
Discouraging Selfishness in Lossy

Peer-to-Peer Networks

ALEXANDER FRIEDMAN

Discouraging Selfishness in Lossy Peer-to-Peer Networks

Final Paper

In Partial Fulfillment of the Requirements

for the Degree of Master of Science in Electrical Engineering

ALEXANDER FRIEDMAN

Submitted to the Senate of the Technion – Israel Institute of Technology

Shvat 5769 HAIFA February 2009

The Final Paper Was Done Under the Supervision of Associate Professor
Idit Keidar in the Department of Electrical Engineering, Technion

THE GENEROUS FINANCIAL HELP OF THE TECHNION IS GRATEFULLY

ACKNOWLEDGED

Acknowledgments

I would like to thank my advisor, Associate Professor Idit Keidar, for enriching my knowl-

edge, reading endless drafts, and being always open for questions. Her guidance, patience,

invaluable assistance, and generous offers of support and expertise helped me to make this

research thorough.

I would like to thank my girlfriend, Rinat, for her support and encouragement during

the years.

And last, but not least, I would like to thank my family and friends, who were sup-

portive and understanding at all times.

Contents

Abstract 1

List of Symbols 2

1 Introduction 3

2 Related Work 5

2.1 Content Distribution and Multicast . 5

2.2 MANET Routing . 7

2.3 Comparison with LTSM . 8

3 Monitoring Service Definition 10

4 LTSM Algorithm 12

4.1 Analysis . 14

4.2 Analysis for Constant Rate Traffic . 15

4.3 Numerical Examples . 23

4.4 Analysis for Request-Based Traffic . 26

5 Applications 27

5.1 Multicast . 27

5.2 MANET Routing . 29

6 Conclusions 31

References 32

List of Figures

4.1 The impact of W, fine, and p on the expected cost. 24

4.2 The effect of W. 24

4.3 Smallest fine satisfying the constraint of Lemma 1 minus W 25

List of Algorithms

4.1 LTSM(W , τ) . 12

4.2 LTSM generic usage examples . 13

5.1 Monitoring Service for Tree-Based Multicast 28

Abstract

We present Loss-Tolerant Selfishness Monitor (LTSM), a generic service for detecting

selfish behavior in various Peer-to-Peer (P2P) applications, such as Mobile Ad-hoc Net-

work (MANET) routing and data streaming (multicast). Resources in P2P systems are

provided by the participating peer nodes themselves; each node has to contribute memory,

CPU power, bandwidth, and energy. Since most nodes in a MANET are battery-powered,

energy is a scarce resource in such an environment. In commercial P2P applications,

nodes may exhibit selfish behavior by tampering with the P2P protocol in order to lower

their cost. Consequently, it is important for such protocols to work well even when users

are equipped with a selfish version of the protocol.

Unlike most previous selfishness-resistant protocols, LTSM can be used in networks

subject to message loss, where selfish behavior detection is particularly challenging. For

example, wireless networks, such as MANETs, inherently suffer from high packet loss

rates. Furthermore, multicast systems for streaming video or audio typically use unreli-

able transport like UDP, since it is acceptable for some of the data to be lost.

One of our main contributions is mathematically analyzing the impact of various sys-

tem parameters on the incentives for cooperation, and showing how to choose these pa-

rameters so as to ensure that full cooperation is a Nash Equilibrium, at a minimal cost.

We illustrate the applicability of LTSM in two exemplar contexts: multicast and MANET

routing.

1

List of Symbols

UDP User Datagram Protocol

LTSM Loss-Tolerant Selfishness Monitor

MANET Mobile Ad-hoc Network

P2P Peer-to-Peer

DSR Dynamic Source Routing

CBR Constant Bit Rate

TFT Tit For Tat

W Window Size

τ Detection Threshold

X Number of packets sent in a window

D(X, τ) Detection probability function

ε(τ) False positive probability function

Ecost(X, τ) Expected cost

f(τ,W, n) Lower bound on fine

Γ Gamma function

Iz(a, b) Regularized incomplete beta function

δ False positive probability

fmax(δ,W) Lower bound on fine

2

Chapter 1

Introduction

Peer-to-Peer (P2P) protocols are used in numerous different settings, e.g., P2P multicast

systems, file sharing networks, and mobile-ad-hoc networks (MANETs). The underlying

networks used by many such P2P systems are lossy. For example, wireless networks,

such as MANETs, inherently suffer from high packet loss rates. Furthermore, multicast

systems for streaming video or audio typically use unreliable transport like UDP, since it

is acceptable for some of the data to be lost.

Resources in P2P systems are provided by the participating peer nodes themselves;

each node has to contribute memory, CPU power, bandwidth, and energy. For example,

the high bandwidth demand by P2P nodes is driving Internet Service Providers (ISPs)

to implement a tiered pricing scheme, where high tier pricing schemes allow unlimited

transfers, and lower-tier pricing schemes charge for excess usage [35]. Energy is a scarce

resource for battery-powered nodes, such as laptops and PDAs. In commercial P2P appli-

cations, nodes may exhibit selfish behavior by tampering with the P2P protocol in order

to lower their cost [4, 11, 26]. Consequently, it is important for such protocols to work

well even when users are equipped with a selfish version of the protocol.

In recent years, much research has been dedicated to tackling selfish behavior in vari-

ous P2P applications (e.g., multicast, file sharing, and MANET routing, – see Chapter 2).

Many challenging issues, however, remain open. Previous work, for instance, has not

exposed and leveraged the similarity among different P2P protocols. Rather, each previ-

ous work has focused on one specific protocol, in one specific setting. Another challenge

3

largely overlooked in previous work is lossy networks (with the exception of [40, 41] –

see Chapter 2). Selfish behavior detection becomes much more challenging when one

has to cope with unpredictable packet loss. Conventional detectors, such as those used in

[3, 5, 26, 28], would wrongfully accuse cooperating nodes for not sending lost packets.

Finally, previous work has not mathematically quantified the relationship that needs to

hold among system parameters such as a cooperating node’s cost, the penalty for lack of

cooperation, and the decision when to punish a node, in order to make full cooperation a

Nash Equilibrium at a minimal cost.

In this thesis, we address the three open issues above. We leverage the similarity

among many different P2P protocols in order to define a common monitoring abstraction

suitable for detecting selfish behavior in various such protocols (Chapter 3). Our abstrac-

tion’s interface enables each peer node to monitor other nodes, and to determine when to

punish a node for alleged misbehavior. We then present a loss-tolerant selfishness monitor

(LTSM) that implements this interface (Chapter 4). When using LTSM, a node blamed

for lack of cooperation must pay a fine to continue participating in the protocol.

One of the main contributions of this thesis is mathematically quantifying the rela-

tions between the above fine, the cost of performing a basic operation (such as sending

a message), the packet loss rate, the decision as to when to punish a node, and the costs

incurred by cooperative and non-cooperative nodes (Chapter 4.1). We show how to tune

LTSM’s parameters so as to make full cooperation and fully following the protocol a Nash

Equilibrium, while minimizing the cost for cooperating nodes.

To illustrate the applicability of our abstraction, we show (Chapter 5) how it can be

seamlessly employed in existing multicast schemes [9, 21, 30], and in existing schemes

for MANET routing [3, 5, 18, 26, 28]. By using LTSM with the appropriate parameter

settings in these applications, one can automatically make them robust to packet loss.

4

Chapter 2

Related Work

Selfish behavior has been widely studied in various P2P systems, e.g., content distribu-

tion protocols [11, 16], tree-based multicast [30], gossip-based multicast [21, 24], and

MANET routing [1, 2, 3, 5, 6, 7, 8, 12, 18, 26, 28, 29, 34, 37, 39, 40, 41, 42].

2.1 Content Distribution and Multicast

The BitTorrent [11] and Avalanche [16] P2P content distribution protocols rely on a Tit-

For-Tat (TFT) strategy to encourage participation and discourage selfish behavior. In this

strategy, a user prefers to upload data blocks to users from which it currently downloads

some other blocks.

Ngan et al. [30] propose a tree-based multicast protocol, based on SplitStream [9],

which detects selfish nodes, and periodically reconstructs trees to prune misbehaving

nodes. In their scheme, each node maintains a debt counter for every other peer it en-

counters. This counter is equal to the number of packets forwarded to the peer minus the

number of packets received from the peer. A rational node does not allow this debt to

grow beyond a predefined threshold. The debt counters are expected to remain balanced,

on average, by periodically reconstructing the multicast tree, such that each new tree is

sufficiently different from the previous tree. A trade-off exists between the overhead of

tree reconstruction, and the time it takes to detect a non-cooperative node. The authors

also revisit SplitStream’s tree construction phase, in which a node may selfishly refuse

5

to accept a child in the pretense of serving other children. They suggest that a node that

frequently refuses to accept a child is likely to be non-cooperative.

