic state machines,
where state transitions are associated with actions, such as send/receive messages, op-
eration invoke/response, and process failures. A global state is a mapping to states from
system components, i.e., processes and links. An initial global state is one where all pro-
cesses are in initial states and all links are empty. A send action is enabled in state s if A
has a transition from s in which the send occurs.

A run of algorithm A is a (finite or infinite) alternating sequence of global states and
actions, beginning with some initial global state, such that state transitions occur accord-
ing to A. We use the notion of time t during a run r to refer to the tth action in r and
the global state that ensues it. A run fragment is a contiguous subsequence of a run. An
operation invoked before time t in run r is complete at time t if its response event occurs
before time t in r; otherwise it is pending at time t. We assume that runs are well-formed
[?], in that each process’s first action is an invocation of some operation, and a process
does not invoke an operation before receiving a response to its last invoked one.

We say that operation opi precedes operation opj in a run r, if opi’s response occurs
before opj’s invocation in r. Operations opi and opj are concurrent in run r, if opi does not
precede opj and opj does not precede opi in r. A sequential run is one with no concurrent
operations. Two runs are equivalent if every process performs the same sequence of op-
erations (with the same return values) in both, where operations that are pending in one
can either be included in or excluded from the other.

4.1.2 Dynamic storage

The distributed storage service we consider is a dynamic multi-writer, multi reader (MWMR)
register [8, 50, 37, 72, 56, 41], which stores a value v from a domain V, and offers an in-
terface for invoking read, write, and reconfig operations. Initially, the register holds some
initial value v0 ∈ V. A read operation takes no parameters and returns a value from V,
and a write operation takes a value from V and returns “ok”. We define Changes to be
the set {remove, add} ×Π, and call any subset of Changes a set of changes. For example,

4.1. Model 63

Figure 4.1: Notation illustration. add(p) (remove(p)) represents recon f ig(〈add, p〉) (re-
spectively, recon f ig(〈remove, p〉)).

{〈add, p3〉, 〈remove, p2〉} is a set of changes. A reconfig operation takes as a parameter a
set of changes and returns “ok”. For simplicity, we assume that a process that has been
removed is not added again.

Notation For every subset w of Changes, the removal set of w, denoted w.remove, is
{pi|〈remove, pi〉 ∈ w}; the join set of w, denoted w.join, is {pi|〈add, pi〉 ∈ w}; and
the membership of w, denoted w.membership, is w.join \ w.remove. For example, for a
set w = {〈add, p1〉, 〈remove, p1〉, 〈add, p2〉}, w.join = {p1, p2}, w.remove = {p1}, and
w.membership = {p2}. For a time t in a run r, we denote by V(t) the union of all sets
q s.t. reconfig(q) completes before time t in r. A configuration is a finite set of processes,
and the current configuration at time t is V(t).membership. We assume that only processes
in V(t).membership invoke operations at time t. The initial set of processes Π0 ⊂ Π is
known to all and we say, by convention, that reconfig({〈add, p〉|p ∈ Π0}) completes at
time 0, i.e., V(0).membership = Π0.

We define P(t) to be the set of pending changes at time t in run r, i.e., the set of all
changes included in pending reconfig operations. We denote by F(t) the set of processes
that have failed before time t in r; initially, F(0) = {}. For a series of arbitrary sets S(t),
t ∈N, we define S(∗) 4= ⋃

t∈N S(t). The notation is illustrated in Figure 4.1.

Correct processes and fairness A process p is correct if p ∈ V(∗).join \ F(∗). A run r
is fair if every send action by a correct process that is enabled infinitely often eventually
occurs, and every message sent by a correct process pi to a correct process pj is eventually
received at pj. Note that messages sent to a faulty process from a correct one may or may
not be received. A process p is active if p is correct, and p 6∈ P(∗).remove.

Service specification A linearization of a run r is an equivalent sequential run that pre-
serves r’s operation precedence relation and the service’s sequential specification. The

64 Chapter 4. On Liveness of Dynamic Storage

sequential specification for a register is as follows: A read returns the latest written value,
or v0 if none was written. An MWMR register is atomic, also called linearizable [45], if ev-
ery run has a linearization. Lamport [52] defines a safe single-writer register. Here, we
generalize the definition to multi-writer registers in a weak way in order to strengthen
the impossibility result. Intuitively, if a read is not concurrent with any write we require
it to return a value that reflects some possible outcome of the writes that precede it; oth-
erwise we allow it to return an arbitrary value. Formally: An MWMR register is safe if
for every run r for every read operation rd that has no concurrent writes in r, there is a
linearization of the subsequence of r consisting of rd and the write operations in r.

A wait-free service guarantees that every active process’s operation completes regard-
less of the actions of other processes.

Failure model and reconfiguration The reconfig operations determine which processes
are allowed to fail at any given time. Static storage algorithms [10] tolerate failures of a
minority of their (static) universe. At a time t when no reconfig operations are ongoing,
the dynamic failure condition may be simply defined to allow less than |V(t)membership|/2
failures of processes in V(t).membership. When there are pending additions and re-
movals, the rule must be generalized to take them into account. For our algorithm in
Section 4.3, we adopt a generalization presented in previous works [8, 50, 72, 7]:

Definition 16 (minority failures). A model allows minority failures if at all times t in r, fewer
than |V(t).membership \ P(t).remove|/2 processes out of V(t).membership∪ P(t).join are in
F(t).

Note that this failure condition allows processes whose remove operations have com-
pleted to be (immediately) safely switched off as it only restricts failures out of the cur-
rent membership and pending joins. We say that a service is reconfigurable if failures of
processes in V(t).remove are unrestricted.

In order to strengthen our lower bound in Section 4.2 we weaken the failure model.
Like FLP [36], our lower bound applies as long as at least one process can fail. For-
mally, a failure is allowed whenever all failed processes have been removed and the
current membership consists of at least three processes1. We call such a state “clean”,
captured by the following predicate: clean(t) , (V(t).membership ∪ P(t).join) ∩ F(t) =

{} ∧ |V(t).membership \ P(t).remove| ≥ 3. The minimal failure condition is thus defined
as follows:

Definition 17 (minimal failure). A model allows minimal failure if in every run r ending at
time t when clean(t), for every process p ∈ V(t).membership ∪ P(t), there is an extension of r
where p fails at time t + 1.

Notice that the minority failure condition allows minimal failure, and so all algorithms
that assume minority failures [8, 50, 72, 7] are a fortiori subject to our lower bound, which
is proven for minimal failures.

1Note that with fewer than three processes, even static systems cannot tolerate failures [10].

4.2. Impossibility of Wait-Free Dynamic Safe Storage 65

4.2 Impossibility of Wait-Free Dynamic Safe Storage

In this section we prove that there is no implementation of wait-free dynamic safe storage
in a model that allows minimal failures. We construct a fair run with infinitely many
reconfiguration operations in which a slow process p never completes its write operation.
We do so by delaying all of p’s messages. A message from p to a process pi is delayed
until pi is removed, and we make sure that all processes except p are eventually removed
and replaced.

Theorem 8. There is no algorithm that emulates wait-free dynamic safe storage in an asyn-
chronous system allowing minimal failures.

Proof (Theorem 8). Assume by contradiction that such an algorithm A exists. We prove
two lemmas about A.

Lemma 30. Consider a run r of A ending at time t s.t. clean(t), and two processes pi, pj ∈
V(t).membership. Extend r by having pj invoke operation op at time t + 1. Then there
exists an extension of r where (1) op completes at some time t′ > t,(2) no process receives
a message from pi between t and t′, and (3) no process fails and no operations are invoked
between t and t′.

Lemma 30. By the minimal failure condition, pi can fail at time t + 2. Consider a
fair extension σ1 of r, in which pi fails at time t + 2 and all of its in-transit messages
are lost, no other process fails, and no operations are invoked. By wait-freedom,
op eventually completes at some time t1 in σ1. Since pi fails and all its outstanding
messages are lost, then from time t to t1 in σ1 no process receives any messages from
pi. Now let σ2 be identical to σ1 except that pi does not fail, but all of its messages are
delayed. Note that σ1 and σ2 are indistinguishable to all processes except pi. Thus,
op returns at time t1 also in σ2.

Lemma 31. Consider a run r of A ending at time t s.t clean(t). Let v1 ∈ V \ {v0}
be a value s.t. no process invokes write(v1) in r. If we extend r fairly so that pi invokes
w = write(v1) at time t + 1 which completes at some time t1 > t + 1 s.t. clean(t′) for all
t < t′ ≤ t1 then in the run fragment between t + 1 and t1, some process pk 6= pi receives a
message sent by pi.

Lemma 31. Assume by way of contradiction that in the run fragment between t + 1
and t1 no process pk 6= pi receives a message sent by pi, and consider a run r′ that
is identical to r until time t1 except that pi does not invoke w at time t. Now assume
that some process pj 6= pi invokes a read operation rd at time t1 + 1 in r′. By the
assumption, clean(t1) and therefore clean(t1 + 1). Thus, by Lemma 30, there is a
run fragment σ beginning at the final state of r′ (time t1 + 1), where rd completes at
some time t2, s.t. between t1 + 1 and t2 no process receives a message from pi. Since

66 Chapter 4. On Liveness of Dynamic Storage

no process invokes write(v1) in r′, and no writes are concurrent with the read, by
safety, rd returns some v2 6= v1.

Now notice that all global states from time t to time t1 in r and r′ are indistin-
guishable to all processes except pi. Thus, we can continue run r with an invocation
of read operation rd′ by pj at time t1, and append σ to it. Operation rd′ hence com-
pletes and returns v2. A contradiction to safety.

To prove the theorem, we construct an infinite fair run r in which a write operation of an
active process never completes, in contradiction to wait-freedom.

Consider some initial global state c0, s.t. P(0) = F(0) = {} and V(0).membership =

{p1 . . . pn}, where n ≥ 3. An illustration of the run for n = 4 is presented in Figure 4.2.
Now, let process p1 invoke a write operation w at time t1 = 0, and do the following:

Let process pn invoke reconfig(q) where q = {〈add, pj〉|n + 1 ≤ j ≤ 2n − 2} at time
t1. The state at the end of r is clean (i.e., clean(t1)). So by Lemma 30, we can extend
r with a run fragment σ1 ending at some time t2 when reconfig(q) completes, where no
process pj 6= p1 receives a message from p1 in σ1, no other operations are invoked, and
no process fails.

Then, at time t2 + 1, pn invokes reconfig(q′), where q′ = {〈remove, pj〉|2 ≤ j ≤ n −
1}. Again, the state is clean and thus by Lemma 30 again, we can extend r with a run
fragment σ2 ending at some time t3 when reconfig(q’) completes s.t. no process pj 6= p1

receives a message from p1 in σ2, no other operations are invoked, and no process fails.
Recall that the minimal failures condition satisfies reconfigurability, i.e., all the pro-

cesses in V(t3).remove can be in F(t3) (fail). Let the processes in {pj | 2 ≤ j ≤ n − 1}
fail at time t3, and notice that the fairness condition does not mandate that they receive
messages from p1. Next, allow p1 to perform all its enabled actions till some time t4.

Now notice that at t4, |V(t4).membership| = n, P(t4) = {}, (V(t4).membership ∪
P(t4).join)∩ F(t4) = {}, and |V(t4).membership \ P(t4).removal| ≥ 3. We can rename the
processes in V(t4).membership (except p1) so that the process that performed the remove
and add operations becomes p2, and all others get names in the range p3 . . . pn. We can
then repeat the construction above. By doing so infinitely many times, we get an infinite
run r in which p1 is active and no process ever receives a message from p1. However,
all of p1’s enabled actions eventually occur. Since no process except p1 is correct in r, the
run is fair. In addition, since clean(t) for all t in r, by the contrapositive of Lemma 31, w
does not complete in r, and we get a violation of wait-freedom.

4.3 Oracle-Based Dynamic Atomic Storage

We present an algorithm that circumvents the impossibility result of Section 4.2 using a
failure detector. In this section we assume the minority failure condition. In Section 4.3.1,

4.3. Oracle-Based Dynamic Atomic Storage 67

Figure 4.2: Illustration of the infinite run for n = 4.

we define a dynamic eventually perfect failure detector. In Section 4.3.2, we describe an
algorithm, based on dynamic state machine replication, that uses the failure detector to
implement a wait-free dynamic atomic MWMR register. The algorithm’s correctness is
proven in Section 4.3.3.

4.3.1 Dynamic failure detector

Since the set of processes is potentially infinite, we cannot have the failure detector report
the status of all processes as static failure detectors typically do. Dynamic failure detec-
tors addressing this issue have been defined in previous works, either providing a set
of processes that have been excluded from or included into the group [54], or assuming
that there is eventually a fixed set of participating processes [28]. In our model, we do
not assume that there is eventually a fixed set of participating processes, as the number
of reconfig operations can be infinite. And we do not want the failure detector to answer
with a list of processes, because in dynamic systems, this gives additional information
about participating processes that could have been unknown to the inquiring process,
and thus it is not clear how such a failure detector can be implemented.

Instead, our dynamic failure detector is queried separately about each process. For
each query, it answers either fail or ok. It can be wrong for an unbounded period, but for
each process, it eventually returns a correct answer. Formally, a dynamic eventually perfect
failure detector, 3PD, satisfies two properties:

• Strong completeness: For each process pi that fails at time ti, there is a time t > ti

s.t. the failure detector answers fail to every query about pi after time t.

• Eventual strong accuracy: There exists a time t, called the stabilization time, s.t. the
failure detector answers ok to every query at any time t′ > t about a correct process
in V(t′).join.

Note that 3PD can be implemented in a standard way in the eventually (partially) syn-
chronous model by pinging the queried process and waiting for a response until a time-
out.

68 Chapter 4. On Liveness of Dynamic Storage

4.3.2 Dynamic storage algorithm

We first give the overview of our algorithm and and then present the full description.

Algorithm overview

The key to achieving liveness with unbounded reconfig operations is a novel helping
mechanism, which is based on our failure detector. Intuitively, the idea is that every
process tries to help all other processes it believes are correct, (according to its failure de-
tector), to complete their concurrent operations together with its own. At the beginning
of an operation, a process p queries all other processes it knows about for the opera-
tions they currently perform. The failure detector is needed in order to make sure that
(1) p does not wait forever for a reply from a faulty process (achieved by strong com-
pleteness), and (2) every slow correct process eventually gets help (achieved by eventual
strong accuracy).

State machine emulation of a register We use a state machine sm to emulate a wait-
free atomic dynamic register, DynaReg. Every process has a local replica of sm, and we
use consensus to agree on sm’s state transitions. Notice that each process is equipped
with a failure detector FD of class 3PD, so consensus is solvable under the assumption
of a correct majority in a given configuration [53].

Each instance of consensus runs in some static configuration c and is associated with
a unique timestamp. A process participates in a consensus instance by invoking a pro-
pose operation with the appropriate configuration and timestamp, as well as its proposed
decision value. Consensus then responds with a decide event, so that the following prop-
erties are satisfied: Uniform Agreement – every two decisions are the same. Validity –
every decision was previously proposed by one of the processes in c. Termination – if a
majority of c is correct, then eventually every correct process in c decides. We further
assume that a consensus instance does not decide until a majority of the members of the
configuration propose in it.

The sm (lines 2-5 in Algorithm 7) keeps track of dynaReg’s value in a variable val, and
the configuration in a variable cng, containing both a list of processes, cng.mem, and a
set of removed processes, cng.rem. Write operations change val, and reconfig operations
change cng. A consensus decision may bundle a number of operations to execute as a
single state transition of sm. The number of state transitions executed by sm is stored
in the variable ts. Finally, the array lastOps maps every process p in cng.mem to the
sequence number (based on p’s local count) of p’s last operation that was performed on
the emulated DynaReg together with its result.

Each process partakes in at most one consensus at a time; this consensus is associated
with timestamp sm.ts and runs in sm.cng.mem. In every consensus, up to |sm.cng.mem|
ordered operations on the emulated DynaReg are agreed upon, and sm’s state changes
according to the agreed operations. A process’s sm may change either when consensus

4.3. Oracle-Based Dynamic Atomic Storage 69

decides or when the process receives a newer sm from another process, in which case
it skips forward. So sm goes through the same states in all the processes, except when
skipping forward. Thus, for every two processes pk, pl , if smk.ts = sml .ts, then smk =

sml . (A subscript i indicates the variable is of process pi.)

p1 p2-slow

Suspected

FD stabilization
time

op21

op11=<REC,(add,p3)>
helpRequest(sm,…)...

helpReply(op21,…)
...

Gather:

Agree&perform:

...propose({op21,op11})

Decide({op21,op11})

p3

...
...

rerurn op31

helpRequest(sm,…)

Update(sm)

rerurn

Wait
for p2

Wait for
majority

propose({op21,op11}) ...
propose({op21,op11})

propose({op21,op11})

Figure 4.3: Flow illustration: process p2 is slow. After stabilization time, process p1 helps
it by proposing its operation. Once p2’s operation is decided, it is reflected in every
up-to-date sm. Therefore, even if p1 fails before informing p2, p2 receives from the next
process that performs an operation, namely p3, an sm that reflects its operation, and
thus returns. Line arrows represent messages, and block arrows represent operation or
consensus invocations and responses.

Helping The problematic scenario in the impossibility proof of Section 4.2 occurs be-
cause of endless reconfig operations, where a slow process is never able to communi-
cate with members of its configuration before they are removed. In order to circumvent
this problem, we use FD to implement a helping mechanism. When proposing an op-

70 Chapter 4. On Liveness of Dynamic Storage

eration, process pi tries to help other processes in two ways: first, it helps them com-
plete operations they may have successfully proposed in previous rounds (consensuses)
but have not learned about their outcomes; and second, it proposes their new opera-
tions. To achieve the first, it sends a helping request with its sm to all other processes in
smi.cng.mem. For the second, it waits for each process to reply with a help reply contain-
ing its latest invoked operation, and then proposes all the operations together. Processes
may fail or be removed, so pi cannot wait for answers forever. To this end, we use FD. For
every process in smi.cng.mem that has not been removed, pi repeatedly inquires FD and
waits either for a reply from the process or for an answer from FD that the process has
failed. Notice that the strong completeness property guarantees that pi will eventually
continue, and strong accuracy guarantees that every slow active process will eventually
receive help in case of endless reconfig operations.

Nevertheless, if the number of reconfig operations is finite, it may be the case that
some slow process is not familiar with any of the correct members in the current con-
figuration, and no other process performs an operation (hence, no process is helping).
To ensure progress in such cases, every correct process periodically sends its sm to all
processes in its sm.cng.mem.

