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Abstract

In this thesis, we tackle search effectiveness of distributed search (DiS), and in particular

explore tradeoffs between search quality and other considerations. We explore three sce-

narios: tail-tolerant distributed search, similarity search over endless data-streams, and

network-efficient similarity search in peer-to-peer networks. Distributed search engines

typically allow missing some of the search results for various reasons, which degrades

search quality. For example, in the scenarios that we explored, search quality degrades

due to late responses, capacity limitations, and limited network bandwidth. We pro-

pose algorithms that improve search quality by better exploiting the infrastructure’s re-

sources, namely, index redundancy, space capacity, and network cost. We achieve im-

provements by considering the internals of the search algorithms in use, rather than

using them as black boxes.

We evaluate our algorithms both theoretically and empirically, by formulating a DiS

algorithm’s success probability and measuring its empirical recall. The success probability

of a DiS algorithm captures the probability that it finds a query’s search result. For mea-

suring recall, we consider centralized search as our ground truth, and measure an algo-

rithm’s recall with respect to the search results of a given centralized search algorithm.

We measure recall by conducting empirical evaluations using real-world datasets. We

compare our algorithms to prior art and show, both theoretically and empirically, that

they increase search quality in the three scenarios that we examined.

The topics covered in this thesis are summarized as follows.

Tail-tolerant distributed search. We introduce a novel approach for constructing and

searching a distributed index with redundancy when some query results are missed due

to high tail latency. We propose rSmartRed, an optimal strategy for selecting the number

of node replicas to search over at runtime, which considers each node’s likelihood to

contain results that are relevant to the query, as well the probability to miss its results

due to high latency. In addition, when feasible, we propose to replace Replication with

Repartition, which constructs independent index instances instead of exact copies. Our

tail-tolerant distributed search improves search effectiveness when results are omitted

due to a high latency compared to naı̈vely using Replication as a black box.



2 Abstract

Similarity search over endless data-streams. We present Stream-LSH, a similarity search

algorithm that uses a bounded index for indexing unbounded data. We propose a ran-

domized policy for dynamically maintaining items in the index, which takes into account

items’ age, quality, and popularity attributes. We show that Stream-LSH better exploits

capacity resources which improves search effectiveness compared to prior art.

Efficient similarity search in peer-to-peer networks. We present NearBucket-LSH, an

effective algorithm for similarity search in large-scale distributed online social networks

organized as peer-to-peer overlays. As communication is a dominant consideration in

distributed systems, we focus on minimizing the network cost while guaranteeing good

search quality. We decrease the network cost by considering the internals of the similarity

search and the peer-to-peer architecture, and harnessing their properties to our needs.
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Chapter 1

Introduction

Search has become a popular feature, ubiquitously used by both end users and applica-

tions. Users use commercial search engines on a daily basis, searching for data that sat-

isfies their information needs. Applications, such as recommendation applications [14],

use search as a basic primitive inside their algorithms.

In this thesis, we focus on distributed search (DiS), which is the common implemen-

tation of today’s search in large scale, commercial search engines [21, 30, 27, 76, 40, 51,

94, 53]. DiS distributes the search service among up to thousands of nodes, commonly

located within a datacenter. We also consider DiS implementations over a peer-to-peer

network (P2P) [26, 37, 71, 66], which are fully decentralized and extremely scalable dis-

tributed systems.

The holy grail of search algorithms is providing high search quality to clients. The

main aspect of search is the ability to retrieve search results that are relevant to the query.

But modern search systems are interested in data attributes beyond relevancy, such as

temporal attributes [55, 31]. These are in particular of interest to applications that search

over streams of social and news data [33]. In such contexts, we extend search quality to

consider age, quality, and popularity attributes of the data.

Although search quality is of top importance to clients, returning the entire result

list of a query is sometimes inefficient, costly, or infeasible. Therefore, DiS systems com-

monly use approximate search, which allows missing some of the search results, at the cost

of degrading search quality. For instance, searching the entire dataset may be costly in

terms of the network cost [19] or load on the nodes [74], and so DiS often searches only

a subset of the nodes, potentially missing some the query’s results [30]. Another rea-

son for returning approximate results is missing responses: waiting for responses from

slow nodes entails a high search latency, which implies direct loss in revenue [53, 25, 81].

Therefore, DiS systems typically ignore late responses [51, 40] and thus miss some of the

query’s results. A third example arises when searching over an unbounded data stream,

where indexing the entire data is infeasible due to capacity limitations, and thus, only a

subset of the documents are indexed and searched [83].
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In this thesis, we tackle a number of fundamental tradeoffs between the search sys-

tem’s available resources and the search quality it provides. We consider three domains,

and address search quality degradation due to late responses, capacity limitations, and

limited network bandwidth. We improve search quality in these scenarios by better uti-

lizing the system’s resources.

In Chapter 3, we address tail-tolerant distributed search. Large-scale DiS systems

commonly encounter the high tail latency phenomenon, in which responses from nodes

sometimes take excessively long to arrive. In order to provide a timely response, DiS

typically sets strict timeouts and ignores late responses [51, 40], which degrades search

quality. A common approach for mitigating response misses is to use Replication, which

constructs and searches multiple copies of the index partition [21, 1, 8, 53, 94, 51, 88, 40,

48, 42, 30].

We observe that in the context of DiS, searching multiple replicas can be waste-

ful [88, 53, 94, 51, 40], most notably when response misses are infrequent. We intro-

duce two improvements over prior art: 1) rSmartRed, an optimal algorithm for searching

over a replicated index, and 2) Repartition, a randomized alternative to Replication which

constructs non-exact partition copies. Our tail-tolerant DiS decreases the resource waste

induced by Replication and thus improves search quality.

In Chapter 4, we address similarity search over endless data streams such as social

posts and online news. Here, keeping and searching the entire data is not feasible, as

the data is unbounded while capacity resources are bounded [73, 83, 70, 65]. We devise

Stream-LSH, a time-sensitive similarity search algorithm for data-streams, which bounds

the index size in expectation. Stream-LSH considers the age, quality, and dynamic popu-

larity attributes of the data, and better exploits capacity resources in a way that improves

search quality.

In Chapter 5, we address efficient similarity search in peer-to-peer networks. Here,

communication cost is a dominant factor thus searching the entire P2P network is inef-

ficient [50, 19]. We present NearBucket-LSH, a network-efficient similarity search algo-

rithm, which harnesses the P2P network architecture in order to increase search quality

for a given communication cost.

We measure search quality of a DiS algorithm by comparing its results to the results

of a centralized search, which searches the entire data. In particular, we consider cen-

tralized search as our ground truth [74, 64, 42]. We evaluate our algorithms using the

following theoretical and empirical search quality metrics [64]:

Success probability analytically formulates the probability that a DiS algorithm finds a

particular document that is relevant to a given query. A document is considered

relevant to the query, if it appears in the query’s top-m results according to the

centralized search algorithm.

Recall empirically measures the fraction of documents that a DiS algorithm retrieves

from a query’s top-m results of the centralized search.
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We provide analyses of our algorithms as well as empirical studies using real-world

datasets and show that they improve search quality compared to prior art.
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Chapter 2

Background

In this chapter, we provide background that is required throughout this thesis. We define

exact search and approximate search, and the search quality metrics that we use. We then

overview similarity search and Locality Sensitive Hashing (LSH).

2.1 Exact and Approximate Search

The goal of a search system is to retrieve relevant documents to a given query from a

given document collection D [67]. Documents and queries are typically represented by

weighted vectors in some high d-dimensional vector space V = (R+
0 )

d. Typically, a

search system consists of two basic primitives:

Indexing pre-processes D and indexes the documents into a persistent data structure

called inverted index, which we refer to shortly as index in this thesis.

Query processing uses the index to retrieve a list of documents ranked according to

their estimated relevance to the query.

Given a query q, an exact search algorithm A searches the entire document collection

D, and returns a ranked list of documents, Iq ⊆ D. In this thesis, we consider central-

ized search, which is deployed on a single machine and searches the entire document

collection, as our ground truth exact search.

Exhaustively searching over the entire document collection is sometimes inefficient,

costly, or infeasible. Thus, Given a query q, an approximate search algorithm, Â, searches

a subset of D, returning an approximation Îq ⊆ D of Iq.

Approximate search induces degradation in search quality, as some of q’s results (i.e.,

documents in Iq) are missing from Îq. We define a theoretical and an empirical search

quality metrics for measuring the quality of approximate search algorithms.

Quality Metrics We theoretically analyze the quality of an approximate search algo-

rithm through its success probability (SP):
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Definition 2.1.1 (Success Probability). Given a query q and a unique document dq ∈ Iq,

SP(Â, q) is the probability over success and failure that Â successfully finds dq.

We empirically measure the search quality of an approximate search algorithm Â

using the recall metric. Recall measures the fraction of search results that Â retrieves,

with respect to the search results of an exact search algorithm A:

Definition 2.1.2 (Recall). The recall of an approximate search algorithm Â for query q is defined

by

Recall(Â, q) ,
| Îq ∩ Iq|

|Iq|
.

Note that Recall(Â, q) ∈ [0, 1]. We empirically measure the search quality of Â,

Recall(Â), by averaging Recall(Â, q) over all queries q.

2.2 Similarity Search

Given a subset of vectors, U ⊆ V, where V = (R+
0 )

d is some high d-dimensional vector

space, similarity search is the task of finding vectors in U that are similar to some query

vector q ∈ V [35].

Similarity search is based on a similarity function, which measures the similarity be-

tween two vectors, u, v ∈ V [35]:

Definition 2.2.1 (similarity function). A similarity function sim : V ×V → [0, 1] is a func-

tion such that ∀u, v ∈ V, sim(u, v) = sim(v, u) and sim(v, v) = 1.

The similarity function returns a similarity value within the range [0, 1], where 1 de-

notes perfect similarity, and 0 denotes no similarity. We say that u is s-similar to v if

sim(u, v) = s.

A commonly used similarity function for textual data is angular similarity [83, 73],

which is closely related to cosine similarity [32, 35]. The angular similarity between two

vectors u, v ∈ V is defined as:

sim(u, v) = 1−
θ(u, v)

π
, (2.1)

where θ(u, v) = arccos( u·v
‖u‖·‖v‖

) is the angle between u and v.

2.3 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) [52, 47] is a widely used approximate similarity search

algorithm for high-dimensional spaces, with sub-linear search time complexity. LSH

limits the search to vectors that are likely to be similar to the query vector instead of

linearly searching over all the vectors. This reduces the search time complexity at the

cost of missing similar vectors with some probability.
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LSH uses hash functions that map a vector in the high dimensional input space (R+
0 )

d

into a representation in a lower dimension k << d, so that the hashes of similar vectors

are likely to collide. LSH executes a pre-processing (index building) stage, where it as-

signs vectors into buckets according to their hash values. Then, given a query vector,

the similarity search algorithm computes its hashes and searches vectors in the corre-

sponding buckets. The LSH algorithm is parametrized by k and L, where k is the hashed

domain’s dimension, and L is the number of hash functions used, as explained below.

Formally [32]: a locality sensitive hashing with similarity function sim is a distribution on

a family H of hash functions on a collection of vectors, h : V → {0, 1}, such that for two

vectors u, v,

Prh∈H [h(u) = h(v)] = sim(u, v). (2.2)

In order to increase the probability that similar vectors are mapped to the same bucket,

the algorithm defines a family G of hash functions, where each g(v) ∈ G is a concatena-

tion of k functions chosen randomly and independently from H. In the case of angular

similarity, g : V → {0, 1}k, i.e., g hashes v into a binary sketch vector, which encodes v in

a lower dimension k. For two vectors u, v,

Prg∈G [g(u) = g(v)] = (sim(u, v))k, (2.3)

for any randomly selected g ∈ G. The larger k is, the higher the precision.

Figure 2.1 illustrates LSH.

In order to mitigate the probability to miss similar items, the LSH algorithm selects L

functions randomly and independently from G. The item vectors are now replicated in L

hash tables Hi, 1 ≤ i ≤ L. Upon query, search is performed in L buckets. This increases

the recall at the cost of additional storage and processing.
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Figure 2.1: Locality Sensitive Hashing (LSH) illustration.



Chapter 3

Tail-Tolerant Distributed Search

Commercial search engines serve tens of thousands of online queries a second, covering

corpora with billions of documents. In order to scale with the massive data, a search

service is typically deployed on a cluster of nodes, which jointly implement distributed

search (DiS) [29, 21, 30, 27, 76, 53, 94, 51, 40]. A common DiS approach is to partition the

documents into subsets called shards, where each shard is assigned to a node in which it

is locally indexed and searched [21, 30, 27, 40]. In order to reduce the computational cost,

it is common to employ approximate search [30, 74, 42, 29, 53, 94, 51, 40], whereby queries

are sent to only a subset of the shards that are deemed most likely to satisfy the query.

Search providers nowadays aim to deliver results to the client within a few hundreds

of milliseconds, expecting processing times of tens of milliseconds from the back-end

search service [2, 5, 51, 40]. Unfortunately, responses from nodes may sometimes take

excessively long to arrive; this occurs due to many reasons, including network or server

load, background processing, misconfiguration, crashes, etc. This phenomenon is called

the tail latency problem – the problem that tail (high percentile) latencies are much larger

than the average latency [53, 94, 51, 40]. Given that an increase in search response time

directly implies loss in revenue [53, 25, 81], search engines typically set strict timeouts

and ignore late responses [51, 40]. Consequently, some of the relevant results are missed,

entailing degradation of search quality [53, 51, 40, 42].

Because in large data centers high tail latencies are the norm [53, 40, 94, 51, 88], com-

mercial search engines often deploy shards over a replicated storage layer, which, to

guarantee timely responses, directs queries to all replicas of the requested shard [21, 1,

8, 53, 88, 40, 48, 42, 30]. Although Replication is the standard approach to building fault-

tolerant services [18], we observe that in the context of search it is not ideal. This is

because the challenges in the two cases are different: whereas classical fault-tolerance is

concerned with services that are either available or unavailable, in search, the quality of

the results is of essence. In this context, accessing multiple replicas of the same shard can

be wasteful [88, 53, 40], most notably when result misses are infrequent; a better use of

resources could be accessing additional shards instead of additional copies of the same
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shard.

In this chapter we consider tail-tolerance [40] as a first class citizen in distributed

search design. We study the problem of tail-tolerant distributed search, whose goal is to

maximize search quality when responses are missed due to high tail latencies. We sug-

gest two improvements over the standard approach. First, we present rSmartRed, an

optimal selection scheme for replicated distributed search indexes. Given a query, rS-

martRed considers each shard’s probability to satisfy the query, as well as the probability

to miss the shard’s results, in determining the number of replicas to select per shard. Sec-

ond, when feasible, we propose to employ Repartition, an alternative to Replication that

reduces the waste due to searching redundant shards. Repartition randomly constructs

independent partitions of the index instead of exact copies.

Following the seminal work of Lv et al. [64], we use success probability and recall met-

rics for measuring search quality. We analyze the success probability to find a document

relevant to a given query using different DiS algorithms; we prove that rSmartRed’s se-

lection scheme is optimal for Replication, and that Repartition improves over Replication

for any selection scheme. We confirm our analysis by conducting an empirical study us-

ing the Reuters RCV1 and Livejournal real-world datasets. Our experiments show that

rSmartRed achieves higher recall than techniques used today. We further show the su-

periority of Repartition over Replication when excessive latencies are infrequent.
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3.1 Related Work

Fault-tolerant distributed systems have been extensively explored in the literature and

standard textbooks, e.g., [18]. This line of work typically considers a binary availability

model, where the service is either available or unavailable, whereas distributed search’s

availability can be captured by a finer-grain notion of search quality.

