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Abstract

We present Loss-Tolerant Selfishness Monitor (LTSM), a generic service for detecting
selfish behavior in various Peer-to-Peer (P2P) applications, such as Mobile Ad-hoc Net-
work (MANET) routing and data streaming (multicast). Resources in P2P systems are
provided by the participating peer nodes themselves; each node has to contribute memory,
CPU power, bandwidth, and energy. Since most nodes in a MANET are battery-powered,
energy is a scarce resource in such an environment. In commercial P2P applications,
nodes may exhibit selfish behavior by tampering with the P2P protocol in order to lower
their cost. Consequently, it is important for such protocols to work well even when users
are equipped with a selfish version of the protocol.

Unlike most previous selfishness-resistant protocols, LTSM can be used in networks
subject to message loss, where selfish behavior detection is particularly challenging. For
example, wireless networks, such as MANETS, inherently suffer from high packet loss
rates. Furthermore, multicast systems for streaming video or audio typically use unreli-
able transport like UDP, since it is acceptable for some of the data to be lost.

One of our main contributions is mathematically analyzing the impact of various sys-
tem parameters on the incentives for cooperation, and showing how to choose these pa-
rameters so as to ensure that full cooperation is a Nash Equilibrium, at a minimal cost.
We illustrate the applicability of LTSM in two exemplar contexts: multicast and MANET

routing.
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Chapter 1
Introduction

Peer-to-Peer (P2P) protocols are used in numerous different settings, e.g., P2P multicast
systems, file sharing networks, and mobile-ad-hoc networks (MANETS). The underlying
networks used by many such P2P systems are lossy. For example, wireless networks,
such as MANETSs, inherently suffer from high packet loss rates. Furthermore, multicast
systems for streaming video or audio typically use unreliable transport like UDP, since it

is acceptable for some of the data to be lost.

Resources in P2P systems are provided by the participating peer nodes themselves;
each node has to contribute memory, CPU power, bandwidth, and energy. For example,
the high bandwidth demand by P2P nodes is driving Internet Service Providers (ISPs)
to implement a tiered pricing scheme, where high tier pricing schemes allow unlimited
transfers, and lower-tier pricing schemes charge for excess usage [35]. Energy is a scarce
resource for battery-powered nodes, such as laptops and PDAs. In commercial P2P appli-
cations, nodes may exhibit selfish behavior by tampering with the P2P protocol in order
to lower their cost [4, 11, 26]. Consequently, it is important for such protocols to work

well even when users are equipped with a selfish version of the protocol.

In recent years, much research has been dedicated to tackling selfish behavior in vari-
ous P2P applications (e.g., multicast, file sharing, and MANET routing, — see Chapter 2).
Many challenging issues, however, remain open. Previous work, for instance, has not
exposed and leveraged the similarity among different P2P protocols. Rather, each previ-

ous work has focused on one specific protocol, in one specific setting. Another challenge



largely overlooked in previous work is lossy networks (with the exception of [40, 41] —
see Chapter 2). Selfish behavior detection becomes much more challenging when one
has to cope with unpredictable packet loss. Conventional detectors, such as those used in
[3, 5, 26, 28], would wrongfully accuse cooperating nodes for not sending lost packets.
Finally, previous work has not mathematically quantified the relationship that needs to
hold among system parameters such as a cooperating node’s cost, the penalty for lack of
cooperation, and the decision when to punish a node, in order to make full cooperation a
Nash Equilibrium at a minimal cost.

In this thesis, we address the three open issues above. We leverage the similarity
among many different P2P protocols in order to define a common monitoring abstraction
suitable for detecting selfish behavior in various such protocols (Chapter 3). Our abstrac-
tion’s interface enables each peer node to monitor other nodes, and to determine when to
punish a node for alleged misbehavior. We then present a loss-tolerant selfishness monitor
(LTSM) that implements this interface (Chapter 4). When using LTSM, a node blamed
for lack of cooperation must pay a fine to continue participating in the protocol.

One of the main contributions of this thesis is mathematically quantifying the rela-
tions between the above fine, the cost of performing a basic operation (such as sending
a message), the packet loss rate, the decision as to when to punish a node, and the costs
incurred by cooperative and non-cooperative nodes (Chapter 4.1). We show how to tune
LTSM’s parameters so as to make full cooperation and fully following the protocol a Nash
Equilibrium, while minimizing the cost for cooperating nodes.

To illustrate the applicability of our abstraction, we show (Chapter 5) how it can be
seamlessly employed in existing multicast schemes [9, 21, 30], and in existing schemes
for MANET routing [3, 5, 18, 26, 28]. By using LTSM with the appropriate parameter

settings in these applications, one can automatically make them robust to packet loss.



Chapter 2

Related Work

Selfish behavior has been widely studied in various P2P systems, e.g., content distribu-
tion protocols [11, 16], tree-based multicast [30], gossip-based multicast [21, 24], and
MANET routing [1, 2, 3,5, 6,7, 8, 12, 18, 26, 28, 29, 34, 37, 39, 40, 41, 42].

2.1 Content Distribution and Multicast

The BitTorrent [11] and Avalanche [16] P2P content distribution protocols rely on a Tit-
For-Tat (TFT) strategy to encourage participation and discourage selfish behavior. In this
strategy, a user prefers to upload data blocks to users from which it currently downloads
some other blocks.

Ngan et al. [30] propose a tree-based multicast protocol, based on SplitStream [9],
which detects selfish nodes, and periodically reconstructs trees to prune misbehaving
nodes. In their scheme, each node maintains a debt counter for every other peer it en-
counters. This counter is equal to the number of packets forwarded to the peer minus the
number of packets received from the peer. A rational node does not allow this debt to
grow beyond a predefined threshold. The debt counters are expected to remain balanced,
on average, by periodically reconstructing the multicast tree, such that each new tree is
sufficiently different from the previous tree. A trade-off exists between the overhead of
tree reconstruction, and the time it takes to detect a non-cooperative node. The authors

also revisit SplitStream’s tree construction phase, in which a node may selfishly refuse



to accept a child in the pretense of serving other children. They suggest that a node that

frequently refuses to accept a child is likely to be non-cooperative.

