
Timeliness, Failure-Detectors, and

Consensus Performance

ALEXANDER SHRAER





Timeliness, Failure-Detectors, and Consensus
Performance

Research Thesis

Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Computer Science

ALEXANDER SHRAER

Submitted to the Senate of the Technion – Israel Institute of Technology

NISAN 5766 HAIFA April 2006



The Research Was Done Under the Supervision of Dr. Idit Keidar from
the Department of Electrical Engineering, Technion, in the Department of
Computer Science, Technion

THE GENEROUS FINANCIAL HELP OF THE TECHNION — ISRAEL INSTITUTE

OF TECHNOLOGY IS GRATEFULLY ACKNOWLEDGED



Acknowledgments

I would like to express gratitude to the following people who helped me so much in

completing the master degree.

My advisor Dr. Idit Keidar, for introducing the problem to me, sharing her vast knowledge

and experience, and for her valuable guidance and support. Thanks for always willing to

make time for me, despite more than a handful of other obligations.

I thank Marcos Aguilera, Partha Dutta, Rachid Guerraoui, Eshcar Hilel, Liran Katzir,

Denis Krivitski, Keith Marzullo, and Neeraj Suri for many helpful discussions about the

paper that led to this thesis.

Many thanks go to my thesis examinators - Prof. Hagit Attiya, Prof. Faith E. Fich and

Prof. Yoram Moses, for their valuable input to my work.

Thanks to my mom, Zoya, without whom I wouldn’t be where I am today.

And last, but certainly not least, to my wonderful girlfriend, Tanya, for all her support and

encouragement, and for willing to put up with the long hours that this work required.



Contents

Abstract 1

1 Introduction 3

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 GIRAF – A General Round-Based Algorithm Framework . . . . . . . . . 4

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work 11

2.1 Eventually Stable (Indulgent) Models . . . . . . . . . . . . . . . . . . . 11

2.2 Round-Based Abstractions for Systems with Asynchronous Communication 13

2.3 Performance after Stabilization . . . . . . . . . . . . . . . . . . . . . . . 15

3 Model and Problem Definition 18

3.1 Distributed Computation Model . . . . . . . . . . . . . . . . . . . . . . 18

3.2 GIRAF – General Round-Based Algorithm Framework . . . . . . . . . . 19

3.3 Environment Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Consensus and Global Decision . . . . . . . . . . . . . . . . . . . . . . 23

4 Complexity of Reductions 24

5 Generality of GIRAF 26

6 Optimal Leader-Based Algorithm in ♦LM 29

6.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



6.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Linear Lower Bound for ♦SR 39

8 Constant-Time Algorithm in ♦AFM 42

8.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8.2 Optimization for n = 2m + 1 . . . . . . . . . . . . . . . . . . . . . . . . 45

8.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9 Impossibility of Bounded Time Global Decision in ♦MFM 57

10 Probabilistic Comparison of Decision Time in Different Models 60

10.1 Analysis of ES and ♦LM . . . . . . . . . . . . . . . . . . . . . . . . . . 61

10.2 Analysis of ♦AFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

10.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

10.4 Setting the Timeout in a Practical Scenario . . . . . . . . . . . . . . . . . 66

11 Conclusions and Future Directions 68

References 71



List of Figures

3.1 GIRAF: Generic algorithm for process pi (I/O automaton). . . . . . . . . 20

6.1 Optimal leader–based algorithm for ♦LM , code for process pi. . . . . . . . . . 30

8.1 Majority–based algorithm for ♦AFM model. Code for process pi. Optimization

for n = 2m + 1 is marked in gray. . . . . . . . . . . . . . . . . . . . . . . . 43

9.1 Illustration of the partition argument. . . . . . . . . . . . . . . . . . . . . . 59

10.1 Probabilistic comparison of rounds/time until decision. . . . . . . . . . . . . . 65



List of Tables

1.1 Upper and lower bounds on consensus global decision times in various

models (t < n/2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9





Abstract

Consensus is a widely-studied fundamental problem in distributed computing, theory and

practice. Roughly speaking, it allows processes to agree on a common output. We are

interested in the performance of consensus algorithms in different timing models. It is

known that consensus is not solvable in a completely asynchronous environment, and a

completely synchronous one is often too restrictive for real systems. Therefore, many

middle-ground models have been previously suggested. One known model is the Eventu-

ally Synchronous model, in which the system is asynchronous for an arbitrary period of

time and then becomes synchronous. Another method is assuming that each process has

an unreliable failure detector oracle, which eventually gives some level of indication to

the process about the failed processes or about a common non-faulty leader.