A wealth of prior art explores distributed search (refer to [29, 30] for a comprehen-

sive overview), where the index is partitioned into shards and distributed among multi-

ple nodes. At runtime, a broker handling the query distributes it to nodes, awaits their

responses, aggregates the responses, and sends the query result to the user. The bro-

ker may employ search over all shards, but to avoid excessive computation, it is more

common to use approximate search [29, 30, 57, 47, 53], which selects a subset of the

shards to search over. The selection of shards to search over is either random [30, 53], or

based on the estimated likelihood of the shards to contain results that are relevant to the

query [29, 47].

Most existing academic work on distributed search does not consider tail-tolerance.

Nevertheless, high tail latency is a serious problem in practice, and so industrial so-

lutions must take it into consideration [40, 1, 8, 53, 94, 51]. The ubiquitous approach

to dealing with high tail latencies is truncating the tail, namely, responding to the user

without waiting for responses from all nodes [40, 53, 94, 51, 88]. The rationale behind this

approach is that “returning good results quickly is better than returning the best results

slowly” [40]. To compensate for the omitted responses, it is common to use redundancy

in the form of Replication [21, 1, 8, 53, 88, 40, 48, 42, 30]. Note that commercial search

engines [40, 53, 94, 51] apply engineering decisions (typically architecture-specific) and

other optimizations to reduce the tail latency of the search workflow; such strategies are

orthogonal to our research, and are not sufficient by themselves [40, 88]. Replication

complements these optimizations, and is the focus of this work.

Prior art observed that Replication incurs resource waste due to duplicate search op-

erations [88, 53, 40]. Commercial search engines [40, 53] decrease this waste by com-

bining two techniques. First, they only re-issue a search request for slow shards, and

second, they cancel ongoing duplicate requests upon learning that they are not likely

to contribute much to the search quality. Although these strategies were shown to be

useful to some extent, the approach of simultaneously sending multiple copies of each

request is still commonly used despite the waste it incurs [88, 40]. In this paper, we

tackle Replication’s inherent waste using two improvements: First, we propose a simple

optimal algorithm for adjusting the replication level for each shard when processing a

given query. Second, we propose an alternative approach to redundancy, which further

decreases waste.
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3.2 Model and Problem Definition

In this section, we present the distributed search (DiS) model that we consider. We then

present the problem of search quality degradation due to high tail latency in DiS, and

the search quality metrics that we use.

3.2.1 Distributed Search

Centralized search, deployed on a single machine, does not scale with the size of the

data [21, 30], and so is not used in practice for searching large data collections. We con-

sider a DiS algorithm which approximates a given centralized search algorithm, as we

further detail. Distributed search scales the search service by distributing indexing and

query processing over multiple nodes [29, 21, 30, 27, 76, 53, 94, 51, 40]. We consider

the common approximate search approach for distributed query processing [30, 74, 42,

29, 53, 94, 51, 40], which in order to reduce computational costs, submits each query to

only a selected subset of the nodes. Note that in order to avoid missing important (e.g.,

popular) results, search engines commonly dedicate certain nodes to storing important

documents, which are always searched [30, 27]; we consider here an approximate search

over the rest of the nodes.

We assume a centralized search algorithm is given as a black box. We assume a clus-

ter of n > 1 nodes connected by a fast network. We consider the common document-

based approach to DiS, whereby each node holds and performs search on some subset

of D [21, 30, 27, 40]. To implement DiS, one needs to address two aspects: partitioning

and shard selection. Figure 3.1 illustrates DiS architecture, which we further detail in the

next paragraphs.

Partitioning At the indexing stage, DiS applies a partitioning scheme to partition D into

a set of n pairwise disjoint shards Dj ⊂ D, D =
⋃n

j=1 Dj. Each shard Dj is assigned

to a separate node where it is locally indexed. One common approach is similarity-

based partitioning [30, 29, 74, 57], e.g., LSH [52, 47], which constructs shards of similar

documents. LSH randomly selects a hash function that maps each document d ∈ D

into its corresponding shard, where the probability that two documents are mapped to

the same shard grows with their similarity [32, 35]. Note that LSH is a natural choice

for distributed partitioning, since parallelizing it is straightforward because hashing a

document does not require any information about other documents.

Shard selection A broker module handles clients’ search requests [30]. At runtime, the

broker accepts an input query and submits the query to the nodes, each of which locally

searches its shard using the given centralized search algorithm, and returns to the broker

a ranked list of results that it finds most relevant to the query. Note that all shards apply

the same ranking function hence their ranks are comparable. The broker collects and
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Figure 3.1: Illustration of distributed search (DiS) architecture supporting approximate
search. At indexing time, DiS partitions the document collection into shards, which are
distributed among the nodes. At runtime, a broker module serves clients’ queries: for
each query, the broker first selects a subset of the shards to search over. Each node
searches its shard locally and returns its search results to the broker. Finally, the bro-
ker aggregates the nodes’ results and returns them to the client.

merges the shards’ results and returns a final result list to the caller, which approximates

the results of the centralized search.

The broker uses a shard selection scheme in order to select a subset of t ≤ n shards

to send the query to. Typically, the selection scheme uses a shard index, which holds the

partition’s meta-data. More specifically, it maps shard identifiers to the nodes where they

reside, and optionally maintains some compact representation of each shard’s content.

The shard index is constructed during the indexing stage, it is typically centralized and

replicated for availability.

Given a query, the shard selection scheme approximates a probability distribution

over the shards, associating with each shard Dj the estimated probability that it contains

a relevant document to the query; the latter is called the shard’s success probability for the

query. A document is considered relevant to the query, if it appears in the query’s top-m

results according to the centralized search algorithm [74, 64, 42].

Shard selection may use the simple Random [30, 53] approach, which does not em-

ploy a shard representation, and randomly selects shards independently of the input

query. Note that Random induces a uniform success probability distribution over the

shards. A more effective approach is to select shards that are deemed most likely to sat-
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isfy the query (refer to [30] for an overview of selection methods). One popular method

is ReDDE [79], which represents a shard using a random sample of its content. At the in-

dexing stage, ReDDE randomly samples documents from each shard and indexes them

into the shard index1. At shard selection time, given a query q, ReDDE retrieves from the

shard index a set of documents that are most relevant to q, and based on them, selects

t shards that are most likely to contain documents relevant to q. In our experiments,

we use CRCS Linear [78] to approximate the success probability distribution over the

shards, which we detail in Section 3.5.

3.2.2 The Impact of High Tail Latency

We now extend DiS to consider high tail latency. In order to provide search results in a

timely manner (typically a search latency of few hundreds of milliseconds [2, 5, 40, 51]),

the broker waits for responses from nodes up to a fixed timeout that is given to DiS as

a parameter [51, 40]. The broker collects results from the nodes that respond on time,

and drops the results of the slow nodes [53, 51, 40]. A node may fail to return its results

with the desired latency due to various reasons: E.g., it may be temporarily down due

to hardware or software problems, be overloaded by other queries, or lose messages due

to network failures or loads [40]. We assume that each node fails to respond on time

with some miss probability. For simplicity, we assume that each node fails to respond

independently of other shards, and that the miss probability is common to all nodes.

We denote the miss probability by f . When a node’s response is skipped, some of the

relevant results may be missing from the final result set, which entails degradation of

search quality [53, 51, 40, 42]. Note that the search quality of DiS with approximate search

is typically lower than that of centralized search even without misses, as the search is

restricted to a subset of the collection. Result misses due to high tail latencies further

degrade search quality; our goal is to ameliorate this.

3.2.3 Search Quality Metrics

We analyze the quality of a DiS algorithm A through its success probability: Given a query

q and a document dq ∈ D relevant to q, SP(A, q) is the probability that A finds dq.

We empirically measure the search quality of a DiS algorithm A by comparing its

results with those of a centralized search, which has full access to all documents [74, 64,

42], and uses the same ranking function as A. More specifically, let Sm
C (q) be the top-m

search results for query q according to the centralized search, and let Sm
A(q) be the top-m

results of a DiS algorithm A. We measure the search quality of A for query q by the recall

it achieves relative to a centralized system:

Recall@m(q) ,
|Sm

C (q) ∩ Sm
A(q)|

|Sm
C (q)|

.

1In ReDDE, the shard index is commonly called a centralized sample index (CSI).
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Note that Recall@m(q) ∈ [0, 1]. We measure the search quality of a DiS algorithm A,

Recall@m, by averaging Recall@m(q) over all queries.

3.3 Tail-Tolerant DiS

Existing DiS systems mitigate search quality degradation using Replication [21, 1, 8, 53,

88, 40, 48, 42, 30]. We propose two improvements to currently used approaches: rS-

martRed, an optimal shard selection scheme for Replication, and Repartition, an alterna-

tive method to redundancy which improves over Replication.

3.3.1 Replication

Given a redundancy level configuration parameter r > 1 and a partition {D1, . . . , Dn},

Replication constructs r identical copies of that partition. Large-scale search systems

usually deploy their service over multiple data centers and use dozens of replicas [21],

whereas smaller-scale search systems that run in a single data center typically use a few

copies per shard, e.g., r = 3 [1, 8]. A shard selection scheme that uses Replication needs

to take an additional aspect into account: Besides identifying the shards most likely to

satisfy the query, it needs to also decide how many replicas of each shard to contact. We

discuss three approaches for doing so. We assume that all approaches are given a fixed

budget of tr shards to select out of all nr shards.

Existing shard selection approaches

Two main approaches are used for shard selection today. First, in some cases, redun-

dancy is used only for load-balancing and not for mitigating result misses [30, 27], yield-

ing an approach we call “no redundancy”, denoted NoRed. NoRed selects all tr shards

from a single partition without replicas (tr ≤ n), and the broker directs user queries to

different index partitions. Figure 3.2(a) illustrates NoRed.

In other cases, a “full redundancy”, denoted rFullRed, approach is used [48, 42, 30,

21, 54, 1, 8, 40, 53, 88]. Given a query, the broker selects t out of n shards of the original

partition, and replicates its selection by contacting all r replicas of each selected shard.

Figure 3.2(b) illustrates rFullRed. This approach arises when shard selection and re-

dundancy are two separate abstraction layers, and the search algorithm uses replicated

storage as a black box.

Optimal shard selection

We next open up the black box and integrate shard selection and redundancy. We present

an optimal approach for Replication that we call rSmartRed. Given a replicated index

and a particular shard selection scheme over a single partition, rSmartRed maximizes the

probability to find relevant documents with respect to the given shard selection scheme.
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(a) NoRed

(b) rFullRed

(c) rSmartRed

Figure 3.2: Illustration of the three shard selection methods under Replication. A row
represents a partition of the collection into 6 shards. At runtime, a total of 6 shards
(dashed lines) are selected. NoRed selects shards from a single partition without replicas;
rFullRed contacts all 3 replicas of each shard it selects; rSmartRed adjusts the number of
selected shard replicas such that search quality is maximized.

Our method considers both the miss probability and the success probability distribution

(induced by the shard selection scheme) when selecting shard replicas.

To give an intuition why existing approaches are not optimal, consider the following

example: the dataset is partitioned into 5 shards, each shard has two replicas (r = 2), and

the broker selects tr = 2 shards per query. For some query q, D1’s success probability is

0.8, and D2’s success probability is 0.1. The success probability of the rest of the shards

is smaller. Clearly, D1 should be selected at least once. There are two alternatives for

selecting the second shard: D1’s replica or D2. If D1’s two replicas are selected, a relevant

document dq is found if it is stored in D1, and at least one of D1’s replicas does not fail

to respond, which happens with probability 0.8(1− f 2). If D1 and D2 are selected, dq

is found if it is stored in either D1 or D2, and the shard that contains it does not fail to

respond. As D1 and D2 are disjoint, this happens with probability (0.8 + 0.1)(1 − f ).

Table 3.1 depicts the success probabilities of the two selection alternatives for two values
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of f . As the table demonstrates, the selection that maximizes the success probability

depends on the value of f . For f = 0.05, selecting D1 and D2 is preferable, whereas for

f = 0.2, selecting the two replicas of D1 is preferable.

Two replicas of D1 D1 and D2

f = 0.05 0.8 0.85
f = 0.2 0.77 0.72

Table 3.1: Success probability of different shard selections (columns) for different miss
probabilities (rows) when selecting a total of tr = 2 shards under Replication. When
f = 0.05, it is preferable to select the top two shards from the same partition, whereas
when f = 0.2, it is preferable to select two replicas of the highest ranked shard.

Our rSmartRed algorithm considers f and an estimated distribution of the shard suc-

cess probabilities. Given a query q, we denote by pq(j) the estimated success probability

of shard Dj. Given r replicas of the partition, we assign a score of f i−1 pq(j) to the ith

replica of shard Dj as depicted in Table 3.2. We then select the tr shard replicas with the

highest scores. Figure 3.2(c) shows an example selection of rSmartRed. In Section 3.4,

we prove that if the estimations are accurate, then rSmartRed maximizes the probability

to find relevant documents with any given number of selections. Note that rSmartRed

is more likely to select multiple replicas of a shard as the shard’s success probability

increases and as f increases.

D1 . . . Dn

Replica 1 pq(1) . . . pq(n)
Replica 2 pq(1) f . . . pq(n) f

...
...

...
Replica r pq(1) f r−1 pq(n) f r−1

Table 3.2: Scores of shard replicas in rSmartRed. rSmartRed selects the tr shard replicas
with the highest scores.

The following observation follows immediately from the algorithm:

Observation 1. For each i, the ti shards that rSmartRed selects from partition i are the ti top-

scored shards in that partition according to success probability.

3.3.2 Repartition

We propose Repartition, a new approach for constructing a redundant index for tail-

tolerant DiS. Like Replication, Repartition constructs r partitions of D, each consisting
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of n pairwise disjoint shards, and each of the nr shards is assigned to a separate node.

However, unlike Replication, Repartition does not replicate the partition into r parti-

tion copies. Instead, Repartition constructs r independent, non-identical partitions of D.

Repartition uses a randomized partitioning scheme and applies it r times independently

to construct such r partitions. One may use LSH [52, 47] for implementing Repartition by

randomly and independently selecting r hash functions. We propose two shard selection

schemes for Repartition: pTop and pSmartRed. Note that NoRed is trivially applicable to

Repartition as well.

pTop As partitions are independent, a natural shard selection scheme for Replication

selects the t top-scored shards from each partition independently, where a shard’s score

is its estimated success probability. We call this selection scheme pTop. Note that like

rFullRed, pTop selects the same number of shards (t) from each partition.

pSmartRed Our second selection, pSmartRed, imitates rSmartRed, and works as fol-

lows: pSmartRed first arbitrarily selects one of the partitions of D, and computes rS-

martRed’s shard selection over r replicas of D. Recall that rSmartRed selects ti shards

from each partition replica i. pSmartRed then selects the ti top-scored shards from each

partition i of the re-partitioned index according to the success probability distribution of

the shards in that partition. Therefore, pSmartRed preserves the number of shards that

rSmartRed selects from each partition. For example, pSmartRed applies rSmartRed’s se-

lection that is illustrated in Figure 3.2(c), by selecting the four top-scored shards from

one partition and the two top-scored shards from the second.

As we show both analytically and in our empirical study, Repartition improves over

Replication. On the other hand, creating and maintaining the index are more costly

with Repartition. Another limitation of Repartition is that it is not applicable when the

partitioning is given by a third party and cannot be altered.

3.4 Analysis

In this section, we analytically study the success probability [64] to retrieve a document

relevant to a query when searching a tail-tolerant distributed index. We provide closed-

form analysis of the success probability under Replication, and prove that rSmartRed

is the optimal selection. We also prove that for any shard selection scheme for Replica-

tion, there exists a shard selection scheme for Repartition with a larger or equal success

probability.

3.4.1 Success Probability Formulation

Consider a tail-tolerant DiS algorithm A(r, t) with redundancy r and tr shards selected

per query. Consider a query q. Although multiple documents may be relevant to q,
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for the sake of the analysis, we consider exactly one document dq ∈ D that is rele-

vant to q. For query q, the shard selection scheme induces a probability distribution

pq : {1, . . . , n} → [0, 1], where pq(j) is the probability that dq is stored in shard Dj (in

practice, shard selection schemes such as ReDDE approximate this distribution). Since

{D1, . . . , Dn} is a partition, ∑
n
j=1 pq(j) = 1. We denote by SP(q, f , A(r, t)) the probabil-

ity that A(r, t) finds dq when processing query q under miss probability f . SP is called

A(r, t)’s success probability. Henceforth we fix a query q and remove q from our nota-

tions.