Habib and Chuang [17] propose an incentive-based media streaming protocol. In
their protocol, the quality of service each node enjoys depends on its level of cooperation.
Namely, peers are ranked according to their cooperation. Each peer may receive service
only from nodes whose ranks are lower than its own. Thus, the peer selection process

takes relative contributions into account.

The authors of the EquiCast [21] gossip-based multicast protocol employ game theory
to formally prove cooperation when all participating nodes are selfish and rational. In gos-
sip protocols, nodes exchange data with randomly selected peers. Similarly to [30], each
node maintains a balance counter for each of its neighbors in the mesh overlay. Unlike in
[30], however, the counter inherently remains balanced, in average, by using gossip over a
mesh-based overlay, instead of a multicast tree. A rational node disconnects its link with
a node if that node’s balance is lower than a predefined negative threshold. Special fine
packets, which do not affect the balance, are used to punish nodes with negative balances
which are higher than the above threshold. Failing to send such fine packets constitutes
eviction. The multicast source is used to help in the recovery of cooperative nodes, whose
balance becomes negative due to some unfortunate circumstances, by sending data pack-
ets to the negatively balanced peer in return for sending the same number of fine packets.

The balance is also bound by a threshold from above.

In BAR Gossip [24], the authors present and prove the first P2P gossip-based data
streaming application designed for the BAR model. The BAR model allows for Byzan-
tine, altruistic and rational (selfish) nodes. Their protocol ensures predictable throughput
even if some of the nodes are Byzantine and the rest are selfish. To overcome the ran-
domness of gossip protocols, the authors suggest using verifiable pseudo-randomness to
select peers. The authors assume an altruistic source that streams live content to a pool
of clients. The Balanced Exchange protocol is used by clients to trade updates one-for-
one. The Optimistic Push protocol, in which updates are sent without expecting anything
in return, is used as a safety net. One of the strongest points of BAR Gossip is using

cryptographic primitives as a means to prove misbehavior.

FlightPath [23] is a highly reliable gossip-based P2P streaming application based on



BAR Gossip that supports a dynamic set of peers using the BAR model. By using the
approximate e-Nash Equilibrium [10], the authors are able to prove cooperation while
allowing for a bounded imbalance between peers, load balancing, and erasure codes. In
an e-Nash Equilibrium, a rational player deviates if and only if it expects to benefit by

more than a factor of ¢.

2.2 MANET Routing

A considerable number of papers dealing with selfish behavior in MANETSs have been
recently published [1, 2, 3, 5, 6, 7, 8, 12, 18, 26, 28, 29, 34, 37, 39, 40, 41, 42]. Most
of these protocols use Dynamic Source Routing (DSR) [20] as the underlying routing
protocol. DSR is then limited to only select routes that do not include non-cooperative
nodes.

One approach to detect misbehavior is using virtual-currency (or credit) to encourage
cooperation. All protocols currently using this scheme either require tamper-proof hard-
ware [2, 6, 7, 8, 34] or a centralized credit manager [34, 39, 42]. In [7], for example, a
source stores nuglets (virtual currency) in data packets before sending them as a payment
to intermediate nodes - requiring tamper-proof hardware. SPRITE [42] uses an authorized
centralized Credit Clearance Service to manage credit, but does not require tamper-proof
hardware.

An alternate approach to dealing with selfishness is using first-hand neighbor repu-
tations based on statistics gathered by each node to decide whether a given neighbor is
cooperative or not [3, 5, 18, 26, 28]. To gather this information, a watchdog [26] is used
to monitor packets sent by neighboring nodes by means of eavesdropping in promiscuous
mode. The CONFIDANT protocol [5] adds second hand positive and negative reputation
gathered from neighboring nodes so as to learn from their experience as well. Second
hand reputation is reputation as reported by (perhaps untrusted) neighbors. Positive rep-
utation states that a given node is cooperative, whereas negative reputation states the op-
posite. CORE [28] notes the possibility of cheating using false reports in CONFIDANT,
and therefore solely uses positive reports. OCEAN [3] and later LARS [18] avoid second-

hand reputation, and use only direct first-hand reputation to avoid false accusations.



A game-theoretic approach has been used in previous work to provably enforce coop-
eration [1, 14, 21, 23, 24, 29, 37, 40, 41]. Michiardi and Molva [29] provide an evaluation
of the CORE [28] protocol using both a cooperative game approach and a non-cooperative
game approach. Altman et al [1] use the framework of non-cooperative game theory to
provide incentives for cooperation by means of a punishment scheme which is less ag-
gressive than TFT. Félegyhazi et al [14] propose a model based on game theory and graph
theory to investigate equilibrium conditions of different packet forwarding strategies when
taking the network topology into account. All works that prove cooperation consider only
pairwise interactions. That is, one node punishes another only for selfish behavior that
the latter has exhibited towards the former.

By and large, previous work has not taken message loss into account. The only ex-
ception we are familiar with is the MANET routing scheme due to Yu and Liu [40, 41].
In [40], the authors prove that a node’s best strategy is not to forward more packets than
its opponent. Unlike previous work, the authors assume a noisy environment in which
packet loss is modeled as an i.i.d. Bernoulli random process. However, in that paper, the
authors assume perfect monitoring. Imperfect monitoring can be taken advantage of by
dropping packets which may not be detected by the monitor. This assumption has been
removed in a follow-up paper [41], where imperfect-monitoring is assumed.