We study the implications that various timeliness and failure detector assumptions

have on the performance of consensus algorithms that exploit them. We present a gen-

eral framework, GIRAF, for expressing such assumptions, and reasoning about the per-

formance of indulgent algorithms (algorithms that tolerate an arbitrary period of asyn-

chrony). This framework addresses several shortcommings of a previously known frame-

work - RRFD. We use GIRAF to revisit the notion of oracle (or model) reducibility and

define α-reducibility that takes time complexity of the reduction into account. We inves-

tigate several interesting indulgent models (all weaker than Eventual Synchrony) using

GIRAF and give upper and lower bounds for the number of rounds needed to reach con-

sensus in these models.

Our results have several implications to the understanding of indulgent systems. First,

we prove that Eventual Synchrony is not needed to achieve optimal consensus perfor-

mance. We prove that the ♦S and the Ω failure detectors that are known to be equivalent
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in the literature, are very different when it comes to performance of consensus algorithms.

We show an algorithm that works in an oracle-free model that is weaker than Eventual

Synchrony but achieves very close performance to what is known to be possible in Even-

tual Synchrony. Finally, we show that several recently suggested models, and even much

stronger models, are too weak to allow bounded-time consensus decision.

2



Chapter 1

Introduction

1.1 Background and Motivation

Consensus is a widely-studied fundamental problem in distributed computing, theory and

practice. Roughly speaking, it allows processes to agree on a common output. We are

interested in the performance of consensus algorithms in different timing models.

Although the synchronous model provides a convenient programming framework, it

is often too restrictive, as it requires implementations to use very conservative timeouts

to ensure that messages are never late. For example, in some practical settings, there is

a difference of two orders of magnitude between average and maximum message laten-

cies [9, 7]. Therefore, a system design that does not rely on strict synchrony is often

advocated [37, 26, 12]; algorithms that tolerate arbitrary periods of asynchrony are called

indulgent [30].

As it is well-known that consensus is not solvable in asynchronous systems [27], the

feasibility of indulgent consensus is contingent on additional assumptions. More specif-

ically, such a system may be asynchronous for an unbounded period of time, but even-

tually reaches Global Stabilization Time (GST) [26], following which certain properties

hold. These properties can be expressed in terms of eventual timeliness of communica-

tion links [26, 18]1, or using the abstraction of oracle failure detectors [12]. Protocols in

such models usually progress in asynchronous rounds, where, in each round, a process

1A timely link delivers messages with a bounded latency; the bound is either known or unknown a priori.
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sends messages (often to all processes), then receives messages while waiting for some

condition expressed as a timeout or as the oracle’s output, and finally performs local pro-

cessing.

Recent work has focused on weakening post-GST synchrony assumptions [32, 1, 2,

3, 43], e.g., by only requiring one process to have timely communication with other pro-

cesses after GST. Clearly, weakening timeliness requirements is desirable, as this makes

it easier to meet them. For example, given a good choice of a leader process, it is possible

to choose a fairly small timeout, so that the leader is almost always able to communicate

with all processes before the timeout expires, whereas having each process usually suc-

ceed to communicate with every other process requires a much larger timeout [7, 6]. In

general, the weaker the eventual timeliness properties assumed by an algorithm are, the

shorter the timeouts its implementation needs to use, and the faster its communication

rounds can be.

Unfortunately, faster communication rounds do not necessarily imply faster consen-

sus decision; the latter also depends on the number of rounds a protocol employs. A

stronger model, although more costly to implement, may allow faster decision after GST.