3.4.2 Replication

Consider a replicated DiS algorithm AR(r, t). We denote by Si ⊆ {D1, . . . , Dn} the set of

shards for which AR(r, t) selects at least i ≥ 1 replicas. For example, if three replicas of

D7 are selected, then D7 ∈ S1, S2, S3. Note that ∑
r
i=1 |Si| = tr. In addition,

Sr ⊆ Sr−1 ⊆ . . . ⊂ S1. (3.1)

We denote by SP( f , Si) the probability that dq is found when accessing the shards in

Si. This occurs if dq is stored in one of the shards in Si and that shard does not fail to

respond. Since shards in Si are disjoint:

SP( f , Si) = (1− f ) ∑
Dj∈Si

p(j). (3.2)

We denote by SP( f , S
j
i) the probability that dq is found when accessing the shards

in
{

Si, . . . , Sj

}

. By definition, AR’s success probability equals SP( f , Sr
1). The following

lemma formulates SP( f , Sr
1):

Lemma 1.

SP( f , Sr
1) = (1− f )



 ∑
Dj∈S1

p(j) + . . . ∑
Dj∈Sr

f r−1 p(j)



 .

Proof. We prove by induction on r.

Base (r = 1): Follows directly from Equation 3.2.

Step: we assume for r− 1:

SP( f , Sr−1
1 ) = (1− f )



 ∑
Dj∈S1

p(j) + . . . + ∑
Dj∈Sr−1

f r−2 p(j)



 . (3.3)

As searching the shards in {S1, . . . , Sr} is the union of the events of 1) searching the

shards in {S1, . . . , Sr−1} and 2) searching the shards in Sr, then according to the proba-
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bility of a union of events2,

SP( f , Sr
1) = SP( f , Sr−1

1 ) + SP( f , Sr)

− SP( f , Sr)SP(( f , Sr−1
1 )|( f , Sr)), (3.4)

where SP(( f , Sr−1
1 |( f , Sr)) denotes the conditional probability to find dq when searching

the shards in {S1, . . . , Sr−1}, given that dq is found when searching the shards in Sr. Let

Dj ∈ Sr be the shard that contains dq. Due to containment (Equation (3.1)), Dj ∈ Si,

1 ≤ i ≤ r − 1. Hence, dq is found if at least one of those r − 1 shards does not fail to

respond, which happens with probability 1− f r−1. Thus,

SP(( f , Sr−1
1 )|( f , Sr)) = 1− f r−1. (3.5)

By Equations 3.4 and 3.5:

SP( f , Sr
1) = SP( f , Sr−1

1 ) + SP( f , Sr)

− SP( f , Sr)(1− f r−1). (3.6)

And by Equations 3.2, 3.3:

SP( f , Sr
1) = (1− f )( ∑

Dj∈S1

p(j) + . . . + ∑
Dj∈Sr−1

f r−2 p(j))

+(1− f ) ∑
Dj∈Sr

p(j)− (1− f r−1)(1− f ) ∑
Dj∈Sr

p(j)

= (1− f )



 ∑
Dj∈S1

p(j) + . . . + ∑
Dj∈Sr

f r−1 p(j)



 .

Optimal selection

Theorem 1. For a given 1 ≤ tr ≤ nr, rSmartRed selects tr shards such that SP is maximized.

Proof. According to Lemma 1, SP is maximized when ∑Dj∈S1
p(j)+ . . .+∑Dj∈Sr

f r−1 p(j)

is maximized. Selecting the tr shards with the largest score values, f i−1 p(j), maximizes

the sum hence the success probability.

rSmartRed’s selection depends on the miss probability and the shard success prob-

ability distribution as formulated in Lemma 1. When f is high and the distribution is

skewed, i.e., few shards have a high success probability, the optimal selection is likely to

select those shards’ replicas and tends towards the rFullRed method. When the success

2Pr(A ∪ B) = Pr(A) + Pr(B)− Pr(B)Pr(A|B).
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probability distribution is close to uniform, or when f is low, the optimal selection is

more likely to select additional shards of the partition, hence it tends towards the NoRed

method. Note that f i−1 pj exponentially decreases as i increases, hence the effectiveness

of selecting additional replicas of a shard decreases as more of its replicas are selected.

3.4.3 Repartition

Theorem 2. Consider a Repartition in which all partitions have the same probability distribution

for a given query q. Then, for every shard selection used with Replication of one of these partitions,

there exists a shard selection for Repartition with a larger or equal success probability for q.

Proof. Consider a Repartition consisting of r independent partitions of D, and a Repli-

cation algorithm AR(r, t) employing r replicas of one of these partitions. Consider

AR(r, t)’s shard selection, S1, . . . , Sr, which selects ti , |Si| top-scored shards from each

partition replica i. We construct a Repartition algorithm AP(r, t) to select the ti top-

scored shards for each independent partition i, according to success probability. I.e.,

AP(r, t) preserves the number of shards that AR(r, t) selects per each partition. We de-

note AP(r, t)’s selection by S′1, . . . , S′r. We prove that

SPP( f ,
r
⋃

i=1

S′i) ≥ SPR( f ,
r
⋃

i=1

Si). (3.7)

by induction on r.

Base (r = 1): According to Equation 3.2, and since the distributions are equal for all

partitions: SPP( f , S′1) = SPR( f , S1).

Step: we assume for r− 1:

SPP( f ,
r−1
⋃

i=1

S′i) ≥ SPR( f ,
r−1
⋃

i=1

Si). (3.8)

We compute for r: as
⋃r

i=1 S′i = (
⋃r−1

i=1 S′i) ∪ S′r, and as the partitions are independent,

then according to the probability of a union of independent events:

SPP( f ,
r
⋃

i=1

S′i) = SPP( f ,
r−1
⋃

i=1

S′i) + SPP( f , S′r)

− SPP( f , S′r)SPP( f ,
r−1
⋃

i=1

S′i). (3.9)

SPP( f ,
⋃r−1

i=1 S′i) denotes the probability that we found dq when searching
⋃r−1

i=1 S′i . Denote

by η the probability that dq is stored in
⋃r−1

i=1 S′i . For each S′i , 1 ≤ i ≤ r − 1, dq is either
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stored in one of the shards in S′i or it is not. Hence, dq is stored in u shards in
⋃r−1

i=1 S′i ,

where 0 ≤ u ≤ r− 1, and is found if at least one of those shards does not fail to respond

which happens with probability 1− f u. Thus,

SPP( f ,
r−1
⋃

i=1

S′i) = η(1− f u). (3.10)

Since both AR(r, t) and AP(r, t) select tr top-scored shards from their r-th partition, and

since success probabilities are equal for all partitions, then according to Equation 3.2,

SPP( f , S′r) = SPR( f , Sr). (3.11)

Substituting Equations 3.10 and 3.11 in Equation 3.9 we get:

SPP( f ,
r
⋃

i=1

S′i) = SPP( f ,
r−1
⋃

i=1

S′i) + SPR( f , Sr)

−SPR( f , Sr)η(1− f u).

According to the induction assumption in Equation 3.8, and since 0 ≤ η ≤ 1 and 1−

f u ≤ 1− f r, it follows that

SPP( f ,
r
⋃

i=1

S′i) ≥ SPR( f ,
r−1
⋃

i=1

Si) + SPR( f , Sr)

− SPR( f , Sr)(1− f r)
(3.6)
= SPR( f ,

r
⋃

i=1

Si). (3.12)

Note that pSmartRed preserves the number of shards that rSmartRed selects per each

partition, and thus according to Equation 3.7, pSmartRed’s success probability is equal or

greater than rSmartRed’s. Nevertheless, although rSmartRed is optimal for Replication,

this does not imply that pSmartRed is optimal for Repartition. Note further that Theorem

2 holds under the assumption that all partitions’ probability distributions are the same.

In practice this assumption does not necessarily hold, but our experiments show that

Repartition is advantageous nevertheless.

3.5 Empirical Study

We empirically evaluate our tail-tolerant distributed search using two real-world datasets.

We measure search quality using the recall metric and demonstrate the superiority of rS-

martRed over NoRed and rFullRed, and the improvement that Repartition suggests over

Replication. Our empirical study confirms our analysis.



3.5. Empirical Study 29

3.5.1 Methodology

Datasets

• Reuters RCV1 [6] consists of news articles spanning a year. We represent each

news article by its title and first paragraph. We parse the Reuters datasets using

conventional methods, including stop-word removal and stemming [67].

• Livej [92] was crawled from the Livejournal [3] free online community by the Stan-

ford SNAP Project [9]. In Livejournal, the corpus consists of users who join blogs

that reflect their topics of interest. We represent a user by a document where the

document’s terms correspond to the blogs he joined, filtering out users with no

topics of interest.

Table 3.3 summarizes the dataset statistics after pre-processing.

Number of Number of
Documents Terms

Reuters 779, 913 96, 513
Livej 1, 147, 948 664, 414

Table 3.3: Dataset statistics after pre-processing.

Experiment setup We use Lucene [4] 4.3.0 search library as our indexing and retrieval

infrastructure. We weight document terms according to Lucene’s TF-IDF function, where

TF(term) is the square root of the term’s frequency in the document, and IDF(term) =

ln( Nd
Nterm+1 ) + 1, where Nd is the total number of documents, and Nterm is the number of

items containing the term. We score documents with Lucene’s default similarity func-

tion, which implements a variant of the cosine-based retrieval model.

Tail-tolerant DiS simulator We use the Tarsos-LSH Java implementation [10] of cosine-

based LSH for the partitioning. LSH provides a configuration parameter k, which con-

trols the number of shards in the partition. We partition the data into n = 32 shards by

setting k to 5. We simulate the DiS on a single machine by maintaining a separate index

for each shard, as well as for the shard index. We set r = 3 in all experiments.

We construct the centralized shard index by sampling documents from every shard

with a configured sampling probability. Given a query, we first search the shard index

and retrieve a result set of top γ documents; we set γ = 500 in our experiments (for all

queries). We then score the shards based on the result set according to CRCS Linear [78]:

The score S(D) of shard D is defined as S(D) , ∑d∈RD
S(d), where RD is the subset of

the results sampled from shard D, and S(d) = γ− j, where 1 ≤ j ≤ γ is the rank of d

in the result set. We normalize CRCS’s scores, Ŝ(D) , S(D)
∑D′ S(D′)

, in order to produce the

shard success probability distribution that CRCS induces.
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We simulate distributed query processing as follows: Given a query, we retrieve the

top 100 results of each shard. In order to simulate misses of results, we drop the results

of each shard with probability f . We union the results of the responsive nodes and omit

duplicates (duplicates exist due to redundancy), which yields a result set R of unique

documents. Since all shards apply the same scoring function, we rank the documents in

R according to their scores and return the top-scored 100 documents in R.

We examine two shard success probability distributions: 1) a uniform success prob-

ability distribution that we produce using the Random shard selection, and 2) a skewed

success probability distribution that we produce using CRCS with sampling probability

of 0.43. Figure 3.3 illustrates the average estimated success probability of the five top-

scored shards for the LiveJ and the Reuters datasets produced as follows: For each query

in the evaluation set, we estimate the success probabilities of the query’s top five shards.

We then average each of these five success probabilities over all queries. As the figure

illustrates, the Random shard selection induces a uniform success probability distribu-

tion, which is identical for both datasets (Figure 3.3(a)). CRCS induces a skewed success

probability distribution (Figures 3.3(b) and 3.3(c)), and in particular the most skewed one

in LiveJ (Figure 3.3(b)).

Evaluation We evaluate search quality by measuring the average recall@100 over an

evaluation set of queries (see Section 3.2.3). For Reuters, we use 200 Trec topics [7] as our

evaluation set. For LiveJ, we construct an evaluation set by randomly sampling 1, 000

documents from the dataset. We confirm statistical significance using paired-ttest with

5% significance level.

3.5.2 Selection Schemes for Replication

We study rFullRed, NoRed, and rSmartRed selection schemes for Replication and show

the superiority of rSmartRed over the other two.

Effect of miss probability and success probability distribution We evaluate recall as

a function of f , 0 ≤ f ≤ 0.5 (we discuss here relatively high f values that are not neces-

sarily realistic for the purpose of the demonstration; we later zoom-in on lower f values).

We fix t = 5, i.e., we select tr = 15 shards, which are about half of the number of shards

in one partition (32). Figure 3.4 presents our results for the Random and the CRCS-based

success probability distributions (Random’s results are very similar for both datasets,

and so, we present here LiveJ’s results only).

For both success probability distributions and both datasets, rFullRed achieves rel-

atively stable recall for all miss probabilities. This is since rFullRed uses the maximal

number of replicas (r) possible for all shards it selects, which makes the content it selects

available regardless of f . However, the recall rFullRed achieves is significantly lower for

3In order to produce a highly skewed success probability using CRCS, for the purpose of demonstration,
we use an extremely high sampling probability of 0.4.
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Figure 3.3: Random and CRCS success probability distributions over the Reuters and
LiveJ datasets.

low miss probabilities compared to NoRed. This is since searching a large number of

replicas is wasteful when misses are infrequent; it is more beneficial to select additional

shards by decreasing the number of shard replicas. At the other extreme, NoRed selects

a single replica of each shard. It achieves higher recall compared to rFullRed when miss

probability is low, as it searches more distinct shards. However, when miss probability

increases, NoRed’s recall decreases. This tradeoff is most pronounced in LiveJ when the

success probability distribution is highly skewed (Figure 3.4(b)), where NoRed’s recall

drops below the recall of rFullRed for f values that exceed 0.2. This is since in the case

of a skewed success probability distribution, the responsiveness of top-scored shards is

crucial, hence contacting their replicas is beneficial. When the success probability dis-

tribution is uniform (Figurs 3.4(a)), NoRed’s recall becomes close to that of rFullRed for

f = 0.5. This is since in this case, when a shard fails to respond, contacting one of

its replicas (rFullRed) or contacting another shard in the partition (NoRed) contributes

similarly to the success probability.

As expected, for both distributions, for all values of f , rSmartRed’s recall is at least

as good as those of rFullRed and NoRed. When the success probability distribution is

close to uniform (Figure 3.4(a)), rSmartRed and NoRed behave similarly, since not much

is gained from redundancy. But when the success probability distribution is skewed
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(Figures 3.4(b) and 3.4(c)), as is common for many queries, rSmartRed outperforms both

rFullRed and NoRed by adjusting its selection to the miss probability. For example, as

demonstrated in Figure 3.4(b), rSmartRed achieves a statistically significant higher recall

then rFullRed for f < 0.2 and a statistically significant higher recall than NoRed for

f > 0.2.
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Figure 3.4: Recall@100 for the three shard selection schemes for Replication as a function
of miss probability f . rSmartRed outperforms both rFullRed and NoRed in all scenarios.

We next zoom in on smaller f values, 0 ≤ f ≤ 0.2. We examine three CRCS-based

(non-uniform) success probability distributions for LiveJ by considering the following

three sets of queries:

• Whole consists of all queries in LiveJ’s evaluation set.

• Skewed consists of queries in LiveJ’s evaluation set for which the success probability

of the top shard is greater than 0.5; 26.3% of queries are in this category.

• MostSkewed consists of queries in LiveJ’s evaluation set for which the success prob-

ability of the top shard is greater than 0.8; only 0.092% of queries are in this cate-

gory.

Figure 3.5 illustrates the average estimated success probability of the five top-scored

shards for each of the query sets.
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Figure 3.5: Three non-uniform success probability distributions for LiveJ with CRCS-
based shard selection, which correspond to three different query sets.