In [41], Yu and Liu use a strategy similar to TFT between every two peers in the
network. In this strategy, a node agrees to forward packets on behalf of another node
only if the latter has previously forwarded enough packets for the former. A balance
counter is used to count the balance of each node, i.e., the number of packets forwarded
for the peer minus the number of packets forwarded by the peer. To decide whether a
node should be considered selfish, under imperfect monitoring, [41] applies the Neyman-
Pearson hypothesis testing theory [33] to find the threshold given an acceptable false
alarm probability.

2.3 Comparison with LTSM

Each of the previously suggested solutions is built for a specific application. Furthermore,

each current MANET routing solution deals with one specific routing protocol, usually



source routing (e.g., DSR [20]), and leave other protocols, with more favorable properties
in large dynamic networks (e.g., LANMAR [31], GLS [25], and Octopus [27]), unre-
solved. In contrast, the solution we present here is general, and suitable for a wide range
of P2P applications.

There are several important differences between our work and the work by Yu and
Liu [41] described above. Whereas Yu and Liu focus on stimulating cooperation in a
MANET source routing (DSR) protocol, we provide a general abstraction for P2P sys-
tems. Furthermore, Yu and Liu focus solely on packet forwarding, while LTSM allows
for monitoring additional message types, such as route discovery, location queries and
replies, and keep-alive messages. Third, their work employs a tit-for-tat (TFT) strategy
between each pair of nodes in the network. In this strategy, a node agrees to forward pack-
ets on behalf of another node only if the latter has previously forwarded enough packets
for the former. We, on the other hand, do not assume any specific strategy. Fourth, their
analysis only shows how to set the cooperation threshold for a given desired false positive
probability. They do not analyze how the false positive probability should be chosen so
as to ensure cooperation at a minimal cost for cooperative nodes as we do. Moreover,
their punishment scheme is quite draconic as there is no way for selfish nodes to be added
back, which suggests that the false positive probability should be chosen to be very small.
In contrast, we allow nodes suspected of non-cooperation to be added back by paying a

fine.



Chapter 3
Monitoring Service Definition

We consider a P2P system in which the participating nodes are selfish and rational, i.e.,
each node wishes to participate in the protocol while choosing a strategy that minimizes
its cost. A strategy consists of deciding which packets to transmit, out of the packets
required by the P2P protocol. We say that a node is cooperative if it sends all the packets
required by the protocol, and non-cooperative otherwise. For simplicity, we assume that

the cost of sending all packets is the same.

We model the system as a non-cooperative game, in which the participating nodes are
the players. A non-cooperative game is a game in which any cooperation between the
players (nodes) is self-enforcing, i.e., contracts are not enforced by third parties. Our goal
is to provide a monitoring service for P2P applications that makes the full cooperation
of rational nodes a Nash Equilibrium, while minimizing the expected cost of cooperative
nodes, and taking message loss into account. A Nash Equilibrium is a set of strategies
such that each node’s strategy is an optimal response to the other nodes’ strategies [15].
L.e., a strategy profile is a Nash Equilibrium if no unilateral strategy deviation by any

single node is profitable for that node.

Nodes may join and leave the system dynamically. Nodes can be removed from the
system, e.g., due to misbehavior, and may be allowed back after paying an application-
defined fine, specified in terms of the packet sending cost. For example, fine=7 means that
a suspected node has to send seven penalty packets in order to be allowed back into the

system. As free admission can be abused in systems subject to Sybil attacks [13], some
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sort of payment is required in order to join such a system. One can set the cost of joining
to be the same as the fine.

We classify messages in a P2P protocol into two categories. The first category con-
sists of messages that are generated by nodes at a predetermined rate, one per a given
time unit. Examples include keep-alive messages and data packets in a Constant Bitrate
(CBR) stream. A CBR stream is possible in a lossy environment if the protocol requires
each node to compensate for lost packets by sending empty packets instead, as done, for
example, in [21, 24]. The second category includes request-based messages, whose send-
ing is triggered by the receipt of other messages at unpredictable times, e.g., forwarding
data in a routing protocol or sending a piece of content in response to a request in a content
distribution protocol.

We consider a lossy underlying network in which packet loss is independent and iden-
tically distributed (i.i.d.) with probability p. Note that whenever a node detects the loss
of its own packet, it may simply retransmit the packet to avoid being suspected of selfish
behavior. We therefore restrict our attention to the case that a node cannot detect whether
its own message has been lost.

The interface of our monitoring service is as follows: start_monitor(N) is invoked
by the application when either a new node, NV, is discovered, or when an allegedly non-
cooperative node rejoins the system after paying a fine; missed_message(N) is called when
a message the P2P application is expecting from N does not arrive in a timely fashion,
and detected_message(N) is called when such an expected message is detected on time.
An expected message is a message that should be sent according to the P2P application’s
protocol. Lastly, the is_selfish(N) predicate indicates whether node /V is allegedly non-

cooperative.
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Chapter 4

LTSM Algorithm

The LTSM service running at every node keeps an activity record for every monitored
node. A node is deemed non-cooperative if it has sent less than 7 out of W expected
messages, where W is a parameter window size, and 7 is the detection threshold. The
windows in the protocol do not overlap — all counters are reset after each window of size
W. W and 7 are measured in number of messages. The relations between W, 7, and the

fine are analyzed in Chapter 4.1.