Moreover, although formally modeled as holding from GST to eternity, in practice, prop-

erties need only hold “long enough” for the algorithm to solve the problem (e.g., con-

sensus) [26]. But how much time is “enough” depends on how quickly consensus can

be solved based on these assumptions. Satisfying a weak property for a long time may

be more difficult than satisfying a stronger property for a short time. Therefore, before

choosing timeliness or failure detector assumptions to base a system upon, one must un-

derstand the implications these assumptions have on the running time of consensus. This

is precisely the challenge we seek to address in this thesis.

1.2 GIRAF – A General Round-Based Algorithm Frame-

work

This question got little attention in the literature, perhaps due to the lack of a uniform

framework for comparing the performance of asynchronous algorithms that use very dif-
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ferent assumptions. Thus, the first contribution of our work is in introducing a general

framework for answering such questions. In Chapter 3.2, we present GIRAF, a new

abstraction of round-based algorithms, which separates an algorithm’s computation (in

each round) from its round waiting condition. The former is controlled by the algorithm,

whereas the latter is determined by an environment that satisfies the specified timeliness

or failure detector properties. We give a time-free definition of timely links. Informally,

a link is timely in a round, if messages sent in this round to a correct destination arrive

in the same round. In addition, the environment can provide additional “oracle output”

information for the protocol. In general, rounds are not synchronized among processes.

GIRAF is inspired by Gafni’s round-by-round failure detector (RRFD) [28], but extends it

to allow for more expressiveness in specifying round properties, in that the oracle output

can have an arbitrary range and not just a suspect list as in [28], and our rounds do not

have to be synchronized among processes or be communication-closed like Gafni’s2.

One model that we study and cannot be expressed in RRFD ensures that each process

receives messages from a majority, and in addition, provides an eventual leader oracle, Ω,

which eventually outputs the same correct leader process at all processes; many consen-

sus algorithms were designed for this model, e.g., [37, 22, 31]. Note that in order to ensure

communication with a majority in each round, RRFD’s suspect list must include at most a

minority of the processes, and hence cannot, by itself, indicate which of the unsuspected

processes is the leader. Thus, additional oracle output is required. In general, the ques-

tion of which systems can be implemented in RRFD was left open [28]. In contrast, we

show that GIRAF is general enough to faithfully capture any oracle-based asynchronous

algorithm in the model of [11] (see Chapter 5). Note that GIRAF can be used to express

models assuming various failure patterns and is not constrained to the crash failure model

(even though the models we define in this thesis do assume crash failures). Moreover,

GIRAF can be used to study problems other than consensus.

Since we focus on round-based computations, we replace the notion of GST with

the notion of a Global Stabilization Round (GSR) [21]. Each run eventually reaches a

round GSR, after which no process fails, and all “eventual” properties hold. More specifi-

cally, an environment in our model is defined using two types of properties: (1) perpetual

2In communication-closed rounds, each message arrives in the round in which it is sent.
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properties, which hold in all rounds; and (2) eventual properties, which hold from GSR

onward. The eventual counterpart of a perpetual property φ is denoted ♦φ.

Since one can define different round properties, and organize algorithms into rounds

where these properties hold, one can prove upper and lower bounds for the number of

rounds of different types (i.e., satisfying different properties such as all-to-all communi-

cation in each round or communication with a majority in each round) that are sufficient

and necessary for consensus. Note that, in order to deduce which algorithm is best for a

given network setting, this analysis should be complemented with a measurement study

of the cost of rounds of different types in that specific setting. The latter is highly de-

pendent on the particularities of the given network and has no general answers (e.g., in a

LAN, all-to-all communication may well cost the same as communication with majority,

whereas in a WAN it clearly does not [7, 6]). GIRAF provides a generic analysis, which

can be combined with a network-specific measurements to get a network-specific bottom

line.

While GIRAF can express every asynchronous message passing algorithm, it does not

necessarily provide meaningful information about all algorithms. Some algorithms are

not naturally round-based and expressing them as such might not benefit their analysis.