We compare the recall of the three selection schemes over each of the three query

sets and present our results in Figure 3.6. Figure 3.6(a) depicts recall measured over

the Whole query set. As we have previously seen, NoRed outperforms rFullRed for

0 ≤ f ≤ 0.2, however, NoRed’s recall decreases as f increases until it reaches rFullRed’s

recall for f = 0.2. As rSmartRed is optimal, it outperforms both.

Next, in Figure 3.6(b), we depict recall for the Skewed query set, which has a more

skewed success probability distribution than Whole’s. Here too, NoRed’s recall is higher

than rFullRed’s for low miss probabilities, but it drops below rFullRed at a smaller f

value (0.05). This is since here, the responsiveness of the top shards is more crucial due

to their higher success probability. Hence, Replication becomes valuable for lower miss

probability values than in the previous case. As before, rSmartRed selects the number of

replicas in an optimal manner and so outperforms both rFullRed and NoRed.

Finally, Figure 3.6(c) examines the recall over the MostSkewed query set, which has

the most skewed success probability distribution. In this extreme case, the average suc-

cess probability of the top shard is 0.92, hence searching a single shard – the top one

– is crucial. As both rFullRed and NoRed select the top shard due to its high success

probability (Observation 1), they both achieve high recall (0.96) when misses are infre-

quent ( f ≤ 0.05). When the miss probability increases ( f > 0.05), NoRed’s recall drops
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below rFullRed’s recall as NoRed does not employ redundancy. For all f values that we

examined, rSmartRed is optimal.
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Figure 3.6: LiveJ Recall@100 for the three shard selection schemes for Replication as a
function of miss probability f for three different query sets, each inducing a different
success probability distribution. rSmartRed outperforms both rFullRed and NoRed in
all scenarios.

Effect of the number of selected shards We wrap up the study of Replication by vary-

ing tr, i.e., the number of selected shards. We experiment with t ∈ {3, 5, 8, 10} values.

As we fix r = 3, this yields up to 30 shards, which is almost the number of shards in the

partition: n = 32. We fix f = 0.1. Figure 3.7 depicts our results for the LiveJ dataset (we

omit Reuters results, which do not provide additional insight). For all selection schemes,

the recall increases with the number of selected shards tr, as expected. Second, for all tr

values that we examine, rSmartRed’s recall is equal to or greater than the recall of NoRed

and rFullRed, which confirms our theory.

Searching shard replicas is useless in case of a uniform success probability distribu-

tion. Indeed, in this case, rFullRed performs worse than NoRed and rSmartRed (Fig-

ure 3.7(a)). rFullRed’s inferiority becomes more pronounced as tr increases, since the

number of replicas that it wastefully selects increases. When the distribution is highly

skewed (Figure 3.7(b)), few shards have high success probabilities, hence searching ad-
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ditional shards becomes unproductive at some point. Indeed, we observe a diminishing

returns in NoRed’s recall when tr increases. In contrast, rSmartRed continues to improve

by selecting replicas of high probability shards.
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Figure 3.7: LiveJ Recall@100 for the three shard selection schemes for Replication as a
function of the number of selected shards (tr). rSmartRed outperforms both rFullRed
and NoRed in all scenarios.

3.5.3 Replication vs. Repartition

We move on to compare between Replication and Repartition as shown in Figure 3.8.

NoRed is identical for both redundancy methods, hence we omit it from the comparison.

As real deployments attempt to maintain a low miss probability, we experiment with

0 ≤ f ≤ 0.2. Additionally, as real deployments attempt to use good predictors for shard

selection, we experiment with the CRCS success probability distribution.

Figure 3.8(a) depicts recall as a function of miss probability for a fixed t = 5. Accord-

ing to pSmartRed’s specification, rSmartRed and pSmartRed select the same number of

shards per partition. pSmartRed achieves a statistically significant higher recall than rS-

martRed thanks to using Repartition, which confirms our analysis. Similarly, rFullRed

and pTop select the same number of shards per partition, t. Here as well, pTop achieves a

statistically significant improvement over rFullRed for the same reason. Overall, Repar-

tition achieves a statistically significant higher recall than Replication for low miss prob-

abilities and skewed success probabilities, which reflects an important practical use case

for real deployments. In Figure 3.8(b) we fix f = 0.1 and vary tr. We observe Reparti-

tion’s superiority for all examined tr values.

3.6 Summary

In this chapter, we tackled search quality degradation in DiS due to high tail latency. We

observed that using Replication can be wasteful due to searching identical shard copies,
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Figure 3.8: LiveJ Recall@100 with Replication and Repartition for a skewed success prob-
ability distribution. Repartition outperforms Replication.

and proposed two improvements: rSmartRed and Repartition. We presented two shard

selection schemes for Replication that are in use today: NoRed, which does not use re-

dundancy, i.e. does not contact shard replicas, and rFullRed which contacts all replicas

of each selected shard. We showed that NoRed is beneficial when miss probability is

low, however, when miss probability increases, the search quality of NoRed degrades.

In this case, searching multiple shard copies becomes beneficial, and the search quality

of rFullRed improves over NoRed’s. In particular, we showed that this trade-off is most

pronounced when the shard success probability is skewed. We presented rSmartRed,

an optimal shard selection scheme for Replication, which considers both the miss prob-

ability and the shard success probability when selecting shard copies. rSmartRed se-

lects shards and their number of replicas by applying a simple scoring function over the

shard replicas. We showed that rSmartRed outperforms NoRed and rFullRed, hence,

rSmartRed is appealing for improving search quality in replication-based tail-tolerant

DiS.

We next proposed Repartition, an alternative to Replication, which reduces Repar-

tition’s waste by constructing non-exact partition copies. We showed that Repartition

improves over Replication when the miss probability is low and the shard success prob-

ability is skewed, which reflects an important practical use case for real deployments.

The drawback of Repartition is its higher construction and maintenance cost compared

to Replication. In addition, Repartition is not applicable when the partitioning is pro-

vided by a third party and can not be altered, whereas Replication is applicable in such

cases as well.
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Similarity Search over Endless

Data

Users today are exposed to massive volumes of information arriving in endless data

streams: hundreds of millions of content items are generated daily by billions of users

through widespread social media platforms [83, 85, 11]; fresh news headlines from differ-

ent sources around the world are aggregated and spread by online news services [61, 38].

In this era of information explosion it has become crucial to ‘fish in the stream’, namely,

identify stream content that will be of interest to a given user. Indeed, search and rec-

ommendation services that find such content are ubiquitously offered by major content

providers [38, 41, 61, 34, 36].

A fundamental building block for search and recommendation applications is similar-

ity search, an algorithmic primitive for finding similar content to a queried item [80, 17].

For example, a user reading a news item or a blog post can be offered similar items

to enrich his reading experience [87]. In the context of streams, many works have ob-

served that applications ought to take into account temporal metrics in addition to sim-

ilarity [41, 61, 60, 55, 62, 85, 49, 73, 83, 70]. Nevertheless, the similarity search primitive

has not been extended to handle endless data-streams. To this end, we introduce here

the problem of similarity search over data streams (SSDS).

In order to efficiently retrieve such content at runtime, an SSDS algorithm needs to

maintain an index of streamed data. The challenge, however, is that the stream is un-

bounded, whereas physical space capacity cannot grow without bound; this limitation

is particularly acute when the index resides in RAM for fast retrieval [83, 65]. A key as-

pect of an SSDS algorithm is therefore its retention policy, which continuously determines

which data items to retain in the index and which to forget. The goal is to retain items

that best satisfy the needs of users of stream-based applications.

We present Stream-LSH, an SSDS algorithm based on Locality Sensitive Hashing (LSH),

which is a widely used randomized similarity search technique for massive high dimen-

sional datasets [47]. LSH builds a hash-based index with some redundancy in order to
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increase recall, and Stream-LSH further takes into account quality, age, and dynamic

popularity in determining an item’s level of redundancy.

A straightforward approach for bounding the index size is to focus on the freshest

items. Thus, when indexing an endless stream, one can bound the index size by elim-

inating the oldest items from the index once its size exceeds a certain threshold. We

refer to this retention policy as Threshold. Although such an approach has been effec-

tively used for detecting new stories [83] and streaming similarity self-join [70], it is less

ideal for search and recommendations, where old items are known to be valuable to

users [58, 87, 24].

We suggest instead Smooth – a randomized retention policy that gradually eliminates

index entries over time. Since there is redundancy in the index, items do not disappear

from it at once. Instead, an item’s representation in the index decreases with its age.

Figure 4.1 illustrates the probability to find a similar item with the two retention policies

using the same space capacity. In this example, the index size suffices for Threshold to

retain items for 20 days. We see that Threshold is likely to find fresh similar items, but

fails to find items older than 20. Using the same space capacity, Smooth finds similar

items for a longer time period with a gradually decaying probability; this comes at the

cost of a lower probability to find very fresh items. We further show that Smooth ex-
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Figure 4.1: Probability of successful retrieval of similar items as a function of their age
with Threshold and Smooth retention policies in example settings.

ploits capacity resources more efficiently so that the average recall is larger than with

Threshold.

We extend Stream-LSH to consider additional data characteristics beyond age. First,

our Stream-LSH algorithm considers items’ query-independent quality, and adjusts an

item’s redundancy in the index based on its quality. This is in contrast to the standard

LSH, which indexes the same number of copies for all items regardless of their qual-

ity. Second, we present the DynaPop extension to Stream-LSH, which considers items’

dynamic popularity. DynaPop gets as input a stream of user interests in items, such

as retweets or clickthrough information, and re-indexes in Stream-LSH items of interest;

thus, it has Stream-LSH dynamically adjust items’ redundancy to reflect their popularity.

To analyze Stream-LSH with different retention policies, we formulate the theoreti-
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cal success probability (SP) metric of an SSDS algorithm when seeking items within given

similarity, age, quality, and popularity radii. Our results show that Smooth increases

the probability to find similar and high quality items compared to Threshold, when us-

ing the same space capacity. We show that our quality-sensitive approach is appealing

for similarity search applications that handle large amounts of low quality data, such

as user-generated social data [15, 23, 28], since it increases the probability to find high-

quality items. Finally, we show that using DynaPop, Stream-LSH is likely to find popular

items that are similar to the query, while also retrieving similar items that are not highly

popular albeit with lower probability. Retrieving similar items from the tail of the popu-

larity distribution in addition to the most popular ones is beneficial for applications such

as query auto-completion [20] and product recommendation [93]. We validate our theo-

retical results empirically on several real-world stream datasets using the recall metric.
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4.1 Similarity Search over Data-Streams

We extend the problem of similarity search defined in Section 2.2, and define similarity

search over unbounded data-streams. Our stream similarity search is time-sensitive and

quality-aware, and so we also define a recall metric that takes these aspects into account.

4.1.1 SSDS

SSDS considers an unbounded item stream U ⊆ V arriving over an infinite time period,

divided into discrete ticks. The (finite) time unit represented by a tick is specified by the

application, e.g., 30 minutes or 1 day. On every time tick, 0 or more new items arrive in

the stream, and the age of a stream item is the number of time units that elapsed since

its arrival. Note that each item in U appears only once at the time it is created. Each

item is associated with a query-independent quality score, which is specified by a given

weighting function quality : V → [0, 1].

Similarity search over data-streams An SSDS algorithm’s input consists of a query vec-

tor q ∈ V and a three-dimensional radius, (Rsim, Rage, Rquality), of similarity, age, and

quality radii, respectively. An exact SSDS algorithm returns a unique ideal result set

Ideal(q, Rsim, Rage, Rquality) ,

{v ∈ U|sim(q, v) ≥ Rsim ∧ age(v) ≤ Rage∧

quality(v) ≥ Rquality}.

An (approximate) SSDS algorithm A returns

a subset Appx(A, q, Rsim, Rage, Rquality) of q’s ideal result set.

Recall

Definition 4.1.1 (recall at radius). The recall at radius of algorithm A for query q and radius

(Rsim, Rage, Rquality) is

Recall(A, Rsim, Rage, Rquality)(q) ,
|Appx(A, q, Rsim, Rage, Rquality)|

|Ideal(q, Rsim, Rage, Rquality)|
.

The recall at radius Recall(A, Rsim, Rage, Rquality) of A is the mean recall over the query set Q.

Dynamic popularity We consider a second unbounded stream I which consists of

items from the item stream U and arrives in parallel to U. We call I the interest stream.

The arrival of an item at some time tick in I signals interest in the item at that point in

time. Note that an item may appear multiple times in the interest stream.

We capture an item’s dynamic popularity by a weighted aggregation of the number of

times it appears in the interest stream, where weights decay exponentially with time [59]:
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Let t0, . . . , tn denote time ticks since the starting time t0, and the current time tn. The

indicator ai(x) is 1 if item x appears in the interest stream at time ti and is 0 otherwise. A

parameter 0 < α < 1 denotes the interest decay, which controls the weight of the interest

history and is common to all items.

Definition 4.1.2 (item popularity). The function pop : U → [0, 1] assigns a popularity score

pop(x) to an item x ∈ U:

pop(x) , (1− α)
n

∑
i=0

ai(x)α(n−i).

Given an assignment of popularity scores to items, we are interested in the retrieval

of items within a popularity radius Rpop ∈ [0, 1], i.e., with a popularity score that is not

lower than Rpop. We define recall in a similar manner to the previous definitions.

4.2 Stream-LSH

Stream-LSH is an extension of Locality Sensitive Hashing overviewed in Section 2.3 for

unbounded data-streams, augmented with age, quality, and dynamic popularity dimen-

sions. Stream-LSH consists of a retention policy that defines which items are retained in

the index and which are eliminated as new items arrive.

4.2.1 Stream-LSH

Stream-LSH, presented in Algorithm 1, extends LSH’s indexing procedure to operate on

an unbounded data-stream. Every time tick, Stream-LSH accepts a set of newly arriving

items in the item stream U and indexes each item into its LSH buckets. Stream-LSH se-

lects an item’s initial redundancy according to its quality: it indexes the item into each

bucket with a probability that equals its quality, independently of other buckets. In ad-

dition, in order to bound the index size, in each time tick, Stream-LSH eliminates items

from the index according to the retention policy it uses. Note that the two operations

– indexing new items and eliminating old ones – are independent, and indexing and

elimination work independently in each bucket.

4.2.2 Retention Policies

We first describe the Threshold [83, 70] and Bucket [73] policies, which have been used

by prior art in other contexts. Then, we describe our randomized Smooth policy that

gradually eliminates item’s copies from the index as a function of its age.

Threshold and Bucket

The Threshold retention policy [83, 70] presented in Algorithm 2 sets a limit Tsize on table

size, and eliminates the oldest items from all L tables once the size limit is exceeded. Note
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Algorithm 1 Stream-LSH

1: On every time tick t do:
2: foreach Hi ∈ HashTables do
3: foreach item ∈ items(t) do
4: ⊲ Hash to bucket Bi

5: Bi ← gi(item)
6: ⊲ Quality-based indexing
7: with probability quality(item), Bi.ADD(item)
8: ⊲ Elimination by retention policy
9: Hi.ELIMINATE()

10: end foreach
11: end foreach

that with Threshold, the number of copies of an item in the index does not vary with age.

Algorithm 2 Threshold retention policy

1: function H.ELIMINATE

2: remove |H| - Tsize oldest items in table
3: end function

The Bucket retention policy [73] given in Algorithm 3 sets a limit Bsize on bucket

size (rather than on table size), and eliminates the oldest items in each bucket once its

size limit is exceeded. Note that with Bucket, the number of copies of an item in the

index varies with age, since each bucket is maintained independently. The probability

of an item to be eliminated from a bucket depends on the data distribution, i.e., on the

probability that newly arriving items will be mapped to that item’s bucket.

Algorithm 3 Bucket retention policy

1: function H.ELIMINATE

2: foreach Bi ∈ H do
3: remove |Bi| - Bsize oldest items in bucket
4: end foreach
5: end function

Smooth

In Algorithm 4 we present Smooth, our randomized retention policy that gradually elimi-

nates item copies from the index as a function of their age. Smooth accepts as a parameter

a retention factor p, 0 < p < 1. Upon a time tick, Smooth eliminates each existing item

copy from its bucket with probability 1− p, independently of the elimination of other

items. The number of buckets an item is indexed into thus exponentially decays over
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time. As we show in Section 4.3.1, Smooth entails an expected bounded index size that

is a function of p.