Algorithm 4.1 LTSM(IW, 1)

start_ monitor(N) missed_message(N)
1: X[N] —0 {expected packets} 1: if is_selfish[ N ]=false then
2: Y[N] < 0 {detected packets} 2: advance window(N)
3. is_selfish[N] < false advance_window(N)
is_selfish(N) I: X[N]« X[N]+1
1: return is_selfish/N] 2: if X[N|=WW then
3:  if Y[N] < 7 then
detected_message(N)
4: is_selfish|N] < true

1: if is_selfish/ N |=false then

5. else {start a new window}
22 Y[N] < YI[N]+1

X[N] — 0
Y[N] — 0

a

3:  advance_window(N)

~

The LTSM protocol is depicted in Algorithm 4.1. The activity record of each mon-

12



itored node, N, consists of two counters and a boolean, is_selfish/N], which indicates
whether the node is allegedly non-cooperative. The first counter, X [/V], counts the num-
ber of packets expected by the P2P protocol to arrive in the current window. The sec-
ond counter, Y[N], counts the number of packets detected in the current window. The
start_monitor(N) method resets all these counters to zero and sets is_selfish[N] to false.
The is_selfish(N) method simply returns the boolean is_selfish/N]. Recall that the missed_message(N)
method is called by the P2P application when a message expected by the P2P protocol
does not arrive on time. Hence, this method advances the window by increasing the ex-
pected messages counter, X [N]. A decision is made whether node N should be deemed
non-cooperative at the end of the window, i.e., when the X [N] counter reaches W. If N
is declared cooperative (not selfish), then all counters are reset, and a new window begins.
Lastly, recall that the detected_message(N) method is called when an expected message is
detected. This method increases the detected messages counter, Y'[/V], and then advances
the window as in missed_message(N). Notice that no counters advance in case the node is

alleged non-cooperative.

Algorithm 4.2 LTSM generic usage examples

on request to serve(N) on receive fine from N
1: if is_selfish/ N ]=false then 1: start_monitor(N)
2: serve request Request-based(N)
CBR(N) on detect request do
every time unit do 1: wait timeout
1: if received packet then 2: if received response packet then
2:  detected_message(N) 3:  detected_message(N)
3: else 4: else
4:  missed_message(N) 5:  missed_message(N)

Algorithm 4.2 shows two generic usage examples for LTSM, one of a CBR stream,
and one of request-based traffic. We leave out the initializations, and simply assume that
start_monitor(N) has been called for each node N. In a CBR stream, a timer is used to
check whether a packet arrives at every (predetermined) time unit; detected_message(N)

is called if such a packet arrives, and missed_message(N) is called otherwise. Similarly,
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for request-based traffic, a timeout is used to determine whether a given request yields a
response. An allegedly non-cooperative node is denied service until it pays a fine. It is
important to note that LTSM’s parameters (W, fine, and 7) differ for CBR and request-
based traffic monitoring (see Chapter 4.1). More detailed usage examples are provided in

Chapter 5.

In Chapter 4.1, we show that using a large W lowers the per-packet expected cost,
Ecost(W)/W. On the other hand, with a high W, it takes LTSM a long time to detect a
non-cooperative node, as a node’s misbehavior status is computed and output by LTSM
once per window. We mitigate this issue by using a sliding window. A Sliding Window

LTSM works very similarly to LTSM.

A cyclic bit vector of size W, Y,[N], is used instead of the Y[/N] counter to keep
a record of the number of packets detected, out of the last W expected packets. All
bits in Y,[N] are initially set. The missed_message(N) and detected_message(N) methods
advance the window by setting X [N] = (X[N] + 1) mod W, and clearing or setting bit
X|[N] in Y,[N], respectively. A node N is deemed non-cooperative if the number of bits
set in Y3 [ V] is less or equal to 7. For clarity of the exposition, we analyze the non-sliding
window version of LTSM in the following chapter. The results trivially apply to Sliding
Window LTSM.

4.1 Analysis

Our goal is to understand the relations between W, 7, the fine, the loss rate p, and the ex-
pected costs of cooperative and non-cooperative nodes. These relations help us determine
the best parameter choices for the protocol, so that full cooperation and fully following
the protocol is a Nash Equilibrium. We define ¢ = 1 — p. We first analyze constant-
rate traffic (CBR) in Chapter 4.2, then provide several graphs with numerical examples in

Chapter 4.3, and finally extend the analysis to request-based traffic (RB) in Chapter 4.4.
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4.2 Analysis for Constant Rate Traffic

Due to the CBR nature of the traffic, a single packet is expected to arrive per time unit.
As packet loss cannot be detected by the sending node itself (See Chapter 3), the decision
whether to send a given packet is independent of previous events. We therefore assume

that each node decides in advance on the number of packets it sends in a given window.

Consider a node I monitoring another node F. We use the following notations:

y(X) = the number of packets received at I out of X packets sent by F
D(X,7) = P(y(X) < 1), detection probability
e(t) £ D(W,7) = P(y(W) < 1), false positive probability

Let y(X ) be a random variable representing the number of packets that are received at I in
a given window, out of X packets sent by F. Since loss is i.i.d. with probability p =1 —g¢,
y(X) is a binomial random variable, y(X)~Binomial(X,q) [38]. F is detected as faulty
unless more than 7 packets arrive. The detection probability is therefore equal to the

binomial cumulative distribution function at T,

L(X—774+1) ifX>r,
DX, 7)=Py(X)<r1)= 4.1)

1 otherwise,

where [ is the regularized incomplete beta function [38].

We now turn to compute the expected cost of sending X packets in a window. Recall
that the sender has to pay a fine to continue participating, in case the number of pack-
ets received, y(X), is lower than the detection threshold, 7. Thus, the expected cost,

Ecost(X, ), when sending X packets is:
Ecost(X,7) = X + fine x D(X, ). 4.2)

Our goal is to find fine, W, and 7 that encourage full cooperation, i.e., ensuring that
for a given W, and all natural 1 < n < W, Ecost(W — n,7) > Ecost(W, ). That is,

the expected cost of sending less than I/ messages is strictly higher than the expected
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cost of sending I/ messages, assuming that the sender intends to continue participating in
the protocol. The required relations among the parameters are captured by the following

lemma.