Habib and Chuang [17] propose an incentive-based media streaming protocol. In

their protocol, the quality of service each node enjoys depends on its level of cooperation.

Namely, peers are ranked according to their cooperation. Each peer may receive service

only from nodes whose ranks are lower than its own. Thus, the peer selection process

takes relative contributions into account.

The authors of the EquiCast [21] gossip-based multicast protocol employ game theory

to formally prove cooperation when all participating nodes are selfish and rational. In gos-

sip protocols, nodes exchange data with randomly selected peers. Similarly to [30], each

node maintains a balance counter for each of its neighbors in the mesh overlay. Unlike in

[30], however, the counter inherently remains balanced, in average, by using gossip over a

mesh-based overlay, instead of a multicast tree. A rational node disconnects its link with

a node if that node’s balance is lower than a predefined negative threshold. Special fine

packets, which do not affect the balance, are used to punish nodes with negative balances

which are higher than the above threshold. Failing to send such fine packets constitutes

eviction. The multicast source is used to help in the recovery of cooperative nodes, whose

balance becomes negative due to some unfortunate circumstances, by sending data pack-

ets to the negatively balanced peer in return for sending the same number of fine packets.

The balance is also bound by a threshold from above.

In BAR Gossip [24], the authors present and prove the first P2P gossip-based data

streaming application designed for the BAR model. The BAR model allows for Byzan-

tine, altruistic and rational (selfish) nodes. Their protocol ensures predictable throughput

even if some of the nodes are Byzantine and the rest are selfish. To overcome the ran-

domness of gossip protocols, the authors suggest using verifiable pseudo-randomness to

select peers. The authors assume an altruistic source that streams live content to a pool

of clients. The Balanced Exchange protocol is used by clients to trade updates one-for-

one. The Optimistic Push protocol, in which updates are sent without expecting anything

in return, is used as a safety net. One of the strongest points of BAR Gossip is using

cryptographic primitives as a means to prove misbehavior.

FlightPath [23] is a highly reliable gossip-based P2P streaming application based on

6

BAR Gossip that supports a dynamic set of peers using the BAR model. By using the

approximate ε-Nash Equilibrium [10], the authors are able to prove cooperation while

allowing for a bounded imbalance between peers, load balancing, and erasure codes. In

an ε-Nash Equilibrium, a rational player deviates if and only if it expects to benefit by

more than a factor of ε.

2.2 MANET Routing

A considerable number of papers dealing with selfish behavior in MANETs have been

recently published [1, 2, 3, 5, 6, 7, 8, 12, 18, 26, 28, 29, 34, 37, 39, 40, 41, 42]. Most

of these protocols use Dynamic Source Routing (DSR) [20] as the underlying routing

protocol. DSR is then limited to only select routes that do not include non-cooperative

nodes.

One approach to detect misbehavior is using virtual-currency (or credit) to encourage

cooperation. All protocols currently using this scheme either require tamper-proof hard-

ware [2, 6, 7, 8, 34] or a centralized credit manager [34, 39, 42]. In [7], for example, a

source stores nuglets (virtual currency) in data packets before sending them as a payment

to intermediate nodes - requiring tamper-proof hardware. SPRITE [42] uses an authorized

centralized Credit Clearance Service to manage credit, but does not require tamper-proof

hardware.

An alternate approach to dealing with selfishness is using first-hand neighbor repu-

tations based on statistics gathered by each node to decide whether a given neighbor is

cooperative or not [3, 5, 18, 26, 28]. To gather this information, a watchdog [26] is used

to monitor packets sent by neighboring nodes by means of eavesdropping in promiscuous

mode. The CONFIDANT protocol [5] adds second hand positive and negative reputation

gathered from neighboring nodes so as to learn from their experience as well. Second

hand reputation is reputation as reported by (perhaps untrusted) neighbors. Positive rep-

utation states that a given node is cooperative, whereas negative reputation states the op-

posite. CORE [28] notes the possibility of cheating using false reports in CONFIDANT,

and therefore solely uses positive reports. OCEAN [3] and later LARS [18] avoid second-

hand reputation, and use only direct first-hand reputation to avoid false accusations.

7

A game-theoretic approach has been used in previous work to provably enforce coop-

eration [1, 14, 21, 23, 24, 29, 37, 40, 41]. Michiardi and Molva [29] provide an evaluation

of the CORE [28] protocol using both a cooperative game approach and a non-cooperative

game approach. Altman et al [1] use the framework of non-cooperative game theory to

provide incentives for cooperation by means of a punishment scheme which is less ag-

gressive than TFT. Félegyházi et al [14] propose a model based on game theory and graph

theory to investigate equilibrium conditions of different packet forwarding strategies when

taking the network topology into account. All works that prove cooperation consider only

pairwise interactions. That is, one node punishes another only for selfish behavior that

the latter has exhibited towards the former.

By and large, previous work has not taken message loss into account. The only ex-

ception we are familiar with is the MANET routing scheme due to Yu and Liu [40, 41].

In [40], the authors prove that a node’s best strategy is not to forward more packets than

its opponent. Unlike previous work, the authors assume a noisy environment in which

packet loss is modeled as an i.i.d. Bernoulli random process. However, in that paper, the

authors assume perfect monitoring. Imperfect monitoring can be taken advantage of by

dropping packets which may not be detected by the monitor. This assumption has been

removed in a follow-up paper [41], where imperfect-monitoring is assumed.

In [41], Yu and Liu use a strategy similar to TFT between every two peers in the

network. In this strategy, a node agrees to forward packets on behalf of another node

only if the latter has previously forwarded enough packets for the former. A balance

counter is used to count the balance of each node, i.e., the number of packets forwarded

for the peer minus the number of packets forwarded by the peer. To decide whether a

node should be considered selfish, under imperfect monitoring, [41] applies the Neyman-

Pearson hypothesis testing theory [33] to find the threshold given an acceptable false

alarm probability.

2.3 Comparison with LTSM

Each of the previously suggested solutions is built for a specific application. Furthermore,

each current MANET routing solution deals with one specific routing protocol, usually

8

source routing (e.g., DSR [20]), and leave other protocols, with more favorable properties

in large dynamic networks (e.g., LANMAR [31], GLS [25], and Octopus [27]), unre-

solved. In contrast, the solution we present here is general, and suitable for a wide range

of P2P applications.

There are several important differences between our work and the work by Yu and

Liu [41] described above. Whereas Yu and Liu focus on stimulating cooperation in a

MANET source routing (DSR) protocol, we provide a general abstraction for P2P sys-

tems. Furthermore, Yu and Liu focus solely on packet forwarding, while LTSM allows

for monitoring additional message types, such as route discovery, location queries and

replies, and keep-alive messages. Third, their work employs a tit-for-tat (TFT) strategy

between each pair of nodes in the network. In this strategy, a node agrees to forward pack-

ets on behalf of another node only if the latter has previously forwarded enough packets

for the former. We, on the other hand, do not assume any specific strategy. Fourth, their

analysis only shows how to set the cooperation threshold for a given desired false positive

probability. They do not analyze how the false positive probability should be chosen so

as to ensure cooperation at a minimal cost for cooperative nodes as we do. Moreover,

their punishment scheme is quite draconic as there is no way for selfish nodes to be added

back, which suggests that the false positive probability should be chosen to be very small.

In contrast, we allow nodes suspected of non-cooperation to be added back by paying a

fine.

9

Chapter 3

Monitoring Service Definition

We consider a P2P system in which the participating nodes are selfish and rational, i.e.,

each node wishes to participate in the protocol while choosing a strategy that minimizes

its cost. A strategy consists of deciding which packets to transmit, out of the packets

required by the P2P protocol. We say that a node is cooperative if it sends all the packets

required by the protocol, and non-cooperative otherwise. For simplicity, we assume that

the cost of sending all packets is the same.

We model the system as a non-cooperative game, in which the participating nodes are

the players. A non-cooperative game is a game in which any cooperation between the

players (nodes) is self-enforcing, i.e., contracts are not enforced by third parties. Our goal

is to provide a monitoring service for P2P applications that makes the full cooperation

of rational nodes a Nash Equilibrium, while minimizing the expected cost of cooperative

nodes, and taking message loss into account. A Nash Equilibrium is a set of strategies

such that each node’s strategy is an optimal response to the other nodes’ strategies [15].

I.e., a strategy profile is a Nash Equilibrium if no unilateral strategy deviation by any

single node is profitable for that node.

Nodes may join and leave the system dynamically. Nodes can be removed from the

system, e.g., due to misbehavior, and may be allowed back after paying an application-

defined fine, specified in terms of the packet sending cost. For example, fine=7 means that

a suspected node has to send seven penalty packets in order to be allowed back into the

system. As free admission can be abused in systems subject to Sybil attacks [13], some

10

sort of payment is required in order to join such a system. One can set the cost of joining

to be the same as the fine.