Algorithm 4 Smooth retention policy

1: function H.ELIMINATE

2: foreach item in H do
3: with probability 1− p, remove item from H
4: end foreach
5: end function

Although as described in Algorithm 4 Smooth entails a linear scan of all items in

all hash tables at each time unit, it can be implemented efficiently by randomly and

uniformly selecting a fraction of 1− p of the items to eliminate from each table.

4.2.3 Dynamic Popularity

DynaPop extends Stream-LSH indexing procedure to dynamically re-index items based

on signals of user interests, as reflected by the interest stream I. Here, an item’s redun-

dancy increases as the interest in it increases. At each time tick, DynaPop re-indexes an

item that arrives in I into each of its buckets with probability quality(x)u independently

of other buckets; the insertion factor, 0 < u < 1, is a parameter to the algorithm. Note that

in this context, an item’s quality may also change dynamically over time. At each time

tick, the current quality value is considered.

4.3 Analysis

In this section, we analyze Stream-LSH’s index size and prove that it maintains a bounded

index. We additionally analyze the probability that Stream-LSH finds items within sim-

ilarity, age, quality, and popularity radii.

4.3.1 Index Size and Number of Retained Copies

Index size We first analyze the expected index size using Smooth with a retention fac-

tor p assuming that a constant number of new items µ arrive at each time unit, and that

their mean quality is φ. Consider one hash table, and denote time ticks as t0, . . . , tn. At

time t0, Smooth stores µφ items in the hash table in expectation. A ratio 1− p of these

µφ items are removed at every time tick, and thus the expected number of items that

arrive at t0 and survive elimination until tn is pnµφ. It follows that the expected num-

ber of items in the table at any given time during the processing of an infinite stream

is ∑
∞
i=0 piµφ = µφ

1−p . The retention process is performed independently in each of the L

hash tables, therefore,
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Proposition 1. If µ new items with mean quality φ arrive at each time unit, the expected size of

an index with L hash tables using Smooth with retention factor p is
µφ

1−p L.

Next, assume that the arrival rate is not constant, but the number of new items that

arrive at each time unit is bounded by µ∗, which is a reasonable assumption in practical

systems. Further note that φ is bounded by 1. Thus, at most µ∗ items are indexed into

each hash table at each time unit. The number of items that arrive at t0 and survive

elimination until tn is therefore bounded by
µ∗

1−p L.

Number of retained copies Next, we analyze the evolution of an item’s number of

copies in the index as a function of its age and quality according to Threshold and

Smooth. We omit Bucket from our analysis due to its dependency on the data distri-

bution. We examine Threshold and Smooth when using the same index size: 20µφL in

expectation, and so we set Tsize = 20µφ for Threshold, p = 0.95 for Smooth (Proposition

1), and L = 15 for both.

Let x be some item. Threshold retains quality(x)L copies of x in expectation if age(x) <

20, and zero copies otherwise. Smooth retains quality(x)page(x)L copies of x in expecta-

tion. Figure 4.2 illustrates the number of index copies of an item with quality 1 (solid

line), and of an item with quality 0.5 (dashed line), as a function of the item’s age. Due

to its quality-based indexing, Stream-LSH (for both Threshold and Smooth) retains a

smaller number of copies of low quality items compared to high quality ones. Addi-

tionally, as Smooth’s name suggests, it smoothly decays an item’s number of copies in

contrast with Threshold. This difference between the two policies impacts their effec-

tiveness as we analyze in Section 4.3.2.
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Figure 4.2: Expected number of copies of an item in the index as a function of its age, for
items with quality values of 1 and 0.5.

4.3.2 Success Probability

Success probability quantifies the probability of an algorithm to find some item x given a

query q [64]. For an LSH algorithm A with parameters k and L, we denote this probability

by SP(A(k, L)). We sometimes omit k, L where obvious from the context.
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According to LSH theory for angular similarity [32], the probability of an LSH(k, L)

algorithm to find x that is s-similar to q in bucket gi(q) equals sk, under a random se-

lection of gi ∈ G. LSH searches in L buckets g1(q), · · · , gL(q) independently, thus,

LSH(k, L) finds x with probability 1−
(

1− sk
)L

.

Retention Policies

We analyze Stream-LSH success probability when using Threshold and Smooth. We do

not analyze Bucket, as its behavior depends on the data distribution, which we do not

model.

Success probability We denote by SP(A(k, L), s, a, z) the probability of algorithm A(k, L)

to find an item x for query q, s.t. sim(q, x) = s, age(x) = a, and quality(x) = z.

Stream-LSH indexes a newly arriving item x into each bucket gi(x) independently

with probability z. For a constant arrival rate µ, a mean quality φ, and a size limit Tsize,

Threshold eliminates items that reach age Tage =
Tsize
µφ . Thus,

SP(Threshold(k, L), s, a, z) =

{

1− (1− skz)L, if a < Tage

0, otherwise
(4.1)

Smooth retains an item x in the index with probability page(x), thus,

SP(Smooth(k, L), s, a, z) = 1− (1− paskz)L. (4.2)

Numerical illustration We compare the success probabilities of Threshold and Smooth.

In order to achieve a fair comparison, we fix k, L, and the index size. Given that our

treatment of quality is orthogonal to the retention policies, our example ignores quality,

and so we assume quality(x) = 1 for all items x. For the purpose of the illustration, we

select a configuration where k = 10 and L = 15; we set Tsize = 20µ and p = 0.95 yielding

a common index size for both policies (Proposition 1).

Figure 4.3 illustrates as ‘heat maps’ the success probabilities of Threshold and Smooth

for this configuration. The x axis denotes similarity values s, and the y axis denotes age

values a. Figure 4.3(a) depicts SP(Threshold(10, 15), s, a, 1), while figure 4.3(b) depicts

SP(Smooth(10, 15), s, a, 1).

As Threshold completely eliminates all item’s copies that reach age 20, the success

probability for a ≥ 20 is 0 (colored white). The success probability of newer items be-

haves according to standard LSH, i.e., the more similar an item is to the query (s is closer

to 1), the higher the success probability (color tends towards red). Fixing an s value, the

success probability remains constant as a increases, since the number of buckets an item

is indexed into remains constant. With Smooth, on the other hand, for a fixed s value,

the success probability gradually decays as a increases. Smooth retains items for a longer
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time period than Threshold, and thus the success probability is non-zero for items older

than 20.

(a) SP Threshold(10,15) (b) SP Smooth(10,15)

Figure 4.3: Success probability to find an item according to similarity and age for a com-
mon index size.

Cumulative success probability We next formulate the cumulative success probability

(CSP) over similarity, age, and quality radii. Given a query q, a similarity radius Rsim, an

age radius Rage, and a quality radius Rquality, CSP quantifies an algorithm’s probability

to find an item x for which sim(q, x) ∈ [Rsim, 1], age(x) ∈ [0, Rage], and quality(x) ∈

[Rquality, 1]. CSP is the expected SP over all choices of s ∈ [Rsim, 1], a ∈ [0, Rage], and

z ∈ [0, Rquality] and is given by the following equation:

CSP(A, Rsim, Rage, Rquality) =
∫ 1

z=Rquality

∫ Rage

a=0

∫ 1

s=Rsim

f (s, a, z)SP(A, s, a, z)

ψ(Rsim, Rage, Rquality)
dsdadz,

where f (s, a, z) denotes the joint probability density function of similarity s, age a, and

quality z,

and
ψ(Rsim, Rage, Rquality) =

∫ 1

z=Rquality

∫ Rage

a=0

∫ 1

s=Rsim

f (s, a, z)dsdadz,

is a normalization factor.

Threshold keeps items up to age 1
1−p ; from (4.1) and (4.2):

CSP(Threshold(k, L), Rsim, Rage, Rquality) =
∫ 1

z=Rquality

∫ 1
1−p

a=0

∫ 1

s=Rsim

f (s, a, z)(1− (1− skz)L)

ψ(Rsim, Rage, Rquality)
dsdadz

and



4.3. Analysis 47

CSP(Smooth(k, L), Rsim, Rage, Rquality) =
∫ 1

z=Rquality

∫ Rage

a=0

∫ 1

s=Rsim

f (s, a, z)(1− (1− paskz)L)

ψ(Rsim, Rage, Rquality)
dsdadz

Numerical illustration We compare CSP(A, Rsim, Rage, Rquality) of Stream-LSH with

Threshold and Smooth. We pose the following assumptions: we focus on the effect of

the retention policy and hence we assume a constant quality function ∀x quality(x) = 1.

In general, the items’ similarity distribution is data-dependent, here, we assume a uni-

form distribution. We consider a discrete age distribution because time is partitioned

into discrete time ticks. We assume a constant number of items arriving at each time

unit, hence items’ age is distributed uniformly. Last, we assume that similarity and age

are independent. Under these assumptions we get:

CSP(Threshold(k, L), Rsim, Rage) =
1

1−p

∑
a=0

∫ 1

s=Rsim

(1− (1− sk)L)

Rage(1− Rsim)
ds,

and

CSP(Smooth(k, L), Rsim, Rage) =
Rage

∑
a=0

∫ 1

s=Rsim

(1− (1− pask)L)

Rage(1− Rsim)
ds.

For the purpose of the illustration, we select the same configuration as above: k =

10, L = 15, Tsize = 20µ, and p = 0.95. Figures 4.4(a) and 4.4(b) depict CSP for fixed

Rsim values 0.8 and 0.9, respectively, and a varying age radius Rage. The graphs show a

freshness-similarity tradeoff between Threshold and Smooth. Smooth has a better CSP

for high age radii (Rage exceeds 20), for any Rsim value. This comes at the cost of a

decreased CSP for similarity radius 0.8 when Rage ≤ 20.
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Figure 4.4: Cumulative success probability of Threshold and Smooth by age radius for a
common index size.
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Quality-Sensitivity

Some applications, most notably social media ones, commonly handle content of vary-

ing quality, and in particular, large amounts of low quality user-generated content [15,

23, 28]. We show that for such applications, quality-sensitive indexing is expected to

be attractive, as it can better utilize space for improving the CSP of high quality items.

We compare Stream-LSH’s quality-sensitive indexing, which indexes an item with re-

dundancy that is proportional to its quality, to a quality-insensitive Stream-LSH, which

indexes L copies of each item regardless of its quality. We use the Smooth retention

policy and the same index size for both variants.

Assuming an average quality of 0.5, the expected number of newly indexed items

per table is µ according to quality-insensitive indexing, and 0.5µ according to quality-

sensitive indexing. To obtain a common index size of 10µL, we use p = 0.9 in the

quality-insensitive algorithm and p = 0.95 in the quality-sensitive one (Proposition 1).

Figure 4.5 illustrates the two Stream-LSH variants for Rsim = 0.8 and varying Rage radii.

In Figure 4.5(a), we examine items above the mean quality (Rquality = 0.5), and in Fig-

ure 4.5(b) we examine high-quality items (Rquality = 0.9). Both figures show that quality-

sensitive indexing increases the CSP compared to the quality-insensitive variant. The

improvement is even more marked for high-quality items (Rquality = 0.9).

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Age Radius (R
age

)

C
S

P
(0

.8
,R

a
g
e,0

.5
)

 

 

Quality−insesitive Smooth    

Quality−sensitive Smooth

(a) Rquality = 0.5

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Age Radius (R
age

)

C
S

P
(0

.8
,R

a
g
e
,0

.9
)

(b) Rquality = 0.9

Figure 4.5: Cumulative success probability comparison of quality-sensitive and quality-
insensitive Stream-LSH by age radius for a common index size.

Dynamic Popularity

We next analyze an item’s success probability according to Stream-LSH when using Dy-

naPop and the Smooth retention policy. We first formulate the bucket probability (SB) to

find an item in a bucket it is hashed to. We then use SB to formulate an item’s success

probability.

For the sake of the analysis, we assume that the interest in an item does not vary

over time. At each time ti, x is included in the interest stream with some probability ρx,

which we call the item’s interest probability. That is, for all ti, x appears with probability
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ρx. According to Definition 4.1.2 and due to the linearity of expectation:

E(pop(x)) = (1− α)
n

∑
i=0

E(ai(x))α(n−i),

which is a geometrical series that converges to E(ai(x)) when n → ∞. As our stream is

infinite and E(ai(x)) = ρx:

E(pop(x)) = ρx. (4.3)

When clear from the context, we omit x and denote ρ for brevity.

Bucket probability We denote by SB(p, u, ρ, z, n) the probability that x is stored in its

bucket at time tn, where u and p are the insertion and retention factors, respectively,

quality(x) = z, and ρ is x’s interest probability. We denote by Ei, 0 ≤ i ≤ n, the event

that x is inserted to its bucket at time ti, and survives elimination until time tn, but is not

selected for insertion to its bucket at any subsequent time tj, i < j ≤ n. Then

Pr(Ei) = zuρp(n−i)(1− zuρ)n−i = zuρ[p(1− zuρ)]n−i

Since SB(p, u, ρ, z, n) = Pr(
⋃n

i=0 Ei) and
⋃n

i=0 Ei is a union of pairwise disjoint events, it

follows that

SB(p, u, ρ, z, n) =
n

∑
i=0

zuρ[p(1− zuρ)]n−i.

SB(p, u, ρ, z, n) is a geometric series that converges to
zuρ

1−p(1−zuρ)
when n → ∞. Our

interest stream is infinite, thus:

Proposition 2. Given an item x, the probability SB(p, u, ρ, z) to find item x in its bucket when

using Stream-LSH with DynaPop and the Smooth retention policy is
zuρ

1−p(1−zuρ)
, where u and

p are the algorithm’s insertion and retention factors respectively, quality(x) = z, and ρ is x’s

interest probability.

Numerical illustration We illustrate SB for an interest probability that follows a Zipf

distribution (typical in social phenomena [33]) which implies a small number of very

popular items and a long tail of rare ones. We consider a Zipf distribution where the r-th

ranked item x has an interest probability ρx = 1/r. We set the quality z to 1.

Figure 4.6 illustrates the SB according to interest probability rank, for different values

of u and p. In Figure 4.6(a) we fix p = 0.95 and examine the effect of the insertion prob-

ability u. The graphs illustrate that increasing u increases SB most notably for popular

items. In Figure 4.6(b) we fix u = 1 and examine the effect of the retention probability p.

The graphs illustrate that when p increases, DynaPop retains additional items of lower

popularity.
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Figure 4.6: Effect of parameters on the probability to find an item in its bucket according
to DynaPop.

Success probability We denote by SP(DynaPop(k, L), s, w, z) the probability of Stream-

LSH with DynaPop and the Smooth retention policy to find an item x for query q, s.t.

sim(q, x) = s, E(pop(x)) = w, and quality(x) = z. By applying Proposition 2 and as

w = ρ (Equation 4.3):

SP(DynaPop(k, L), s, w, z) = 1− (1−
zuw

1− p(1− zuw)
sk)L (4.4)

The cumulative success probability is computed similarly to the cumulative success

probability analysis in Section 4.3.2, and in particular depends on the distribution of

w.

Numerical illustration Figure 4.7 depicts SP(DynaPop(k, L), s, w, z) as a function of

w’s rank. We illustrate SP for three s values: 0.7, 0.8, and 0.9. We fix k = 10, L = 15,

z = 1, p = 0.95 and u = 1. As the graphs show, an item’s success probability increases as
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Figure 4.7: Success probability to find an item as a function of its expected popularity
according to DynaPop.

its similarity to the query increases. Additionally, an item’s success probability increases

as its expected popularity increases.
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4.4 Empirical Study

We conduct an empirical study of Stream-LSH using real world stream datasets and

evaluate its effectiveness using the recall metric.