Lemma 4.1. For all natural n, 0 < n < W: Ecost(W — n, 1) > Ecost(W, 1) if and

only if the following constraint holds:

fine > max (1 —Vzw qP<y<W1— 1)= r>) |

We now prove several auxiliary claims, which are used to prove Lemma 4.1. The
first claim shows that the fine needs to exceed a certain bound, captured by the following

function:

Definition 1 (Lower Bound on Fine). For all naturaln, 0 <n < W:

n

f(r, Wom) < D(W —n,7)—¢€(T)

Claim 1. For all natural n, 0 < n < W: Ecost(W —n, 1) > Ecost(W, 1) if and only if
fine > f(r,W,n).

Proof. From (4.2) we have: Ecost(W,7) =W + fine x €(7), and Ecost(W —n,7)| =
W —n+ fine x D(W — n, 7). Solving Ecost(W — n, ) > Ecost(W, ) and isolating

fine we get the desired result. ]

Therefore, we are looking for a fine so that fine > f(7,W,n) for all natural n,
0 < n < W. We first show that if a rational node sends less than 7 messages, then it
sends no messages at all.

Claim 2. For all natural n, W — 17 < n < W: Ecost(W —n,7) > Ecost(W, ) if and

W

only if fine > e

Proof. The expected cost for all X € [0, 7), which is X + fine, is minimized at X = 0.
Therefore, the proof follows from Claim 1 with n = W. U

Having resolved the case that less than 7 packets are sent, we now restrict our attention
to the case that 7 to W — 1 packets are sent, i.e., n is in (0, W — 7|. We next simplify the

expression for f(7, W, n) in order to find a constraint that enforces full cooperation.
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Claim 3. For all natural m, 7 <m < W: D(m,7) = D(m+ 1,7) + qP(y(m) = 7).

Proof. We use the following transformation of the regularized incomplete beta function

[38] using the Gamma function I':

['(a+0b)

Lla+1,b) = L(a.5) = 50230

(1—2)"2°

From (4.1), we have D(m + 1,7) = I,(m — 7 + 1,7 + 1). Therefore,

D(m+1,7) = I(m = 7,7+ 1) = L(m _FT(:”_ ;;)(T + 1)CJT+1 T
= Dlm,7) — 4= !T)!T!qum‘f = D(m,7) ~ gP(y(m) = 7). 0

The following claim shows that f(7, W, n) (Definition 1) is one over the average of
P(y(W — k) = 7) over k € [1,n], multiplied by ¢. Recall that W — n here is the number

of packets sent.

Claim 4. For all natural 0 <n < W — 7

n

4 PlyW — k) =7)

f(T,VV,TL) =

Proof. We start by iteratively applying Claim 3 on D(W —n, 7): D(W —n,7) = D(W —
n+1,7)+qPy(W —n) =71) = DW,7) + ¢> o, P(y(W — k) = 7). Recall that
e(1) = D(W, 7). The result follows by substituting D(W — n, 7) into the definition of
f(r, W,n). ]

We thus have an expression for f(7, W, n), which is a lower bound for the fine (see
Claim 1). To ensure full cooperation the bound has to hold for all n. We therefore seek

the maximum value of f(7, W, n). We start with an auxiliary claim.

Claim 5. Let a = {ay}}", be a series that increases for k < A and decreases for k > A
for some real number A. Let z = {z, = % Y ry @k}, be the series of partial averages
of a. Then the minimum of the series {z,}"_, occurs at n = 1 or n = m. That is,

min{z, }7 , = min(zy, zp,).
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Proof. Observe that for all natural n, 1 < n < m, 2,11 > 2z, if and only if a,, .1 > z,.
Since a increases for k < A, z also increases for n < A. Although a decreases for & > A,
z may continue increasing for some n > A, as long as a,1 > z,. If there is no n,
1 < n < m, such that a,,,1 < z,, then z is always increasing and min{z,}"" | = z.
Otherwise, let j be the smallest index 1 < j < m so that a;; < z;. Then z is increasing
for k < j. It is easy to see, by induction on k£ > j, that z is decreasing for k > 7. Thus,

min{z, }7 , = min(z1, 2m). O

Claim 6. The maximal value of f(7,W,n) for 0 < n < W — 7 occurs at n = 1 or
n =W —1. That is, max{f(7, W,n)|0 <n < W—7} = max{f(r, W,n)|n =1, W—-7}.

Proof. Since y(X) is a binomial random variable, for all natural k, 0 < £k < W — 7:

Py(W —k) =1) s X g T Wk
p— — p'
Ply(W —(k+1))=7) %quw k=1-r W —k—1

Hence, P(y(W — k) = ) is increasing for & < W — 7/q, and decreasing for k& >
W — 7/q. By Claim 5, the average, £ >~} | P(y(W — k) = 7), is minimized at one of
the extremities (n = 1, n = W — 7). Hence, the maximum of f(7,W,n), which is
one over the above average divided by ¢ (see Claim 4), also occurs at either n = 1 or

n=W—r. L]

We are now ready to prove Lemma 4.1, which is restated below.
Lemma 4.1 (restated). For all naturaln, 0 < n < W: Ecost(W —n,7) > Ecost(W, 1)
if and only if the following constraint holds:

ime = max (1 —e(r)’ qP<y<wl— 1) = T>) |

Proof. By Claim 2, for all natural n such that W — 7 < n < W: Ecost(W —n,7) >

Ecost(W, 1) if and only if fine > %(T) For 0 < n < W — 7, by Definition 1 and
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Claim 4:

W —r W —r

Ply(r)<m)—e(r)  1—e(r)
1

qPly(W —1)=71)

f(TvI/Van:W_T)

fr,Won=1) =

By Claim 6, the constraint for 0 < n < W — 7 is the the maximum of the above two

values. Hence, the constraint for 0 < n < W is given by:

W —r 1 W
max(1_e<7)’qp(y(w—1>:7)’1—6(7)>' -

Corollary 4.1. Lemma 4.1 provides a constraint that must be upheld in order to make full

cooperation a Nash Equilibrium.