State survival Before the reconfig operation can complete, the new sm needs to prop-
agate to a majority of the new configuration, in order to ensure its survival. Therefore,
after executing the state transition, pi sends smi to smi.cng members and waits until it
either receives acknowledgements from a majority or learns of a newer sm. Notice that
in the latter case, consensus in smi.cng.mem has decided, meaning that at least a majority
of smi.cng.mem has participated in it, and so have learned of it.

Flow example The algorithm flow is illustrated in Figure 4.3. In this example, a slow
process p2 invokes operation op21 before FD’s stabilization time, ST. Process p1 invokes
operation op11 = 〈add, p3〉 after ST. It first sends helpRequest to p2 and waits for it to reply
with helpReply. Then it proposes op21 and op11 in a consensus. When decide occurs, p1

updates its sm, sends it to all processes, and waits for majority. Then op11 returns and
p1 fails before p2 receives its update message. Next, p3 invokes a reconfig operation, but
this time when p2 receives helpRequest with the up-to-date sm from p3, it notices that its
operation has been performed, and op21 returns.

Detailed description

The data structure of process pi is given in Algorithm 7. The type Ops defines the rep-
resentation of operations. The emulated state machine, smi, is described above. Integer
opNumi holds the sequence number of pi’s current operation; opsi is a set that contains
operations that need to be completed for helping; the flag pendi is a boolean that indi-
cates whether or not pi is participating in an ongoing consensus; and myOpi is the latest
operation invoked at pi.

4.3. Oracle-Based Dynamic Atomic Storage 71

Algorithm 7 Data structure of process pi

1: Ops , {〈RD,⊥〉} ∪ {〈WR, v〉 | v ∈ V} ∪ {〈REC, c〉 | c ⊂ Changes}
2: smi .ts ∈N, initially 0
3: smi .value ∈ V, initially v0
4: smi .cng = 〈mem, rem〉, where mem, rem ⊂ Π, initially 〈Π0, {}〉
5: smi .lastOps is a vector of size |smi .cng.mem|, where ∀pj ∈ smi .cng.mem, smi .lastOps[j] = 〈num, res〉,

where num ∈N, res ∈ V∪ {“ok”}, initially 〈0, “ok” 〉
6: pendi ∈ {true,false}, initially false
7: opNumi ∈N, initially 0
8: opsi ⊂ Π×Ops×N , initially {}
9: myOpi ∈ operation, initially ⊥

The algorithm of process pi is presented in Algorithms 8 and 9. We execute every
event handler, (operation invocation, message receiving, and consensus decision), atom-
ically excluding wait instructions; that is, other event handlers may run after the han-
dler completes or during a wait (lines 16,18,27 in Algorithm 8). The algorithm runs
in two phases. The first, gather, is described in Algorithm 8 lines 11–16 and in Algo-
rithm 9 lines 52–58. Process pi first increases its operation number opNumi, writes op to-
gether with opNumi to the set of operations opsi, and sets myOpi to be op. Then it sends
〈“helpRequest”, . . .〉 to every member of A = smi.cng.mem (line 15), and waits for each
process in A that is not suspected by the FD or removed to reply with 〈“helpReply”, . . .〉.
Notice that smi may change during the wait because messages are handled, and pi may
learn of processes that have been removed.

When 〈“helpRequest”, num, sm〉 is received by process pj 6= pi, if the received sm is
newer than smj, then process pj adopts sm and abandons any previous consensus. Either
way, pj sends 〈“helpReply”, . . .〉 with its current operation myOpj in return.

Upon receiving 〈“helpReply”, opNumi, op, num〉 that corresponds to the current op-
eration number opNumi, process pi adds the received operation op, its number num, and
the identity of the sender to the set opsi.

At the end of this phase, process pi holds a set of operations, including its own, that
it tries to agree on in the second phase (the order among this set is chosen determin-
istically, as explained below). Note that pi can participate in at most one consensus per
timestamp, and its propose might end up not being the decided one, in which case it may
need to propose the same operations again. Process pi completes op when it discovers
that op has been performed in smi, whether by itself or by another process.

The second phase appears in Algorithm 8 lines 17–28, and in Algorithm 9 lines 31–51.
In line 17, pi checks if its operation has not been completed yet. In line 18, it waits until it
does not participate in any ongoing consensus (pendi=false) or some other process helps
it complete op. Recall that during a wait, other events can be handled. So if a message
with an up-to-date sm is received during the wait, pi adopts the sm. In case op has been
completed in sm, pi exits the main while (line 19). Otherwise, pi waits until it does not
participate in any ongoing consensus. This can be the case if (1) pi has not proposed yet,
(2) a message with a newer sm was received and a previous consensus was subsequently
abandoned, or (3) a decide event has been handled. In all cases, pi marks that it now

72 Chapter 4. On Liveness of Dynamic Storage

participates in consensus in line 20, prepares a new request Req with the operations in
opsi that have not been performed yet in smi in line 27, proposes Req in the consensus
associated with smi.ts, and sends 〈“propose”, . . .〉 to all the members of smi.cng.mem.

Algorithm 8 Process pi’s algorithm: performing operations
10: upon invoke operation(op) do

. phase 1: gather
11: opNumi ← opNumi + 1
12: opsi ← {〈pi , op, opNumi〉}
13: myOpi ← op
14: A← smi .cng.mem
15: for all p ∈ A send 〈“helpRequest”, opNumi , smi〉 to p
16: for all p ∈ A wait for 〈“helpReply”, opNumi , . . .〉 from p or p is suspected or p ∈ smi .cng.rem

. phase 2: agree&perform
17: while smi .lastOps[i].num 6= opNumi
18: wait until ¬pendi or smi .lastOps[i].num = opNumi
19: if smi .lastOps[i].num = opNumi then break
20: pendi ← true
21: Req← {〈pj, op, num〉 ∈ opsi | num > smi .lastOps[j].num}
22: propose(smi .cng, smi .ts, Req)
23: for all p ∈ smi .cng.mem send 〈“propose”, smi , Req〉 to p
24: if op.type = REC
25: ts← smi .ts
26: for all p ∈ smi .cng.mem send 〈“update”, smi , opNumi〉 to p
27: wait for 〈“ACK”, opNumi〉 from majority of smi .cng.mem or smi .ts > ts
28: return smi .lastOps[i].res

29: periodically:
30: for all p ∈ smi .cng.mem send 〈“update”, smi ,⊥〉 to p

When 〈“propose”, sm, Req . . .〉 is received by process pj 6= pi, if the received sm is
more updated than smj, then process pj adopts sm, abandons any previous consensus,
proposes Req in the consensus associated with sm.ts, and forwards the message to all
other members of smj.cng.mem. The same is done if sm is identical to smj and pj has not
proposed yet in the consensus associated with smj.ts. Otherwise, pj ignores the message.

The event decidei(sm.cng, smi.ts, Req) indicates a decision in the consensus associated
with smi.ts. When this occurs, pi performs all the operations in Req and changes smi’s
state. It sets the value of the emulated DynaReg, smi.value, to be the value of the write
operation of the process with the lowest id, and updates smi.cng according to the reconfig
operations. In addition, for every 〈pj, op, num〉 ∈ Req, pi writes to smi.lastOps[j], num
and op’s response, which is “ok” in case of a write or a reconfig, and smi.value in case
of a read. Next, pi increases smi.ts and sets pendi to false, indicating that it no longer
participates in any ongoing consensus.

Finally, after op is performed, pi exits the main while. If op is not a reconfig oper-
ation, then pi returns the result, which is stored in smi.lastOps[i].res. Otherwise, be-
fore returning, pi has to be sure that a majority of smi.cng.mem receives smi. It sends
〈“update”, sm, . . .〉 to all the processes in smi.cng.mem and waits for 〈“ACK”, . . .〉 from a
majority of them. Notice that it may be the case that there is no such correct majority due
to later reconfig operations and failures, so, pi stops waiting when a more updated sm is

4.3. Oracle-Based Dynamic Atomic Storage 73

received, which implies that a majority of smi.cng.mem has already received smi (since a
majority is needed in order to solve consensus).

Upon receiving 〈“update”, sm, num〉with a new sm from process pi, process pj adopts
sm and abandons any previous consensus. In addition, if num 6=⊥, pj sends 〈“ACK”, num〉
to pi (Algorithm 9 lines 59–63).

Beyond handling operations, in order to ensure progress in case no operations are
invoked from some point on, every correct process periodically sends 〈“update”, sm,⊥〉
to all processes in its sm.cng.mem (Algorithm 8 line 30).

Algorithm 9 Process pi’s algorithm: event handlers

31: upon decidei(smi .cng, smi .ts, Req) do
32: W ← {〈p, value〉|〈p, 〈WR, value〉, num〉 ∈ Req}
33: if W 6= {} . deterministically choose one of the writes to be the last
34: smi .value← value with smallest p in W
35: for all 〈pj, op, num〉 ∈ Req . apply op to sm
36: if op.type = WR
37: smi .lastOps[j]← 〈num,“ok”〉
38: else if op.type = RD
39: smi .lastOps[j]← 〈num, smi .value〉
40: else
41: smi .cng.rem← smi .cng.rem ∪ {p | 〈remove, p〉 ∈ op.changes}
42: smi .cng.mem← smi .cng.mem ∪ {p | 〈add, p〉 ∈ op.changes} \ smi .cng.rem
43: smi .lastOps[j]← 〈num,“ok”〉
44: smi .ts← smi .ts + 1
45: pendi ← false

46: upon receiving 〈“propose”, sm, Req〉 from pj do
47: if (smi .ts > sm.ts) or (smi .ts = sm.ts ∧ pendi = true) then return
48: smi ← sm
49: pendi ← true
50: propose(smi .cng, smi .ts, Req)
51: for all p ∈ smi .cng.mem send 〈“propose”, smi , Req〉 to p

52: upon receiving 〈“helpRequest”, num, sm〉 from pj do
53: if smi .ts < sm.ts then . learn new sm
54: smi ← sm
55: pendi ← false
56: send 〈“helpReply”, num, myOpi , opNumi〉

57: upon receiving 〈“helpReply”, opNumi , op, num〉 from pj do
58: opsi ← opsi ∪ 〈pj, op, num〉

59: upon receiving 〈“update”, sm, num〉 from pj do
60: if smi .ts < sm.ts then . learn new sm
61: smi ← sm
62: pendi ← false
63: if num 6=⊥ then send 〈“ACK”, num〉 to pj

74 Chapter 4. On Liveness of Dynamic Storage

4.3.3 Correctness proof

Atomicity

Every operation is uniquely defined by the process that invoked it and its local num-
ber. During the proof we refer to operation op invoked by process pi with local number
opNumi = n as the tuple 〈pi, op, n〉. We begin the proof with three lemmas that link
completed operations to sm states.

Lemma 32. Consider operation op invoked by some process pi in r with local number opNumi =

n. If op returns in r at time t, then there is at least one request Req that contains 〈pi, op, n〉 and
has been chosen in a consensus in r before time t.

Proof. When operation op return, smi.lastOps[i].num = n (line 17 or 18 in Algorithm 8).
Processes update sm during a decide handler, or when a newer sm is received, and the
first update occurs when some process pj writes n to smj.lastOps[i].num during a decide
handler. In the decide handler, n is written to sm.lastOps[i].num when the chosen request
in the corresponding consensus contains 〈pi, op, n〉.

Lemma 33. For two processes pi, pj, let t be a time in a run r in which neither pi or pj is
executing a decide handler. Then at time t, if smi.ts = smj.ts, then smi = smj.

Proof. We prove by induction on timestamps. Initially, all correct processes have the
same sm with timestamp 0. Now consider timestamp TS, and assume that for every
two processes pi, pj at any time not during the execution of decide handlers, if smi.ts =

smj.ts = TS, then smi = smj. Processes increase their sm.ts to TS + 1 either at the
end of a decide handler associated with TS or when they receive a message with sm s.t.
sm.ts = TS + 1. By the agreement property of consensus and by the determinism of the
algorithm, all the processes that perform the decide handler associated with TS perform
the same operations, and therefore move sm (at the end of the handler) to the same state.
It is easy to show by induction that all the processes that receive a message with sm s.t.
sm.ts = TS + 1 receive the same sm. The lemma follows.

Observation 10. For two process pi, pj, let sm1 and sm2 be the values of smj at two different
times in a run r. If sm1.ts ≥ sm2.ts, then sm1.lastOps[i].num ≥ sm2.lastOps[i].num.

Lemma 34. Consider operation 〈pi, op, opNumi〉 invoked in r with opNumi = n. Then
〈pi, op, n〉 is part of at most one request that is chosen in a consensus in r.

Proof. Assume by way of contradiction that 〈pi, op, n〉 is part of more than one request
that is chosen in a consensus in r. Now consider the earliest one, Req, and assume that it
is chosen in a consensus associated with timestamp TS. At the end of the decide handler
associated with timestamp TS, sm.lastOps[i].num = n and the timestamp is increased
to TS + 1. Thus, by Lemma 33 sm.lastOps[i].num = n holds for every sm s.t. sm.ts =

4.3. Oracle-Based Dynamic Atomic Storage 75

TS + 1. Consider now the next request, Req1, that contains 〈pi, op, n〉, and is chosen in a
consensus. Assume that this consensus associated with timestamp TS′, and notice that
TS′ > TS. By the validity of consensus, this request is proposed by some process pj,
when smj.ts is equal to TS′. By Observation 10, at this point smj.lastOps[i].num ≥ n, and
therefore pj does not include 〈pi, op, n〉 in Req1 (line 27 in Algorithm 8). A contradiction.

Based on the above lemmas, we can define, for each run r, a linearization σr, where
operations are ordered as they are chosen for execution on sm’s in r.

Definition 18. For a run r, we define the sequential run σr to be the sequence of operations
decided in consensus instances in r, ordered by the order of the chosen requests they are part of
in r. The order among operations that are part of the same chosen request is the following: first
all writes, then all reads, and finally, all reconfig operations. Among each type, operations are
ordered by the process ids of the processes that invoked them, from the highest to the lowest.

Note that for every run r, the sequential run σr is well defined. Moreover, σr contains
every completed operation in r exactly once, and every invoked operation at most once.

In order to prove atomicity we show that (1) σr preserves r’s real time order (lemma
35); and (2) every read operation rd in r returns the value that was written by the last
write operation that precedes rd in σr, or ⊥ if there is no such operation (lemma 36).

Lemma 35. If operation op1 returns before operation op2 is invoked in r, then op1 appears before
op2 in σr.

Proof. By Lemma 32, op1 is part of a request Req1 that is chosen in a consensus before op2

is invoked, and thus op2 cannot be part of Req1 or any other request that is chosen before
Req1. Hence op1 appears before op2 in σr.

Lemma 36. Consider read operation rd = 〈pi, RD, n〉 in r, which returns a value v. Then v is
written by the last write operation that precedes rd in σr, or v =⊥ if there is no such operation.

Proof. By Lemmas 32 and 34, rd is part of exactly one request Req1 that is chosen in a
consensus, associated with some timestamp TS. Thus sm.lastOps[i] is set to 〈n, val〉 in
the decide handler associated with TS. By Lemma 33, sm.lastOps[i] = 〈n, val〉 for all
sm s.t. sm.ts = TS + 1. By Lemma 34 and since we consider only well-formed runs,
smi.lastOps[i] = 〈n, val〉 when rd returns, and therefore rd returns val. Now consider
three cases:

• There is no write operation in Req1 or in any request that was chosen before Req1

in r. In this case, there is no write operation before rd in σr, and no process writes
to sm.value before sm.lastOps[i] is set to 〈n, val〉, and therefore, rd returns ⊥ as
expected.

76 Chapter 4. On Liveness of Dynamic Storage

• There is a write operation in Req1 in r. Consider the write operation w in Req1 that
is invoked by the process with the lowest id, and assume its argument is v′. Notice
that w is the last write that precedes rd in σr. By the code of the decide handler,
sm.value equals v′ at the time when sm.lastOps[i] is set to 〈n, val〉. Therefore, val =

v′, rd returns the value that is written by the last write operation that precedes it in
σr.

• There is no write operation in Req1, but there is a request that contains a write op-
eration and is chosen before Req1 in r. Consider the last such request Req2, and
consider the write operation w invoked by the process with the lowest id in Req2.
Assume that w’s argument is v′, and Req2 was chosen in a consensus associated
with timestamp TS′ (notice that TS′ < TS). By the code of the decide handler and
Lemma 33, in all the sm’s s.t. sm.ts = TS′ + 1, the value of sm.value is v′. Now,
since there is no write operation in any chosen request between Req2 and Req1 in r,
no process writes to sm.value when TS′ < sm.ts < TS. Hence, when sm.lastOps[i]
is set to 〈n, val〉, sm.value equals v′, and thus val = v′. Therefore, rd returns the
value that is written by the last write operation that precedes rd in σr.

Corollary 12. Algorithms 7–9 implement an atomic storage service.

Liveness

Consider operation opi invoked at time t by a correct process pi in run r. Notice that r is
a run with either infinitely or finitely many invocations. We show that, in both cases, if
pi is active in r, then opi returns in r.

We associate the addition or removal of process pj by a process pi with the timestamp
that equals smi.ts at the time when the operation returns. The addition of all processes
in P0 is associated with timestamp 0.

First, we consider runs with infinitely many invocations. In Lemma 37, we show
that for every process p, every sm associated with a larger timestamp than p’s addition
contains p in sm.cng.mem. In Observation 3, we show that in a run with infinitely many
invocations, for every timestamp ts, there is a completed operation that has a bigger
timestamp than ts at the time of the invocation. Moreover, after the stabilization time
of the FD, operations must help all the slow active processes in order to complete. In
Lemma 38, we use the observation to show that any operation invoked in a run with
infinitely many invocations returns.

Next, we consider runs with finitely many invocations. We show Lemma 39 that
eventually all the active members of the last sm adopt it. Then, in Lemma 40, we show
that every operation invoked by an active process completes. Finally, Theorem 9, stipu-
lates that the algorithm satisfies wait-freedom.

4.3. Oracle-Based Dynamic Atomic Storage 77

Lemma 37. Assume the addition of pi is associated with timestamp TS in run r. If pi is active,
then pi ∈ sm.cng.mem for every sm s.t. sm.ts ≥ TS.

Proof. The proof is by induction on sm.ts. Base: If pi ∈ P0, then pi ∈ sm.cng.mem for all
sm s.t. sm.ts = 0. Otherwise, 〈add, pi〉 is part of a request that is chosen in a consensus
associated with timestamp TS′ = TS − 1, and thus, by Lemma 33, pi ∈ sm.cng.mem
for all sm s.t. sm.ts = TS′ + 1 = TS. Induction: Process pi is active, so no process
invokes 〈remove, pi〉, and therefore, together with the validity of consensus, no chosen
request contains 〈remove, pi〉. Hence, if pi ∈ sm.cng.mem for sm with sm.ts = k, then
pi ∈ sm.cng.mem for every sm s.t. sm.ts = k + 1.