We classify messages in a P2P protocol into two categories. The first category con-

sists of messages that are generated by nodes at a predetermined rate, one per a given

time unit. Examples include keep-alive messages and data packets in a Constant Bitrate

(CBR) stream. A CBR stream is possible in a lossy environment if the protocol requires

each node to compensate for lost packets by sending empty packets instead, as done, for

example, in [21, 24]. The second category includes request-based messages, whose send-

ing is triggered by the receipt of other messages at unpredictable times, e.g., forwarding

data in a routing protocol or sending a piece of content in response to a request in a content

distribution protocol.

We consider a lossy underlying network in which packet loss is independent and iden-

tically distributed (i.i.d.) with probability p. Note that whenever a node detects the loss

of its own packet, it may simply retransmit the packet to avoid being suspected of selfish

behavior. We therefore restrict our attention to the case that a node cannot detect whether

its own message has been lost.

The interface of our monitoring service is as follows: start monitor(N) is invoked

by the application when either a new node, N , is discovered, or when an allegedly non-

cooperative node rejoins the system after paying a fine; missed message(N) is called when

a message the P2P application is expecting from N does not arrive in a timely fashion,

and detected message(N) is called when such an expected message is detected on time.

An expected message is a message that should be sent according to the P2P application’s

protocol. Lastly, the is selfish(N) predicate indicates whether node N is allegedly non-

cooperative.

11

Chapter 4

LTSM Algorithm

The LTSM service running at every node keeps an activity record for every monitored

node. A node is deemed non-cooperative if it has sent less than τ out of W expected

messages, where W is a parameter window size, and τ is the detection threshold. The

windows in the protocol do not overlap – all counters are reset after each window of size

W . W and τ are measured in number of messages. The relations between W , τ , and the

fine are analyzed in Chapter 4.1.

Algorithm 4.1 LTSM(W , τ)

start monitor(N)

1: X[N]← 0 {expected packets}
2: Y [N]← 0 {detected packets}
3: is selfish[N]← false

is selfish(N)

1: return is selfish[N]

detected message(N)

1: if is selfish[N]=false then

2: Y [N]← Y [N] + 1

3: advance window(N)

missed message(N)

1: if is selfish[N]=false then

2: advance window(N)

advance window(N)

1: X[N]← X[N] + 1

2: if X[N]=W then

3: if Y [N] ≤ τ then

4: is selfish[N]← true

5: else {start a new window}
6: X[N]← 0

7: Y [N]← 0

The LTSM protocol is depicted in Algorithm 4.1. The activity record of each mon-

12

itored node, N, consists of two counters and a boolean, is selfish[N], which indicates

whether the node is allegedly non-cooperative. The first counter, X[N], counts the num-

ber of packets expected by the P2P protocol to arrive in the current window. The sec-

ond counter, Y [N], counts the number of packets detected in the current window. The

start monitor(N) method resets all these counters to zero and sets is selfish[N] to false.

The is selfish(N) method simply returns the boolean is selfish[N]. Recall that the missed message(N)

method is called by the P2P application when a message expected by the P2P protocol

does not arrive on time. Hence, this method advances the window by increasing the ex-

pected messages counter, X[N]. A decision is made whether node N should be deemed

non-cooperative at the end of the window, i.e., when the X[N] counter reaches W . If N

is declared cooperative (not selfish), then all counters are reset, and a new window begins.

Lastly, recall that the detected message(N) method is called when an expected message is

detected. This method increases the detected messages counter, Y [N], and then advances

the window as in missed message(N). Notice that no counters advance in case the node is

alleged non-cooperative.

Algorithm 4.2 LTSM generic usage examples
on request to serve(N)

1: if is selfish[N]=false then

2: serve request

CBR(N)

every time unit do

1: if received packet then

2: detected message(N)

3: else

4: missed message(N)

on receive fine from N

1: start monitor(N)

Request-based(N)

on detect request do

1: wait timeout

2: if received response packet then

3: detected message(N)

4: else

5: missed message(N)

Algorithm 4.2 shows two generic usage examples for LTSM, one of a CBR stream,

and one of request-based traffic. We leave out the initializations, and simply assume that

start monitor(N) has been called for each node N . In a CBR stream, a timer is used to

check whether a packet arrives at every (predetermined) time unit; detected message(N)

is called if such a packet arrives, and missed message(N) is called otherwise. Similarly,

13

for request-based traffic, a timeout is used to determine whether a given request yields a

response. An allegedly non-cooperative node is denied service until it pays a fine. It is

important to note that LTSM’s parameters (W, fine, and τ) differ for CBR and request-

based traffic monitoring (see Chapter 4.1). More detailed usage examples are provided in

Chapter 5.

In Chapter 4.1, we show that using a large W lowers the per-packet expected cost,

Ecost(W)/W. On the other hand, with a high W , it takes LTSM a long time to detect a

non-cooperative node, as a node’s misbehavior status is computed and output by LTSM

once per window. We mitigate this issue by using a sliding window. A Sliding Window

LTSM works very similarly to LTSM.

A cyclic bit vector of size W , Yb[N], is used instead of the Y [N] counter to keep

a record of the number of packets detected, out of the last W expected packets. All

bits in Yb[N] are initially set. The missed message(N) and detected message(N) methods

advance the window by setting X[N] = (X[N] + 1) mod W , and clearing or setting bit

X[N] in Yb[N], respectively. A node N is deemed non-cooperative if the number of bits

set in Yb[N] is less or equal to τ . For clarity of the exposition, we analyze the non-sliding

window version of LTSM in the following chapter. The results trivially apply to Sliding

Window LTSM.

4.1 Analysis

Our goal is to understand the relations between W, τ , the fine, the loss rate p, and the ex-

pected costs of cooperative and non-cooperative nodes. These relations help us determine

the best parameter choices for the protocol, so that full cooperation and fully following

the protocol is a Nash Equilibrium. We define q = 1 − p. We first analyze constant-

rate traffic (CBR) in Chapter 4.2, then provide several graphs with numerical examples in

Chapter 4.3, and finally extend the analysis to request-based traffic (RB) in Chapter 4.4.

14

4.2 Analysis for Constant Rate Traffic

Due to the CBR nature of the traffic, a single packet is expected to arrive per time unit.

As packet loss cannot be detected by the sending node itself (See Chapter 3), the decision

whether to send a given packet is independent of previous events. We therefore assume

that each node decides in advance on the number of packets it sends in a given window.

Consider a node I monitoring another node F. We use the following notations:

y(X) , the number of packets received at I out of X packets sent by F

D(X, τ) , P (y(X) ≤ τ), detection probability

ε(τ) , D(W, τ) = P (y(W) ≤ τ), false positive probability

Let y(X) be a random variable representing the number of packets that are received at I in

a given window, out of X packets sent by F. Since loss is i.i.d. with probability p = 1− q,
y(X) is a binomial random variable, y(X)∼Binomial(X,q) [38]. F is detected as faulty

unless more than τ packets arrive. The detection probability is therefore equal to the

binomial cumulative distribution function at τ ,

D(X, τ) = P (y(X) ≤ τ) =

Ip(X − τ, τ + 1) if X > τ ,

1 otherwise,
(4.1)

where I is the regularized incomplete beta function [38].

We now turn to compute the expected cost of sending X packets in a window. Recall

that the sender has to pay a fine to continue participating, in case the number of pack-

ets received, y(X), is lower than the detection threshold, τ . Thus, the expected cost,

Ecost(X, τ), when sending X packets is:

Ecost(X, τ) = X + fine×D(X, τ). (4.2)

Our goal is to find fine, W, and τ that encourage full cooperation, i.e., ensuring that

for a given W, and all natural 1 ≤ n ≤ W , Ecost(W − n, τ) > Ecost(W, τ). That is,

the expected cost of sending less than W messages is strictly higher than the expected

15

cost of sendingW messages, assuming that the sender intends to continue participating in

the protocol. The required relations among the parameters are captured by the following

lemma.

Lemma 4.1. For all natural n, 0 < n ≤ W : Ecost(W − n, τ) > Ecost(W, τ) if and

only if the following constraint holds:

fine > max

(
W

1− ε(τ)
,

1

qP (y(W − 1) = τ)

)
.

We now prove several auxiliary claims, which are used to prove Lemma 4.1. The

first claim shows that the fine needs to exceed a certain bound, captured by the following

function:

Definition 1 (Lower Bound on Fine). For all natural n, 0 < n ≤ W :

f(τ,W, n) ,
n

D(W − n, τ)− ε(τ)
.

Claim 1. For all natural n, 0 < n ≤ W : Ecost(W − n, τ) > Ecost(W, τ) if and only if

fine > f(τ,W, n).

Proof. From (4.2) we have: Ecost(W, τ) = W + fine× ε(τ), and Ecost(W − n, τ)] =

W − n+ fine×D(W − n, τ). Solving Ecost(W − n, τ) > Ecost(W, τ) and isolating

fine we get the desired result.