But in many cases, we believe that GIRAF can significantly improve the formulation and

analysis of algorithms. Separating the computation from round waiting condition has

several advantages. First, the computation code becomes clear as waiting conditions are

eliminated from it. Second, the definition of a round becomes clear, as one needs now to

give a separate specification for the round termination (i.e., waiting) condition. In many

algorithms in the literature, the definition of a round is ad hoc, and is only implied by the

computation code, leading to unclarity of what a round actually is. For example, Dobre

and Suri [19] show that in some settings, an eventually perfect failure detector can lead to

decision within two rounds, whereas algorithms using an Ω failure detector require at least

three. By closely reading the proofs, we observe that the authors intend rounds in stable

runs of the first model to include arrivals of messages from all processes, whereas the Ω-

based model ensures only the arrival of messages from a majority of processes (including

the leader) in each round, including in stable runs. However, this is only evident from

reading the proofs. Moreover, such an analysis conceals the fact that different types of
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rounds are being counted in each case. Using GIRAF, this result can be explicitly stated

as a tradeoff between two rounds of one well-defined type versus three rounds of another.

We use GIRAF to revisit the notion of oracle (or model) reducibility. Traditionally,

reducibility between distributed computation models defines when one model can be im-

plemented in another [12, 11], without taking complexity into account. In Section 4, we

define the notion of α-reducibility, where round GSR + l of the emulated model (for

any l) occurs at most in round GSR + α(l) in the original model, in the same run. This

notion captures reductions that incur a function α() penalty in running time. We define

a special case of this notion, namely k-round reducibility, which is simply α-reducibility

with α(l) = l + k, and captures reductions that incur a k-round penalty in running time.

Gafni [28] has posed as an open problem the question of finding a notion of an equiva-

lence relation between models with regard to the extent in which one model “resembles”

another. We hope that our notion of α-reducibility (and k-round reducibility) provides a

convenient instrument to describe such relations.

1.3 Results

We use GIRAF to analyze consensus performance in different models. In this thesis, we

consider a crash-failure model, where up to t < n/2 out of n processes may crash (before

GSR). Our performance measure is the number of rounds until global decision, i.e., until

all correct processes decide, after GSR.

Dutta et al. [21] have shown that in the Eventual Synchrony (ES) [26] model, where all

links are timely from GSR onward, GSR+2, i.e., three rounds including round GSR, is a

tight lower bound for global decision. We are interested in the implications of weakening

the ES assumptions. Following the observation that in some settings communication with

a leader or a majority can be achieved with significantly shorter timeouts than required for

timely communication with all processes [7, 6], we focus on leader-based and majority-

based models.

The first model we define is Eventual Leader-Majority, ♦LM (see Table 1.1, row 2).

In this model, processes are equipped with a leader oracle, Ω [11]. We further require that

the leader be a ♦n-source, where a process p is a ♦j-source if it has j timely outgoing links
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in every round starting from GSR [2] (the j recipients include p, and are not required to be

correct)3. Finally, we require that each correct process eventually have timely incoming

links from a majority of correct processes (including itself) in each round; this property is

denoted ♦(
⌊

n
2

⌋
+ 1)-destinationv, where the subscript v denotes that the incoming links

of a process can change in each round. ♦LM does not impose any restrictions on the

environment before GSR. One might expect that weakening the ES model in this way

would hamper the running time. Surprisingly, in Chapter 6, we present a leader-based

consensus algorithm for ♦LM, which achieves the tight bound for ES, i.e., global decision

by GSR+2. Our result suggests that eventually perfect failure detection is not required

for optimal performance; Ω and timely communication with a majority suffice.

We then turn to see whether we can replace Ω with an equivalent (in the “classical”

sense) failure detector, ♦S [12]. ♦S outputs a list of suspected processes at each process,

so that eventually, every correct process suspects every faulty process, and there exists

one correct process that is not suspected by any process. In Chapter 7, we show that in

runs in which less than n
2
−1 processes fail, replacing Ω with ♦S entails a lower bound of

n rounds from GSR onward. In the literature, ♦S is typically used with the assumptions

that links are reliable (although not timely), and that messages from a majority arrive in

each round, including before GSR [12, 44]. We therefore prove our lower bound for a

stronger model, which we call Eventually Strong-Reliable, ♦SR. In this model, all links

are reliable, processes are equipped with a ♦S failure detector, the unsuspected correct

process is a ♦n-source, and every process is a perpetual (n− f − 1)-destinationv, where

f ≤ t is the number of actual failures in a given run, which is at least a majority whenever

f < n
2
− 1 (see Table 1.1, row 3).