Claim 3. Consider a run r of the algorithm with infinitely many invocations. Then for every
time t and timestamp TS, there is a completed operation that is invoked after time t by a process
with sm.ts > TS at the time of the invocation.

Proof. Recall that r is well-formed and only processes in V(t).join can invoke operations
at time t. Therefore, there are infinitely many completed operations in r. Since a finite
number of operations are completed with each timestamp, the claim follows.

Lemma 38. Consider an operation opi invoked at time t by an active process pi in a run r with
infinitely many invocations. Then opi completes in r.

Proof. Assume by way of contradiction that pi is active and opi does not complete in r.
Assume w.l.o.g. that pi’s addition is associated with timestamps TS and opi is invoked
with opNumi = n. Consider a time t′ > t after pi invokes opi and the FD has stabi-
lized. By Claim 3, there is a completed operation opj in r, invoked by some process pj at
a time t′′ > t′ when smj.ts > TS, whose completion is associated with timestamp TS′.
By Lemma 37, pi ∈ smj.cng.mem, at time t′′. Now by the algorithm and by the even-
tual strong accuracy property of the FD, pj proposes opj and opi in the same request,
and continues to propose both of them until one is selected. Note that it is impossible
for opj to be selected without opi since any process that helps pj after stabilization also
helps pi. Hence, since opj completes, they are both performed in the same decide han-
dler. The run is well-formed, so pi does not invoke operations that are associated with
opNumi > n. Hence, following the time when opi is selected, for all sm s.t. sm.ts > TS′,
sm.lastOps[i].num = n. Now, again by Claim 3, consider a completed operation opk in
r, that is invoked by some process pk at time t′′′ after the stabilization time of the FD s.t.
smk.ts > TS′ at time t′′′. Operation opk cannot complete until pi receives pk’s sm. There-
fore, pi receives sm s.t. sm.ts ≥ TS′, and thus sm.lastOps[i].num = n. Therefore, pi learns
that opi was performed, and opi completes. A contradiction.

We now proceed to prove liveness in runs with finitely many invocations.

78 Chapter 4. On Liveness of Dynamic Storage

Definition 19. For every run r of the algorithm, and for any point t in r, let TSt be the timestamp
associated with the last consensus that made a decision in r before time t. Define smt, at any point
t in r, to be the sm’s state after the completion of the decide handler associated with timestamp
TSt at any process. By Lemma 33, smt is unique. Recall that sm0 is the initial state.

Claim 4. For every run r of the algorithm, and for any point t in r, there is a majority of
smt.cng.mem M s.t. M ⊆ (V(t).membership ∪ P(t).join) \ F(t).

Proof. By the code of the algorithm, for every run r and for any point t in r, V(t).membership ⊆
smt.cng.mem and smt.cng.mem ∩ V(t).remove = {}. The claim follows from failure con-
dition.

Observation 11. Consider a run r of the algorithm with finitely many invocations. Then there
is a point t in r s.t. for every t′ > t, smt = smt′ . Denote this sm to be ˆsm.

The following lemma follows from Lemma 33, Claim 4, and the periodic update mes-
sages; for space limitations, we omit its proof.

Lemma 39. Consider a run r of the algorithm with finitely many invocations. Then eventually
for every active process pi ∈ ˆsm.cng.mem, smi = ˆsm.

Lemma 40. Consider an operation opi invoked at time t by an active process pi in a run r with
finitely many invocations. Then opi completes in r.

Proof. By Lemma 37, pi ∈ ˆsm.cng.mem, and by Lemma 39, there is a point t′ in r s.t.
smi = ˆsm for all t ≥ t′. Assume by way of contradiction that opi does not complete
in r. Therefore, opi is either stuck in one of its waits or continuously iterates in a while
loop. In each case, we show a contradiction. Denote by con the consensus associated
with timestamp ˆsm.ts. By definition of ˆsm, no decision is made in con in r.

• Operation opi waits in line 16 (Algorithm 8) forever. Notice that ˆsm.cng.rem con-
tains all the process that were removed in r, so, after time t′, pi does not wait for a
reply from a removed process. By the strong completeness property of FD, pi does
not wait for faulty processes forever. A contradiction.

• Operation opi waits in line 18 (Algorithm 8) forever. Notice that from time t′ till
pi proposes in con, pendi=false. Therefore, pi proposes in con in line 22 (Algorithm
8), and waits in line 18 after the propose. By Observation 4, there is a majority
M of ˆsm.cng.em s.t. M ⊆ V(t).membership ∪ P(t).join \ F(t). Therefore, by the
termination of consensus, eventually a decision is made in con. A contradiction to
the definition of ˆsm.

• Operation opi remains in the while loop in line 17 (Algorithm 8) forever. Since it
does not waits in line 18 (Algorithm 8) forever, opi proposes infinitely many times,
and since each propose is made in a different consensus and pi can propose in a
consensus beyond the first one only once a decision is made in the previous one,
infinitely many decisions are made in r. A contradiction to the definition of ˆsm.

4.4. Conclusion 79

• Operation opi waits in line 27 (Algorithm 8) forever. Consider two cases. First,
smi 6= ˆsm when pi performs line 26 (Algorithm 8). In this case, pi continues at
time t′, when it adopts ˆsm, because smi.ts > ts hold at time t′. In the second case
(smi = ˆsm when pi performs line 26), pi sends update message to all processes in
ˆsm.cng.mem, and waits for a majority to reply. By Observation 4, there is a correct

majority in ˆsm.cng.mem, and thus pi eventually receives the replies and continues.
In both cases we have contradiction.

Therefore, pi completes in r.

We conclude with the following theorem:

Theorem 9. Algorithms 7–9 implement wait-free atomic dynamic storage.

4.4 Conclusion

We proved that in an asynchronous API-based reconfigurable model allowing at least
one failure, without restricting the number of reconfigurations, there is no way to em-
ulate dynamic safe wait-free storage. We further showed how to circumvent this result
using a dynamic eventually perfect failure detector: we presented an algorithm that uses
such a failure detector in order to emulate a wait-free dynamic atomic MWMR register.

Our dynamic failure detector is (1) sufficient for this problem, and (2) can be imple-
mented in a dynamic eventually synchronous [32] setting with no restriction on recon-
figuration rate. An interesting question is whether a weaker such failure detector exists.
Note that when the reconfiguration rate is bounded, dynamic storage is attainable with-
out consensus, thus such a failure detector does not necessarily have to be strong enough
for consensus.

Chapter 5

Dynamic Reconfiguration:
Abstraction and Optimal
Asynchronous Solution

Our experience with building real-life distributed systems repeatedly surfaces reconfig-
uration as an important issue whose practice is less understood than desired. Providing
clean and efficient foundations and tools for reconfiguration is therefore a crucial en-
abler for today’s distributed system management. We make a step towards providing
such foundations in this work.

The goal of this work is to take a static fault-tolerant object like an atomic read/write
register and turn it into a dynamic fault-tolerant one. A static object exposes an API
(e.g., read/write) to its clients, and is emulated on top of a set of fault-prone servers
(sometimes called base objects) via protocols like ABD [10]. We refer to the underlying
set of fault-prone servers as a configuration. To convert a static object into a dynamic one,
we first extend the object’s API to support reconfiguration. Such an API is essential for
administrators, who should be able to remove old or faulty servers and add new ones
without shutting down the service. One of the challenges in formalizing dynamic models
is to define a precise fault condition, so that an administrator who requests to remove a
server s via a reconfiguration operation will know when she can switch s off without
risking losing the object’s state (e.g., the last written value to a read/write register).

To this end , we first define a clean dynamic failure model, in which an administrator
can immediately switch a server s off once a reconfiguration operation that removes s
completes. Then, we provide an abstraction for consensus-less reconfiguration in this
model. To demonstrate the power of our Reconfiguration abstraction we use it to im-
plement two dynamic atomic objects. First, we focus on the basic building block of a
read/write register; thus, other (static) objects that can be emulated from read/write
registers (e.g., atomic snapshots) can be made dynamic by replacing the underlying reg-

81

isters with dynamic ones. Second, we emulate a max-register [9], which on the one hand
can be implemented asynchronously [10] (on top of fault-prone servers), and on the other
hand cannot be emulated (for an unbounded number of clients) on top of a bounded set
of read/write registers as we showed in Chapter 21. Thus, a standalone implementation
of dynamic max-registers is required.

Complexity. We present an optimal-complexity implementation of our Reconfigu-
ration abstraction in asynchronous environments, which in turn leads to the first optimal
implementation of a dynamic read/write register in this model. More concretely, faced
with n administrator reconfiguration requests, the number of configurations that the dy-
namic object is implemented over is n; and the number of rounds (when the algorithm
accesses underlying servers) per client operation is O(n). A comparison with previous
solutions appears in Section 5.1.

Dynamic fault model. In Section 5.2 we provide a succinct failure condition cap-
turing a versatile set of faults under which the dynamic object’s liveness is guaranteed.
We define the dynamic fault model as an interplay between the object’s implementation
and its environment: New configurations are introduced by clients, (which are part of the
object’s environment). The object implementation then activates the requested configura-
tion, at which point old configurations are expired. Between the time when a configura-
tion is introduced and until it is expired, the environment can crash at most a minority of
its servers. For example, when reconfiguring a register from configuration {A, B, C} into
{D, E, F}, initially a majority of {A, B, C} must be available to allow read/write opera-
tions to complete. Then, when reconfiguration is triggered, {D, E, F} is introduced, and
subsequently, majorities of both configurations must be available, to allow state-transfer
to occur. Finally, when the reconfiguration operation completes, leading to {D, E, F}’s
activation, {A, B, C} is expired, and every server in it may be immediately shutdown.

Reconfiguration abstraction. Since a configuration is a finite set of servers, we can
use ABD [10] to emulate in each configuration a set of (static) atomic read/write registers
(as well as max-registers), which are available as long as the configuration is not expired.
The Reconfiguration abstraction, in contrast, is not tied to a specific configuration, but
rather abstracts away the coordination among clients that wish to change the underlying
set of servers (configuration) emulating the dynamic object. Its specification, which is
formally defined in Section 5.3, exposes two API methods, Propose and Check. Clients
use Propose to request changes to the configuration, and Check to learn of changes pro-
posed by other clients. Both return a configuration and a set of speculations. The returned
configuration reflects all previous proposals and possibly some ongoing ones. The less
obvious return value of Reconfiguration is the speculation set. This set is required since
there is no guarantee that all clients see the same sequence of configurations (indeed,

1A max-register for k clients requires at least k read/write registers.

82 Chapter 5. Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

(a) Dynamic atomic read/write register on top of
the Reconfiguration abstraction.

(b) Dynamic atomic max-register on top of the Re-
configuration abstraction.

Figure 5.1: The Reconfiguration abstraction usage. Solid (dashed) blocks depict dynamic
(resp. static) objects.

Reconfiguration is weaker than consensus). Therefore, a dynamic object implementation
that uses Reconfiguration needs to read from every configuration that Check returned
to any other client, and transfer the most up-to-date value read in any of these to the
new configuration returned from Check. To this end, Reconfiguration returns a specu-
lation set that includes all configurations previously returned to all clients (and possibly
additional proposed ones).

In Section 5.4, we implement (1) a dynamic atomic read/write register on top of the
Reconfiguration abstraction and static atomic ranked registers [26] (one in every con-
figuration), and (2) a dynamic atomic max-register on top of Reconfiguration and static
atomic max-registers. See Figure 5.1 for illustrations. In Section 5.5 we give an optimal
consensus-less algorithm for Reconfiguration, which together with the read/write regis-
ter emulation of Section 5.4 yields an optimal dynamic read/write register algorithm.

In summary, this chapter makes three contributions: it defines a failure condition
that allows an administrator to shutdown removed servers; it introduces the Recon-
figuration abstraction, which captures the essence of reconfiguration; and it presents
an asynchronous optimal-complexity solution for dynamic atomic registers. Section 5.6
concludes the chapter.

5.1. Related Work 83

5.1 Related Work

Model. The problem of object reconfiguration has gained growing attention in re-
cent years [41, 56, 8, 66, 50, 40, 72, 37, 49, 70, 11, 17]. However, dynamic failure models
do not always make it clear when exactly an administrator can shutdown a removed
server. Early works supporting dynamic objects [56, 41, 24] simply assume that a con-
figuration is available as long as some client may try to access it. SmartMerge [50] uses
a shared non-reconfigurable auxiliary object (lattice agreement) that is forever available
to all clients, meaning that a majority of the servers emulating this auxiliary object can
never be switched off. DynaStore [8] was the only previous work to define dynamic fail-
ure conditions based on a reconfiguration API, but these conditions are complicated, and
restrict reconfiguration attempts as well as failures. Moreover, DynaStore does not sepa-
rate clients from servers as we do here. Following [37, 50], we formulate the problem in
shared memory, which makes it easier to reason about and clearer.

Other works [11, 17] assume a broadcast mechanism for announcing joins instead of
an API for adding and removing processes, and bound the rate of changes of the underly-
ing set of servers; the latter is necessary if one wants to ensure liveness for all operations
(as [11] does) – as we show in Chapter 4 no asynchronous reconfigurable service can
ensure liveness unless the reconfiguration rate is limited in some way. Like many earlier
works [8, 37, 50], in this chapter we do not explicitly bound the reconfiguration rate, and
hence ensure liveness only if the number of reconfigurations is finite.

Abstractions. All previous works have considered reconfiguration in some specific
context – state machine replication [53, 19, 20], read/write register emulation [8, 50, 37,
41], or atomic snapshot [70]. To the best of our knowledge, this work is the first to spec-
ify general dynamic objects as extensions of their static counterparts and to provide a
general abstraction for dynamic reconfiguration. We note that although [37] define a re-
configure primitive intended to capture the core reconfiguration problem, that primitive
is not sufficiently strong for implementing an atomic register, (in particular, since it does
not require real-time order), and indeed, they do not implement their atomic register on
top of it.

Dynamic register complexity. In a recent non-refereed tutorial [72], we give a generic
formulation that allows us to compare the complexity of different algorithms [41, 56, 50,
37, 8], as follows: Given that n is the number of proposed configuration changes and m is
the total number of operations (read/write/reconfig) invoked on the atomic register, Dy-
naStore [8] goes through O(min(mn, 2n)) configurations, and requires a constant number
of operations in every configuration, so O(min(mn, 2n)) is also DynaStore’s operation
complexity. Parsimonious SpSn [37] reduces the number of traversed configurations to
O(n), but since they invoke a linear number of operations in every configuration, their
total operation complexity is O(n2).

84 Chapter 5. Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

Now notice that it is always possible to stagger reconfiguration proposals in a way
that forces the system to go through Ω(n) configurations. The asymptotically opti-
mal O(n) operation complexity is straightforward to achieve in consensus-based solu-
tions [41, 56, 24]. This complexity was also achieved by SmartMerge [50], but this was
done using an auxiliary object that was assumed to be live indefinitely, i.e., was not re-
configurable in itself. Our algorithm is the first consensus-free and fully reconfigurable
dynamic register algorithm with optimal complexity.

5.2 Dynamic Model

We consider a fault-prone shared memory model [48]: The system consists of an in-
finite set Π of clients (sometimes called processes), any number of which may fail by
crashing, and an infinite set Φ of servers (sometimes called base objects) supporting ar-
bitrary atomic low-level objects. Clients access servers via-low level operations (e.g.,
read/write), which may take arbitrarily long to arrive and complete, hence the system is
asynchronous.

We address in the chapter two atomic objects: a classical fault tolerant read/write
register and a max-register [9]. Both registers provide clients with two API methods:
Read and Write in case of read/write register, and MRead and MWrite in case of max-
register. In a well-formed execution, a client invokes API methods one at a time, though
calls by different clients may be interleaved in real time. For a well-formed execution,
there exists a serialization of all client operations that preserves the operations’ real time
order, such that (1) in case of read/write register a Read returns the value written in
the latest Write preceding it, or ⊥ if there is no preceding Write; and (2) in case of max-
register an MRead returns the highest value written by an MWrite that precedes it, or ⊥
if there is no preceding MWrite. (In case of max-registers, the values domain is ordered.)

Configurations. The universe of servers is infinite, but at any moment in time, a
client chooses to interact with a subset of it. In our model, a configuration is a set of
included and excluded servers, where configuration membership is the set of included
and not excluded servers in the configuration. Formally:

Changes , {+s | s ∈ Φ} ∪ {−s | s ∈ Φ}
Configuration , subset of Changes

C.membership , {s | +s ∈ C ∧−s 6∈ C}

For example C = {+s1, +s2,−s2, +s3} is a configuration representing the inclusion
of servers s1, s2, and s3, and the exclusion of s2, and C.membership is {s1, s3}. Tracking
excluded servers in addition to the configuration’s membership is important in order
to reconcile configurations suggested by different clients. The configuration size is the
number of changes it includes– in this example, |C| = 4.

5.2. Dynamic Model 85

Dynamic fault model. A dynamic fault model is an interplay between the adver-
sary’s power and the following events, which are invoked as part of client operations:

introduce(C): indicates that C is going into use; and

activate(C): indicates that the state transfer to C is complete.

By convention we say that the initial configuration Cinit is introduced and activated at
time 0.

The above events govern the life-cycle of configurations. A configuration C becomes
activated once an activate(C) event occurs. Note that not all introduced configurations are
necessarily activated at some point. A configuration C becomes expired once activate(D)
occurs s.t. C does not contain D. Intuitively, D reflects events (inclusions or exclusions)
that are not reflected in C, and hence C has become “outdated”. Our algorithm will
enforce a containment order among activated configurations, and will thus ensure that
the latest activated one is not expired.

The following two conditions constrain the power of the adversary:

Definition 20. (liveness conditions)

Availability: The adversary can crash at most a minority of C.membership between the time
when introduce(C) occurs and until C is expired.

Weak Oracle: When a client interacts with an expired configuration C, it either receives re-
sponses to calls from a majority of C.membership, or returns an exception notification
〈error, D〉 for some activated D, where C 6⊇ D.

Note that such an oracle (sometimes called directory service) is inherently required
in order to allow slow clients to find non-expired configurations in an asynchronous
system where old configurations may become unavailable [7, 70]. Our oracle defini-
tion is weak– in particular, the activated configuration it returns may itself be expired,
and different clients may get different responses; it can be trivially implemented using a
broadcast mechanism as assumed in some previous works [11, 17], and trivially holds if
configurations must remain available as long as some client may access them, as in other
previous works [41, 56, 24].