Therefore, we are looking for a fine so that fine > f(τ,W, n) for all natural n,

0 < n ≤ W . We first show that if a rational node sends less than τ messages, then it

sends no messages at all.

Claim 2. For all natural n, W − τ < n ≤ W : Ecost(W − n, τ) > Ecost(W, τ) if and

only if fine > W
1−ε(τ) .

Proof. The expected cost for all X ∈ [0, τ), which is X + fine, is minimized at X = 0.

Therefore, the proof follows from Claim 1 with n = W .

Having resolved the case that less than τ packets are sent, we now restrict our attention

to the case that τ to W − 1 packets are sent, i.e., n is in (0,W − τ]. We next simplify the

expression for f(τ,W, n) in order to find a constraint that enforces full cooperation.

16

Claim 3. For all natural m, τ ≤ m < W : D(m, τ) = D(m+ 1, τ) + qP (y(m) = τ).

Proof. We use the following transformation of the regularized incomplete beta function

[38] using the Gamma function Γ:

Iz(a+ 1, b) = Iz(a, b)−
Γ(a+ b)

Γ(a+ 1)Γ(b)
(1− z)bza.

From (4.1), we have D(m+ 1, τ) = Ip(m− τ + 1, τ + 1). Therefore,

D(m+ 1, τ) = Ip(m− τ, τ + 1)− Γ(m+ 1)

Γ(m− τ + 1)Γ(τ + 1)
qτ+1pm−τ

= D(m, τ)− q m!

(m− τ)!τ !
qτpm−τ = D(m, τ)− qP (y(m) = τ).

The following claim shows that f(τ,W, n) (Definition 1) is one over the average of

P (y(W − k) = τ) over k ∈ [1, n], multiplied by q. Recall that W − n here is the number

of packets sent.

Claim 4. For all natural 0 < n ≤ W − τ :

f(τ,W, n) =
n

q
∑n

k=1 P (y(W − k) = τ)
.

Proof. We start by iteratively applying Claim 3 onD(W−n, τ): D(W−n, τ) = D(W−
n + 1, τ) + qP (y(W − n) = τ) = D(W, τ) + q

∑n
k=1 P (y(W − k) = τ). Recall that

ε(τ) = D(W, τ). The result follows by substituting D(W − n, τ) into the definition of

f(τ,W, n).

We thus have an expression for f(τ,W, n), which is a lower bound for the fine (see

Claim 1). To ensure full cooperation the bound has to hold for all n. We therefore seek

the maximum value of f(τ,W, n). We start with an auxiliary claim.

Claim 5. Let a = {ak}mk=1 be a series that increases for k < A and decreases for k > A

for some real number A. Let z = {zn = 1
n

∑n
k=1 ak}mn=1 be the series of partial averages

of a. Then the minimum of the series {zn}mn=1 occurs at n = 1 or n = m. That is,

min{zn}mn=1 = min(z1, zm).

17

Proof. Observe that for all natural n, 1 ≤ n < m, zn+1 > zn if and only if an+1 > zn.

Since a increases for k < A, z also increases for n < A. Although a decreases for k > A,

z may continue increasing for some n > A, as long as an+1 > zn. If there is no n,

1 ≤ n < m, such that an+1 ≤ zn, then z is always increasing and min{zn}mn=1 = z1.

Otherwise, let j be the smallest index 1 ≤ j < m so that aj+1 ≤ zj . Then z is increasing

for k < j. It is easy to see, by induction on k ≥ j, that z is decreasing for k ≥ j. Thus,

min{zn}mn=1 = min(z1, zm).

Claim 6. The maximal value of f(τ,W, n) for 0 < n ≤ W − τ occurs at n = 1 or

n = W−τ . That is, max{f(τ,W, n)|0 < n ≤ W−τ} = max{f(τ,W, n)|n = 1,W−τ}.

Proof. Since y(X) is a binomial random variable, for all natural k, 0 < k < W − τ :

P (y(W − k) = τ)

P (y(W − (k + 1)) = τ)
=

(W−k)!
τ !(W−k−τ)! × q

τpW−k−τ

(W−k−1)!
τ !(W−k−1−τ)! × qτpW−k−1−τ

=
W − k

W − k − τ
× p.

Hence, P (y(W − k) = τ) is increasing for k < W − τ/q, and decreasing for k >

W − τ/q. By Claim 5, the average, 1
n

∑n
k=1 P (y(W − k) = τ), is minimized at one of

the extremities (n = 1, n = W − τ). Hence, the maximum of f(τ,W, n), which is

one over the above average divided by q (see Claim 4), also occurs at either n = 1 or

n = W − τ .

We are now ready to prove Lemma 4.1, which is restated below.

Lemma 4.1 (restated). For all natural n, 0 < n ≤ W : Ecost(W −n, τ) > Ecost(W, τ)

if and only if the following constraint holds:

fine > max

(
W

1− ε(τ)
,

1

qP (y(W − 1) = τ)

)
.

Proof. By Claim 2, for all natural n such that W − τ < n ≤ W : Ecost(W − n, τ) >

Ecost(W, τ) if and only if fine > W
1−ε(τ) . For 0 < n ≤ W − τ , by Definition 1 and

18

Claim 4:

f(τ,W, n = W − τ) =
W − τ

P (y(τ) ≤ τ)− ε(τ)
=

W − τ
1− ε(τ)

,

f(τ,W, n = 1) =
1

qP (y(W − 1) = τ)
.

By Claim 6, the constraint for 0 < n ≤ W − τ is the the maximum of the above two

values. Hence, the constraint for 0 < n ≤ W is given by:

max

(
W − τ

1− ε(τ)
,

1

qP (y(W − 1) = τ)
,

W

1− ε(τ)

)
.

Corollary 4.1. Lemma 4.1 provides a constraint that must be upheld in order to make full

cooperation a Nash Equilibrium.

We now turn to minimizing the expected cost of a cooperating node under this con-

straint. This is a discrete optimization problem.

To solve this problem, we convert it to a continuous problem by using an approxi-

mation for large values of W . A common rule-of-thumb is that if both Wp and Wq are

greater than 5 [22], then the binomial distribution can be approximated by the normal

distribution. E.g., for a loss probability of p = 0.1, W = 50 should suffice.

Somewhat surprisingly, the following lemma (Lemma 4.2) shows that the expected

cost for a cooperative node is minimized at τ = 0, i.e., a single packet arriving at the des-

tination is sufficient for the node to be considered cooperative. This, however, is obtained

at the expense of a very high fine value.

Lemma 4.2. For a large enough W, under the constraint of Lemma 4.1, the expected cost

for a cooperative node is minimized at τ = 0. The minimal expected cost is W +p/q, and

the fine has to satisfy fine > 1/(qpW−1).

In order to prove Lemma 4.2, we first prove three auxiliary claims. The following

function, fmax, captures the maximum value of f for a given false positive probability δ:

fmax(δ,W) , max
1≤n≤W

f(ε−1(δ),W, n).

19

We start by looking for an approximation for ε−1(δ) (for a large W), using the error

function, erf [38].

Claim 7. Let ε(τ) = δ. Then for a large W, τ ≈ qW − 0.5−
√

2pqW (erf−1(1− 2δ)).

Proof. For a large W, we can use the de Moivre-Laplace Theorem [38]:

δ = P (y(W) > τ) = Φ

(
τ + 0.5− µ

σ

)
+O

(
1√
W

)
=

1

2

[
1 + erf

(
τ + 0.5− µ√

2σ

)]
+O

(
1√
W

)
,

where Φ is the standard normal cumulative distribution function, µ = Wq, and σ2 =

Wpq. Hence, τ = ε−1(δ) ≈ µ− 0.5− σ
√

2erf−1(1− 2δ).

Next, we approximate P (y(W − 1) = τ), which appears in the constraint of

Lemma 4.1.

Claim 8. For a large W, if ε(τ) = δ, then

P (y(W − 1) = τ) ≈ (1/
√

2π(W − 1)pq)× exp(−(erf−1(1− 2δ))2).

Proof. For a large W, using the de Moivre-Laplace Theorem with µ = (W − 1)q, and

σ2 = (W − 1)pq:

P (y(W − 1) = τ) =

(
W − 1

τ

)
qτp(W−1−τ) ≈ 1

σ
√

2π
exp

(
−(τ − µ)2

2σ2

)
.

Using the approximation of τ from Claim 7, we get:

P (y(W − 1) = τ) ≈ 1√
2π(W − 1)pq

exp

−[−1
2
−
√

2Wpqerf−1(1− 2δ) + q√
2(W − 1)pq

]2


≈ 1√
2π(W − 1)pq

exp[−(erf−1(1− 2δ))2].

Claim 9. ε(0) = pW and fmax(ε(0),W) = 1/(pW−1q).