4.4.1 Methodology

External libraries We use Apache Lucene 4.3.0 [4] search library for the indexing and

retrieval infrastructure. For retrieval, we override Lucene’s default similarity function

by implementing angular similarity according to Equation 2.1. For the LSH family of

functions, we use TarsosLSH [10].

Datasets We use Reuters RCV1 [6] news dataset and Twitter [91, 70] social dataset.

In both datasets, each item is associated with a timestamp denoting its arrival time. The

Reuters dataset consists of news items from August 1996 to August 1997, and the Twitter

dataset consists of Tweets collected in June 2009. These datasets do not contain quality

information and so we assume quality(x) = 1 for all items. In order to evaluate quality-

sensitivity, we use a smaller Twitter dataset [12], denoted TwitterNas, consisting of a

stream of Nasdaq related Tweets spanning 97 days from March 10th to June 15th 2016.

TwitterNas contains number of followers of Tweets authors, which we use for assigning

quality scores to Tweets (see Section 4.4.3). In all datasets, we represent an item as a

(sparse) vector whose dimension is the number of unique terms in the entire dataset,

and each vector entry corresponds to a unique term, weighted according to Lucene’s

TF-IDF formula.

Train and test We partition each dataset into (disjoint) train and test sets. The train set

is the prefix of the item stream up to a tick that we consider to be the current time. The

test set is the remainder of the dataset, which was not previously seen by the Stream-LSH

algorithm. We randomly sample an evaluation set Q of 3,000 items from the test set and

compute recall over Q according to the given radii. Table 4.1 summarizes the train and

test statistics.

Train Test
Time unit Num. items Num. ticks Num. items Num. ticks

Reuters Day 756,927 343 22,986 10
Twitter 10 Minutes 18,224,293 2,705 42,296 10

TwitterNas Day 275,946 92 18,831 5

Table 4.1: Train and test statistics.
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4.4.2 Retention Policies

We evaluate the recall of the three retention policies for the Reuters and Twitter datasets

as a function of age. As the retention aspect of our algorithm is orthogonal to the quality-

sensitive indexing aspect, we assume here that quality(x) = 1 for all items. In order to

achieve a fair comparison, we use k = 10 and L = 15 for the three retention policies,

and configure them to use approximately the same index size: We set Tsize = 45,000

and Bsize = 45 in Reuters; Tsize = 180,000 and Bsize = 177 in Twitter; p = 0.95 in both

datasets.

Figure 4.8 depicts our recall results for Reuters in the top row, and Twitter in the

bottom row. Our goal is to retrieve items that are similar to the query, hence we focus on

Rsim values 0.8, and 0.9. As we are also interested in the retrieval of items that are not

highly fresh, we evaluate recall over varying age radii values.

When considering Rsim = 0.8 (leftmost column) there is a tradeoff between Thresh-

old and Smooth: when focusing on the highly fresh items (Rage < 20), Threshold’s recall

is slightly larger than Smooth’s. Indeed, Threshold is effective when only the retrieval

of the highly fresh items is desired. However, Smooth outperforms Threshold when the

age radius increases to include also less fresh items. For example, in Reuters, Smooth

achieves a recall of 0.69 for items that are at least 0.8-similar to the query and are not

older than age 50, and Threshold achieves a lower recall of 0.42. Bucket’s recall is higher

than Threshold’s for ages that exceed 20, as unlike Threshold, Bucket does not eliminate

items at once. Yet, Smooth outperforms Bucket when increasing the age radius due to

applying an explicit gradual elimination over all items. When increasing the similarity

radius to Rsim = 0.9 (leftmost column), the advantage of Smooth over Threshold be-

comes pronounced. For example, in Twitter, Smooth achieves a recall of 0.97 for items

that are not older than age 50, whereas Threshold only achieves a recall of 0.7.

4.4.3 Quality-Sensitivity

We move on to evaluating Stream-LSH’s quality-sensitive approach. We experiment

with the TwitterNas dataset, which contains for each Tweet x the number of followers of

its author representing its authority, and denoted Tf (x). We define the following quality

scoring function:

quality(x) = log2(1 + min(1, Tf (x)/N f )),

where N f is a configurable normalization factor. In our experiments, we set N f = 5,000

(15% of the authors have more than 5,000 followers). Applying quality(x) on TwitterNas

entails an average quality score of 0.33.

We experiment with quality-sensitive and quality-insensitive variants of Smooth,

with k = 10 and L = 15. In order to conduct a fair comparison, we set retention fac-

tors that entail approximately the same index size for both variants. More specifically,

we set p = 0.9 for the quality-insensitive variant, which results in an index size of 636,290

items in our experiment, and p = 0.97 for the quality-sensitive variant which results in
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(b) Reuters: Rsim = 0.9
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(c) Twitter: Rsim = 0.8
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(d) Twitter: Rsim = 0.9

Figure 4.8: Recall comparison by age radius of the three retention policies using approx-
imately the same index size.

an index size of 590,818 items in our experiment. Recall that quality-sensitive indexing

is more compact, which enables a slower removal of item copies. This is reflected by a

larger p value in the quality-insensitive case. We experiment with the same radii as in our

analysis: we fix Rsim = 0.8, and experiment with Rquality = 0.5, and Rquality = 0.9 over

varying age values. Figure 4.9 depicts the recall achieved by the two Smooth variants as

a function of the age radius.

The graphs demonstrate that for both Rquality values, the quality-sensitive approach

significantly outperforms the quality-insensitive approach when searching for similar

items (Rsim = 0.8) over all age radii values that we examined. This is since the quality-

sensitive approach better exploits the space resources for high quality items. The advan-

tage of quality-sensitive indexing increases as the age of high-quality items increases,

which is an advantage when the retrieval of items that are not necessarily the most fresh

ones is desired. For example, considering Rquality = 0.5 (Figure 4.9(a)) and Rage = 30,

the recall achieved by quality-insensitive Smooth is 0.7, whereas the recall achieved by

quality-sensitive Smooth is 0.88. When considering Rage = 90, the recall of quality-

insensitive Smooth is 0.45, whereas the recall of quality-sensitive Smooth is 0.76. A

similar trend is observed for Rquality = 0.9 (Figure 4.9(b)). Note that the graphs of

Rquality = 0.9 and Rquality = 0.5 differ due to the different distributions of similarity,
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Figure 4.9: Recall comparison of quality-insensitive and quality-sensitive Smooth using
approximately the same index size.

age, and quality, when considering different radii values in real data. As we noted in our

analysis, the advantage of the quality-sensitive approaches is most pronounced when

there exists a large amount of low quality items in the dataset. Indeed, in our setting, 73%

of the items are assigned a quality value below 0.5. In such cases, using quality-sensitive

Stream-LSH is expected to be appealing for similarity-search stream applications.

4.4.4 Dynamic Popularity

We wrap up by studying Stream-LSH when using DynaPop and the Smooth retention

policy. We experiment with u = 0.95, p = 0.95. As our datasets do not contain temporal

interest information, we simulate an interest stream I by considering query results as

signals of interests in items [33], as follows: We use the first 75% items in the train set

as the item stream U. We construct a query set Q∗ by randomly sampling each item

from the remaining 25% of the train set with probability 0.1. For each query q ∈ Q∗,

we retrieve its top 10 most similar items in U and include them in the interest stream I

at q’s timestamp tq, as well as at their original arrival times in U. Table 4.2 summarizes

the item and interest stream statistics. We compute popularity scores at the current time

according to Definition 4.1.2 with α = 0.95.

Item stream Interest stream
Num. items Num. ticks Num. items Num. ticks

Reuters 540,882 252 226,890 95
Twitter 13,124,853 2,000 4,267,518 1,500

Table 4.2: DynaPop item and interest streams statistics.

Figure 4.10 depicts recall as a function of Rpop for similarity radii 0.8 and 0.9. For

both datasets and similarity radii, the recall increases as the popularity radius increases.

DynaPop provides high recall when searching for the most popular items in the dataset:

For example, in the Reuter’s dataset (Figure 4.10(a)), for Rsim = 0.8 (blue curve) and
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Rpop = 0.05 (capturing the 3.5% most popular items in the data set), the recall is 0.86.

When increasing the similarity radius to Rsim = 0.9 (green curve), the recall increases

and is 0.97. DynaPop’s recall is lower when we also search for less popular items: In the

Reuter’s dataset, for Rsim = 0.8 and Rpop = 0.01 (capturing the 24% most popular items

in the data set), the recall is 0.72. When increasing the similarity radius to Rsim = 0.9, the

recall is 0.9. Overall, DynaPop achieves good recall for popular items that are similar to

the query while also retrieving similar items that are less popular albeit with lower recall;

the latter is beneficial for applications such as query auto-completion [20] and product

recommendation [93].
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Figure 4.10: Recall by popularity radius of Stream-LSH when using DynaPop with the
Smooth retention policy.

4.5 Related Work

Previous work on recommendation over streamed content [45, 38, 61, 56, 60, 62, 28]

focused on using temporal information for increasing the relevance of recommended

items. Stream recommendation algorithms extend techniques originally designed for

static data, such as content-based and collaborative-filtering [14], and apply them to

streamed data by taking into account the temporal characteristics of stream generation

and consumption within the algorithm internals. In the context of search, many works

extend ranking methods to consider temporal aspects of the data, (see [55] for a survey),

and quality features such as a social post’s length or the author’s influence [85]. How-

ever, these search and recommendation works do not tackle the challenge of bounding

the capacity of their underlying indexing data-structures. Rather, they assume an index

of the entire stream with temporal information is given. Our work is thus complemen-

tary to these efforts in the sense that we offer a retention policy that may be used within

their similarity search building block.

TI [33] and LSII [89] improve realtime indexing of stream data using a policy that

determines which items to index online and which to defer to a later batch indexing

stage. Both assume unbounded storage and are thus complementary to our work. In
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addition, the TI focuses on highly popular queries, whereas we also address the tail of

the popularity distribution. LSII addresses the tail, however, it assumes exact search

while we focus on approximate search, which is the common approach in similarity

search [47].

A few previous works have addressed bounding the underlying index size in the con-

text of stream processing [73, 83, 70, 65]. Two papers [73, 83] have focused on first story

detection, which detects new stories that were not previously seen. Both use LSH as we

do. Petrović et al. [73] maintain buckets of similar stories, which are used in realtime for

detecting new stories using similarity search. In order to bound the index, they define

a limit on the number of stories kept within a bucket, and eliminate the oldest stories

when the limit is reached. We call this retention policy Bucket. Sundaram et al. [83]’s

primary goal is to parallelize LSH, in order to support high-throughput data streaming.

They bound the index size using a retention policy we call Threshold, by eliminating the

oldest items when the entire index exceeds a given space limit. Both papers focus on the

first story detection application, while our work focuses on the similarity search prim-

itive. Their retention policies are well-suited for first story detection, where the index

is searched in order to determine whether any recent matching result exists (indicating

that the story is not the first), and are less adequate for similarity search, where multiple

relevant results to an arbitrary query are targeted. We evaluate their retention policies in

our Stream-LSH algorithm and find that our Smooth policy provides much better results

in our context.

Morales and Gionis propose streaming similarity self-join (SSSJ) [70], a primitive that

finds pairs of similar items within an unbounded data stream. Similarly to us, SSSJ needs

to bound its underlying search index. Our work differs however in several aspects: First,

we study a different search primitive, namely, similarity search, which searches for items

similar to an arbitrary input query rather than retrieving pairs of similar items from the

stream. Second, SSSJ only retrieves items that are not older than a given age limit. It thus

bounds the index using a variant of Threshold. In contrast, we do not assume that an age

limit on all queries is known a priory. In this context, we propose Smooth, which better

fits our setting as we show in our evaluation. Third, we tackle approximate similarity

search whereas SSSJ searches for an exact set of similar pairs.

Magdy et al. [65] propose a search solution over stream data with bounded stor-

age, which increases the recall of tail queries. Their work differs from ours in the re-

trieval model, more specifically, they assume the ranking function is static and query-

independent, e.g., ranking items by their age. Each item’s score is known a priori for all

queries, and can be used to decide at indexing time which items to retain in the index.

This approach is less suitable to similarity search, where scores are query-dependent and

only known at runtime.

In addition, we note that the aforementioned works on bounded-index stream pro-

cessing [73, 83, 70, 65] do not take into account quality and dynamic popularity as we

do.
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Several papers have focused on improving the space complexity of LSH via alterna-

tive search algorithms [46, 86, 82], via decreasing the number of tables used at the cost

of executing more queries [72], or by searching more buckets [64]. Unlike Stream-LSH,

these works consider static (finite) data rather than a stream.

4.6 Summary

In this chapter, we presented Stream-LSH, an SSDS algorithm which considers quality,

age, and popularity attributes in addition to similarity. For the retention, we proposed

Smooth, which gradually removes item copies from the index, rather than removing

all item’s copies at once when index size limit is exceeded. We showed that Smooth

bounds the index size, and that it increases recall compared to other approaches, by

better exploiting space capacity. We observed that Smooth poses the following tradeoff:

it increases recall when increasing the age radius compared to other approaches, at the

cost of decreasing the recall of highly fresh items. Hence, Smooth is less appealing for

applications that focus on highly fresh items, but is beneficial when the retrieval of items

of varying age is valuable.

Stream-LSH also considers items’ quality, and adjusts items’ redundancy accordingly.

We showed that our quality-sensitive Stream-LSH increases the recall of high-quality

items, which is beneficial to social applications that handle content of varying quality.

Finally, Stream-LSH dynamically adjusts items’ redundancy according to the dynamic

interest in them. It achieves good recall for popular items while also retrieving items

that are less popular albeit with lower recall. This is beneficial to recommendation ap-

plications, which take item’s dynamic popularity into account in their recommendation

algorithm.
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Chapter 5

NearBucket-LSH: Efficient

Similarity Search in P2P

Networks

Online Social Networks (OSNs) have become popular interaction platforms that serve hun-

dreds of millions of users. In order to meet scale requirements, commercial OSNs are

implemented over a distributed cloud infrastructure. An alternative paradigm is a Peer-

to-Peer (P2P) OSN (e.g., [26, 37, 71, 66]), which offers increased scalability, as well as user

privacy, and avoids control by a single authority.

OSN users expose profiles that reflect their sets of interests. The interest profile may

be provided explicitly by the user, or mined implicitly from her content and activity [69,

95, 77, 13]. User similarity search is the task of effectively finding OSN users similar to a

user query based on common interests. It is used for many applications including recom-

mending new friends [68, 90], as well as for recommending content based on preferences

of similar users [14].

A similarity search algorithm in P2P OSNs faces several challenges: The algorithm

should be decentralized in order to fit the P2P architecture. As network cost is a dom-

inant consideration in P2P networks, the algorithm should be network-efficient, while

preserving a good search quality. Furthermore, the similarity search should cope with

the dynamic nature of OSNs: users join or leave, and users dynamically modify their

interest profile. We present a similarity search algorithm in P2P OSNs that meets these

requirements.

We base our algorithm on Locality Sensitive Hashing (LSH) [47] (see Section 5.2), which

is a widespread randomized method for efficient similarity search in high-dimensional

spaces. LSH hashes an OSN user (based on her interest profile) into a succinct represen-

tation, where the hash values of similar users collide with high probability (w.h.p.). At a

pre-processing stage, LSH maps users into collections of objects called buckets based on
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common hashes. Upon receiving a query, LSH limits the search to buckets to which the

query is mapped; these contain similar users w.h.p. LSH improves search time complex-

ity at the cost of search quality, as the search is approximate and may miss similar users.

We follow here a variant of LSH, called MultiProb-LSH [64], which increases search qual-

ity by additionally searching near buckets, i.e., buckets similar to the query’s bucket.

We present NearBucket-LSH, which integrates LSH into a P2P architecture. For our

P2P overlay we use Content Addressable Network (CAN) [75], which is a good fit for a

distributed LSH implementation, as we later show. We use CAN to dynamically map

and store LSH buckets within nodes, and refresh bucket contents once in a while in

order to adjust to changes in the data. Upon search, we use CAN to locate the buckets to

search in.