Static versus dynamic objects. A static object is one in which clients interact with
a fixed configuration. In order to disambiguate a static object, scoped within a configu-
ration C, from a dynamic one, we will label the methods of a static object with a “C.”.
For every configuration C, as long as a majority of C.membership is alive, clients can use
ABD [10] to emulate (static) atomic registers on top of the servers in C.membership. We
denote:

C.x ← value A Write(value) operation to register x in configuration C

C.x A Read of x

C.collect(array) A bulk Read of all the registers in array

86 Chapter 5. Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

Since a complete array can be collected from servers using ABD in the same number of
rounds as reading a single variable, we count a collect as a single operation for complex-
ity purposes. Note that each register in the array is atomic in itself, but the collect is not
atomic.

The methods of a dynamic object are not scoped with any configuration; it can start
in some configuration and continue in a different one. A dynamic object’s API includes
a ChangeConfig operation that allows clients to change the set of servers implementing
the object. The implementation of ChangeConfig is object-specific, because it needs to
transfer the state of the object across configurations, e.g., the last written value in case of
an atomic register.

Clients pass to ChangeConfig a parameter Proposal ⊂ Changes containing a proposed
set of configuration changes. ChangeConfig returns a configuration C s.t. (1) C is acti-
vated, (2) C ⊇ Proposal, and (3) every configuration introduced or activated by Change-
Config consists of Cinit plus a subset of changes proposed by clients before the operation
returns.

The liveness guarantee of a dynamic object is that, assuming the number of Change-
Config proposals is finite, every correct client’s operation eventually completes. Note
that if the number of ChangeConfig proposals is infinite, it is impossible to ensure live-
ness for all operations as we show in Chapter 4.

Usage example. Consider an administrator (a privileged client) who wants to switch
server s off and invokes ChangeConfig({−s}). By liveness, ChangeConfig completes,
and by properties (1) and (2), it returns an activated configuration C ⊇ {−s}. The activa-
tion of C expires all configurations that do not contain C, and in particular, those that do
not include −s. Hence, s is not part of the membership of any unexpired configuration,
and by the availability condition, the administrator can safely switch s off immediately
once ChangeConfig({−s}) returns.

5.3 Reconfiguration Abstraction

We introduce a generic reconfiguration abstraction, which can be used for implementing
dynamic objects as we illustrate in the next section. A Reconfiguration abstraction has
two operations:

Propose(C, P) for a configuration C and a proposed set of changes P; and

Check(C) for a configuration C.

Propose is used to reconfigure the system, whereas Check is used in order to learn about
other clients’ reconfiguration attempts. Propose and Check invoke the introduce and
activate events. Both Check and Propose return a pair of values 〈D, S〉, where D is a con-
figuration and S is a speculation set containing configurations; when 〈D, S〉 is returned we

5.3. Reconfiguration Abstraction 87

say that D is nominated by the operation that returns it. Intuitively, a nominated config-
uration is one that has been introduced and is a candidate for activation. By convention,
we say that Cinit is nominated at time 0. We assume that the first argument passed to
both operations is a nominated configuration.

The first propert of Reconfiguration is validity, which (i) requires Propose(C, P) to
include P in the returned nominated configuration; and (ii) does not allow configurations
to include spurious changes not proposed by any client. Formally:

D1 (Validity) (i) If Propose(C, P) returns 〈D, S〉 for some S, then D ⊇ P, and (ii) for every
configuration D that is introduced or nominated by an operation op, for every e ∈
D \ Cinit, there is a Propose(C′, P′) for some C′ that is invoked before op returns s.t.
e ∈ P′.

The second property ensures that nominated configuration sizes monotonically in-
crease over time, which is essential for real-time order of operations invoked on objects
that use this abstraction:

D2 (Real-time Order) A configuration D nominated by operation op is larger than or
equal to every configuration nominated by an operation that strictly precedes op.

Since Reconfiguration is weaker than consensus, clients do not agree on a sequence of
nominated configurations. Hence, in case some client c1 proceeds to a configuration C′,
we want to ensure that if another client c2 “skips” C′, c2 has C′ in its speculation set, and
can thus transfer any state that c1 may have written there to the newer configuration c2

nominates. This is captured by property S1(ii) below. Property S1(i) stipulates that these
configurations are also introduced, ensuring a live majority in these configurations in
order to allow state transfer.

S1 (Speculation) If Check(C) or Propose(C, P) returns 〈D, S〉, then every C′ ∈ S is (i)
introduced and (ii) S includes all nominated configurations C′ s.t. |C| ≤ |C′| ≤ |D|.
As a practical matter, if any C′ between C and D has been activated, any C′′ s.t.
|C′′| < |C′|may be omitted.

In addition, we have to define when configurations are activated. Note that an activation
of a new configuration leads to expiration of old ones, and thus to possible loss of infor-
mation stored in them. Therefore, a configuration D is not immediately activated when
a Propose returns 〈D, S〉 for some S. Instead, a configuration C is activated if Check(C)
does not report any newer configuration:

A1 (Activation) If Check(C) returns 〈C, S〉 for some S, then C is activated.

The liveness property of Reconfiguration is the same as in other dynamic objects [8, 50,
37, 70], namely, if the number of Propose operations is finite, then every operation by a
correct client completes.

88 Chapter 5. Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

5.4 Building Dynamic Objects Using Reconfiguration

We first present a dynamic atomic read/write register emulation using Reconfiguration,
then explain the modifications needed for supporting a dynamic atomic max-register [9],
and finally provide a formal proof.

5.4.1 Dynamic atomic read/write register

Besides the Reconfiguration abstraction, our dynamic register implementation uses a
(static) ranked register [26] emulation in every configuration, as illustrated in Figure 5.1a.
A ranked register stores a tuple, called version, that consists of a value v and a monoton-
ically increasing timestamp ts, and supports RRRead() and RRWrite(version) operations.
The sequential specification of a ranked register is following: An RRRead() returns the
version with the highest ts written by an RRWrite that precedes it, or ⊥ if there is no
preceding RRWrite. Like all static objects in our model, if the configuration where the
ranked register is emulated expires, the oracle returns an error.

The basic framework for implementing the Read, Write, and ChangeConfig opera-
tions is a loop: (i) Check, (ii) read (using RRread) the highest version from all speculated
configurations returned by Check, (iii) write (with RRWrite) the highest version to the
configuration nominated by Check, (iv) repeat. The loop terminates when Check does
not nominate a new configuration. The specific action of each of the three operations is
as follows. A Read simply returns the value of the highest version at the end of the loop.
A Write increments the timestamp and writes it with a new value at the beginning of the
loop. ChangeConfig proposes a configuration change via Propose instead of Check in
the first iteration.

5.4. Building Dynamic Objects Using Reconfiguration 89

Algorithm 10 Dynamic atomic read/write register using Reconfiguration.

Client local variables:
1: configuration Ccurr, initially Cinit
2: TS = N×Π with selectors num and id
3: version ∈ V× TS with selectors v and ts, initially 〈v0, 〈0,client’s id〉〉
4: pickTS ∈ {true, false}, initially true.

Code for client ci ∈ Π:

5: Read()
6: transferState(Check(Ccurr),⊥)
7: checkConfig()
8: return version.v

9: Write(v)
10: transferState(Check(Ccurr), v)
11: checkConfig()
12: pickTS← true
13: return ok

14: ChangeConfig(P)
15: transferState(Propose(Ccurr, P),⊥)
16: checkConfig()
17: return Ccurr

18: On 〈error, D〉 do
19: Ccurr ← D
20: restart operation

21: procedure checkConfig()
22: 〈D, S〉 ← Check(Ccurr)
23: while D! = Ccurr do
24: transferState(〈D, S〉,⊥)
25: 〈D, S〉 ← Check(Ccurr)

26: procedure transferState(〈D, S〉, value)
27: for each C ∈ S do
28: tmp← C.RRRead()
29: if tmp.ts > version.ts then
30: version← tmp
31: if value 6= ⊥ ∨ pickTS = true then
32: version ← 〈value, 〈version.ts.num +

1, i〉〉
33: pickTS← false
34: D.RRWrite(version)
35: Ccurr ← D

The pseudocode appears in Algorithm 10. The transferState method reads the regis-
ter’s version from the entire speculation set S and writes the latest version to the new
configuration D. The checkConfig method repeatedly calls transferState until the configu-
ration returned by Check stops changing. During the loop execution, an operation on an
expired configuration may incur an exception, with a notification of the form 〈error, D〉
(see line 18). In this case, the loop is aborted and the operation starts over at config-
uration D. In case write is restarted after it has chosen a new timestamp, it skips the
timestamp selection step.

We say that a configuration C becomes stable when some version is written to C in
step (iii). We refer to the first version written to C as the opening version of C. Consider a
completed operation (Read, Write, or ChangeConfig) op and let C be the last configura-
tion in which op writes some version v, we say that op commits v in C when it completes.
The correctness of the register emulation is based on the following key invariant:

Invariant 2. For every stable configuration C, the opening version of C is higher than or equal
to the highest version committed in any configuration C′ s.t. |C′| < |C|.

In other words, a larger stable configuration always holds a newer (or equal) version of

90 Chapter 5. Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

the register’s value than that committed in a smaller activated one.

Algorithm 11 Dynamic atomic max-register using Reconfiguration.

Client local variables:
1: configuration Ccurr, initially Cinit
2: value ∈ V, initially v0

Code for client ci ∈ Π:

3: MRead()
4: transferState(Check(Ccurr),⊥)
5: checkConfig()
6: return value

7: MWrite(v)
8: transferState(Check(Ccurr), v)
9: checkConfig()

10: return ok

11: ChangeConfig(P)
12: transferState(Propose(Ccurr, P),⊥)
13: checkConfig()
14: return Ccurr

15: On 〈error, D〉 do
16: Ccurr ← D
17: restart operation

18: procedure checkConfig()
19: 〈D, S〉 ← Check(Ccurr)
20: while D! = Ccurr do
21: transferState(〈D, S〉,⊥)
22: 〈D, S〉 ← Check(Ccurr)

23: procedure transferState(〈D, S〉, v)
24: if v 6= ⊥ then
25: value← v
26: for each C ∈ S do
27: tmp← C.MRead()
28: if tmp > value then
29: value← tmp
30: D.MWrite(value)
31: Ccurr ← D

Complexity. We measure complexity in terms of the number of accesses to low level
objects, namely static atomic registers. Note that Read/Write/collect operations on static
registers are emulated in a constant number of rounds using ABD. The complexity of
the dynamic register’s operations is determined by (1) the complexity of the operations
inside the Checks invoked during the loop (plus possibly one Propose); and (2) the sum
of the sizes of all speculation sets returned by Propose/Check operations in this loop
(where the register’s implementation performs Reads).

In a run with n ChangeConfig proposals, clearly, the best complexity we can hope
for is O(n). In the next section we present our algorithm for Reconfiguration, which
achieves the asymptotically optimal O(n) complexity.

5.4.2 Dynamic atomic max-register

The emulation of a max-register on top of Reconfiguration is similar to the read/write
register emulation. It differs in how we keep and transfer the state, i.e., the register’s
value. First, instead of a (static) ranked register in each configuration, we use a (static)
max-register. Second, instead of timestamps, we use the actual written values, that is,
a writer writes its value in step (iii) only if it is higher than all the values read in step

5.4. Building Dynamic Objects Using Reconfiguration 91

(ii) (Otherwise, it transfers the highest value it read). The pseudocode appears in Algo-
rithm 11.

5.4.3 Read/write register correctness proof

We start with notations:

Notation. We say that a version v is higher than a version v′ if v.ts > v′.ts. An
operation (Read, Write, or ChangeConfig) stores a version v in configuration C when it
performs C.RRWrite(v) (line 34). A configuration C becomes stable when some operation
stores a version in C. We say that the opening version of a stable configuration C is the
first version that is stored in C. A configuration C holds a version v at time t if every
C.RRRead() performed after time t returns a version that is higher than or equal to v.
Consider a completed operation (Read, Write, or ChangeConfig) op and let C be the last
configuration in which op stores some version v, we say that op commits v in C when it
completes.

The following observation follows immediately from the specification of ranked register:

Observation 12. A stable configuration holds at time t the highest version that was stored in it
before time t.

The following observation follows immediately from the definitions of activated, stable
and nominated configurations, and the code:

Observation 13. Every activated configuration is Stable and every stable configuration is nom-
inated.

The following observations follow immediately from the code:

Observation 14. Every completed operation commits a version.

Observation 15. A Check and Propose are always called with a stable configuration.

We now ready to prove the correctness of our register, which rely on the following in-
variant:

Invariant 2 (restated). For every stable configuration C, the opening version of C is higher
than or equal to the highest version committed in any configuration C′ s.t. |C′| < |C|.

Proof. Assume in a way of contradiction that there is a time t at which the invariant does
not hold. Let Cst be the smallest stable configuration that violate the invariant at time t,
let vst be the opening version of Cst, and let opst be the operation that stores vst in Cst.
Now let tst

1 be the time when a Check or a Propose performed by opst returns 〈Cst, S〉 for
some S for the first time. Denote this Check or Propose by CPst, and let tst

2 be the time
when opst invokes procedure transferState(〈Cst, S〉,⊥) (line 26). Note that tst

1 < tst
2 < t.

92 Chapter 5. Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

By the contradiction assumption there is at least one version, committed in a smaller
configuration than C until time t, that is higher than vst. Let opc be an operation that
commits version vc < vst in configuration Cc until time t s.t. |Cc| < Cst. Now let tc

1 be
the time when opc stores v in Cc and let tc

2 > tc
1 be the time when opc invokes Check(Cc)

for the last time. Note that this Check(Cc) returns 〈Cc, S〉 for some S. Now consider two
case:

• First, tst
1 < tc

2. Meaning that opc invokes a Check(C) that nominates C after opst

nominates Cst. A contradiction to property D2 (Real time order) of the Reconfigu-
ration abstraction.

• Second, tst
1 > tc

2. Therefore, tst
2 > tc

1, meaning that opst performs transferState(〈Cst, S〉,⊥)

after opc stores v in Cc. Let Cin be the input configuration to CPst. Now consider
two case:

– Fist, Cc ∈ S. Since opst performs Cc.RRRead() (in procedure transferState) after
tc
1, and since transferState stores the highest version it reads, we get that vst is

higher than or equal to vc. A contradiction.

– Second, Cc 6∈ S. By property S1 (Speculation) of the Reconfiguration abstrac-
tion, this case is possible only if (1) |Cc| < |Cin| ≤ |Cst| and Cin ∈ S or (2) S
includes an activated configuration Ca s.t. |Cc| < |Ca| ≤ |Cst|. By Observa-
tions 13 and 15, Ca and Cin are stable. Therefore, in both cases, S includes a
stable configuration C′ s.t. |Cc| < |C′| ≤ |Cst|. Now consider two case:

1. First, |C′| = |Cst|, meaning that Cst is stable at time tst
1 . Therefore, some

operation stores a version in Cst before opst. A contradiction to vst being
the opening version of Cst.

2. Second, |C′| < |Cst|. Since Cst is the smallest stable configuration that
violates the invariant at time t, Ca’s opening version is higher than or
equal to vc. By Observation 12, and since transferState stores the highest
version it reads from configurations in S, we get that vst is higher than or
equal to vc. A contradiction.

From Invariant 2 and Observation 12 we get the following corollary:

Corollary 13. At every time t a stable configuration C holds a version that is higher than or
equal to the highest version committed in any configuration C′ s.t. |C′| ≤ |C| before time t.

The following lemma follows from Corollary 13 and the specification of the reconfigura-
tion abstraction:

Lemma 41. Consider an operation op1 that commits a version v1 in configuration C1, and an
operation op2 that begins after op1 returns. Let Check2 be a Check performed by op2, and let

5.4. Building Dynamic Objects Using Reconfiguration 93

〈C2, S2〉 be the valued it returns. Then, S2 includes a stable configuration that holds a version
higher than or equal to v1.

Proof. Note that op1 nominates C1, and since op1 precedes op2, op1 performs a Check
that nominates C1 before op2 invokes Check2. Thus, by property D2 (real time order) of
the reconfiguration abstraction, |C1| ≤ |C2|. Moreover, by Observation 15 and property
S1 (speculation) of the reconfiguration abstraction, S2 includes a stable configuration Cs

s.t. |Cs| ≥ |C1|. By Corollary 13, Cs holds a version with a timestamp tss ≥ ts1.

Notice that every completed Write operation picks exactly one timestamp (line 32), every
picked timestamp is unique (ties are broken by clients ids), and there are no two different
versions with the same timestamp. Thus, we say that Write operations are associated with
the timestamp they pick. Note also that a Read operation returns the value in the version
is commits. Therefore, we say that Read operations are associated with the timestamps
of the versions they commits. The following Observation follows immediately from the
code:

Observation 16. A completed Write operation that is associated with timestamp ts commits a
version with timestamp ts′ ≥ ts.

Lemma 42. Consider two completed Write operations w1, w2 that are associated with times-
tamps ts1, ts2, respectively. If w1 precedes w2, then ts1 < ts2.

Proof. Let tsc
1 be the timestamp of the version committed by w1. By Observation 16,

tsc
1 ≥ ts1. Let Cheak2 be the last check w2 performs before picking a timestamp, and

let 〈C2, S2〉 be its return value. By Lemma 41, S2 includes a stable configuration that
holds a version with a timestamp tss ≥ tsc

1 ≥ ts1. Therefore, by the code of transferState,
ts2 > tss ≥ tsc

1 ≥ ts1.

Lemma 43. Consider two completed Read operations rd1, rd2 that are associated with times-
tamps ts1, ts2, respectively. If rd1 precedes rd2, then ts1 ≤ ts2.

Proof. Let Cheak2 be the Check operation that rd2 performs before storing a version with
timestamp ts2, and let 〈C2, S2〉 be the return value of check2. By Lemma 41, S2 includes
a stable configuration that holds a version with a timestamp tss ≥ ts1. Therefore, by the
code of transferState, ts2 ≥ tss ≥ ts1.

Lemma 44. Consider a Write operation w1 associated with timestamp ts1, and a Read operation
rd2 associated with timestamp ts2. If w1 precedes rd2, then ts1 ≤ ts2.

Proof. Let tsc
1 be the timestamp of the version committed by w1. By Observation 16,

tsc
1 ≥ ts1. Let Cheak2 be the Check operation that rd2 performs before storing a version

with timestamp ts2, and let 〈C2, S2〉 be the return value of check2. By Lemma 41, S2

94 Chapter 5. Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

includes a stable configuration that holds a version with a timestamp tss ≥ tsc
1 ≥ ts1.

Therefore, by the code of transferState, ts2 ≥ tss ≥ tsc
1 ≥ ts1.