Proof. When τ = 0, a false suspicion occurs if and only if all W messages are lost,

20

therefore ε(0) = pW . Let δ = ε(τ). By Lemma 4.1,

fmax(δ,W) = max

(
W

1− δ
,

1

qP (y(W − 1) = ε−1(δ))

)
= max

(
W

1− pW
,

1

qpW−1

)
.

It remains to show that W
1−pW ≤ 1

qpW−1 , i.e., that W ≤ 1−pW

qpW−1 . We prove this by induction.

For W = 1, both sides of the inequality are equal. Assume that the inequality holds for

W = k, k ∈ N. We have to prove that the inequality still holds for W = k + 1. To this

end, we subtract the inequality for W = k from the inequality for W = k + 1, and get:

1 = k + 1− k ≤ 1− pk+1

qpk
− 1− pk

qpk−1
=

1− pk+1 − p+ pk+1

qpk
=

1

pk
,

which holds for all 0 < p ≤ 1 and all k.

We are now ready to prove Lemma 4.2, which is restated below.

Lemma 4.2 (restated). For a large enough W, under the constraint of Lemma 4.1, the

expected cost for a cooperative node is minimized at τ = 0. The minimal expected cost is

W + p/q, and the fine has to satisfy fine > 1/(qpW−1).

Proof. The expected cost for a cooperative node is W + fine × ε(τ). Let δ = ε(τ). We

start by looking at the second term of the constraint in Lemma 4.1. Let

g(δ,W) ,
1

qP (y(W − 1) = ε−1(δ))
.

By Claim 8, for a large W, the asymptotic behavior of g(δ,W)× δ (for constant W, p, and

q) is:

g(δ,W)× δ ∝ δ

exp(−(erf−1(1− 2δ))2)
,

which is increasing in δ. Hence, the minimum of g(δ,W) × δ is obtained at the minimal

δ = pW , where g(δ = pW ,W)× δ = δ
pW−1q

= p
q
.

Now look at the first term of the constraint in Lemma 4.1.

Let h(δ,W) , W/(1−δ). Notice that h(δ,W)×δ = (δ×W)/(1−δ) is also an increasing

function in δ, with a minimum at δ = pW .

21

By Claim 9, we get:

fine > max{g(pW ,W), h(pW ,W)} = fmax(p
W ,W) =

1

pW−1q
.

Although Lemma 4.2 is stated (and proven) only for large values of W, we have em-

pirically observed that the result actually holds for all values of W .

Though Lemma 4.2 identifies the optimal fine in terms of overall cost, it calls for very

high fines. For example, with p = 0.1 and W = 50, the fine, according to Lemma 4.2,

should be higher than 1049. In Chapter 4.3, we illustrate some numerical examples, and

show that W has a similar influence on the cost: the higher the fine and the window size

are, the lower the expected cost for cooperative nodes is. On the other hand, with a high

W , it takes LTSM a long time to detect a non-cooperative node. Similarly, a high fine

can be detrimental for performance, especially in systems that are susceptible to Sybil

attacks, where a high fine would entail a high join cost. Thus, there is a trade-off involved

in setting these parameters.

A typical P2P application would therefore optimize its cost under additional con-

straints on the highest acceptable fine and W . Nevertheless, Lemma 4.1 requires the fine

to be greater than W/(1− ε(τ)), which is at least greater than W . Thus, not all values of

fine and W are feasible.

Let erf be the error function [38], and

τmin , qW − 0.5−
√

2pqW

√√√√− ln

(√
2π(W − 1)pq

q × fine

)
, (4.3)

δmin ,

1− erf

(√
− ln

(√
2π(W−1)pq

q×fine

))
2

. (4.4)

The following lemma shows that setting the threshold value (τ) to τmin defined above

warrants full cooperation and yields a minimal expected cost, given pre-defined W and

fine, and assuming that the constraint of Lemma 4.1 holds, which is captured using δmin

above.

Lemma 4.3. Given fine and W such that W is large, if fine > W/(1 − δmin), and

22

δmin < 0.5, then choosing τ = bτmin + 1c warrants that full cooperation is a Nash

Equilibrium and yields a minimal expected cost over all possible values of τ .

Proof. Let δ = ε(τ). Recall that the expected cost for a cooperative node is equal to

W + δ × fine. As W and fine are given constants, the expected cost is minimized,

while warranting full cooperation, by finding the smallest δ that satisfies the constraint of

Lemma 4.1:

fine > fmax(δ,W) = max

(
W

1− δ
,

1

qP (y(W − 1) = ε−1(δ))

)
The lemma’s preconditions guarantee the first constraint, which is satisfied for all

δ < 1−W/fine. Using Claim 8, the second constraint becomes:

fine >

√
2π(W − 1)pq

q exp(−(erf−1(1− 2δ))2)
,

which is decreasing in δ for δ < 0.5. Thus, from the second constraint, with δ < 0.5, we

get:

δ > δmin =

1− erf

(√
− ln

(√
2π(W−1)pq

q×fine

))
2The result for τmin is attained by substituting δmin into the expression for τ given in

Claim 7.

Notice that feasible values ofW and fine can be found numerically using Lemma 4.3.

4.3 Numerical Examples

For fixed fine and W , we compute the optimal τ using Lemma 4.3. Figure 4.1a depicts

the resulting expected cost for W = 1000 as a function of the fine for two loss probabil-

ities (p = 0.1, p = 0.01). We see that the higher the fine is, the lower the expected cost

is (as predicted by Lemma 4.2). However, choosing a fine significantly lower than the

optimal according to Lemma 4.2 is not too costly, as the expected cost decreases rather

slowly as fine increases. The reasoning behind this behavior is that for a higher fine,

23

a lower τ is sufficient to discourage selfish behavior. A lower τ results in a lower false

positive probability ,ε(τ), which decreases super-linearly in fine.

(a) Expected cost for W=1000 (b) Expected cost divided by W for the minimal

possible fine

Figure 4.1: The impact of W, fine, and p on the expected cost.

(a) False positive probability (b) Detection threshold, τ , divided by W

Figure 4.2: The effect of W.

Figure 4.1b depicts the normalized expected cost, i.e., Ecost(W, τ) divided by W , for

various window sizes, using the smallest fine satisfying the constraint of Lemma 4.1. We

see that increasing W significantly reduces the normalized expected cost. Notice that the

value for δmin as defined in (4.4) grows sub-linearly in W . Recall that the expected cost

for a cooperative node is equal to W + δ × fine. Thus, if only fine is constrained by

24

the application (and not W), then the largest W that is feasible according to Lemma 4.3

minimizes the normalized expected cost, Ecost(W, τ)/W .

The false positive probability decreases rapidly as W increases, as we can see in

Figure 4.2a. We use the smallest fine satisfying the constraint of Lemma 4.1 for each

W . The reasoning behind this behavior is that τ/W increases in W , as can be seen from

(4.3), which lowers the false positive probability. Figure 4.2b shows that the detection

threshold, τ , becomes closer and closer to W as W increases, when using the smallest

fine as described above.

Figure 4.3 depicts the smallest feasible fine, used in the calculations of Figure 4.2

above, minus W , for various window sizes. The smallest feasible fine that makes full

cooperation and fully following the protocol a Nash Equilibrium for a given W is found

numerically using Lemma 4.3. Recall that the smallest feasible fine for a given W is a

fine that satisfies the constraint of Lemma 4.1. One can see that such a fine is only slightly

larger than W . The reasoning behind this behavior is that the false positive probability,

ε(τ), decreases super-linearly in fine. Recall that according to Lemma 4.1, fine is bounded

from below by W/(1− ε(τ)).

Figure 4.3: Smallest fine satisfying the constraint of Lemma 1 minus W

25

4.4 Analysis for Request-Based Traffic

We now adapt our previous discussion to request-based traffic (such as data forwarding in

a routing protocol). Let I be an inspecting node at which we measure the counters, X and

Y, and let F be the inspected node. A request message that should trigger request-based

sending may be issued by I itself, or, in some applications, by some other node S. In any

case, I must be able to detect both the request and the response messages. We assume a

single response message per request message. Upon detecting a request message, node I

may falsely accuse F of a packet loss in two cases:

1. F does not receive the request message; or

2. F receives the request message, but I does not receive F ’s response.

Hence, the probability that I falsely accuses F is p̃ = p+ qp = 1− q2, instead of p as in

the previous chapter.

Let W be the window size (in messages). As in the previous chapter, I decides

whether a node is behaving selfishly or not at the end of each such window. The thresh-

old, τ , and the fine value that ensure full cooperation are obtained the same way as in the

previous chapter, by using p̃ instead of p.

In case more than one response is expected for a given request, the requesting node

should use a CBR monitor in conjunction with a request-based monitor. The requesting

node should begin CBR monitoring upon hearing the first response. If no response is

obtained within a timeout, the requester should re-send the request. Eventually, either a

response arrives and CBR monitoring begins, or the request-based monitor suspects the

node.