In P2P settings, searching additional buckets entails contacting additional nodes,

which is a network-costly operation. We improve the network-efficiency when searching

near buckets by exploiting the internals of CAN: We observe that in CAN, near buckets

reside in a bucket’s neighboring nodes, and thus contacting them incurs a low network

cost. We further eliminate this network cost by caching near buckets in each CAN node.

We analytically study NearBucket-LSH for the cosine similarity metric. We first prove

that for any fixed number, k, NearBucket-LSH’s choice of k near buckets to search in is

optimal. We next compare NearBucket-LSH to LSH, as well as to Layered-LSH [50, 19],

a previously suggested LSH variant for distributed systems, which also searches near

buckets with the goal of reducing network cost. Our analysis shows that NearBucket-

LSH achieves better success probability for a given network cost than the other two ap-

proaches. We next provide an empirical evaluation of our algorithm using three real

world OSN datasets. Our experiments demonstrate that the cache-based NearBucket-

LSH provides the greatest search quality for a given network cost, compared to LSH and

Layered-LSH.
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5.1 Model and Problem Definition

5.1.1 User Similarity Search in OSN

Each OSN user exposes an interest profile (either explicitly or implicitly), which we rep-

resent as a non-negative weighted feature vector in a high d-dimensional vector space

V = (R+
0 )

d. We use vi to denote the i-th entry of vector v (corresponding to the i-th

interest feature). The interests-weighting scheme may be arbitrary.

We consider an m-similarity search algorithm which accepts as an input a query vector

q ∈ V. It returns a unique ideal result set of m user vectors that are most similar to q,

according to the given similarity function. An approximate m-similarity search algorithm

trades-off efficiency with accuracy. Given a query q, it returns an approximate result set of

m user vectors, which may differ from q’s ideal result set.

We use here the cosine similarity function, which is used in the context of similarity

between OSN users [16]. The similarity between two vectors u, v ∈ V is defined as the

cosine of the angle between them:

simcos(u, v) =
u · v

‖u‖ · ‖v‖
. (5.1)

Yet, LSH was not defined for cosine similarity, but rather, for the closely related angular

similarity (Definition 2.1). As the angular and cosine similarities are closely related, we

can similarly analyze LSH for cosine similarity [32, 35].

5.1.2 P2P OSN and CAN

P2P networks are distributed systems organized as overlay networks with no central

management. Nodes (also called peers) are autonomous entities that may join or leave at

any time; content is distributed among the participating nodes. P2P networks provide

massive scalability, fault tolerance, privacy, anonymity, and load balancing (see [63] for

a survey). We consider a P2P Online Social Network [26, 37, 71, 66], in which users’

content is distributed among nodes. Any node in the P2P OSN may initiate a similarity

search query. Typical OSNs include hundreds of millions of users, and millions of inter-

est features. We consider a dynamic data model, in which users join or leave the OSN

and existing users update their interest profiles. We assume the update rate is several

orders of magnitude lower than the query rate (5− 10 orders of magnitude, depending

on the specific application).

In our algorithm, we use CAN [75] as our overlay, which naturally fits a distributed

LSH implementation, as we later show. CAN implements a self-organizing P2P net-

work representing a virtual c-dimensional Cartesian coordinate space on a c-torus. The

Cartesian space is dynamically partitioned into zones, which are distributed among CAN

nodes. CAN implements a Distributed Hash Table (DHT) abstraction, which provides a

distributed lookup operation that accepts a vector as key, and returns a node that owns
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the zone to which the vector belongs. Each node maintains a table of neighbors, which

are nodes that own zones adjacent to its own. These tables are used for routing messages

within CAN.

5.2 Background and Previous Work

MultiProb-LSH [64] is an extension to LSH (overviewed in Section 2.3), which improves

the recall of an LSH algorithm with parameters k and L. MultiProb-LSH observes that

near buckets, which are buckets that slightly differ from the query’s exact bucket g(q), have

a high probability to contain vectors similar to the query. Searching in such near buckets

yields additional similar results w.h.p., which increases LSH’s recall. MultiProb-LSH

was introduced in the context of the lp norm; here, we apply its principles to cosine-

based LSH, in the context of P2P OSN.

In P2P networks, buckets are distributed over the overlay nodes. Contacting a near

bucket involves performing a DHT lookup of its node, which incurs high network cost.

Prior art [50, 19] suggests Layered-LSH, which maps buckets to nodes using a second

LSH, such that near buckets are assigned to the same node w.h.p. Queries now access

a single node holding the desired buckets, which reduces the network cost. In Section

5.4.1, we show that in the case of cosine similarity, Layered-LSH is equivalent to the

basic LSH for an appropriate choice of k, incurring the same network cost as the basic

LSH. In this chapter, we show that our NearBucket-LSH algorithm improves recall for a

given network cost compared to LSH and Layered-LSH, and is therefore more network-

efficient compared to prior art.

As LSH is a widespread similarity search algorithm, commonly used in real deploy-

ments, we focus here on LSH-based methods. In particular, we compare our algorithm

to prior approaches that use LSH [50, 19]. We note that other P2P similarity search meth-

ods have been proposed [22], in particular, Falchi et al. [43] use CAN as their overlay.

However, these methods are not based on LSH, which is the focus of our work.

In addition to distributed solutions, there are also parallel LSH variants, e.g. [84].

However, these do not focus on improving network-efficiency, which is not of essence in

a parallel setting.

5.3 Algorithm

Our algorithm is based on locality sensitive hashing, reviewed in Section 5.2 above. In

order to implement our P2P user similarity search, we construct a dedicated overlay

above the CAN infrastructure. We distribute LSH buckets of user vectors among the

overlay nodes, occasionally refresh their content to adjust for changes, and route search

queries to the appropriate buckets, as described in Section 5.3.1. In Section 5.3.2, we

extend this basic approach to also search in near buckets.
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5.3.1 CAN-based LSH

The Overlay We use a k-dimensional CAN (i.e., c = k) to store and lookup LSH buckets

in a decentralized manner. For simplicity, we assume that N = 2k, where N denotes the

number of CAN nodes. Note that our overlay may be formed by a subset of the OSN

nodes, but for simplicity of the description, we assume all OSN nodes participate in

the overlay. Each CAN node owns the zone of a single k-dimensional binary vector v

representing some LSH sketch vector, and maintains the bucket of user vectors that are

mapped to v by some hash function g ∈ G. We name such a node the bucket node of

v. The bucket node provides a local similarity search facility over its locally stored user

vectors. The local search time is typically proportional to the searched bucket size [47].

The internal bucket data-structure and local search implementation are orthogonal to

this research.

Each CAN node in our overlay has k neighbors; the i-th neighbor of node v owns a

vector u that differs from v in the i-th entry only. Routing a message from node v to one

of its neighbors requires a single hop, i.e., a single message. Routing a message from an

arbitrary source node v to an arbitrary target node u, entails modifying the binary vector

entries that differ between u and v. Two vectors of length k, differ in k/2 entries, and

thus, the expected path length is k/2 hops1.

The L hash functions g = {g1, · · · , gL} are randomly selected from G a priori. They

are given to the distributed algorithm as a configuration parameter, and are known to all

bucket nodes. CAN supports multiple hash functions [75], which we use for supporting

multiple gi’s and mapping each user vector into L bucket nodes.

Bucket Maintenance Our algorithm constructs and refreshes the buckets continuously,

in a decentralized manner. Thus, each bucket node stores soft state that is regularly

refreshed. Each user periodically re-hashes its vector using LSH into L sketch vectors

in {1, 0}k. It then performs DHT lookups to locate the corresponding bucket nodes, and

sends them the fresh user vector. Note that the user vector may or may not have changed

since the previous update message.

We do not construct buckets a priori. Rather, bucket construction is triggered by

vector update messages. A CAN node becomes an active bucket node when it first re-

ceives a notification of some user vector. Since user vectors change dynamically, their

hashes change accordingly. Obsolete vectors that are not refreshed for a certain prede-

fined length of time are garbage-collected from bucket nodes.

Query Processing Each P2P node may trigger an m-similarity search request for an

input query q. The similarity search follows the LSH algorithm [47], using our overlay.

The initiating node, denoted n, activates the function QUERY in Algorithm 5: It hashes q

into L sketch vectors according to the pre-defined gi functions, looks-up L corresponding

1 Note that in a general c-dimensional CAN of N nodes, the expected routing length is c/4
(

N1/c
)

[75],

which equals k/2 for c = k and N = 2k .
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bucket nodes ni using CAN, and sends m-similarity search requests with the input query

q to all L bucket nodes in parallel. Each bucket node locally performs an m-similarity

search (function SIMSEARCH in Algorithm 5), and sends back a set of up to m results,

associated with their similarity values. Node n receives L result sets, which it merges

and sorts according to the similarity values. It then returns a final m-result set to the

caller.

Algorithm 5 Distributed LSH Algorithm

1: function QUERY(q) ⊲ At the query node
2: pforeach gi ∈ g do ⊲ A parallel foreach
3: vi ← gi(q)
4: ni ← DHT.LOOKUP(vi) ⊲ Lookup bucket node
5: ni.SENDREQ(SimSearch, q, n) ⊲ Send request
6: end pforeach
7: hits← collect results from bucket nodes
8: return top m hits ⊲ Rank and return top m
9: end function

10: function SIMSEARCH(q, n) ⊲ Query q from n
11: res← Bucket.LOCALSIMSEARCH(q) ⊲ Local search
12: n.SENDRES(res) ⊲ Send back result
13: end function

5.3.2 NearBucket-LSH

Given a query q and some hash function g ∈ G, the basic LSH algorithm searches in

the exact bucket g(q). NearBucket-LSH extends LSH to also search in near buckets that

differ from g(q) in exactly one vector entry, i.e., one bit is flipped. As we analytically

show in Section 5.4, searching in near buckets increases the probability to find similar

users.

Contacting a neighbor costs a single message, for a total of kL messages per query.

We further eliminate these additional messages by caching k near buckets at each CAN

node. In order to maintain fresh caches, each node periodically sends its bucket to its

neighbors. The cache requires an additional storage of size kB at each node, where B is

the average bucket size. Note that our cache is only used for storing near buckets.

A CAN node maintains a table of k neighbors that differ from it in exactly one en-

try, which are also the neighbors that hold the desired near buckets. Given a query

q, NearBucket-LSH uses a query function similar to the function QUERY in Algorithm

5: to contact the L exact bucket nodes using CAN. But here, the sent request is Sim-

SearchNB. Once such a request reaches some exact bucket node, it activates the func-

tion SIMSEARCHNB in Algorithm 6: The node first performs a local similarity search

in its own bucket (line 2 in Algorithm 6). Then for each of its k neighbor nodes nj,
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j = {1, · · · , k} , it checks if that node’s bucket is cached locally. If it is, it searches it, and

if not, it forwards the query to that node. In case messages are forwarded, bucket nodes

perform local m-similarity searches of query q in parallel, and each returns a result set to

the initiating node n.

Algorithm 6 Distributed NearBucket-LSH Algorithm

1: function SIMSEARCHNB(q, n) ⊲ Query q from n
2: res← Bucket.LOCALSIMSEARCH(q) ⊲ Local search
3: n.SENDRES(res) ⊲ Send back result
4: pforeach j ∈ {1, · · · , k} do ⊲ A parallel foreach
5: nj ← Neighbors.j ⊲ Extract the j-th neighbor
6: if Bucketj.isCached then
7: res← Bucketj.LOCALSIMSEARCH(q) ⊲ Local search
8: n.SENDRES(res) ⊲ Send back result
9: else

10: nj.SENDREQ(SimSearch, q, n) ⊲ Forward request
11: end if
12: end pforeach
13: end function

It is possible to cache all k near buckets or any subset of them. For the purpose of

the analysis and evaluation in the next sections, we refer to the following two extremes:

we name NB-LSH a NearBucket-LSH that does not use caching at all, and CNB-LSH a

NearBucket-LSH that caches all k near buckets.

5.4 Analysis

We theoretically analyze an algorithm’s capability of retrieving similar objects, and show

the superiority of NearBucket-LSH to successfully retrieve similar objects for a given

network cost.

5.4.1 Success Probability Formulation

The basic building block in our analysis is the success probability [64] of an algorithm A to

find object y that has a similarity value s to query object q, under a random selection of

g ∈ G. We denote this success probability by SP(A, s).

LSH. Let LSH(k, L) denote the angular-LSH algorithm with parameters k and L, and

let s denote the angular similarity between query q and searched object y. According to

the LSH theory [32], for a randomly selected h ∈ H:

Prh∈H [h(q) = h(y)] = s, and Prh∈H [h(q) 6= h(y)] = (1− s). (5.2)
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LSH(k, L) searches in L exact buckets independently, thus, it finds y in any of these

buckets with probability:

Proposition 3.

SP(LSH(k, L), s) = 1−
(

1− sk
)L

.

NearBucket-LSH. We define b-near buckets to be buckets that differ from an exact bucket

in 0 ≤ b ≤ k entries (note that a 0-near bucket is an exact bucket). The success probability

of finding y in a b-near bucket of g(q) is:

sk−b(1− s)b. (5.3)

As our vectors are non-negative, their angular similarities s satisfy that s ∈ [0.5, 1]. This

implies that ∀s, (1− s) ≤ s, and therefore, for 0 ≤ b1 < b2 ≤ k, sk−b2(1− s)b2 ≤ sk−b1(1−

s)b1 , thus:

Proposition 4. The success probability when searching in a b1-near bucket is greater or equal

to the success probability when searching in a b2-near bucket, for any 0 ≤ b1 < b2 ≤ k. Hence,

NearBucket-LSH’s selection of k 1-near buckets is optimal, with respect to any other k buckets

selected for search, in addition to the exact bucket.

The exact bucket and its near buckets are disjoint, as an object is mapped to exactly

one bucket according to a specific g. NearBucket-LSH searches in L exact buckets each

along with its k 1-near buckets. Thus,

Proposition 5.

SP(NearBucket-LSH(k, L), s) = 1− (1− (sk + ksk−1(1− s)))L.

Layered-LSH. We show that for the angular similarity, Layered-LSH is equivalent to

the basic LSH. Layered-LSH maps near buckets to the same node w.h.p., which can be

achieved by using Hamming-based LSH [47, 35] as follows. Let gang be the angular-

LSH used for mapping vectors to buckets. By definition, gang is a concatenation of hi

angular-LSH functions. Let gham be the Hamming-LSH used for mapping buckets to

nodes. Hamming-based LSH hashes a binary vector to another binary vector of a lower

dimension k, by randomly and independently selecting k entries of the input vector. In

our case, this resorts to randomly and independently selecting k entries from gang(v),

each of which corresponds to some hi ∈ H. We get that gham(gang(v)) maps v to a node

according to k randomly selected h ∈ H functions, which is equivalent to using the

angular-LSH with parameter k.

5.4.2 Success Probability Comparison

We use Propositions 3 and 5 to compare the success probabilities of LSH, Layered-LSH,

and NearBucket-LSH. We compute an algorithm’s success probability as a function of
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the cosine similarity between the query and the searched object2. As Layered-LSH is

equivalent to LSH, we refer to both as LSH in this discussion. For the purpose of the

demonstration, we present graphs for selected k and L values. Note however that we

observed the same trend for other k and L values; we omit the respective graphs from

this text.

Constant Number of Hash Functions. We first examine the effect of searching near

buckets on the success probability, hence, we compare LSH and NearBucket-LSH for

a constant L. Figure 5.1 depicts their success probabilities for k = 12 and for increas-

ing L values of 1, 10, and 100. As the graphs demonstrate, the success probability of

NearBucket-LSH is greater than or equal to the success probability of LSH for all simi-

larities, for a constant L.
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Figure 5.1: Analytical success probability as a function of L (k = 12). NearBucket-LSH
guarantees a greater or equal success probability compared to LSH and Layered-LSH, as
it searches in more buckets (namely, near buckets). The gap increases as L increases.