Lemma 45. Consider a Read operation rd1 associated with timestamp ts1, and a Write operation
w2 associated with timestamp ts2. If rd1 precedes w2, then ts1 < ts2.

Proof. Let Cheak2 be the last check w2 performs before picking a timestamp, and let
〈C2, S2〉 be its return value. By Lemma 41, S2 includes a stable configuration that holds a
version with a timestamp tss ≥ ts1. Therefore, by the code of transferState, ts2 > tss ≥ ts1.

Definition 21 (lineraization). For every run r we define the sequential run σr as follows: All the
Write operations in r are ordered in σr by the timestamp they are associated with, and every Read
operation associated with a timestamp ts in r is ordered in σr immediately after the Write that
is associated with ts. Read operations that are associated with the same timestamps are ordered
(among themselves) by the time they return.

Theorem 10. The algorithm emulates an atomic register.

Proof. We need to show that for every run r, σr is a linearization of r. The sequential spec-
ification is satisfied by construction, and the real time order follows from Lemmas 42, 43,
44, and 45.

5.5 The Reconfiguration Abstraction Implementation

In this section we present an optimal and modular Reconfiguration implementation. In
Section 5.5.1 we introduce the Common Set (CoS) building block, which is used by the
Reconfiguration abstraction in every configuration. In Section 5.5.2 we show how CoS
is used for non-optimal Reconfiguration and in Section 5.5.3 we optimize the algorithm.
Formal proofs for correctness and complexity are given in Sections 5.5.4 and 5.5.5, re-
spectively.

5.5.1 CoS building block

The Common Set (CoS) building clock is a static shared object, emulated in every config-
uration C over a set of (static) registers. Its API consists of a single operation, denoted
C.CoS(P), where P is a set of arbitrary values. C.CoS returns an output set of sets satisfy-
ing the following:

Definition 22 (Common Set in configuration C).

(CoS1) Each set in the output is the union of some of the inputs and strictly contains C;

5.5. The Reconfiguration Abstraction Implementation 95

Algorithm 12 Efficient CoS; algorithm of client pi in configuration C; optimization code
shaded.

1: Local variables: . flags accessible outside CoS
2: firstTime set by reconfig and read by CoS
3: drop set by CoS and read by reconfig

4: Shared variables (emulated in configuration C):
5: Boolean startingPoint, initially false . Is C a starting point for some client
6: Mapping from client to registers Warr and Sarr , initially {}.

7: procedure COS(P)
8: P← PreCompute(P) . optimization
9: if P ⊃ C then

. Something new to propose
10: C.Warr[i]← P
11: ret← C.collect(Warr)
12: if ret = {} then
13: return ret
14: else
15: return C.collect(Warr)

16: procedure PRECOMPUTE(P)
17: if firstTime then
18: C.startingPoint← true
19: C.Sarr[i]← P
20: drop← false
21: if ¬C.startingPoint then
22: return P

. repeat collect until P stops changing.
23: drop← true
24: tmp← ⋃

C.collect(Sarr)
25: while tmp 6= P do
26: P← tmp
27: tmp← ⋃

C.collect(Sarr)
28: return P

(CoS2) if a client’s input strictly contains C, then its output is not empty;

(CoS3) there is a common non-empty set in all non-empty outputs; and

(CoS4) every C.CoS invocation that strictly follows a C.CoS call that returns a non-empty output
returns a non-empty output.

For example, consider three concurrent clients that input to C.CoS the sets P1, P2, and
P3, all of which contain C. A possible outcome is for their outputs to be {P1}, {P1, P1 ∪
P2}, and {P1, P2, P3}, respectively. The intuitive explanation behind using CoS is that
it builds a common sequence of configurations inductively: The first configuration in the
sequence is Cinit, the next is the common configuration returned by Cinit.CoS (property
CoS3), and so on. Although this sequence is not known to the clients themselves, every
client observes this sequence starting with some activated configuration. Every configu-
ration in this sequence contains the previous one.

CoS can be implemented directly using consensus or atomic snapshot, as illustrated
in [72]. In Algorithm 12, (without the PreCompute function, which is an optimization
and will be discussed later), we give an implementation based on DynaStore’s weak
snapshot [8]. In the pseudocode, we denote by

⋃
S the union of all sets in a set of sets

S. If the proposal P strictly contains C, pi has something new to propose and it writes
P into its cell in the “weak” snapshot array Warr (lines 9-10). (Note that Warr is a static
array emulated in the configuration where CoS is implemented). Either way, it collects
Warr (line 11). In case the collect is not empty, pi collects Warr again and returns the set of
collected proposals (lines 12-15). The second collect ensures that the intersection of non-

96 Chapter 5. Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

empty outputs includes the first written input, implying CoS3; the remaining properties
are satisfied by a single collect.

5.5.2 Simple Reconfiguration

Given CoS, we can solve Reconfiguration in a generic way as shown in Algorithm 13
(ignore the shaded areas for now). Both Check and Propose use the auxiliary procedure
reconfig. Propose(C, P) first sets a local variable proposal to the union of C and P, whereas
Check(C) initiates proposal to be C. Both then execute the loop in line 40. Each iteration se-
lects the smallest configuration in ToTrack; we say that the iteration tracks this configura-
tion. The loop tracks all configurations returned by CoS, smallest to largest, starting with
C. In each tracked configuration C′, the client introduces C′, invokes C′.CoS(proposal)
and adds to proposal the union of the configurations returned from C′.CoS. This repeats
for every configuration C′ returned from CoS until there are no more configurations to
track. Recall that by the liveness condition, if some configuration C′ is expired and no
longer supports C′.CoS, then the client gets in return to C′.CoS an exception with some
newer activated configuration Ca. In this case, reconfig starts over from Ca. At the end,
Propose and Check return proposal and the set of all tracked configurations.

The common sequence starts with Cinit, and is inductively defined as follows: If
Ck.CoS has a non-empty output, then Ck+1 is the smallest common configuration re-
turned by all non-empty Ck.CoSs. By CoS3, all non-empty return values have at least one
configuration in common, and if there is more than one such configuration, then we pick
the smallest, breaking ties using lexicographic order. By CoS1, each configuration in the
common sequence strictly contains the previous one.

5.5. The Reconfiguration Abstraction Implementation 97

Algorithm 13 Generic Reconfiguration algorithm; optimization code shaded.

29: Propose(C, P)
30: return reconfig(C, P)

31: Check(C)
32: ret← reconfig(C, {})
33: if ret = 〈C, ∗〉 then activate(C)
34: return ret

35: procedure reconfig(C, P)
36: proposal ← P ∪ C
37: ToTrack← {C}
38: speculation← {}
39: firstTime← true
40: while ToTrack 6= {} do
41: C′ ← argmin

C′′∈ToTrack
|C′′| . smallest configuration

42: introduce(C′)
43: speculation← speculation ∪ {C′}
44: ret← C′.CoS(proposal)
45: if ret = 〈“error”, Ca〉 then . C′ is expired - restart from Ca
46: return reconfig(Ca, proposal)
47: ToTrack← (ToTrack∪ ret) \ {C′}
48: firstTime← false
49: if drop = true then . drop old configurations in ToTrack
50: ToTrack← ret
51: proposal ← proposal ∪⋃ToTrack
52: Ccurr ← proposal
53: return 〈proposal, speculation〉

Correctness. The validity property (D1) immediately follows from CoS property
CoS1 and the observation that proposal is set to include P at beginning of reconfig and
never decreases.

To provide intuition for the remaining properties, we discuss the case in which all
operations start in Cinit and no exceptions occur; the proof for the general case appears
in Section 5.5.4 Observe that since proposal always contains

⋃
ToTrack and configurations

are traversed from smallest to largest, we get from property CoS2 that C.CoS returns
an empty set only if C includes ToTrack, i.e., C is the last traversed configuration. The
key correctness argument is that all nominated configurations belong to the common
sequence, and are thus related by containment:

Lemma 46. For every reconfig that returns 〈D, S〉, D belongs to the common sequence.

Proof - sketch for the special case (starting in Cinit, no exceptions). Assume by way of contra-
diction that Dj is returned by reconfig operation recj but does not belong to the common
sequence. Note that Cinit is in the common sequence and is tracked by recj. Let C̃j be the
last configuration tracked by recj that belongs to the common sequence. By assumption,
C̃j 6= Dj, and thus, recj gets a non-empty output from C̃j.CoS (it gets an output since we
assume that there are no exceptions). But, this output includes some configuration in
the common sequence, so recj tracks a configuration in the common sequence after C̃j. A
contradiction.

98 Chapter 5. Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

Liveness follows since (i) every call to CoS returns, either successfully or with an
exception; and (ii) tracked configurations are monotonically increasing, and, provided
that the number of reconfigurations is finite, they are bounded.

5.5.3 Optimal Reconfiguration

The key to the efficiency of our new algorithm is in its thrifty CoS implementation, and
the signals it conveys to the reconfiguration algorithm, which minimize the number of
tracked configurations. To this end, the efficient solution for CoS shares (local) state
variables firstTime and drop with the Reconfiguration implementation.

To explain the intuition behind our algorithm, let us first consider a scenario in which
all clients invoke register operations (Read, Write, or ChangeConfig) in the same start-
ing configuration C0 (e.g., C0 may be Cinit), and no exceptions occur. If n of the clients
invoke Propose, then there are n sets P1, . . . , Pn proposed by reconfig(C, Pi) operations.
The unoptimized (weak snapshot-based) CoS may return up to 2n different subsets in
CoS responses (assuming many clients invoke Read/Write operations), inducing high
complexity.

Our algorithm reduces this complexity by running a pre-computation phase in Pre-
Compute, which imposes a containment order on all configurations passed to, and hence
returned from, CoS. This is done by running a variant of (strong) atomic snapshot [?] on
all client proposals in configuration C0. Specifically, each process writes its own proposal
P (line 19) to the “strong” array Sarr, and then (lines 24-27) repeatedly collects the union
of all Sarr cells into P, until P stops changing. Like an atomic snapshot, this ensures
that all results of PreCompute are related by containment. Note, however, that unlike
an atomic snapshot, the complexity of this pre-computation is linear in the number of
different proposals written, rather than in the number of participating processes; if collect
encounters a newly written value that does not change the union of written values, Pre-
Compute returns. In case all operations start in C0, there are no new proposals in other
configurations, and so the containment order is preserved throughout the computation.
This ensures that the number of different configurations tracked by all clients is at most
n.

Next, we account for the case that clients invoke (or restart due to exceptions) their
operations in different starting configurations. We have to identify configurations where
some client starts, and run PreCompute in them too. To this end, we have clients signal
(by raising the startingPoint flag) if a configuration is their starting point. Every client
that later runs C.CoS sees this flag true, and executes the pre-computation. If a client pi

sees the flag false in C.CoS, pi does not run the pre-computation. Nevertheless, since pi

checks the flag after writing its value to Sarr, pi’s proposal is already in the array before
new clients that start in this configuration perform their collects, and so pi’s proposal is
contained in theirs. Thus, at this new starting point, all clients obtain proposals that are
related by containment among themselves.

The tricky part is that old proposals that were included in ToTrack before the new

5.5. The Reconfiguration Abstraction Implementation 99

starting point are not necessarily ordered relative to ensuing proposals, as in the follow-
ing scenario:

• Clients p1 and p2 start in C0 and propose C0 ∪ {+a} and C0 ∪ {+b}, respectively;
p1 gets {C1}, where C1 = C0 ∪ {+a}, from C0.CoS and p2 gets {C1, C2}, where
C2 = C0 ∪ {+a, +b}.

• Client p1 tracks C1, gets an empty set from C1.CoS, and activates it. Client p3 starts
in C1, (which is now activated), proposes C3 = C1 ∪ {+c} in C1.CoS, and gets {C3}.

• Later, p2 tracks C1, and gets C3 in C1.CoS’s output. At this point p2’s ToTrack con-
tains C2 and C3, neither of which contains the other.

To achieve linear complexity, we have clients drop all configurations previously returned
from CoS at all the starting points they encounter. One subtle point is ensuring safety in
the presence of such drops, and our proof of the general case of Lemma 46 addresses this
issue.

Intuitively, since the purpose of tracking all configurations is to ensure that clients
traverse the common sequence, once we know C is in the common sequence, there is no
need to continue to track any configuration older than C. So, the drop is safe.

A second subtle point is preserving linear complexity despite executing PreCom-
pute in multiple starting points. But since (i) the worst-case complexity of a single pre-
computation is linear in the number of different proposals written to it, (ii) each CoS
begins with a proposal that reflects all those seen in previous CoSs, and (iii) there are n
new proposals overall, the combined complexity of all pre-computations is O(n).

Finally, we provide intuition for the complexity of the high-level dynamic atomic
register given in Section 5.4. The full proof, which wraps this intuition into a technical
induction, appears in the next sections. Recall that the register emulation performs a
loop in which it repeatedly calls Check(C), where C is the configuration returned from
the previous Check/Propose, until some Check(C′) returns 〈C′, S〉 for some C′ and S.
The loop performs a constant number of operations in every configuration returned in
a speculated set S from Check. Therefore, we want the Checks in this loop to return the
optimal number of configurations, and have optimal complexity themselves.

Since all the configurations introduced (and returned in speculation sets) by our algo-
rithm are related by containment, we immediately conclude that the number of config-
urations returned in speculated sets S of all Checks together is bounded by n. Now we
show that the complexity of all Checks combined is O(n). First observe that all Checks
combined invoke at most n CoSs. Second, each CoS writes at most three times to shared
registers (lines 10, 18, and 19), reads once (in line 21), and performs each of the collects
in lines 11, 15, and 24 at most once. Now observe that CoS performs the collect in line 27
only if the previous collect (in line 24 or 27) contained a proposal P1 6⊆ P, which means
that none of the CoSs collected P1 before. Since there are at most n proposals, all CoSs to-
gether perform the collect in line 27 at most n times. All in all, we get that the complexity
of all Checks is O(n).

100 Chapter 5. Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

5.5.4 Reconfiguration Correctness Proof

The proof makes use of the following simple observation:

Observation 17. The output of PreCompute contains its input.

Lemma 47. Algorithm 12 implements CoS.

Proof. We show the four properties of Definition 22:

CoS1. Each CoS’s output is a set of proposals all of which were returned from PreCom-
pute and, by line 9, strictly contain C. In PreCompute, P is always a subset of the
union of inputs to CoS.

CoS2. Consider a configuration C and a client pi that invokes C.CoS(P) s.t. P ⊃ C. By
Observation 17, P ⊃ C also in line 9. Therefore, pi writes P into Warr[i] (line 10),
and since no other client writes into the same cell, pi collects a non-empty set in its
collects (lines 11 and 15). Thus, pi returns a non-empty set.

CoS3. If there are no non-empty outputs, then we are done. Otherwise, there is at least
one client that writes its P to Warr. Let pi be the first such client (because Warr
consists of atomic registers and atomicity is composable, the first is well-defined),
and denote its P as Pi. We next show that every returned non-empty set contains
Pi.

Consider a client pj that returns a non-empty set. Then pj collects Warr twice, and
the first collect is not empty. Therefore, pj completes its first collect after pi writes
Pi into Warr[i], and thus, it is guaranteed that pj reads Pi from Warr[i] during its
second collect, and returns a set that contains Pi.

CoS4. Consider two complete C.CoS calls opi and opj s.t. opi strictly follows opj, and opj

returns a non-empty set. There is a non-empty cell in Warr before opj completes,
and since nothing is erased from Warr, opi’s collects are not empty.

We continue with the following notations:

Notation. We start with some notation that we use throughput the proof. The com-
mon sequence of configurations Cinit, C1, C2, ..., which only an outside observer can view,
is inductively defined as follows: It starts with Cinit, and if Ck.CoS has a non-empty out-
put, then Ck+1 is the smallest common configuration returned in all non-empty Ck.CoS
outputs (by CoS property CoS3, the intersection is not empty), with ties broken in lexico-
graphic order.

We say that a set is monotonic if all its elements are related by containment. A se-
quence is monotonic if every element Ck 6= C0 contains Ck−1. By CoS property CoS1, the

5.5. The Reconfiguration Abstraction Implementation 101

common sequence is monotonic. For a reconfig(C, P) operation recj, we say a configura-
tion is tracked by recj if it is selected as C′ in line 41. We define tracked(j) = C0

j , C1
j , . . . , Cm

j
to be the sequence of configurations tracked by recj in the last recursive call of reconfig in
the order they are tracked. Note that tracked(j) does not include configurations tracked
before an exception is received. We further denote recj’s return value by 〈Dj, Sj〉.

The following observations follow immediately from the code:

Observation 18. Consider a reconfig operation recj, then Dj = Cm
j ⊇ C0

j ∪ · · · ∪ Cm
j .

Observation 19. If some reconfig reads drop=true in C.CoS at time t, then there is a reconfig
recj s.t. C0

j = C that starts before time t.

The next claim stipulates that reconfig returns once CoS returns it an empty set.

Claim 5. Consider a reconfig operation recj and a configuration C′ ∈ tracked(j). If C′.CoS
called during recj returns an empty set, then C′ = Dj.

Proof. By CoS property CoS2, since C′.CoS returns an empty set, when C′.CoS is called
(line 44), proposal 6⊃ C′. Moreover, whenever CoS is called during a reconfig operation,
proposal ⊇ ⋃

ToTrack. Together, we get that C′ is not strictly contained in
⋃

ToTrack.
Now notice that C′ is selected in line 41 as argmin

C∈ToTrack
|C|. Therefore, we get that ToTrack =

{C′} when C′.CoS is called (line 44). By the assumption, C′.CoS returns {}. Hence, in
line line:ToTrackUpdate1 50/47, ToTrack becomes {}, and thus the reconfig exits the while
loop, and C′ = Dj.

The following observation follows from the usage of reconfig and the oracle behavior:

Observation 20. For every reconfig operation recj, C0
j is a nominated configuration that is

returned by some reconfig before recj is invoked.

The next claim shows that our algorithm drops old configurations only upon tracking a
configuration in the common sequence.

Claim 6. Assume that for every reconfig operation recj that returns before some time t, Dj

belongs to the common sequence. Now consider a configuration C that belongs to the common
sequence, and a reconfig operation reci that tracks C and returns at time t. If reci gets a non-empty
output from C.CoS, then reci tracks another configuration belonging to the common sequence
after C.

Proof. First observe that reci gets a configuration C′ that belongs to the common sequence
from C.CoS, and reci’s ToTrack contains C′ at the end of the corresponding while loop. If
reci tracks C′, we are done. Otherwise, reci drops C′ after calling some C′′.CoS (while
tracking C′′). By Observation 19, there is a reconfig recj s.t. C0

j = C′′ that starts before
time t. By our assumption and by Observation 20, C′′ belongs to the common sequence,
and we are done.