Note that in some applications there may be messages that F is asked to send by S

which are unseen by I . Such messages may safely be dropped by F without fearing

detection by I. However, in most cases, F has no way of knowing whether I has heard a

message or not. In some cases, such as a MANET in which node’s locations and radio

ranges are known, F may drop packets knowing it won’t be detected by I . On the other

hand, it may be detected by other nodes.

26

Chapter 5

Applications

In this chapter we show two examples of how LTSM can help make P2P algorithms

immune to rational selfish nodes, namely, multicast (Chapter 5.1) and MANET routing

(Chapter 5.2).

5.1 Multicast

We first focus on tree-based multicast (either wired or wireless), which is the most com-

mon multicast architecture. We follow the common practice of assuming that the multi-

cast source node is altruistic and trusted by all nodes [21, 24, 36]. The multicast protocol

disseminates messages over an overlay tree, which spans all participating nodes. One

way to build and maintain the multicast tree is using a trusted entity, such as the multicast

source [19, 32], which eliminates selfish behavior in the tree-building stage. A distributed

tree building scheme which is immune to selfish behavior (such as in [30]) can also be

used. The tree must be changed dynamically to account for topology changes, which

are common, especially in MANETs. For the remainder of this section, we assume an

external mechanism for building the multicast tree.

27

Algorithm 5.1 Monitoring Service for Tree-Based Multicast
Source

on suspicion report(P)

1: if reporter is not child of P then

2: return {ignore}
3: ask P to pay a fine

4: if not received a fine then

5: Ask parent(P) to Disconnect P

6: Reconnect P ’s sub-tree

Client Node

on join tree(P,

cur packet)

1: start monitor(P)

2: i← cur packet

on receive fine request

1: send a fine to the source

on timer(1/r)

1: if packet i received from P then

2: detected message(P)

3: forward packet to children

4: else

5: missed message(P)

6: send dummy packet to children

7: i← i+ 1

8: if is selfish(P) then

9: report P to source

10: start monitor(P)

Algorithm 5.1 employs the interface defined in Chapter 3 to monitor and punish non-

cooperative nodes. Let r be the multicast rate. For simplicity, we assume that the multicast

application must receive exactly one packet every 1/r seconds and that the packets are

numbered. A node receives the current packet number and its parent’s name from the

source when it joins a multicast tree. It then uses LTSM to monitor the traffic forwarded

by its parent. A message miss is registered if no packet is received from the parent in a

given interval. A message detection is registered otherwise. A node that misses a message

that it has to send to its children, compensates for it by sending a dummy packet instead.

We assume that the cost of sending dummy packets is the same as that of sending data

packets, and hence a selfish rational node has no reason to send dummy packets when it

does have data to send.

Once a parent P is suspected of selfish behavior by LTSM at its child C, the child

reports its suspicion to the source node (which is altruistic), and optimistically restarts

LTSM. The source then asks the suspected node to pay it a fine. In case the suspected node

does not comply, the source asks the suspect’s parent to disconnect the non-cooperative

node, and the orphan sub-tree reconnects to the spanning tree, bypassing the removed

28

node.

Note that falsely accusing a parent is not beneficial for a child. A false suspicion

merely causes the parent to pay a fine, increasing its cost, but with no benefit to the

accusing child. Moreover, if the parent fails to pay the fine, the child’s utility may decrease

due to missed data or reduced performance during the tree reconstruction phase. On

the other hand, reporting genuine suspicion is vital to ensure future service. Therefore,

adherence to the protocol is a Nash Equilibrium. Observe that a parent does not have to

behave selfishly towards all of its children. It may behave selfishly towards one or more

of its children.

In a similar way, LTSM can be integrated into mesh-based multicast solutions. For

example, EquiCast [21] uses similar threshold-based detection, and fines for readmission.

Replacing their selfishness monitor with LTSM automatically makes EquiCast robust to

packet loss.

5.2 MANET Routing

A common heuristical approach to detecting selfish behavior in a MANET is using repu-

tations. Such reputations are collected by nodes through monitoring the behavior of other

nodes. The watchdog mechanisms used in CONFIDANT [5] and later in CORE [28],

OCEAN [3] and others, use promiscuous mode to eavesdrop on neighboring nodes and

monitor packet forwarding and other network activity.

LTSM can easily be integrated into such heuristical reputation mechanisms, seam-

lessly adding resilience to lossy networks. In the watchdog mechanism, every node

keeps track of packets that flow in and out of each of its radio range neighbors. This

modus operandi is appropriate for LTSM’s tracking of request-based messages. LTSM’s

missed message(N) method can be called when a packet dropped by node N is detected,

while detected message(N) can be called when a packet is correctly forwarded by node

N . LTSM can monitor additional request-based traffic, such as route discovery or location

queries and replies, as well as constant rate traffic such as keep-alive messages.

LTSM can also be integrated into existing schemes that prove cooperation. Such exist-

ing schemes consider pairwise interactions [14, 37, 40, 41]. Recall that in such schemes,

29

one node punishes another only for selfish behavior that the latter has exhibited towards

the former. Integration with LTSM can enhance them with minimal expected costs in a

lossy network, and a redemption mechanism.

30

Chapter 6

Conclusions

P2P systems in commercial applications often operate over lossy networks and are bound

to experience selfish behavior. We have defined a general service for monitoring and dis-

couraging selfish behavior, which is applicable to a variety of P2P protocols. We have

presented such a monitoring service, called LTSM, which is suitable for networks subject

to message loss. We have mathematically analyzed LTSM, and shown how to tune its

parameters so as to encourage full cooperation, while minimizing the cost for cooperat-

ing nodes. Finally, we have shown usage examples of our service for multicast and for

MANET routing.

31

Bibliography

[1] E. Altman, A. A. Kherani, P. Michiardi, and R. Molva. Non-cooperative forwarding

in ad-hoc networks. In 4th International IFIP-TC6 Networking Conf., volume 3462,

pages 486–498, 2005.

[2] L. Anderegg and S. Eidenbenz. Ad hoc-vcg: a truthful and cost-efficient routing

protocol for mobile ad hoc networks with selfish agents. In MobiCom ’03, pages

245–259, 2003.

[3] S. Bansal and M. Baker. Observation-based cooperation enforcement in ad hoc

networks. Technical Paper, Stanford University, 2003.

[4] A. Blanc, Y.-K. Liu, and A. Vahdat. Designing incentives for peer-to-peer routing.

In INFOCOM 2005, pages 374–385, 2005.

[5] S. Buchegger and J.-Y. Le-Boudec. Performance analysis of the confidant protocol.

In MobiHoc ’02, pages 226–236, 2002.

[6] L. Buttyán and J.-P. Hubaux. Enforcing service availability in mobile ad-hoc wans.

In MobiHOC ’00, pages 87–96, 2000.

[7] L. Buttyán and J.-P. Hubaux. Nuglets: a Virtual Currency to Stimulate Cooperation

in Self-Organized Mobile Ad Hoc Networks. Technical report, EPFL, 2001.

[8] L. Buttyán and J.-P. Hubaux. Stimulating cooperation in self-organizing mobile ad

hoc networks. MONET, 8(5):579–592, 2003.

32

[9] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh.

Splitstream: high-bandwidth multicast in cooperative environments. In SOSP ’03,

pages 298–313, 2003.

[10] S. Chien and A. Sinclair. Convergence to approximate nash equilibria in congestion

games. In SODA ’07: Proceedings of the eighteenth annual ACM-SIAM symposium

on Discrete algorithms, pages 169–178, Philadelphia, PA, USA, 2007. Society for

Industrial and Applied Mathematics.

[11] B. Cohen. Incentives build robustness in bittorrent. In 1st Workshop on the Eco-

nomics of Peer-to-Peer Systems, 2003.

[12] J. Dong, K. E. Ackermann, B. Bavar, and C. Nita-Rotaru. Mitigating attacks against

virtual coordinate based routing in wireless sensor networks. In WiSec ’08, pages

89–99, 2008.

[13] J. R. Douceur. The sybil attack. In IPTPS ’01, pages 251–260, 2002.

[14] M. Félegyházi, J.-P. Hubaux, and L. Buttyán. Nash equilibria of packet forwarding

strategies in wireless ad hoc networks. IEEE Transactions on Mobile Computing,

5(5):463–476, 2006.

[15] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.

[16] C. Gkantsidis and P. Rodriguez. Network coding for large scale content distribution.

In INFOCOM 2005, pages 2235–2245, 2005.

[17] A. Habib and J. Chuang. Service differentiated peer selection: An incentive mech-

anism for peer-to-peer media streaming. In Internation Workshop on Quality of

Service (IWQoS ’04), pages 171–180, 2004.