We now turn to minimizing the expected cost of a cooperating node under this con-
straint. This is a discrete optimization problem.

To solve this problem, we convert it to a continuous problem by using an approxi-
mation for large values of /. A common rule-of-thumb is that if both Wp and Wq are
greater than 5 [22], then the binomial distribution can be approximated by the normal
distribution. E.g., for a loss probability of p = 0.1, W = 50 should suffice.

Somewhat surprisingly, the following lemma (Lemma 4.2) shows that the expected
cost for a cooperative node is minimized at 7 = 0, i.e., a single packet arriving at the des-
tination is sufficient for the node to be considered cooperative. This, however, is obtained

at the expense of a very high fine value.

Lemma 4.2. For a large enough W, under the constraint of Lemma 4.1, the expected cost

for a cooperative node is minimized at T = 0. The minimal expected cost is W +p/q, and

the fine has to satisfy fine > 1/(qp" ).

In order to prove Lemma 4.2, we first prove three auxiliary claims. The following

function, f,4., captures the maximum value of f for a given false positive probability o:

frnaz (6, W) 2 max f(e *(8), W, n).

1<n<W
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We start by looking for an approximation for ¢ !(§) (for a large W), using the error

function, erf [38].
Claim 7. Let ¢(7) = 6. Then for a large W, 7 =~ qW — 0.5 — /2pgW (exf (1 — 26)).

Proof. For a large W, we can use the de Moivre-Laplace Theorem [38]:

5= Py(W)>r) = d (%) +0 (\/LW)

1 T+ 0.5 — u)} ( 1 )
=—|l+erf(—— || +0| =),
2 [ < V20 VW
where ® is the standard normal cumulative distribution function, ;1 = W, and 0% =

Wpq. Hence, 7 = ¢ '(6) ~ pu — 0.5 — o/2erf (1 — 26). O

Next, we approximate P(y(W — 1) = 7), which appears in the constraint of

Lemma 4.1.

Claim 8. For a large W, if e(T) = 0, then

Py(W —1) =7) &~ (1/3/27(W — 1)pq) x exp(—(erf (1 — 20))?).

Proof. For a large W, using the de Moivre-Laplace Theorem with y = (W — 1)g, and
o? = (W —1)pg:

Ply(W—-1)=r1)= (WT_ 1> 7"~ ——exp (—M> :

o\ 2T 202

Using the approximation of 7 from Claim 7, we get:

2

o 1 o | —1 — 2Wpgert ™' (1 —26) + ¢
PuW=n =7~ 2n (W —Dpq [ 2(W —1)pg
1 -1 2
~ T exp[—(erf™ (1 — 2§))7]. O

Claim 9. ¢(0) = p" and f.q.(e(0), W) = 1/(p""1q).

Proof. When 7 = 0, a false suspicion occurs if and only if all /' messages are lost,
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therefore €(0) = p". Let § = ¢(7). By Lemma 4.1,

W 1 U
fmaa(9, W) = max (1 — 0 qP(y(W —1) = 61(5))) - <1 —p" qul) |

—_pW . . .
qlpvé’,l . We prove this by induction.

For W = 1, both sides of the inequality are equal. Assume that the inequality holds for

It remains to show that % < W%, ie., that W <

W = k, k € N. We have to prove that the inequality still holds for W = k + 1. To this
end, we subtract the inequality for W = k from the inequality for W = k + 1, and get:
1_pk+1 1_pk 1_pk+1_p+pk+1 1

l=k+1—-k< — -
qpk qpk1 qpk pk

which holds for all 0 < p < 1 and all k. O

We are now ready to prove Lemma 4.2, which is restated below.
Lemma 4.2 (restated). For a large enough W, under the constraint of Lemma 4.1, the
expected cost for a cooperative node is minimized at T = 0. The minimal expected cost is

W + p/q, and the fine has to satisfy fine > 1/(gp"V ~1).

Proof. The expected cost for a cooperative node is W + fine x €(7). Let 0 = e(7). We

start by looking at the second term of the constraint in Lemma 4.1. Let

1

JOW) S P = = )

By Claim 8, for a large W, the asymptotic behavior of g(d, W) x ¢ (for constant W, p, and

q) is:
4]

exp(—(erf (1 —26))2)’

g(0, W) x §

which is increasing in . Hence, the minimum of g(J, W) x ¢ is obtained at the minimal
_ W _ W _ 5 _p
d=p”,where g(d =p" , W) x§= ST = L
Now look at the first term of the constraint in Lemma 4.1.
Let h(6, W) =& W/(1—4). Notice that (6, W) x§ = (6 x W)/(1—0) is also an increasing

function in &, with a minimum at 6 = p"".
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By Claim 9, we get:

fine > max{g(p"", W), h(p", W)} = fra (@, W) = P O

Although Lemma 4.2 is stated (and proven) only for large values of W, we have em-
pirically observed that the result actually holds for all values of V.

Though Lemma 4.2 identifies the optimal fine in terms of overall cost, it calls for very
high fines. For example, with p = 0.1 and W = 50, the fine, according to Lemma 4.2,
should be higher than 10*°. In Chapter 4.3, we illustrate some numerical examples, and
show that 11/ has a similar influence on the cost: the higher the fine and the window size
are, the lower the expected cost for cooperative nodes is. On the other hand, with a high
W, it takes LTSM a long time to detect a non-cooperative node. Similarly, a high fine
can be detrimental for performance, especially in systems that are susceptible to Sybil
attacks, where a high fine would entail a high join cost. Thus, there is a trade-off involved
in setting these parameters.