102 Chapter 5. Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

We now show that every nominated configuration belongs to the common sequence.

Theorem 46 (restated). For every reconfig that returns 〈D, S〉, D belongs to the common se-
quence.

Proof. We prove by induction on time t ≥ 0 that for every reconfig operation recj that
returns at time t, Dj belongs to the common sequence.

Base: Since no operation returns at time 0 or earlier, the lemma holds for t = 0.
Step: We now assume that the lemma holds for some t ≥ 0, and prove for t + 1. Let

recj be a reconfig operation that returns at time t. By Observation 20, C0
j was returned

by some reconfig before time t. Therefore, by the induction assumption C0
j belongs to

the common sequence. Now assume in a way of contradiction that Dj does not belong
to the common sequence. Let C be the last configuration tracked by recj that belongs
to the common sequence (there is such a configuration since C0

j belongs to the common
sequence). By the contradiction assumption, C 6= Dj, and thus by Claim 5, recj gets a
non-empty output from C.CoS. Therefore, by Claim 6, recj tracks a configuration be-
longing to the common sequence after C. A get a contradiction.

The following is an immediate conclusion from Lemma 46 and the monotonicity of the
common sequence.

Corollary 14. The set of nominated configurations is monotonic.

Claim 7. Consider a reconfig(C, P) operation recj that returns Dj. Then recj tracks every con-
figuration in the common sequence between C and Dj.

Proof. Assume by way of contradiction that there is a configuration C′ in the common
sequence between C and Dj that recj does not track. Let C′′ be the last configuration
before C′ in the common sequence that is tracked by recj. (There must be such a config-
uration because C = C0

j is in the common sequence.) By Claim 5, recj gets a non-empty
output from C′′.CoS, and by the common sequence definition, this output contains the
next configuration Cnext in the common sequence. Now recall that recj tracks configu-
rations from smallest to largest, and it does not track Cnext. Therefore, recj drops Cnext

after calling CoS in some configuration C̃ not in the common sequence. By Lemma 46, C̃
is not nominated, and thus not activated. Therefore, by the oracle definition no reconfig
starts in C̃, and thus the drop flag in C̃.CoS is always false. Hence, recj does not drop
configurations after calling C̃.CoS. A contradiction.

Theorem 11. Algorithms 13 and 12 implement the Reconfiguration abstraction.

Proof. We now show that all Reconfiguration properties are satisfied:

5.5. The Reconfiguration Abstraction Implementation 103

D1 (i) Consider a Propose(C, P) operation that calls reconfig(C, P) and returns 〈D, S〉.
We have to show that D ⊇ P. Now observe that proposal is set to contain P at the
beginning of the reconfig, and never decreases, including recursive calls to reconfig.
The property follows from line 53. (ii) Consider a Check or a Propose operation op
that introduces, activates, or return configuration C′, and consider e ∈ C′ \ C ∪ P.
Observe that op gets e by some CoS output. The property follows by inductively
using CoS1.

D2 Consider an operation (Propose or Check) opj that strictly precedes another opera-
tion opi. Let recj be the reconfig operation that is called during opj, and let reci be
the reconfig operation that is called during opi. Notice that recj strictly precedes reci.
By Lemma 46, Dj and Di are in the common sequence. From CoS1, either Di ⊇ Dj

or Dj ⊇ Di. Assume by contradiction that |Di| < |Dj|. Thus, Dj ⊃ Di, and Di pre-
cedes Dj in the common sequence. This means that Di.CoS returned a non-empty
output to some reconfig operation before Dj was added to the common sequence,
and so before recj returned Dj. Since recj strictly precedes reci, we get that Di.CoS
returned a non-empty output before reci invoked Di.CoS, and so by CoS4, Di.CoS
returns a non-empty output also to reci, a contradiction to the assumption that reci

returns Di.

S1 Consider a Check(C) or Propose(C, P) operation op that returns 〈D, S〉. Let reci =

reconfig(C′, P′) be the last reconfig operation that is called during op. By the oracle
definition, by Lemma 46, and since every activate configuration is also nominated,
reconfig(C, P) recursively calls reconfig(Ca, ∗) only if Ca is activated and nominated,
and |Ca| > |C|. Thus, if C′ 6= C, then C′ is activated and belongs to the common
sequence. By Lemma 46, all the nominated configurations are in the common se-
quence. Therefore, by Claim 7 and by the observation that the speculation set of
reci is tracked(i), S includes all nominated configurations C′′ s.t. |C′| ≤ |C′′| ≤ |D|.

5.5.5 Reconfiguration Complexity Proof

We use the following additional notations:

Notation. For every introduced configuration C:

1. We define OldProps(C) to be the proposals suggested in C.CoS by reconfig operations
starting their traversals before C. That is,

OldProps(C) , {P | ∃reconfig that calls C.CoS(P) while its flag firstTime = false}

2. Since by Corollary 14, the set of nominated configurations is monotonic, there is
at most one nominated configuration of a given size. Thus, we can define Pred(C)

104 Chapter 5. Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

to be the biggest nominated configuration C′ s.t. |C′| < |C| for C 6= Cinit. For
completeness, we define Pred(Cinit) , Cinit.

For every nominated configuration C′:

1. All introduced configurations that have C′ as their Pred are its successors:

Successors(C′) , {C′} ∪ {C is introduced | C′ = Pred(C)}, and

successorsi(C) , {C′ ∈ successors(C) | |C′| ≤ i}.

2. All configurations that are in ToTrack of reconfig operations after tracking C′ are
potential successors of C′:

PotentialSuccessors(C′) , {C | some reconfig calls C′.CoS in line 44 and

C ∈ ToTrack in line 51 in the same iteration}

An illustration of Successors and PotentialSuccessors appears in Figure 5.2.

We denote introducedSeti , {C is introduced | |C| ≤ i}, and nominatedSeti , {C is nominated | |C| ≤ i}

Figure 5.2: Example run of client pi of our algorithm. The dashed configuration is in pi’s
ToTrack after calling N1.CoS, and thus it is in potentialSuccessors(N1). But it is dropped
after pi calls N2.CoS, and thus it is never introduced, and so it is not in successors(N2).

We now state some observations that follow immediately from the code.

Observation 21. Whenever CoS is called during a reconfig operation, proposal ⊇ ⋃ ToTrack.

Observation 22. Consider a reconfig operation rec that calls C.CoS(P) s.t. P ⊇ C and returns
ret. Then ∃C′ ∈ ret s.t. P ⊆ C′.

5.5. The Reconfiguration Abstraction Implementation 105

Observation 23. The return value of every PreCompute that reads startPoint=false in C.CoS is
in OldProps(C).

Observation 24. If a configuration C′ is returned by C.CoS, then there is a C.CoS invocation
in which PreCompute returns C′.

Corollary 15. If all reconfig operations that call C.CoS read startPoint=false, then all C.CoS’s
return values in OldProps(C).

Observation 25. Let P1 and P2 be two proposals returned by PreCompute executions during
C.CoS pc1 and pc2, respectively. If pc1 and pc2 execute lines 24 to 27 (repeat collecting Sarr
until P stops changing), then P1 and P2 are related by containment.

Claim 8. Consider configuration C. If OldProps(C) is monotonic, then all configurations re-
turned from C.CoS invocations are related by containment.

Proof. By Observation 24, we need to show that all proposals returned from PreCompute
invoked during C.CoS are related by containment. Let P1 and P2 be two proposals re-
turned by PreCompute executions during C.CoS pc1 and pc2, respectively. We show that
P1 and P2 are related by containment. Consider three cases:

1. First, pc1 and pc2 read startPoint=false in line 21 executions during C.CoS. By Ob-
servation 23, P1, P2 ∈ OldProps(C). Since by the assumption OldProps(C) is mono-
tonic, we are done.

2. Second, pc1 reads startPoint=false, and pc2 reads startPoint=true. Note that since pc1

reads startPoint=false, it is called with P1. Now since startPoint never changes from
true to false, pc1 reads startPoint before pc2. Thus, pc1 writes P1 into Sarr in line 19
before pc2 reads startPoint=true. Therefore, pc2 sees P1 in all the collects in lines 24
to 27, and thus P2 ⊇ P1.

3. Third, pc1 and pc2 read startPoint=true. Therefore, both execute lines 24 to 27, and
thus by Observation 25, P1 and P2 are related by containment.

Claim 9. If a configuration C is nominated, then C is introduced.

Proof. By Lemma 46, C belongs to the common sequence, and so by the common se-
quence definition C is introduced.

Claim 10. Consider a reconfig operation recj that introduces configuration C′ with firstTime=true
and later introduces C. Then, C′ ⊂ C.

Proof. Note that when C′ is introduced, ToTrack = {C′}. Recall that if an error is returned,
then recj is aborted, and no later configurations are introduced by recj. Thus, no error is
returned when recj introduces C′, and by by CoS property CoS1, at the end of the iteration

106 Chapter 5. Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

all the configurations in ToTrack are strictly contain C′. Therefore, the claim follows by
inductively repeating this argument.

Corollary 16. Consider an introduced configuration C. Then, C ⊇ Cinit.

Proof. Let recj be a reconfig(C′, P′) that introduces C. Observe that recj introduces C′ with
firstTime=true. Thus, by Claim 10, C ⊇ C′. By Lemma 46, C′ belongs to the common
sequence, and by monotonicity of the common sequence, C′ ⊇ Cinit. Therefore, C ⊇ Cinit.

Claim 11. Consider a reconfig operation recj that introduces configuration C in iteration iter.
If firstTime=false at the beginning of iter, then there is at least one nominated configuration that
is smaller than C, and recj tracks Pred(C) before iter.

Proof. Let C′ be the configuration that recj is called with. Since C′ and Pred(C) are nom-
inated, by Corollary 14, C′ and Pred(C) belong to the common sequence. Now observe
that recj introduces C′ with firstTime=true before it introduces C. Thus, by Claim 10,
|C′| < |C|. If C′ = Pred(C), we are done, Otherwise, |C′| < |Pred(C)| < |C|. The
Claim follows from Claim 7, and the observation that recj tracks configurations from the
smallest to the biggest.

Corollary 17. Consider an introduced configuration C 6= Cinit. Then there is at least one
nominated configuration that is smaller than |C| and a reconfig operation that tracks Pred(C)

and introduces C.

Proof. Let recj be a reconfig operation that introduces C in an iteration iter, and consider
two cases:

1. First, flag firstTime=false at the beginning of iter during recj. The Corollary follows
by Claim 11.

2. Otherwise, C is the parameter recj is called with, and thus C nominated. Let reci be
the first reconfig that tracks C, and let t be that time. Therefore, no reconfig returns
C before time t. hence, reci is not called with C, and thus firstTime=false when reci

tracks C. The Corollary follows by Claim 11.

Claim 12. Consider a nominated configuration C, and an introduced configuration Ci+1 ∈
successors(C) of size i + 1 > |C|. Assume that for every C′ ∈ successorsi(C), PotentialSuccessors(C′) ⊆
PotentialSuccessors(C), and PotentialSuccessors(C) is monotonic. Then:

(a) Ci+1 ∈ PotentialSuccessors(C)

(b) OldProps(Ci+1) ⊆ PotentialSuccessors(C)

5.5. The Reconfiguration Abstraction Implementation 107

Proof. (a) Since Ci+1 6= Cinit, by Corollary 17, there is a reconfig operation recj that tracks
C = Pred(Ci+1) and introduces Ci+1. Now let C′i+1 be the biggest configuration in
successorsi(C) that is tracked by recj. By the assumptions PotentialSuccessors(C′i+1) ⊆
PotentialSuccessors(C), and thus monotonic. Therefore, there is at most one configu-
ration in PotentialSuccessors(C′i+1) whose size is i + 1. And since a reconfig operation
tracks configurations by the order of their sizes, there is at least one configuration in
PotentialSuccessors(C′i+1) whose size is i + 1. Therefore, there is exactly one configura-
tion C′′i+1 in PotentialSuccessors(C′i+1) of size is i + 1, and recj tracks C′′i+1 immediately
after C′i+2. By CoS property CoS1, C′′i+2 = Ci+2, and we are done.

(b) Consider some P ∈ OldPropsCi+1 , we need to show that P ∈ PotentialSuccessors(C).
Let reck be a reconfig operation that calls Ci+1.CoS while its flag firstTime= false. By Claim
11, reck tracks C. Let C′′′i+1 be the biggest configuration in successorsi(C) that is tracked
by reck. Since reck tracks configurations according to their sizes and since by (a) Ci+1

is the only configuration in successors(C) of size is i + 1, reck tracks Ci+1 immediately
after it tracks C′′′i+1. By Observation 22, reck’s proposal in C′′′i+1.CoS is included by
some configuration in reck’s ToTrack before reck introduces Ci+1, and by definition, reck’s
ToTrack is included in PotentialSuccessors(C′′′i+1) before reck introduces Ci+1. Now By
the assumptions, PotentialSuccessors(C′′′i+1) ⊆ PotentialSuccessors(C), and thus mono-
tonic. Therefore, P ∈ PotentialSuccessors(C′′′i+1) ⊆ PotentialSuccessors(C), and we are
done.

Claim 13. Consider a nominated configuration C. Assume that no more configurations of
size |C| are introduced and {C}∪PotentialSuccessors(C) is monotonic. Denote x , max({j |
∃C′ ∈ successors(C) : |C′| = j}). Then for every |C| ≤ i < x:

• For every C′ ∈ successorsi(C), PotentialSuccessors(C′) ⊆ PotentialSuccessors(C)

Proof. We prove by induction on i.
Base: i = |C|. If i = x, we are done. Otherwise, by the assumption, C is the only

introduced configuration of size |C|, and the lemma follows.
Step: Now assume that the lemma holds for some |C| ≤ i < x, we show that it

holds for i + 1. If i + 1 ≥ x, we are done. If there is no configuration in successors(C)

whose size is i + 1, then (1) follows by induction. Otherwise, by the Claim 12 (a) and
since PotentialSuccessors(C) is monotonic, there is exactly one configuration Ci+1 ∈
successorsi+1(C) of size is i + 1. Since i + 1 < x, Ci+1 is not nominated. Therefore, when-
ever Ci+1.CoS is called by a reconfig operation, its firstTime = false. Thus, all reconfig opera-
tions that call Ci+1.CoS read startingPoint=false. Now let C′i+1 ∈ PotentialSuccessors(Ci+1),
we show that C′i+1 ∈ PotentialSuccessors(C). If C′i+1 is returned by Ci+1.CoS, then by
Corollary 15, C′i+1 ∈ OldProps(Ci+1). By Claim 12 (b), OldProps(Ci+1) ⊆ PotentialSuccessors(C).
Therefore, C′i+1 ∈ PotentialSuccessors(C), and we are done. Otherwise, there is a recon-
fig operation rec that has C′i+1 in its ToTrack before it invokes Ci+1.CoS. Thus rec’s first-

108 Chapter 5. Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

Time=false when it introduces Ci+1.CoS, and thus by Claim 11, rec track C. Now let C′′i+1

be the last configuration rec tracks before Ci+1, and note that C′′i+1 ∈ successorsi(C) and
C′i+1 ∈ PotentialSuccessors(C′′i+1). By the induction assumption, PotentialSuccessors(C′′i+1) ⊆
PotentialSuccessors(C). Therefore, C′i+1 ∈ PotentialSuccessors(C), and we are done.

The following corollary immediately follows from Claims 12 and 13:

Corollary 18. Consider two nominated configurations C, C′ s.t. C = Pred(C′), and assume that
no more configurations with size |C| are introduced. If {C}∪ PotentialSuccessors(C) is mono-
tonic, then (1) successors(C) is monotonic, (2) OldProps(C′) ⊆ PotentialSuccessors(C), and
(3) for every C′′ ∈ successors|C

′ |−1(C), PotentialSuccessors(C′′) ⊆ PotentialSuccessors(C).

Claim 14. Consider two nominated configurations C, C′ s.t. C = Pred(C′), and let S be a mono-
tonic set. If OldProps(C′) ⊆ S and ∀C′′ ∈ successors|C

′ |−1(C), PotentialSuccessors(C′′) ⊆
S, then {C′} ∪ PotentialSuccessors(C′) is monotonic.

Proof. Consider a configuration C1 ∈ PotentialSuccessors(C′), we start by showing that
C1 ⊃ C′. By definition, there is a reconfig rec1 that calls C′.CoS in line 44 and C1 ∈ ToTrack
in line 51 in the same iteration. Now consider two cases:

1. C′.CoS in rec1 returns C1. Therefore, by CoS property CoS1, C1 ⊃ C′.

2. C1 is in rec1’s ToTrack before it invokes C′.CoS. Thus, rec1 calls C′.CoS while its first-
Time = false, and so by Claim 11, rec1 tracks C. Now let C′′ be the last configuration
rec1 tracks before C′, and note that C′, C1 ∈ PotentialSuccessors(C′′). By the as-
sumption, PotentialSuccessors(C′′) is monotonic, and by the observation that recj

tracks configurations from smallest to biggest, C1 ⊃ C′.

Consider another configuration C2 ∈ PotentialSuccessors(C′). By definition, there is a
reconfig rec2 that calls C′.CoS in line 44 and C2 ∈ ToTrack in line 51 in the same iteration.
We now show that C1 and C2 are related by containment. there are three cases:

1. Both C1 and C2 are returned by C′.CoS. Therefore, by Claim 8, C1 and C2 are related
by containment.

2. Neither C1 nor C2 is returned by C′.CoS. Thus C1 (C2) is in rec1’s (respectively,
rec2’s) ToTrack before it invokes C′.CoS. Thus, rec1 and rec2 call C′.CoS while their
firstTime = false, and so by Claim 11, rec1 and rec2 track C. Now let C′1 (C′2) be
the last configuration rec1 (respectively, rec2) tracks before C′, and note that C1 ∈
PotentialSuccessors(C′1) (and C2 ∈ PotentialSuccessors(C′2)). By the assumption,
PotentialSuccessors(C′1), PotentialSuccessors(C′2) ⊆ S, and thus C1, C2 ∈ S. Now
since S is monotonic, we are done.

3. One of the configurations, w.l.o.g. C1 is returned by C′.CoS, and C2 is not. In this
case, C2 is in rec2’s ToTrack before it invokes C′.CoS(P2) and thus, by Observation

5.5. The Reconfiguration Abstraction Implementation 109

21, P2 ⊇ C2, and as in above C2 ∈ S. In addition, since rec2 does not drop C2

after C′.CoS returns, it reads startingPoint=false during C′.CoS. By Observation 24,
there is a reconfig operation rec′1 that gets C1 from PreCompute during C′.CoS. Now
consider two cases:

(a) rec′1 reads startingPoint=false. Therefore, rec′1 calls C′.CoS while its firstTime=false,
and PreCompute returns its input which is therefore C1. Thus, by definition,
C1 ∈ OldProps(C′). By assumption, C1 ∈ S, and we are done.