Network Efficiency. As we have seen, for a constant L, NearBucket-LSH increases the

success probability of LSH at the cost of contacting additional buckets. We proceed to

analyzing the success probability as a function of the network cost. We measure the

2We transform cosine similarity into angular similarity and then apply the success probability formulas.
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network cost by the average number of messages per query. We distinguish between the

cached (CNB-LSH) and non-cached (NB-LSH) versions of NearBucket-LSH.

The first column of Table 5.1 summarizes the number of bucket nodes contacted (and

searched) by each of the algorithms, for given k and L parameters. Looking up an exact

bucket node requires an average of k/2 routing hops, and contacting a neighbor node

costs one message. The second column in Table 5.1 summarizes the average number of

messages per query, for given k and L parameters.

Number of nodes Average number of Number of vectors Number of vectors
contacted per query messages per query stored in a node searched per query

LSH L 1
2 kL B LB

Layered-LSH L 1
2 kL B LB

NB-LSH L(1+k) 1 1
2 kL B L(k + 1)B

CNB-LSH L 1
2 kL (k + 1)B L(k + 1)B

Table 5.1: Summary of costs of similarity search in CAN-based LSH variants for given
k, L LSH parameters.

Figure 5.2 depicts success probability for k = 12 and an increasing network costs

of 18, 180, and 1800 average number of messages. The graphs illustrate that, thanks to

the low network cost of searching near buckets, NearBucket-LSH, (and more notably

CNB-LSH), improves LSH’s success probability for all similarity values, for a constant

average number of messages. Note that one could further extend NearBucket-LSH to

search in near buckets that differ from the query’s bucket in more than one entry. The

success probability of such buckets decreases (Proposition 4), whereas the network cost

in NB-LSH and the storage cost in CNB-LSH increases compared to 1-near buckets. Thus,

searching additional buckets is expected to be less effective.

Other Considerations. Our work focuses on minimizing the network cost, which is a

dominant cost in P2P networks. For completeness, we present in the third and fourth

columns of Table 5.1 other costs which tradeoff with network-efficiency. We denote the

average bucket size by B. In terms of storage capacity, NB-LSH preserves the same space

complexity as LSH and Layered-LSH. CNB-LSH increases the space complexity due to

caching, while being more network-efficient than NB-LSH. Both NearBucket-LSH vari-

ants search over a larger number of vectors than LSH, implying more processing work

per query. As our algorithm searches the buckets in parallel, and the average bucket size

is equal in all algorithms, this does not affect the query latency.

5.5 Evaluation

We empirically evaluate our algorithm on three real world OSN datasets of varying sizes,

and demonstrate the superiority of CNB-LSH over other approaches.
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Figure 5.2: Analytical success probability as a function of network cost for k = 12. NB-
LSH exploits the low lookup cost of near buckets in CAN, and increases LSH’s and
Layered-LSH’s success probability for a given network cost. CNB-LSH further saves
messages by caching near buckets, and achieves the greatest success probability for a
given network cost.
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5.5.1 Methodology

Datasets. We use three real-world publically-available datasets of OSNs [92]:

• DBLP [39], the computer science bibliography database: Authors are users, and

venues are interests. We use a crawl of 13,477 interests, and 260,998 users that have

at least one interest.

• LiveJournal [3] blogging-based OSN: Users publish blogs and form interest groups,

which users can join. The LiveJournal crawl consists of 664,414 such groups, which

we consider as user interests. There are 1,147,948 users with at least one interest.

• Friendster [44] online gaming network: Similarly to LiveJournal, Friendster allows

users to form interest groups, which we consider as interests. The dataset consists

of 1,620,991 interest groups, and 7,944,949 users with at least one interest.

All datasets contain anonymous user ids and interest information. We filtered out

users having no interest.

Parameters. We set k = 10 in DBLP, k = 12 in LiveJournal and k = 15 in Friendster.

We follow previous art [19, 50] that uses k values between 10 and 20, and bucket sizes

of a few hundreds [47]. Thus, we have 1,024 buckets in DBLP, 4,096 in LiveJournal, and

32,768 in Friendster. The average bucket size is approximately 250 vectors in all datasets.

We set m, the number of search results, to 10.

Creating Sketch Vectors. We construct users’ weighted interest vectors according to

the dataset at hand. We weight each interest I based on its inverse frequency in user

vectors [13]: w(I) = ln( Nu
NI+1 ) + 1, where Nu denotes the total number of users, and NI

denotes the number of users having interest I. The user vector entry vi is zero or w(I) ac-

cording to whether the user is associated with specific interest I. We use TarsosLSH’s [10]

for mapping vectors into LSH buckets.

Simulator. We implement a simulator of our CAN-based overlay using Apache Lucene

4.3.0 [4] centralized search index. We simulate distributing user vectors in bucket nodes

by indexing vectors by their hash values (sketch vectors). The hash is then used for

looking up a specific bucket node, and local similarity search is performed by limiting

the search to the selected bucket (using Lucene’s Filter mechanism). We additionally use

Lucene to compute the ideal result set of a given query, by executing the query over the

whole dataset. We score results according to the cosine similarity.

Evaluation Set. We construct a query set of 3,000 randomly sampled users. For each

query q, we retrieve its ideal result set, as well as the result sets according to the algo-

rithms we compare. For each dataset, we measure recall and precision over the query set

in use.
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Recall. (at m) is defined as follows [64]:

Definition 5.5.1 (recall at m). Given a query q, let Im(q) denote its ideal m-result set. Let

Am(q) denote the approximate m-result set of q returned by some algorithm A. An algorithm’s

recall for query q is the fraction of results from q’s m-ideal result set that are returned by A:

recall@m(A, q) =
|Am(q) ∩ Im(q)|

|Im(q)|
. (5.4)

An algorithm’s recall, recall@m (A), is the mean of the queries’ recall averaged over a query set

Q.

5.5.2 Search Quality Results

Figure 5.3 illustrates our experimental results as a function of network cost. As in Sec-

tion 5.4.2, we measure the network cost by the average number of messages per query

according to Table 5.1. We increase the network cost by gradually increasing L, which

increases search quality for all datasets as expected. We use larger values of k for larger

datasets in order to preserve a common average bucket size. This ensures that local

search takes the same time, and the cache sizes are identical. The larger k is, the lower

the success probability is, thus, we expect a decrease in search quality when the dataset

size increases, which is indeed demonstrated in the graphs.

The three datasets show a similar trend. Layered-LSH’s recall equals that of the ba-

sic LSH as expected. NearBucket-LSH (both cached and non-cached) demonstrates an

increase in recall compared to LSH and Layered-LSH, which is achieved by searching

in additional near buckets stored at neighboring nodes or the node itself. CNB-LSH im-

proves recall significantly, for example in LiveJournal, it achieves a 0.59 recall using 72

queries, compared to a recall of 0.35 for LSH. In all cases, NB-LSH is between LSH and

CNB-LSH.

5.6 Summary

In this chapter, we presented a network-efficient, LSH-based, similarity search algorithm

in P2P OSNs. We showed that in P2P OSNs, searching near buckets increases recall at

the cost of sending additional messages over the network. We presented NearBucket-

LSH, which uses CAN as its overlay, and exploits CAN’s architecture for decreasing the

network cost. Our experiments demonstrate that NearBucket-LSH achieves a higher re-

call compared to the basic LSH for a given network cost. As our algorithm is tailored

to CAN, its drawback is that it is restricted to using CAN as its overlay. We addition-

ally proposed a cached version of NearBucket-LSH, which further decreases the network

cost by caching near-buckets at neighboring nodes, at the cost of increasing storage ca-

pacity. Overall, NearBucket-LSH is beneficial when reducing the network cost is of top

consideration, which is a typical case in P2P networks.
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Figure 5.3: Recall as a function of the average number of messages per query, for three
real world datasets: DBLP, LiveJournal, and Friendster (k = 10, k = 12, k = 15, re-
spectively). For all datasets, CNB-LSH provides the greatest recall as a function of the
network cost.
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Conclusion

In this thesis, we explored search effectiveness in DiS, focusing on the tradeoff between

search quality and other considerations. We improved search quality in three scenarios

that we examined, by better exploiting the underlying system’s resources. It would be

of interest for future work to examine other scenarios in which this tradeoff arises, and

further improve the search quality of DiS.

We studied tail-tolerant DiS, which is crucial for real-world commercial search en-

gines. We observed that tail-tolerant DiS is amenable to a non-binary availability model

based on degradation in search quality. We showed that in this context, Replication is

not ideal for mitigating result misses, as searching exact shard copies can be wasteful.

We introduced two strategies that better fit tail-tolerant DiS. First, we proposed to con-

sider miss probability as well as each shard’s probability to satisfy the query for selecting

shards. We devised rSmartRed, an optimal shard selection scheme for Replication. Sec-

ond, we proposed Repartition, an alternative approach for applying redundancy. Repar-

tition constructs independent index partitions instead of exact copies, which improves

search quality over Replication in practical scenarios.

Our work considers a static index during query processing. It would be interesting

for future work to explore tail-tolerance at indexing stage when using a dynamic index.

It would also be of interest to consider tail-tolerance when assuming other DiS models,

including other index partitioning approaches, or DiS over multiple, distant datacenters.

Finally, it would be of interest to consider redundancy approaches that are more space-

compact than Replication.

We introduced the problem of similarity search over endless data-streams, which

faces the challenge of indexing unbounded data. We proposed Stream-LSH, an SSDS

algorithm that uses a retention policy to bound the index size. We showed that our

Smooth retention policy increases recall of similar items compared to methods proposed

by prior art. In addition, our Stream-LSH indexing procedure is quality-sensitive, and is

extensible to dynamically retain items according to their popularity.

While our work focuses on similarity search, our approach may prove useful in future
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work, for addressing space constraints in other stream-based search and recommenda-

tion primitives. Our work considers similarity, age, quality, and dynamic popularity

attributes. It may be of interest for future work to consider additional attributes and

complex relations among them.

We presented NearBucket-LSH, a network-efficient LSH algorithm for P2P OSNs,

which provides good search quality. We first analytically showed that, for cosine simi-

larity, our choice of searched near buckets is optimal, that is, near buckets that differ in a

single entry from the query’s bucket are more likely to contain similar vectors than other

near buckets. We then showed that one may dramatically lower the additional network

cost for searching in these buckets by exploiting CAN’s internal structure and judicious

caching.

Our proposed overlay focuses on angular-LSH, which fits OSN similarity search. It

would be of an interest to extend our overlay to support other LSH families such as

lp-LSH.
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( מרכזיים בין משאבי המערכת הזמינים tradeoffsבמחקר זה אנו עוסקים במספר איזונים )

לאיכות החיפוש שהמערכת מספקת. אנו עוסקים בשלושה תחומים, ובפרט, בפגיעה 

באיכות החיפוש בשל שרתים איטיים, מגבלות של קיבולת מקום האחסון ורחב התקשורת. 

אנו אנו משפרים את איכות החיפוש על ידי שימוש מושכל במשאבי המערכת במקרים אלו 

דדים את איכות החיפוש של האלגוריתמים בהם אנו עוסקים על ידי שני מדדים מו

 המקובלים בספרות:

Success Probability –  מבטא באופן אנאליטי את ההסתברות שאלגוריתם חיפוש מקורב

 מאחזר מסמך מסוים הרלבנטי לשאילתה נתונה.

Recall –  שאלגוריתם חיפוש מודד באופן אמפירי את החלק של המסמכים הרלבנטיים

 מקורב מחזיר מתוך סך כל המסמכים הרלבנטיים לשאילתה.

 

 מכון טכנולוגי לישראל. –המחקר נעשה בפקולטה להנדסת חשמל על שם ויטרבי, הטכניון 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

II 

 

 

 תקציר
 

 

חיפוש באוסף של מסמכי טקסט הינו רכיב תוכנה פופולרי, הנמצא בשימוש נפוץ על ידי 

משתמשי קצה וכן על ידי אפליקציות. משתמשי קצה נעזרים במנועי חיפוש )כגון גוגל, יהאו 

ובינג( על בסיס יומיומי, כדי לחפש אינפורמציה המספקת את צרכי  המידע שלהם. 

המלצה, משתמשות בחיפוש כרכיב בסיסי באלגוריתמים אפליקציות, כמו למשל מערכות 

 שלהם.

, שהינו המימוש הנפוץ ביותר כיום למערכות חיפוש חיפוש מבוזרבמחקר זה אנו עוסקים ב

מסחריות. מערכות אלו פועלות בסביבה של גדלים גבוהים, הן מבחינת כמויות המידע שהן 

משרתות. החיפוש המבוזר מבזר את מחפשות עליהן, והן מבחינת קצב השאילתות שהן 

(. במחקר זה datacentersשירות החיפוש על עד אלפי שרתים הנמצאים לרב במרכזי מידע )

. Peer-to-Peer (P2P)אנו עוסקים בנוסף במימוש של מערכות חיפוש מבוזרות מעל מערכת 

 י כלל.הינה מערכת מחשבים המבוזרת באופן מוחלט, כלומר, ללא ניהול מרכז P2Pמערכת 

ה"גביע הקדוש" של אלגוריתמי חיפוש הינו סיפוק תוצאות באיכות גבוהה. פן מרכזי של 

הוא היכולת לאחזר תוצאות חיפוש שהן רלבנטיות לשאילתה. אך איכות  איכות החיפוש

החיפוש אינו האספקט היחידי הנלקח בחשבון. מערכות חיפוש מודרניות לוקחות בחשבון 

מלבד הרלבנטיות לשאילתה. לדוגמה, תכונות טמפורליות,  תכונות נוספות של המידע

כלומר תלויות זמן. תכונות אלו הינן בפרט בעלות חשיבות לאפליקציות המבצעות חיפוש 

על זרם של נתונים, לדוגמה, מידע המתפרסם ברשתות חברתיות וכן חדשות מקוונות. 

ון תכונות נוספות של בהקשר זה, אנו מרחיבים את מושג איכות החיפוש ולוקחים בחשב

 המידע. כגון, הזמן בו הגיע המידע, איכות המידע, וכן מידת הפופולריות הדינמית שלו.

למרות שאיכות החיפוש הינה מוטיב מרכזי עבור משתמשים, אחזור של כל תוצאות 

החיפוש עבור השאילתה הוא לעתים לא יעיל, יקר מבחינת השימוש במשאבי המערכת, או 

מקורב, חיפוש פשרי. לכן, מערכות חיפוש מבוזרות משתמשות לרב באפילו בלתי א

המאפשר אחזור של רק חלק מתוצאות החיפוש במחיר של פגיעה באיכות החיפוש. 

לדוגמה, חיפוש על כל מאגר המידע עשוי להיות יקר מבחינת מחיר התקשורת או העומס 

יפוש רק על חלק על השרתים. במקרים אלו מערכות חיפוש מבוזרות מבצעות לרב ח

מהשרתים ועשויות לאחזר רק חלק מתוצאות החיפוש. סיבה נוספת לאחזור של תוצאות 

שרתים מבוזרות חלק מהשרתים  מקורבות הינה אובדן של חלק מהתשובות: במערכות

עשויים להיות איטיים באופן משמעותי יותר מהאחרים. מערכת חיפוש המחכה לתשובות 

תוצאות החיפוש הסופיות למשתמש תוך זמן ארוך, מה של שרתים איטיים תספק את 

שיפגע ברווחיה. לכן, לרב, מערכות חיפוש מבוזרות מתעלמות משרתים איטיים וכך 

מאבדות לעתים חלק מתוצאות החיפוש. דוגמה שלישית הינה חיפוש במאגר מידע לא 

ינו אפשרי בזרם אינסופי של נתונים. במקרה זה, אחסון של כל המידע בשרתים א –חסום 

עקב מגבלות של קיבולת מקום. לפיכך, רק חלק מהמידע מאוחסן בכל זמן נתון, מה 

  שמאפשר חיפוש על חלק זה בלבד.
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