A typical P2P application would therefore optimize its cost under additional con-
straints on the highest acceptable fine and I/. Nevertheless, Lemma 4.1 requires the fine
to be greater than W /(1 — €(7)), which is at least greater than /. Thus, not all values of
fine and W are feasible.

Let erf be the error function [38], and

(W —1
Tonin 2 qW — 0.5 — /2pqW | —In < m{ )pq>, 4.3)

q X fine

2m(W—-1)pq
1 —erf <\/—ln (W))

i = . 4.4
6mzn 2 ( )

The following lemma shows that setting the threshold value (7) to 7,,;, defined above
warrants full cooperation and yields a minimal expected cost, given pre-defined W and
fine, and assuming that the constraint of Lemma 4.1 holds, which is captured using 0,,;,

above.

Lemma 4.3. Given fine and W such that W is large, if fine > W/(1 — 6,,in), and
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Omin < 0.5, then choosing T = |7y + 1| warrants that full cooperation is a Nash

Equilibrium and yields a minimal expected cost over all possible values of T.

Proof. Let 6 = ¢(7). Recall that the expected cost for a cooperative node is equal to
W + 46 x fine. As W and fine are given constants, the expected cost is minimized,
while warranting full cooperation, by finding the smallest ¢ that satisfies the constraint of

Lemma 4.1:

fine > fina (6, W) = max (1 — 8 qPy(W —1) = 6—1(5)))

The lemma’s preconditions guarantee the first constraint, which is satisfied for all

d <1 — W/ fine. Using Claim 8, the second constraint becomes:

27(W — 1)pq
qexp(—(erf (1 — 26))2)’

fine >
which is decreasing in ¢ for 6 < 0.5. Thus, from the second constraint, with § < 0.5, we

(o ()

The result for 7,,;, is attained by substitutin 0,2:» into the expression for 7 given in
y g p g

Claim 7. L]

get:

Notice that feasible values of W and fine can be found numerically using Lemma 4.3.

4.3 Numerical Examples

For fixed fine and W, we compute the optimal 7 using Lemma 4.3. Figure 4.1a depicts
the resulting expected cost for W = 1000 as a function of the fine for two loss probabil-
ities (p = 0.1, p = 0.01). We see that the higher the fine is, the lower the expected cost
is (as predicted by Lemma 4.2). However, choosing a fine significantly lower than the
optimal according to Lemma 4.2 is not too costly, as the expected cost decreases rather

slowly as fine increases. The reasoning behind this behavior is that for a higher fine,
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a lower 7 is sufficient to discourage selfish behavior. A lower 7 results in a lower false

positive probability ,e(7), which decreases super-linearly in fine.
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Figure 4.1: The impact of W, fine, and p on the expected cost.
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Figure 4.2: The effect of W.

Figure 4.1b depicts the normalized expected cost, i.e., Ecost(W, 1) divided by W, for

various window sizes, using the smallest fine satisfying the constraint of Lemma 4.1. We
see that increasing IV significantly reduces the normalized expected cost. Notice that the
value for d,,;, as defined in (4.4) grows sub-linearly in . Recall that the expected cost

for a cooperative node is equal to W + § x fine. Thus, if only fine is constrained by
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the application (and not 1), then the largest W that is feasible according to Lemma 4.3

minimizes the normalized expected cost, Ecost(W,1)/W.

The false positive probability decreases rapidly as IV increases, as we can see in
Figure 4.2a. We use the smallest fine satisfying the constraint of Lemma 4.1 for each
W. The reasoning behind this behavior is that 7/ increases in W, as can be seen from
(4.3), which lowers the false positive probability. Figure 4.2b shows that the detection
threshold, 7, becomes closer and closer to W as W increases, when using the smallest

fine as described above.

Figure 4.3 depicts the smallest feasible fine, used in the calculations of Figure 4.2
above, minus W, for various window sizes. The smallest feasible fine that makes full
cooperation and fully following the protocol a Nash Equilibrium for a given W is found
numerically using Lemma 4.3. Recall that the smallest feasible fine for a given W is a
fine that satisfies the constraint of Lemma 4.1. One can see that such a fine is only slightly
larger than W. The reasoning behind this behavior is that the false positive probability,
€(7), decreases super-linearly in fine. Recall that according to Lemma 4.1, fine is bounded

from below by W/(1 — ¢(7)).

9 L L L L ! ! ! L L
0 1000 2000 3000 4000 6000 GOOO 7000 6000 8000 10000
Wy

Figure 4.3: Smallest fine satisfying the constraint of Lemma I minus W
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4.4 Analysis for Request-Based Traffic

We now adapt our previous discussion to request-based traffic (such as data forwarding in
a routing protocol). Let / be an inspecting node at which we measure the counters, X and
Y, and let ' be the inspected node. A request message that should trigger request-based
sending may be issued by [ itself, or, in some applications, by some other node S. In any
case, I must be able to detect both the request and the response messages. We assume a
single response message per request message. Upon detecting a request message, node [

may falsely accuse F of a packet loss in two cases:
1. F'does not receive the request message; or
2. F'receives the request message, but I does not receive [”’s response.

Hence, the probability that I falsely accuses F'is p = p + gp = 1 — ¢2, instead of p as in
the previous chapter.

Let W be the window size (in messages). As in the previous chapter, [ decides
whether a node is behaving selfishly or not at the end of each such window. The thresh-
old, 7, and the fine value that ensure full cooperation are obtained the same way as in the
previous chapter, by using p instead of p.

In case more than one response is expected for a given request, the requesting node
should use a CBR monitor in conjunction with a request-based monitor. The requesting
node should begin CBR monitoring upon hearing the first response. If no response is
obtained within a timeout, the requester should re-send the request. Eventually, either a
response arrives and CBR monitoring begins, or the request-based monitor suspects the
node.