The Ω oracle is clearly a powerful tool; our result for ♦LM shows that Ω effectively

eliminates the need for communication with all processes, and renders communication

with majority sufficient. This raises the question of whether timely communication with

a majority can suffice for constant-time consensus even without an oracle. To answer this

question, we define the Eventual All-from-Majority, ♦AFM, model, where each correct

process eventually has incoming timely links from a majority of processes, and outgoing

3In [2], the link from p to itself is not counted; hence a j-source in our terminology is a (j − 1)-source
in theirs.
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Model Model Properties Upper Bound Lower Bound
ES ∀k ≥ GSR, all links GSR+2 GSR+2

are timely in round k [21] [21]
Ω, the leader is ♦n-source GSR+2 GSR+2

♦LM every correct process Chapter 6 [21]
is ♦(

⌊
n
2

⌋
+ 1)-destinationv

♦S, the unsuspected process
♦SR is ♦n-source, every process GSR+2n + 2 GSR+n− 1

is (n− f − 1)-destinationv [44] Chapter 7
f < n/2− 1 and reliable links
∃m ∈ N, f ≤ m < n/2 s.t. if n = 2m + 1 and GSR > 0: GSR+2

♦AFM every correct process GSR+4 [21]
is ♦(m + 1)-sourcev Otherwise: GSR+5
and ♦(n−m)-destinationv Chapter 8
every correct process
is ♦(n−m)-source
m correct processes

♦MFM(m) are ♦n-source Unbounded Unbounded
m ∈ N+ (n−m) correct processes [2, 3, 43] Chapter 9

f ≤ m < n/2 are ♦(n−m)-accessible
every correct process
is ♦m-accessible
reliable links

Table 1.1: Upper and lower bounds on consensus global decision times in various models
(t < n/2).

timely links to a (possibly different) majority, including itself. It is possible for processes

to have fewer outgoing links, and instead additional incoming ones (see Table 1.1, row

4). In Chapter 8, we give a consensus algorithm for this model that decides in constant

time after GSR (five or six rounds, depending on the number of outgoing versus incoming

timely links).We are not aware of any previous algorithm for the ♦AFM model, nor any

other constant-time (from GSR) oracle-free algorithm in a timing model other than ES.

Next, we examine whether one can weaken the model even further. Can we relax

the assumption that all correct processes have timely incoming links from a majority, and

allow a minority of the processes to each have one fewer timely link? (In case n = 3, only

one timely link is removed). In Chapter 9, we show that the answer to this question is no,

as this renders the problem unsolvable in bounded time. We define a family of models,
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Eventual Majority-from-Majority, ♦MFM(m), where, roughly speaking, a majority of the

processes have timely incoming links from a majority, and the rest have timely incoming

links from a minority. In order to strengthen the lower bound, we add a host of additional

assumptions (see Table 1.1, row 5): We require a minority of processes to be ♦n-sources.

We replace j-destination assumptions with j-accessibility [1, 43], i.e., the existence of

bidirectional timely links with j correct processes. Finally, we require reliable links.

We show that in the resulting models, ♦MFM(m), global decision cannot be achieved

in bounded time from GSR. Interestingly, these models are strictly stronger than those

of [2, 3, 43], which were used for solving consensus. We note, though, that in [43],

local decision (of the leader and its accessible destinations) is possible in constant time,

whereas in [2, 3], local decision time is unbounded as well.