(b) rec′1 reads startingPoint=true. Since rec2 reads startingPoint=false during C′.CoS(P2)

and writes its proposal to Sarr (line 19) before reading startingPoint 21, and
since startingPoint never changes from true false and rec′1 finds it true, rec′1 col-
lects P2 in Sarr in line 24. Therefore, C1 ⊇ P2 ⊇ C2.

Claim 15. The set PotentialSuccessors(Cinit) ∪ {Cinit} is monotonic.

Proof. By Corollary 16 Claim 11, all reconfig operations that calls Cinit.CoS do so with first-
Time=true. Therefore, OldProps(Cinit) = {} and all configurations in PotentialSuccessors(Cinit)

are returned from Cinit.CoS. Thus, by CoS property CoS1, all configurations in PotentialSuccessors(Cinit)

contain Cinit, and by Claim 8, they are related by containment. The claim follows.

Lemma 48. The set of introduced configurations is monotonic.

Proof. Let x = |Cinit|. We will show by induction on i ≥ x that the following are satisfied:

(a) The set introducedSeti is monotonic.

(b) For every configuration C ∈ nominatedSeti, {C} ∪ PotentialSuccessors(C) is mono-
tonic.

The lemma will follow from (a). Base: we prove for i = x. By Corollary 16, there is no
introduced configuration other than Cinit whose size is smaller than or equal to x. Hence,
(a) is satisfied; (b) follows from Claim 15.

Step: assume by induction that (a) and (b) hold for i ≥ x, we prove for i + 1. By Claim
9, every nominated configuration is also introduced, so if there is no introduced config-
uration whose size is i + 1, then we are done. Otherwise, let C be an introduced configu-
ration s.t. |C| = i + 1, and let Cp = Pred(C). Note that by definition, C ∈ successors(Cp).
Since |C| = i + 1 > x = |Cinit|, |Cp| < |C| = i + 1. Therefore, by the induction assump-
tion (b), {Cp}∪PotentialSuccessors(Cp) is monotonic, and by the induction assumption
(a), Cp is the only introduced configuration of size |Cp|.

(a): By the first induction assumption introducedSet|Cp | is monotonic, thus it is enough
to show that C contains or equals every configuration C′ ∈ introducedSet s.t. |Cp| ≤
|C′| ≤ i + 1. Note that, by definition, C′ ∈ successors(Cp). By Corollary 18 (1), successors(Cp)

110 Chapter 5. Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

is monotonic. Therefore, C and C′ are related by containment, and since |C| = i + 1 ≥
|C′|, C contains or equals C′, as requested.

(b): By (a), C is the only introduced configuration whose size is i + 1. If C is not nom-
inated, then we are done. Otherwise, let S = PotentialSuccessors(Cp) by Corollary 18 (2),
OldProps(C) ⊆ S and by 18 (3), for every C′′ ∈ successors|C|−1(Cp), PotentialSuccessors(C′′) ⊆
S. Therefore, by Claim 14, {C}∪PotentialSuccessors(C) is monotonic, as needed.

We are now ready to conclude the complexity of the dynamic objects that uses our algo-
rithm, which is captured by the following lemma:

Lemma 49. Consider an execution of a dynamic objects that uses our algorithm, and consider a
loop in which Check(C) is repeatedly called, s.t. C is the configuration returned from the previous
Check, until some Check(C′) returns 〈C′, ∗〉. Let n be the number of Propose(P) operations in the
execution. Then:

1. All the Checks in the loop (together) return O(n) configurations in the speculations sets.

2. The complexity of all Checks in the loop combined is O(n).

Proof. Since every Check in the loop starts where the previous returns, the Checks in the
loop introduce different configurations. Thus by Lemma 48, we immediately conclude
that the number of configurations returned in speculated sets of all Checks in the loop
together is bounded by n. Moreover, by CoS1, no configuration is returned more than
once in the speculation sets. It is left to show that the complexity of all Checks combined
is O(n). First observe (again by Lemma 48) that all Checks combined invokes at most n
CoSs. Second, each CoS writes at most three times to shared registers (lines 10, 18, and
19), reads once (in line 21), and performs each of the collects in lines 11, 15, and 24 at
most once.

Now observe that CoS performs the collect in line 27 only if the previous collect (in
line 24 or 27) contained a proposal P1 6⊆ P, which means that none of the CoSs collected
P1 before. Since there are at most n proposals, all CoSs together perform the collect in
line 27 at most n times. All in all, we get that the complexity of all Checks in the loop is
O(n).

5.6 Conclusions

In this chapter we defined a dynamic model with a clean failure condition that allows an
administrator to reconfigure an object and switch a removed server off once the reconfig-
uration operation completes. In this model, we have captured a succinct abstraction for
consensus-less reconfiguration, which dynamic objects like atomic read/write register

5.6. Conclusions 111

and max-register may use. We demonstrated the power of our abstraction by provid-
ing an optimal implementation of a dynamic register, which has better complexity than
previous solutions in the same model.

Chapter 6

Conclusion

In this thesis we studied asynchronous distributed reliable storage and focused on two
fundamental aspects that are essential in every distributed storage system: space cost
and dynamic reconfiguration.

Storage space cost. The most common approach to achieve reliable distributed storage
is via replication, i.e., storing multiple copies of each data block (on different servers). In
this thesis we first compared the fundamental space cost of such algorithms as a func-
tion of the basic primitives they use (e.g., read/write registers versus max-registers). We
introduced a new hierarchy, which classifies primitive types by the number of base ob-
jects of a given primitive required to emulate an f -tolerant register, as a function of the
number of writers k and the number of available servers n.

Then, we considered algorithms that try to mitigate the significant cost of replication,
which results from the immense size of the data, by using a symmetric black-box coding
scheme. Given three problem parameters: f , c, and D, where f is the number of storage
node failures tolerated, c is the concurrency allowed by the algorithm, and D is the data
size, we proved that the storage cost is Θ(min(f , c) · D). Asymptotically, this means
either a storage cost as high as that of replication, or as high as keeping as many versions
of the data as the concurrency level. Then, equipped with the insights from the lower
bound, we also presented an algorithm that combines replication and erasure codes,
whose storage cost is O(min(f , c) · D).

Dynamic reconfiguration. In this thesis we contributed to the understanding of recon-
figuration of distributed storage by showing both negative (impossibility) and positive
(algorithms) results. We first proved that in an asynchronous API-based reconfigurable
model allowing at least one failure, without restricting the number of reconfigurations,
there is no way to emulate dynamic safe wait-free storage. We further showed how to
circumvent this result using a dynamic eventually perfect failure detector the we de-
fined: we presented an algorithm that uses such a failure detector in order to emulate a

113

wait-free dynamic atomic MWMR register.
Then, we defined a dynamic API-based model with a clean failure condition that al-

lows an administrator to reconfigure an object and switch a removed server off once the
reconfiguration operation completes. In this model, we have captured a succinct abstrac-
tion for consensus-less reconfiguration, which dynamic objects like atomic read/write
register and max-register may use. We demonstrated the power of our abstraction by
providing an optimal implementation of a dynamic register, which has better complex-
ity than previous solutions in the same model.

Bibliography

[1] I. Abraham, G. Chockler, I. Keidar, and D. Malkhi. Byzantine disk paxos: optimal
resilience with byzantine shared memory. Distributed Computing, 18(5), 2006.

[2] Y. Afek, H. Attiya, A. Fouren, G. Stupp, and D. Touitou. Long-lived renaming made
adaptive. PODC ’99, pages 91–103, New York, NY, USA, 1999. ACM.

[3] Y. Afek, D. S. Greenberg, M. Merritt, and G. Taubenfeld. Computing with faulty
shared objects. J. ACM, 42(6):1231–1274, Nov. 1995.

[4] Y. Afek, M. Merritt, and G. Taubenfeld. Benign failure models for shared memory.
In Distributed Algorithms. Springer, 1993.

[5] M. K. Aguilera, B. Englert, and E. Gafni. On using network attached disks as shared
memory. In Proceedings of the Twenty-second Annual Symposium on Principles of Dis-
tributed Computing, PODC ’03, pages 315–324, New York, NY, USA, 2003. ACM.

[6] M. K. Aguilera, R. Janakiraman, and L. Xu. Using erasure codes efficiently for stor-
age in a distributed system. In Dependable Systems and Networks, 2005. DSN 2005.
Proceedings. International Conference on, pages 336–345. IEEE, 2005.

[7] M. K. Aguilera, I. Keidar, D. Malkhi, J.-P. Martin, and A. Shraer. Reconfiguring
replicated atomic storage: A tutorial. Bulletin of the EATCS, 102:84–108, 2010.

[8] M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer. Dynamic atomic storage without
consensus. J. ACM, 58(2):7, 2011.

[9] J. Aspnes, H. Attiya, and K. Censor. Max registers, counters, and monotone circuits.
In Proceedings of the 28th ACM symposium on Principles of distributed computing, pages
36–45. ACM, 2009.

[10] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing
systems. J. ACM, 42(1):124–142, Jan. 1995.

[11] H. Attiya, H. C. Chung, F. Ellen, S. Kumar, and J. L. Welch. Simulating a shared
register in an asynchronous system that never stops changing. In International Sym-
posium on Distributed Computing, pages 75–91. Springer, 2015.

Bibliography 115

[12] H. Attiya and F. Ellen. Impossibility Results for Distributed Computing, volume 5,
chapter 6, pages 1–162. 2014.

[13] H. Attiya and A. Fouren. Algorithms adapting to point contention. J. ACM,
50(4):444–468, July 2003.

[14] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and Ad-
vanced Topics, chapter 10.4, page 234. Wiley, 2nd edition, 2004.

[15] R. Baldoni, S. Bonomi, A.-M. Kermarrec, and M. Raynal. Implementing a register
in a dynamic distributed system. In Distributed Computing Systems, 2009. ICDCS’09.
29th IEEE International Conference on, pages 639–647. IEEE, 2009.

[16] R. Baldoni, S. Bonomi, and M. Raynal. Regular register: an implementation in a
churn prone environment. In International Colloquium on Structural Information and
Communication Complexity, pages 15–29. Springer, 2009.

[17] R. Baldoni, S. Bonomi, and M. Raynal. Implementing a regular register in an even-
tually synchronous distributed system prone to continuous churn. Parallel and Dis-
tributed Systems, IEEE Transactions on, 2012.

[18] C. Basescu, C. Cachin, I. Eyal, R. Haas, A. Sorniotti, M. Vukolic, and I. Zachevsky.
Robust data sharing with key-value stores. In DSN, pages 1–12, 2012.

[19] K. Birman, D. Malkhi, and R. Van Renesse. Virtually synchronous methodology for
dynamic service replication. 2010.

[20] V. Bortnikov, G. Chockler, D. Perelman, A. Roytman, S. Shachor, and I. Shnayder-
man. Frappé: Fast replication platform for elastic services. LADIS, 2011.

[21] C. Cachin and S. Tessaro. Optimal resilience for erasure-coded byzantine dis-
tributed storage. In Dependable Systems and Networks, 2006. DSN 2006. International
Conference on, pages 115–124. IEEE, 2006.

[22] V. Cadambe, Z. Wang, and N. Lynch. Information-theoretic lower bounds on the
storage cost of shared memory emulation. In PODC, 2016.

[23] V. R. Cadambe, N. Lynch, M. Medard, and P. Musial. A coded shared atomic mem-
ory algorithm for message passing architectures. In Network Computing and Applica-
tions (NCA), 2014 IEEE 13th International Symposium on, pages 253–260. IEEE, 2014.

[24] G. Chockler, S. Gilbert, V. Gramoli, P. M. Musial, and A. A. Shvartsman. Reconfig-
urable distributed storage for dynamic networks. Journal of Parallel and Distributed
Computing, 69(1):100–116, 2009.

[25] G. Chockler, R. Guerraoui, and I. Keidar. Amnesic distributed storage. In Distributed
Computing. Springer, 2007.

116 Chapter 6. Conclusion

[26] G. Chockler and D. Malkhi. Active disk paxos with infinitely many processes. Dis-
tributed Computing, 18(1):73–84, 2005.

[27] G. Chockler and A. Spiegelman. Space complexity of fault-tolerant register emu-
lations. In Proceedings of the ACM Symposium on Principles of Distributed Computing,
PODC ’17, pages 83–92, New York, NY, USA, 2017. ACM.

[28] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: A
comprehensive study. ACM Comput. Surv., 33(4):1–43, December 2001.

[29] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A.
Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted data serving
platform. Proc. VLDB Endow., 1(2):1277–1288, Aug. 2008.

[30] P. Dutta, R. Guerraoui, and R. R. Levy. Optimistic erasure-coded distributed stor-
age. In Proceedings of the 22Nd International Symposium on Distributed Computing,
DISC ’08, pages 182–196, Berlin, Heidelberg, 2008. Springer-Verlag.

[31] P. Dutta, R. Guerraoui, R. R. Levy, and M. Vukolic. Fast access to distributed atomic
memory. SIAM Journal on Computing, 39(8):3752–3783, 2010.

[32] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial syn-
chrony. J. ACM, 35(2):288–323, Apr. 1988.

[33] A. DynamoDB. http://aws.amazon.com/dynamodb/.

[34] F. Ellen, R. Gelashvili, N. Shavit, and L. Zhu. A complexity-based hierarchy for
multiprocessor synchronization. arXiv preprint arXiv:1607.06139, 2016.

[35] B. Englert and A. A. Shvartsman. Graceful quorum reconfiguration in a robust
emulation of shared memory. In International Conference on Distributed Computing
Systems (ICDCS), pages 454–463, 2000.

[36] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consen-
sus with one faulty process. J. ACM, 32(2):374–382, Apr. 1985.

[37] E. Gafni and D. Malkhi. Elastic configuration maintenance via a parsimonious spec-
ulating snapshot solution. In DISC. Springer, 2015.

[38] R. Gelashvili. On the optimal space complexity of consensus for anonymous pro-
cesses. In Y. Moses, editor, Distributed Computing: 29th International Symposium,
DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, pages 452–466, Berlin, Hei-
delberg, 2015. Springer Berlin Heidelberg.

[39] C. Georgiou, N. C. Nicolaou, and A. A. Shvartsman. Fault-tolerant semifast imple-
mentations of atomic read/write registers. Journal of Parallel Distributed Computing,
69(1):62–79, 2009.

http://aws.amazon.com/dynamodb/

Bibliography 117

[40] S. Gilbert, N. Lynch, and A. Shvartsman. Rambo ii: Rapidly reconfigurable atomic
memory for dynamic networks. In 2013 43rd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), pages 259–259. IEEE Computer
Society, 2003.

[41] S. Gilbert, N. A. Lynch, and A. A. Shvartsman. Rambo: a robust, reconfigurable
atomic memory service for dynamic networks. Distributed Computing, 23(4):225–
272, 2010.

[42] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. Efficient byzantine-
tolerant erasure-coded storage. In Dependable Systems and Networks, 2004 Interna-
tional Conference on, pages 135–144. IEEE, 2004.

[43] J. Hendricks, G. R. Ganger, and M. K. Reiter. Low-overhead byzantine fault-tolerant
storage. In ACM SIGOPS Operating Systems Review, volume 41. ACM, 2007.

[44] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems (TOPLAS), 13(1):124–149, 1991.

[45] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[46] M. Hilbert and P. López. The worlds technological capacity to store, communicate,
and compute information. Science, 332(6025):60–65, Apr. 2011.

[47] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: wait-free coordination
for internet-scale systems. In USENIX ATC, Berkeley, CA, USA, 2010.

[48] P. Jayanti, T. Chandra, , and S. Toueg. Fault-tolerant wait-free shared objects. Journal
of the ACM, 45(3):451–500, 1998.

[49] L. Jehl and H. Meling. The case for reconfiguration without consensus. In Proceed-
ings of the 2016 ACM symposium on Principles of distributed computing. ACM, 2016.

[50] L. Jehl, R. Vitenberg, and H. Meling. Smartmerge: A new approach to reconfigura-
tion for atomic storage. In DISC, 2015.

[51] S. Y. Ko, I. Hoque, and I. Gupta. Using tractable and realistic churn models to
analyze quiescence behavior of distributed protocols. In Reliable Distributed Systems,
2008. SRDS’08. IEEE Symposium on, pages 259–268. IEEE, 2008.

[52] L. Lamport. On interprocess communication. Distributed computing, 1(2):86–101,
1986.

[53] L. Lamport, D. Malkhi, and L. Zhou. Reconfiguring a state machine. ACM SIGACT
News, 41(1):63–73, 2010.

118 Chapter 6. Conclusion

[54] K. Lin and V. Hadzilacos. Asynchronous group membership with oracles. In Dis-
tributed Computing. Springer, 1999.

[55] N. Lynch. Distributed Algorithms, chapter 17.1.4, pages 580–582. Morgan Kaufman,
1996.

[56] N. Lynch and A. A. Shvartsman. Rambo: A reconfigurable atomic memory service
for dynamic networks. In Distributed Computing, pages 173–190. Springer, 2002.

[57] D. Malkhi and M. K. Reiter. Byzantine quorum systems. Distributed Computing,
11(4):203–213, 1998.

[58] mongoDB. http://www.mongodb.org/.

[59] A. Mostefaoui, M. Raynal, C. Travers, S. Patterson, D. Agrawal, and A. Abbadi.
From static distributed systems to dynamic systems. In Reliable Distributed Systems,
2005. SRDS 2005. 24th IEEE Symposium on, pages 109–118. IEEE, 2005.

[60] J. Rao, E. J. Shekita, and S. Tata. Using paxos to build a scalable, consistent, and
highly available datastore. PVLDB, 4(4):243–254, 2011.

[61] Riak. http://basho.com/riak.

[62] H. B. Ribeiro and E. Anceaume. Datacube: A p2p persistent data storage architec-
ture based on hybrid redundancy schema. In Parallel, Distributed and Network-Based
Processing (PDP), 2010 18th Euromicro International Conference on. IEEE, 2010.

[63] A. S. S. S. A. S3). http://aws.amazon.com/s3/.

[64] C. Shao, J. L. Welch, E. Pierce, and H. Lee. Multiwriter consistency conditions for
shared memory registers. SIAM Journal on Computing, 40(1), 2011.

[65] C. Shao, J. L. Welch, E. Pierce, and H. Lee. Multiwriter consistency conditions for
shared memory registers. SIAM Journal on Computing, 40(1):28–62, 2011.