[18] J. Hu. Cooperation in mobile ad hoc networks. Technical report, CS Department,

Florida State University, 2005.

[19] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. James W. O’Toole.

Overcast: reliable multicasting with on overlay network. In OSDI’00, 2000.

33

[20] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless networks.

In Mobile Computing, pages 153–181. Kluwer Academic Publishers, 1996.

[21] I. Keidar, R. Melamed, and A. Orda. Equicast: scalable multicast with selfish users.

In PODC ’06, pages 63–71, 2006.

[22] L. M. Leemis and K. S. Trivedi. A comparison of approximate interval estimators

for the bernoulli parameter. The American Statistician, 50:63–68, 1996.

[23] H. C. Li, A. Clement, M. Marchetti, M. Kapritsos, L. Robison, L. Alvisi, and

M. Dahlin. FlightPath: Obedience vs choice in cooperative services. In OSDI’08,

2008.

[24] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, and M. Dahlin. Bar

gossip. In OSDI ’06, pages 191–204, 2006.

[25] J. Li, J. Jannotti, D. S. J. D. Couto, D. R. Karger, and R. Morris. A scalable location

service for geographic ad hoc routing. In MobiCom ’00, pages 120–130, 2000.

[26] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior in mobile

ad hoc networks. In MobiCom ’00, pages 116–123, 2000.

[27] R. Melamed, I. Keidar, and Y. Barel. Octopus: A fault-tolerant and efficient ad-hoc

routing protocol. In SRDS’05, pages 39–49, 2005.

[28] P. Michiardi and R. Molva. Core: a collaborative reputation mechanism to enforce

node cooperation in mobile ad hoc networks. In Proceedings of the IFIP TC6/TC11

Sixth Joint Working Conference on Communications and Multimedia Security, pages

107–121, 2002.

[29] P. Michiardi and R. Molva. A game theoretical approach to evaluate cooperation

enforcement mechanisms in mobile ad hoc networks. In Modeling and Optimization

in Mobile, Ad Hoc and Wireless Networks, pages 3–5, 2003.

[30] T.-W. Ngan, D. S. Wallach, and P. Druschel. Incentives-compatible peer-to-peer

multicast. In 2nd Workshop on the Economics of Peer-to-Peer Systems, 2004.

34

[31] G. Pei, M. Gerla, and X. Hong. Lanmar: landmark routing for large scale wireless

ad hoc networks with group mobility. In MobiHoc ’00, pages 11–18, 2000.

[32] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: an application level

multicast infrastructure. In USITS’01, 2001.

[33] H. V. Poor. An introduction to signal detection and estimation (2nd ed.). Springer-

Verlag New York, Inc., New York, NY, USA, 1994.

[34] B. Raghavan and A. C. Snoeren. Priority forwarding in ad hoc networks with self-

interested parties. In Workshop on Economics of Peer-to-Peer Systems, 2003.

[35] P. Rodriguez, S.-M. Tan, and C. Gkantsidis. On the feasibility of commercial, legal

p2p content distribution. SIGCOMM Comput. Commun. Rev., 36(1):75–78, 2006.

[36] M. Sirivianos, J. H. Park, X. Yang, and S. Jarecki. Dandelion: Cooperative content

distribution with robust incentives. In USENIX, pages 157–170, 2007.

[37] V. Srinivasan, P. Nuggehalli, C.-F. Chiasserini, and R. R. Rao. An analytical ap-

proach to the study of cooperation in wireless ad hoc networks. IEEE Transactions

on Wireless Communications, 4(2):722–733, 2005.

[38] E. W. Weisstein. Mathworld–a wolfram web resource. wolfram research, inc.

http://mathworld.wolfram.com, 1998-2007.

[39] Y. Yoo, S. Ahn, and D. P. Agrawal. A credit-payment scheme for packet forwarding

fairness in mobile ad hoc networks. IEEE ICC, 5:3005–3009, 2005.

[40] W. Yu and K. J. R. Liu. Game theoretic analysis of cooperation stimulation and secu-

rity in autonomous mobile ad hoc networks. IEEE Trans. Mob. Comput., 6(5):507–

521, 2007.

[41] W. Yu and K. J. R. Liu. Secure cooperation in autonomous mobile ad-hoc networks

under noise and imperfect monitoring: A game-theoretic approach. IEEE Transac-

tions on Information Forensics and Security, 3(2):317–330, 2008.

35

[42] S. Zhong, J. Chen, and Y. R. Yang. Sprite: A simple, cheat-proof, credit-based

system for mobile ad-hoc networks. In INFOCOM, 2003.

36

דיכוי אנוכיות ברשתות שיתופיות

עם איבודי הודעות

אלכסנדר פרידמן

דיכוי אנוכיות ברשתות שיתופיות

עם איבודי הודעות

חיבור על עבודת גמר

לשם מילוי חלקי של הדרישות לקבלת התואר

בהנדסת חשמל מגיסטר למדעים

אלכסנדר פרידמן

הוגש לסנט הטכניון – מכון טכנולוגי לישראל

2009 חיפה פברואר שבט תשס"ט

עבודת הגמר נעשתה בהנחיית פרופסור חבר עידית קידר

בפקולטה להנדסת חשמל

הבעות תודה

 , פרופ"ח עידית קידר, על כך שהעשירה את הידע שלי, קראה אינספור טיוטותאני רוצה להודות למנחה שלי

 ותמיד הייתה פתוחה לשאלותי. סבלנותה האינסופית והנחיתה הצמודה הם אלו אשר הביאוני לסיים בהצלחה

מחקר זה.

אני מודה לחברתי רינת על שגרמה לי לחייך לאורך כל תקופת לימודי.

תודה אחרונה ומיוחדת למשפחתי ולחברי על תמיכתם ועידודם לאורך השנים.

 אני מודה לטכניון על התמיכה הכספית הנדיבה בהשתלמותי

תקציר

משמשים מגוון רחב של יישומים, כגון ניתוב ברשתות אל-חוטיותPeer-to-Peerפרוטוקולי
) ורשתות שיתוף קבצים.P2P multicast), הפצת מידע בשידור חי ללא תשתית (MANETניידות (

 רשתות התקשורת אשר מעליהן פועלים פרוטוקולים מסוג זה נוטות לסבול מאיבוד חבילות. לדוגמה, קצב
. יתר על כן, מערכות הפצת מידעMANETsאיבוד חבילות גבוהה אופייני לרשתות אלחוטיות כמו

 בשידור חי, אשר מפיצות קול או תמונה (סרט), משתמשות לרוב בפרוטוקולי תקשורת בלתי אמינים,
, כיוון שאפליקציות אלו מוכנות לסבול איבוד מידע חלקי.UDPכגון

מספקים את כל המשאבים הנדרשים לפעילות המערכת; כלP2Pהצמתים החברים במערכת
 צומת צריך לתרום זיכרון, כוח עיבוד, רוחב פס ואנרגיה. כיוון שרוב הצמתים ברשתות אל-חוטיות ניידות

מסחריות קיימתP2Pמופעלים על-ידי סוללות, אנרגיה היא משאב יקר במערכות מסוג זה. במערכות
 סבירות גבוהה מאוד לכך שצמתים יפגינו התנהגות אנוכית, אשר יכולה להתבטא בסטייה מהפרוטוקול
 לצורך קיצוץ עלויות. מסיבה זו חשוב שפרוטוקולים אלו ימשיכו לעבודה בצורה ובביצועים תקינים, גם

כאשר צמתים משתמשים בגרסאות אנוכיות של הפרוטוקול.

 (כגוןP2Pמחקר רב הוקדש בשנים האחרונות להתמודדות עם התנהגות אנוכית במגוון מערכות
 ם נותרו ללא מענה. בעבודות, הפצת מידע ושיתוף קבצים). למרות זאת, אתגרים רביMANETניתוב ב-

מהסוגים הנ"ל, אלא התמקדוP2Pקודמות, למשל, לא הציגו או השתמשו בדמיון הרב בין פרוטוקולי
 , למשל,MANETבפרוטוקולים ספציפיים ובסביבה ספציפית אחת. במחקרים אודות פרוטוקולי ניתוב ב-

המכריע של רובם הפרוטוקולים. הרב שבין הדמיון למרות אחד, מסוים ניתוב בפרוטוקול התמקדו
) יותרDSRהמחקרים בחרו בניתוב מקור דינמי והותירו פרוטוקולים אחרים, בעלי תכונות טובות (

 ואחרים), ללא פתרון. אתגר נוסף אשרLANMAR, GLS, Octopusברשתות דינמיות גדולות (כגון
 לא זכה להתייחסות במרבית העבודות הקודמות הינו סוגיית איבודי ההודעות ברשתות תקשורת. ניטור
עם להתמודד הניטור מנגנון על כאשר יותר משמעותית, ומאתגר אנוכית קשה התנהגות וזיהוי של
 איבודים בלתי צפויים של הודעות. מנגנוני ניטור קונבנציונליים המתוארים בספרות כיום יאשימו צמתים
 תקינים באי שליחת הודעות, ההולכות למעשה לאיבוד בתווך. לבסוף, עבודות קודמות לא כימתו את
 היחסים אשר צריכים להתקיים בין פרמטרי המערכת, כגון המחיר אותו משלם צומת משתף פעולה,
 העונש על אי שיתוף פעולה וההחלטה מתי להעניש צומת, על מנת להשיג שיתוף פעולה מלא במחיר

(ממוצע) מינימלי לכל צומת.