Finally, we investigate which model is most appropriate in practice. We model link

failure probabilities as Independent and Identically Distributed (IID) Bernoulli random

variables. Link failure probability is the probability that the link fails to deliver messages

by a chosen timeout. We show that the performance of the optimal ES-based algorithm

(measured by the expected number of rounds until global decision) deteriorates quickly as

we increase the number of processes (n) or decrease the probability that messages arrive

on time, and that both ♦AFM and ♦LM outperform ES. We show that ♦AFM is much

more scalable than ♦LM and ES. Asymptotically, when n → ∞, the expected number

of rounds needed for the ♦AFM -based algorithm to achieve global consensus decision

approaches the constant value of 5 rounds, while the expected number of rounds for ES

and ♦LM goes to∞ (although the deterioration of ♦LM is much slower). Additionally,

we investigate the tradeoff between setting longer timeouts and achieving faster decision

in a practical setting, using TCP latencies measured by Cardwell et al. [10], and determine

the optimal timeout in this setting.

As Table 1.1 shows, there are still several tantalizing gaps between the known upper

and lower bounds in various models. Moreover, many additional models can be explored,

e.g., in the middle ground between AFM and MFM. We hope that GIRAF will allow

researchers to address many such issues in future work. Chapter 11 provides further

discussion of future research directions.
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Chapter 2

Related Work

State machine replication [35, 47] is a widely used technique for achieving software fault

tolerance in distributed systems. With this approach, all replicas perform operations that

update the data in the same order, and thus remain mutually consistent. In order to agree

on the order of operations, a consensus algorithm [38] is often employed. In a consensus

algorithm, all processes propose a value and correct processes eventually decide on one

of the proposed values, so that no two correct processes decide differently. An instance

of consensus is triggered for each user request or group of user requests [36].

2.1 Eventually Stable (Indulgent) Models

It is often unrealistic to assume a fully synchronous system with known time bounds by

which all messages arrive. On the other hand, the fundamental FLP result [27] proves that

consensus is not solvable in an asynchronous system even if only one process can crash.

It is, therefore, often assumed that the system behaves asynchronously for an unbounded

period of time, but eventually reaches a stable period, where some properties (assump-

tions) are satisfied. Different assumptions were proposed in the literature for the system

behavior during stable periods [26, 37, 12, 17].

The strongest assumption is that the system is eventually fully synchronous. This

model is called Eventual Synchrony (or ES) [26]. In a synchronous system, there is a

known fixed upper bound ∆ on message latency and a known fixed upper bound Φ on
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the relative speeds of different processes (where Φ = 1 means that the processes are

completely synchronized). In an asynchronous system, no fixed bounds ∆ and Φ exist. In

one version of partial synchrony introduced by [26], these bounds exist, but they are not

known a priori. In another version, the bounds are known, but they are only guaranteed to

hold starting at some unknown time GST (Global Stabilization Time).

An alternative to assuming eventual timing guarantees is to use the abstraction of or-

acle failure detectors [12]. For example, consensus algorithms that make use of group

membership mechanisms [15], assume an eventually perfect failure detector, ♦P [12].

This failure detector outputs a list of suspected processes at each process, so that eventu-

ally correct processes do not suspect any correct process and suspect all faulty processes.

Other algorithms use strictly weaker failure detectors, such as the eventual leader Ω,

which was shown to be the weakest for consensus [11]. This failure detector chooses a

leader at each process, so that eventually all correct processes choose the same non-faulty

leader forever.

Recently, many works have dealt with weakening ES with regard to the timeliness

guarantees needed to implement the Ω failure detector abstraction. A simple implemen-

tation might periodically send keep-alive messages from all to all, and let each process

remember the group of processes from which it heard from in the last broadcast period.

Each process elects as leader the process with the lowest process id from this group.

This approach requires ES with a known bound on message latency. If time bounds

are unknown, a common approach is to increase timeouts until the unknown bound is

reached [39]. Aguilera et al. relax the requirement that all communication links need to

be eventually timely, to a model in which there is a correct process that eventually main-

tains timely links with all other processes [1], and to a model in which there is a correct

process that eventually has outgoing timely links to all other processes [2]. This process is

called a ♦-source. It was further shown in a recent line of work, that in order to implement

Ω, communication with only part of the processes is needed. The two main approaches

are listed below.