Note that in some applications there may be messages that F' is asked to send by S
which are unseen by /. Such messages may safely be dropped by F' without fearing
detection by I. However, in most cases, F' has no way of knowing whether / has heard a
message or not. In some cases, such as a MANET in which node’s locations and radio
ranges are known, F' may drop packets knowing it won’t be detected by /. On the other

hand, it may be detected by other nodes.
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Chapter 5

Applications

In this chapter we show two examples of how LTSM can help make P2P algorithms
immune to rational selfish nodes, namely, multicast (Chapter 5.1) and MANET routing

(Chapter 5.2).

5.1 Multicast

We first focus on tree-based multicast (either wired or wireless), which is the most com-
mon multicast architecture. We follow the common practice of assuming that the multi-
cast source node is altruistic and trusted by all nodes [21, 24, 36]. The multicast protocol
disseminates messages over an overlay tree, which spans all participating nodes. One
way to build and maintain the multicast tree is using a trusted entity, such as the multicast
source [19, 32], which eliminates selfish behavior in the tree-building stage. A distributed
tree building scheme which is immune to selfish behavior (such as in [30]) can also be
used. The tree must be changed dynamically to account for topology changes, which
are common, especially in MANETSs. For the remainder of this section, we assume an

external mechanism for building the multicast tree.
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Algorithm 5.1 Monitoring Service for Tree-Based Multicast

Source on_receive_fine_request
on_suspicion_report(P) 1: send a fine to the source
1: if reporter is not child of P then on_timer(1/r)
2: return {ignore} 1: if packet ¢ received from P then
3: ask P to pay a fine 2:  detected_message(P)
4: if not received a fine then 3:  forward packet to children
5:  Ask parent(P) to Disconnect P 4 else
6 Reconnect P’s sub-tree 5. missed_message(P)
Client Node 6:  send dummy packet to children
on_join_tree(P, 74— i+ 1
cur _packet) 8: if is_selfish(P) then
1: start_monitor(P) 9:  report P to source
2: 1 «— cur_packet 10:  start_monitor(P)

Algorithm 5.1 employs the interface defined in Chapter 3 to monitor and punish non-
cooperative nodes. Let r be the multicast rate. For simplicity, we assume that the multicast
application must receive exactly one packet every 1/r seconds and that the packets are
numbered. A node receives the current packet number and its parent’s name from the
source when it joins a multicast tree. It then uses LTSM to monitor the traffic forwarded
by its parent. A message miss is registered if no packet is received from the parent in a
given interval. A message detection is registered otherwise. A node that misses a message
that it has to send to its children, compensates for it by sending a dummy packet instead.
We assume that the cost of sending dummy packets is the same as that of sending data
packets, and hence a selfish rational node has no reason to send dummy packets when it
does have data to send.

Once a parent P is suspected of selfish behavior by LTSM at its child C, the child
reports its suspicion to the source node (which is altruistic), and optimistically restarts
LTSM. The source then asks the suspected node to pay it a fine. In case the suspected node
does not comply, the source asks the suspect’s parent to disconnect the non-cooperative

node, and the orphan sub-tree reconnects to the spanning tree, bypassing the removed
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node.

Note that falsely accusing a parent is not beneficial for a child. A false suspicion
merely causes the parent to pay a fine, increasing its cost, but with no benefit to the
accusing child. Moreover, if the parent fails to pay the fine, the child’s utility may decrease
due to missed data or reduced performance during the tree reconstruction phase. On
the other hand, reporting genuine suspicion is vital to ensure future service. Therefore,
adherence to the protocol is a Nash Equilibrium. Observe that a parent does not have to
behave selfishly towards all of its children. It may behave selfishly towards one or more
of its children.

In a similar way, LTSM can be integrated into mesh-based multicast solutions. For
example, EquiCast [21] uses similar threshold-based detection, and fines for readmission.
Replacing their selfishness monitor with LTSM automatically makes EquiCast robust to

packet loss.

5.2 MANET Routing

A common heuristical approach to detecting selfish behavior in a MANET is using repu-
tations. Such reputations are collected by nodes through monitoring the behavior of other
nodes. The watchdog mechanisms used in CONFIDANT [5] and later in CORE [28],
OCEAN [3] and others, use promiscuous mode to eavesdrop on neighboring nodes and
monitor packet forwarding and other network activity.

LTSM can easily be integrated into such heuristical reputation mechanisms, seam-
lessly adding resilience to lossy networks. In the watchdog mechanism, every node
keeps track of packets that flow in and out of each of its radio range neighbors. This
modus operandi is appropriate for LTSM’s tracking of request-based messages. LTSM’s
missed_message(N) method can be called when a packet dropped by node V is detected,
while detected _message(N) can be called when a packet is correctly forwarded by node
N. LTSM can monitor additional request-based traffic, such as route discovery or location
queries and replies, as well as constant rate traffic such as keep-alive messages.

LTSM can also be integrated into existing schemes that prove cooperation. Such exist-

ing schemes consider pairwise interactions [14, 37, 40, 41]. Recall that in such schemes,
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one node punishes another only for selfish behavior that the latter has exhibited towards
the former. Integration with LTSM can enhance them with minimal expected costs in a

lossy network, and a redemption mechanism.
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Chapter 6

Conclusions

P2P systems in commercial applications often operate over lossy networks and are bound
to experience selfish behavior. We have defined a general service for monitoring and dis-
couraging selfish behavior, which is applicable to a variety of P2P protocols. We have
presented such a monitoring service, called LTSM, which is suitable for networks subject
to message loss. We have mathematically analyzed LTSM, and shown how to tune its
parameters so as to encourage full cooperation, while minimizing the cost for cooperat-
ing nodes. Finally, we have shown usage examples of our service for multicast and for

MANET routing.
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