 על-P2Pבתזה זו אנו נתייחס לשלוש הבעיות הנ“ל. אנו נמנף את הדמיון הרב בין פרוטוקולי
זה. לזיהוי התנהגות אנוכית במגוון פרוטוקולים מסוג ניטור אבסטרקטי המתאים מנת להגדיר ממשק
 ממשק זה יאפשר לכל צומת לנטר צמתים אחרים ולהחליט מתי להאשים צמתים בהתנהגות אנוכית. לאחר

) המממש ממשק זה.LTSMמכן, נציג מנטר אנוכיות אשר עמיד באיבודי הודעות (

I

 המורכבת מצמתים כך שכל צומת הוא אנוכי ורציונלי. כלומר,P2Pהמודל שלנו מניח מערכת
 כל צומת רוצה להשתתף בפרוטוקול תוך בחירת אסטרטגיה אשר ממזערת את מחיר השתתפותו. מרחב
 האסטרטגיות מורכב מההחלטה אילו חבילות להעביר מתוך החבילות הנדרשות על-ידי הפרוטוקול. צומת
מוגדר כמשתף פעולה במידה והוא שולח את כל החבילות אותן הוא נדרש לשלוח על-פי הפרוטוקול ולא-

משתף פעולה אחרת. לשם פשטות, אנו מניחים כי מחיר שליחת כל החבילות זהה.

 צמתים יכולים להצטרף ולהתנתק מהמערכת באופן דינמי. ניתן לנתק צמתים מהמערכת, למשל
 בשל אנוכיות, וכן ניתן להרשות לצמתים שהואשמו באנוכיות לחזור למערכת אחרי תשלום קנס המוגדר

יאלץ צומתfine=7על-ידי האפליקציה. הקנס מוגדר במונחים של מחיר שליחת הודעות. למשל, עבור
 חשוד לשלוח שבע חבילות עונשין על-מנת לחזור ולהתחבר למערכת. תשלום עבור התחברות למערכת

 , כיוון שניתן לנצל לרעה כניסה ללא תשלום במערכותSybilנדרש במערכות בהן אפשריות התקפות
אלו.

בפרוטוקול ההודעות את מסווגים מורכבתP2Pאנו הראשונה הקטגוריה קטגוריות. לשתי
 מהודעות הנשלחות בקצב קבוע וידוע מראש, הודעה אחת לכל יחידת זמן נתונה. דוגמאות לתעבורה מסוג

). שטף קבוע אפשרי בסביבהCBR) וכן חבילות מידע בשטף קבוע (keep-aliveזה הן חבילות חיות (
 עם איבודי הודעות אם הפרוטוקול מחייב כל צומת לפצות על חבילות שאבדו, על-ידי שליחת חבילות דמה
בתגובה נשלחות אלו הודעות בקשות. מונחות מהודעות מורכבת השנייה הקטגוריה במקומן. ריקות
 לקבלת הודעות אחרות המגיעות בזמנים בלתי צפויים מראש, כגון העברה של הודעות מידע בפרוטוקול

ניתוב או שליחת חתיכת מידע בתגובה לבקשה בפרוטוקול הפצת תוכן.

סובלת מאיבודי הודעות בלתי תלוייםP2Pאנו מניחים כי הרשת מעליה פועל פרוטוקול ה-
 . חשוב לשים לב כי צומת המזהה איבוד של חבילהp) בהסתברות איבוד i.i.dומפולגים בצורה אחידה (

 אותה הוא בעצמו שלח יכול לחזור על שליחתה על-מנת שלא להיחשד באנוכיות. מסיבה זו נגביל את
תשומת לבנו להנחה כי שצומת אינו מסוגל לזהות איבודים של חבילות שהוא בעצמו שולח.

המתודה כדלהלן: הוא שלנו הניתור מנגנון של על-ידיstart_monitorהממשק נקראת
 האפליקציה כאשר צומת חדש נצפה לראשונה או כאשר צומת חשוד מוחזר למערכת לאחר תשלום קנס;

 נקראת כאשר הודעה שהאפליקציה אמורה לקבל אינה מגיעה בזמן והמתודהmissed_messageהמתודה
detected_message ,נקראת כאשר הודעה זו מתקבלת בזמן. לבסוף is_selfishמציינת האם צומת

מסוים חשוד באנוכיות.

ה- נחשדLTSMמנגנון כל צומת מנוטר. צומת בכל צומת, שומר רשומה עבור , אשר רץ
הודעות בחלון של τבאנוכיות אם הוא שולח פחות מ- Wהודעות, כאשר τהוא סף הגילוי. החלונות

 הן מספרτ ו- W. היחידות של Wבפרוטוקול אינם חופפים – כל המונים מתאפסים בסוף כל חלון בגודל
הודעות.

II

 . הרשומה של כל צומת מנוטר מכילה שני מונים4.1 מתואר באלגוריתם LTSMאלגוריתם ה-
 , סופר אתX, המציין האם הצומת המנוטר נחשד באנוכיות. המונה הראשון, is_selfishומשתנה בוליאני,

 , סופר את מספר החבילות שהתקבלו בחלוןYמספר החבילות הצפויות בחלון הנוכחי. המונה השני,
. מתודת ה-false ל-is_selfish מאפסת את המונים הנ"ל וקובעת את start_monitorהנוכחי. מתודת ה-

is_selfish-מחזירה את המשתנה הבוליאני המתאים. מתודת ה missed_messageמקדמת את החלון על
 . ההחלטה האם צומת מנוטר נחשד באנוכיות מתקבל בסוף החלון עבור אותו צומת,Xידי הגדלת המונה

 . אם הצומת אינו נחשד, אזי כל המונים מאופסים וחלון חדש מתחיל. לבסוף,W מגיע ל-Xכאשר המונה
מגדילה את המונה detected_messageהמתודה Y-ולאחר מכן מקדמת את החלון כפי שנעשה ב ,

missed_messageחשוב לשים לב שהמונים אינם מתקדמים עבור צומת חשוד, וכן כי צומת כזה אינו .
מקבל שרות, אלא אם כן הוא משלם קנס.

דוגמאות שימוש כלליות של 4.2אלגוריתם מתאר שתי LTSM דוגמה אחת עבור ,CBR
נקראה עבור כל צומת.start_monitorודוגמה נוספת עבור תעבורה מונחית בקשות. אנו מניחים כי

זמן מוגדר מראש; CBRעבור פרק בכל הודעה מוודא שמגיעה האלגוריתם ,detected_message
 נקראת אחרת. באופן דומה, עבור תעבורה מונחיתmissed_messageנקראת אם הודעה כזו אכן מגיעה,

נקראת אם התגובהmissed_messageבקשות, מוגדר מרווח זמן מסוים מרגע קבלת הבקשה, כך ש-
 נקראת אחרת. צומת שנחשד באנוכיות אינו מקבלdetected_messageהצפויה אינה מגיעה בזמן זמן ו-
שרות עד למועד תשלום הקנס.

 אחת התרומות המרכזיות של תזה זו היא כימות מתמטי של הקשרים בין גודל הקנס לעיל,
 חת הודעה בודדת), ההסתברות לאיבוד הודעה, ההחלטה עלהמחיר של ביצוע פעולה בסיסית (כגון שלי

) ותוחלת המחיר עבור צמתים משתפי-פעולה וצמתיםτהמועד שבו יש להעניש צומת (ערך הסף לעיל,
 על-מנת ששיתוף פעולהLTSMשאינם משתפי-פעולה. אנו מראים כיצד ניתן לקבוע את הפרמטרים של

 , תוך כדי מינימיזציה של תוחלת המחיר שלNashמלא ודבקות בפרוטוקול יהוו נקודת שיווי משקל
צמתים תקינים אשר משתפים פעולה.

לבסוף אנו מראים שימושים של ממשק הניטור המתואר לעיל בפרוטוקולים קיימים להפצת מידע
)multicast) ניידות עםLTSM). שימוש ב-MANET) ובפרוטוקולים לניתוב ברשתות על-חוטיות

 הפרמטרים המתאימים מאפשר להוסיף באופן אוטומטי תמיכה בהתמודדות עם איבודי הודעות למנגנוני
ההתמודדות עם התנהגות אנוכית בפרוטוקולים הנ"ל.

III