[66] A. Shraer, J.-P. Martin, D. Malkhi, and I. Keidar. Data-centric reconfiguration with
network-attached disks. LADIS ’10.

[67] A. SimpleDB. http://aws.amazon.com/simpledb/.

[68] A. Spiegelman, Y. Cassuto, G. Chockler, and I. Keidar. Space bounds for reliable
storage: Fundamental limits of coding. arXiv preprint arXiv:1507.05169, 2015.

[69] A. Spiegelman, Y. Cassuto, G. Chockler, and I. Keidar. Space bounds for reliable
storage: Fundamental limits of coding. In Proceedings of the 2016 ACM Symposium
on Principles of Distributed Computing, PODC ’16, pages 249–258, New York, NY,
USA, 2016. ACM.

http://www.mongodb.org/
http://basho.com/riak
http://aws.amazon.com/s3/
http://aws.amazon.com/simpledb/

Bibliography 119

[70] A. Spiegelman and I. Keidar. Dynamic atomic snapshots. In Proceedings of the 2016
ACM symposium on Principles of distributed computing. ACM, 2016.

[71] A. Spiegelman and I. Keidar. On liveness of dynamic storage. In Proceedings of
SIROCCO 2017, 2017.

[72] A. Spiegelman, I. Keidar, and D. Malkhi. Dynamic reconfiguration: A tutorial. In
OPODIS, 2015.

[73] A. Spiegelman, I. Keidar, and D. Malkhi. Dynamic Reconfiguration: Abstraction
and Optimal Asynchronous Solution. In A. W. Richa, editor, 31st International Sym-
posium on Distributed Computing (DISC 2017), volume 91 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 40:1–40:15, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[74] A. Spiegelman, I. Keidar, and D. Malkhi. Dynamic reconfiguration: Abstraction and
optimal asynchronous solution. In DISC, 2017.

[75] M. A. Storage. http://www.windowsazure.com/en-us/manage/services/

storage.

[76] V. Turner and J. F. Gantz. The digital universe of opportunities: Rich data and the
increasing value of the internet of things. IDC White Paper, Apr. 2014.

[77] Z. Wang and V. Cadambe. Multi-version coding in distributed storage. In Informa-
tion Theory (ISIT), 2014 IEEE International Symposium on, pages 871–875. IEEE, 2014.

[78] L. Zhu. A tight space bound for consensus. In Proceedings of the Forty-eighth Annual
ACM Symposium on Theory of Computing, STOC ’16, pages 345–350, New York, NY,
USA, 2016. ACM.

http://www.windowsazure.com/en-us/manage/services/storage
http://www.windowsazure.com/en-us/manage/services/storage

120 Chapter 6. Conclusion

.1 Additional results of Chapter 2

We prove here an extended version of Lemma 2 and use it to show additional lower
bounds (see Theorems 12, 13, 14, and 15).

Lemma 2 (extended). For all k > 0, f > 0, let A be an f -tolerant algorithm that emulates
a WS-Safe obstruction-free k-register using a collection S of servers storing a collection B of
wait-free MWMR atomic registers. Then, for every F ⊆ S such that |F| = f + 1, there exist k
failure-free runs ri, 0 ≤ i ≤ k, of A such that (1) r0 is a run consisting of an initial configuration
and t0 = 0 steps, and (2) for all i ∈ [k], ri is a write-only sequential extension of ri−1 ending at
time ti > 0 that consists of i complete high-level writes of i distinct values v1, . . . , vi by i distinct
clients c1, . . . , ci such that:

a) |Cov(ti)| ≥ i f

b) δ(Cov(ti)) ∩ F = ∅

c) |δ(Tr(ti) \ Cov(ti−1))| > 2 f

d) |δ(Cov(ti) \ Cov(ti−1))| ≥ f

e) Cov(ti) ⊇ Cov(ti−1)

Proof of c) – e). : Fix arbitrary k > 0, f > 0, and a set F of servers such that |F| = f + 1. We
proceed by induction on i, 0 ≤ i ≤ k. Base: Trivially holds for the run r0 of A consisting
of t0 = 0 steps. Step: Assume that ri−1 exists for all i ∈ [k− 1]. We use the extension r′

constructed in the proof of Lemma 2 in Section 2.3 to show the implications c) – e) of the
extended version are true:

c) |δ(Tr(t′) \ Cov(ti−1))| > 2 f : Follows immediately from Lemma 5 and Defini-
tion 2.1.

d) |δ(Cov(t′) \ Cov(ti−1))| ≥ f : Since by Corollary 2, |Qi(tr)| = f , and by
Lemma 3.2, Qi(tr) ⊆ Qi(t′), we get |Qi(t′)| = f . Hence, by Definition 2.4, |δ(Covi(t′))| ≥
|Qi(t′)| ≥ f , and by Definition 2.3, |δ(Cov(t′) \ Cov(ti−1))| = |δ(Covi(t′))| ≥ f .

e) Cov(ti) ⊇ Cov(ti−1): Follows immediately from Definition 4.

Theorem 12. For all k > 0, and f > 0, let A be an f -tolerant algorithm emulating a WS-Safe
obstruction-free k-register using a collection S of servers. Then, |S| ≥ 2 f + 1.

Proof. By Lemma 2.c), there exists a run r1 of A consisting of t1 steps such that |δ(Tr(t1) \
Cov(0))| > 2 f . Therefore, |S| ≥ |δ(Tr(t1))| ≥ 2 f + 1.

Number of registers per server. Theorem 2 implies that in case |S| = 2 f + 1, at least
(2 f + 1)k registers are required. The following theorem further refines this result by
showing that in this case, each server must store at least k registers:

.1. Additional results of Chapter 2 121

Theorem 13. Let |S| = 2 f + 1. For all k > 0, f > 0, every f -tolerant algorithm emulating an
obstruction-free WS-Safe k-register stores at least k registers on each server in S .

Proof. Pick an arbitrary f > 0, k > 0, and suppose toward a contradiction that there is an
f -tolerant algorithm A emulating an obstruction-free WS-Safe k-register that stores less
than k registers on some server s ∈ S (i.e., |δ−1({s})| < k).

Pick an arbitrary set F ⊂ S of size |F| = f + 1 such that s /∈ F. By Lemma 2, there exist
a sequential write-only run rk consisting of k high-level write invocations W1, . . . , Wk by
k distinct clients, and k distinct times t1 < · · · < tk such that: |δ(Cov(t1))| ≥ f and
δ(Cov(t1)) ∩ F = ∅; and for all i ∈ [k] \ {1}, |δ(Cov(ti) \ Cov(ti−1))| ≥ f , Cov(ti) ⊇
Cov(ti−1), and δ(Cov(ti)) ∩ F = ∅. By induction on i ∈ [k], it is easy to see that all
sets in the collection consisting of Cov(t1) and Cov(ti) \ Cov(ti−1) where i ∈ [k] \ {1}
are pairwise disjoint. Thus, at least f new registers become covered at each ti, i ∈ [k].
Moreover, since no registers on the servers in F are covered at ti, all registers that become
covered at ti must be located on the servers in S \ F. Therefore, since |S \ F| = f and
s ∈ S \ F, we conclude that at least k distinct registers on s must be covered at time tk,
that is, |δ−1({s}) ∩ Cov(tk)| ≥ k. Therefore, |δ−1({s})| ≥ k. A contradiction.

Servers with bounded storage. The following result provides a lower bound on the
number of servers for the case the storage available on each server is bounded (as it is
often the case in practice) by a known constant:

Theorem 14. Let m > 0 be an upper bound on the number of registers mapped to each server in
S (i.e., ∀s ∈ S , |δ−1({s})| ≤ m). For all f > 0 and k > 0, every f -tolerant algorithm emulating
an obstruction-free WS-Safe k-register from a collection S of servers such that |S| > 2 f + 1 uses
at least dk f /me+ f + 1 servers (i.e., |S| ≥ dk f /me+ f + 1).

Proof. Fix F ⊂ S such that |F| = f + 1. By Lemma 2(a), there exists an extension rk

of rk−1 ending at time tk such that |δ(Tr(tk) \ Cov(tk−1))| > 2 f . Since |F| = f + 1,
|δ(Tr(tk) \ Cov(tk−1)) ∩ F| ≤ f + 1. Hence, we receive

|δ(Tr(tk) \ Cov(tk−1)) \ F| =
|δ(Tr(tk) \ Cov(tk−1))| − |δ(Tr(tk) \ Cov(tk−1)) ∩ F| ≥ 2 f + 1− f − 1 = f

Thus,
|(Tr(tk) \ Cov(tk−1)) \ δ−1(F)| ≥ |δ(Tr(tk) \ Cov(tk−1)) \ F| ≥ f (1)

On the other hand,

|(Tr(tk) \ Cov(tk−1)) \ δ−1(F)| = |(Tr(tk) \ Cov(tk−1)) ∩ δ−1(S \ F)| =
|(Tr(tk) ∩ δ−1(S \ F)) \ Cov(tk−1)| ≤ |δ−1(S \ F) \ Cov(tk−1)| (2)

122 Chapter 6. Conclusion

Since by Lemma 2(b) and (d), |Cov(tk−1| ≥ (k− 1) f and δ−1(S \ F) ⊇ Cov(tk−1), we get

|δ−1(S \ F) \ Cov(tk−1)| = |δ−1(S \ F)| − |Cov(tk−1)| ≤ (|S \ F|)m− (k− 1) f (3)

Combining (3) with (1) and (2), we get

(|S \ F|)m− (k− 1) f ≥ |(Tr(tk) \ Cov(tk−1)) \ δ−1(F)| ≥ f

Since S ⊃ F and |F| = f + 1, we obtain (|S \ F|)m− (k− 1) f = |S|m− (f + 1)m− (k−
1) f ≥ f . Therefore, |S|m ≥ f m + m + k f , which implies that |S| ≥ k f /m + f + 1. Since
|S| is an integer, we conclude that |S| ≥ dk f /me+ f + 1.

Adaptivity to Contention Given a run fragment r of an emulation algorithm, the point
contention [2, 13] of r, PntCont(r), is the maximum number of clients that have an incom-
plete high-level invocation after some finite prefix of r. Similarly, we use PntCont(op) to
denote PntCont(rop), where rop is the run fragment including all events between the op’s
invocation and response.

The resource complexity of A is adaptive to point contention if there exists a function M
such that after all finite runs r of A, the resource consumption of A in r is bounded by
M(PntCont(r)). Likewise, the time complexity of A is adaptive to point contention if there
exists a function T such that for each client ci, and operation op, the time to complete the
invocation of op by ci is bounded by T(PntCont(op)).

We show that no WS-Safe obstruction-free MWSR register can have a fault-tolerant em-
ulation adaptive to point contention:

Theorem 15. For any f > 0, there is no f -tolerant algorithm that emulates an WS-Safe
obstruction-free k-register with resource complexity adaptive to point contention.

Proof. By Lemma 2, there exists a run r of A consisting of k high-level writes by k dis-
tinct clients such that the resource complexity grows by f for each consecutive write that
completes in r whereas the point contention remains equal 1 for the entire r. We con-
clude that no function mapping point contention to resource consumption can exist, and
therefore, A’s resource complexity is not adaptive to point contention.

Hebrew Section

 תקציר

מה שכמובן יוצר צורך ,בדרישות לאחסון מידע אקספוננציאלית עלייה רואים אנו האחרונות בשנים

 נתונים מרכזי מה שהוליד ,יםמיזוג המדגיש היום של הכלכלה, בנוסף. גדולים נתונים לאחסון בפתרונות
 מגמות שתי ידי על מסומן זה. מפתח תפקיד משחק מבוזר אחסון, זה בעידן .וענני מחשוב מסיבית
 מרכזי בתוך בין אם מבוזרים אחסון פתרונות לקראתהולך יותר ויותר האחסון שוק, ראשית: ברורות
מהרבה יחידות אחסון ותמורכבבדרך כלל כאלה מערכות; מרובים נתונים מרכזי פני על ובין אם נתונים

זולות בעלי אמינות נמוכה שמשיגות אמינות על ידי שמירה של עותקים של מידע במספר יחידות אחסון
 דרך מרחוקוניגשים אליהם בעננים נתונים שמאחסנים משתמשים ויותר יותר רואים אנושונות. שנית,

ושיוני כולל אחסון שטח: ין ומבוזראחסון אמ של בסיסיים היבטים שני לומדים אנו זו בתזה .האינטרנט
 של יחידות האחסון הבסיסיות. דינמי

 אחסוןל אלגוריתם ,לכשול הרשת ורכיבי זולות אחסון של יחידות בנטייה הטבעית בהתחשב שטח אחסון.
 בחלק יש כשל כאשר נתונים שחזור לאפשר מנת על עם יתירות מידע לאחסן חייב מבוזראמין ו

 עותקים אחסון, כלומר, המידע שכפול באמצעות היא זהאת להשיג ביותר הנפוצה הגישה. מערכתמה
 מראה של בר נוי, דולב, ועטייה ידועהה התוצאה המידע ביחדות אחסון שונות. כל של מרובים

להיות ממוש באמצעות יכול נפילות)כשלים של יחידות אחסון(fשאלגוריתם אמין לאחסון שמתמודד עם

-קריאהיחידות אחסון, כאשר כל יחידת אחסון שומרת אובייקט יחיד שתומך בפעולת 2f+1אוסף של

במחקר הזה . תוצאה זו ידועה כאופטימלית במספר יחדות האחסון והאובייקטים.(RMWכתיבה)-שינוי

מכלילים את החסם הזה וחוקרים את שטח האחסון הדרוש למימוש אלגוריתמים לאחסון קודם כל אנחנו
ידי על הנתמכת כתיבה(-שינוי-כתיבה או קריאה\הפעולה)לדוגמה קריאה נקציה של סוגמבוזר כפו

 כתיבה-שינוי-קריאה האובייקט בסוג מתמקדים אנו, מכן לאחר .הבסיסיות ביחידות האחסון האובייקטים
 הנובעת מידע שכפול של המשמעות עלותה את למזער לעזור יכולים לתיקון שגיאות םקודי האם וחוקרים

 כי מגלה קיימים פתרונות על מקרוב מבט אבל, זאת לעשות ניסו קודמות עבודותמספר מגודלו העצום.
 מידע שבהם תרחישים יוצר בקידוד השימוש, ספציפי באופן. אחרים במקומות אחסון עלויות יוצרים הם

של שטח האחסון כשאר המקביליות מהלגדילה לא חוסולדרוס מידע ישן, דבר המוביל יכול לא חדש
 כפי) מידע בלוק לכל נמוכה יתירות בין שכלול התמורות על אור שופכים במחקר זה אנובמערכת גדלה.

 (.שכפול ידי על שמושג כמו) והיכולות לדרוס מידע ישן במידע חדש, מקביליות (,קודים ידי על שמושג

דינמי של שינוי לש הבעיה הוא מבוזר אחסון של נוסף אתגר שיוני דינמי של יחידות האחסון הבסיסיות.
 וזמינות אמינות המספקת אחסון מערכת כל. בהן משתמש האלגוריתם יחידות האחסון הבסיסיות

עליהן היא בנויה על יחידות האחסון הבסיסיותלתקופות זמן ארוכות חייבת להיות מסוגלת לשנות את סט
שיוני דינמי של בנוסף, כשלו ולהחליפן ביחידות חדשות ומעודכנות. ישנות וכאלו שמנת להוציא יחידות

 פני אחסון על מבוזר אחסון של ביותר הגדול היתרון את לממש על מנת חיוני יחידות האחסון הבסיסיות
 ענני של הכלכלי למודל העיקרית המוטיבציה -יכה בגמישות וצמיחה שהוא לאפשר תמ מסורתי מונוליטי

שיוני דינמי של יחידות האחסון במערכות אחסון מבוזרות שינוי של להבנה תורמים אנו זו בתזה מחשוב.ה
גוריתמים הוכחת תוצאות אי היתכנות, הבנתם התבונות והמגבלות הפונדמנטליות, והצגת אל ידי על

נה אינו שינוי דינמי המקיים את תכונות האי המתשבפרט, אנחנו מראים שמתבססים על תובנות אלו.
 השינויים לא חסום, ואנחנו נותנים אלגוריתם אסינכרוני אופטימלי במספר הצעדיםמספר כאשראפשרי

 במקרה החסום. השינוייםכתלות במספר

 .מכון טכנולוגי לישראל –המחקר נעשה בהנחיית פרופ' עדית קידר בפקולטה להנדסת חשמל על שם ויטרבי בטכניון

 .על התמיכה הכספית הנדיבה בהשתלמותי לקרן עזריאלימכון טכנולוגי לישראל ו –טכניון תודתי נתונה ל

 אלגוריתמים וחסמים במערכות אחסון מבוזרות

 חיבור על מחקר

 לשם מילוי חלקי של הדרישות לקבלת התואר

 דוקטור לפילוסופיה

 אלכסנדר שפיגלמן

 מכון טכנולוגי לישראל –הוגש לסנט הטכניון

 2018יוני חיפה חתשע"סיון ה

	Abstract
	List of Acronyms
	List of Symbols
	Introduction
	Storage cost
	Dynamic reconfiguration

	The Power of Primitives for Fault-Tolerant Register Emulations
	Model
	Shared Objects
	Registers
	Consistency Conditions
	System Model
	Properties of the Emulation Algorithms

	A Max-Register Emulation With One CAS
	Correctness

	Resource Complexity of Write-Sequential k-register Emulation
	Lower bound overview
	Lower Bounds
	Upper Bound

	Discussion and Future Directions

	Space Bounds for Reliable Storage: Fundamental Limits of Coding
	Model
	Preliminaries
	Storage algorithm model and assumptions

	Related work
	Storage Lower Bound
	Adaptive Regular Register
	Algorithm
	Correctness Proofs

	A (Simple) Safe and Wait-free Algorithm
	Algorithm
	Correctness proof

	Discussion

	On Liveness of Dynamic Storage
	Model
	Preliminaries
	Dynamic storage

	Impossibility of Wait-Free Dynamic Safe Storage
	Oracle-Based Dynamic Atomic Storage
	Dynamic failure detector
	Dynamic storage algorithm
	Correctness proof

	Conclusion

	Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution
	Related Work
	Dynamic Model
	Reconfiguration Abstraction
	Building Dynamic Objects Using Reconfiguration
	Dynamic atomic read/write register
	Dynamic atomic max-register
	Read/write register correctness proof

	The Reconfiguration Abstraction Implementation
	CoS building block
	Simple Reconfiguration
	Optimal Reconfiguration
	Reconfiguration Correctness Proof
	Reconfiguration Complexity Proof

	Conclusions

	Conclusion
	Bibliography
	Additional results of Chapter 2