The work of [32] introduces the notion of a Γ-accurate failure detector. This failure

detector’s accuracy property is limited by a parameter (Γ). For example, eventual weak

Γ-accuracy holds if eventually some correct process is never suspected by any correct
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process in Γ (a set of processes), and the class ♦S(Γ) consists of failure detectors that

satisfy the traditional strong completeness [12] and eventual weak Γ-accuracy. The pre-

viously defined ♦S failure detector [12] is therefore the same as ♦S(Γ) where Γ is the

group of all processes. Such a failure detector can be easily implemented using keep-alive

messages (as was explained earlier) if there is a correct process that has timely outgoing

links to the processes in Γ. ♦S(Γ) can be transformed to ♦S [4] and then finally to Ω [16].

Aguilera et al. [3] take a more direct approach. They define a ♦t-source to be a process

that has eventual timely outgoing links to a set of t other processes, and requires this set to

be fixed (for a given run). We use similar notations in this research. Any of the t recipients

might be faulty. Assuming that t is the upper bound on crash failures, they present an

algorithm for Ω in the presence of a single ♦t-source. In order to implement Ω, both

approaches [32] and [3] require the existence of one correct process that has outgoing

links to t other, possibly faulty processes. The work of Malkhi et al. [43] requires the

existence of a single correct ♦t-accessible process, i.e. eventually having bidirectional

links with t other processes, the t recipients to be correct, but unlike the group of Γ

processes in the approach of [32] and the group of t recepients in [3], the t processes

of [43] might vary over time. In Chapter 9, we prove that the assumptions of the models

in [2, 3, 43] are too weak to allow a bound on global decision time (measuring from

system stabilization time) to exist. It should be noted that in [43] local decision, i.e.,

having at least one process reach a decision, can be achieved in bounded time, whereas in

[2, 3] local decision time is unbounded as well. The models we assume in this research are

stronger (but all still weaker than ES). In return we present algorithms that achieve global

consensus decision in not only bounded time, but constant time, after system stabilization.

2.2 Round-Based Abstractions for Systems with Asyn-

chronous Communication

The original DLS [26] consensus algorithm for the eventually synchronous model uses the

idea of studying a general round-based algorithm and separately complementing it with

specific implementations of the inter-process coordination needed to implement these
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rounds in different models. Since DLS deals with eventual synchrony, the achieved coor-

dination must assure that in each round, each process receives a message from all other

correct processes. DLS separately deals with synchronization of rounds in different mod-

els. For the case of a model with synchronous processes and eventually synchronous

communication (where ∆, the bound on message latency, eventually holds), they choose

each round to be n+∆ clock ticks (sending a message to all processes takes n clock ticks,

and then ∆ clock ticks are used for the receive operation). Additionally, they investigate

more difficult models, where the processes and the communication are partially synchro-

nized. Here processes still determine the current round according to their local clock, but

the local clock is sometimes adjusted to catch-up with other processes. In these cases,

more time is usually needed to simulate each round.

Gafni [28], realized that having a framework that allows different timeliness and fail-

ure detector assumptions to be expressed, eases the design and analysis of algorithms

using these assumptions. In his framework, rounds of message exchange are employed,

where in each round, every process sends a message to every other process. While

executing the receive operation, the process consults its Round-by-Round Fault Detec-

tor (RRFD). For a given round k, the RRFD outputs a set of possibly faulty processes

D(i, k) at every process pi, and pi receives message 〈m, k〉 at round k from every process

pj ∈ (Π − D(i, k)). The rounds are communication closed - if a message sent in round

k arrives in a later round, it is discarded. Environments are specified using round-based

properties. A concrete environment model can be completely defined by predicates on

the the set D(i, k).

The RRFD paper [28] does not clearly specify the allowed interleaving between rounds

of different processes. Although Dutta and Guerraoui [23] use RRFD and interpret it to

require that rounds be synchronized among processes, we believe that a more practical

interpretation is to assume that rounds of different processes need not be synchronized,

as is the case in GIRAF. Considering this interpretation, RRFD can be seen as a special

case of GIRAF with the following two restrictions: (i) pi receives messages from all un-

suspected processes in each round: ∀k ∈ N∀pj ∈ Π − oraclei(k), the link from pj to pi

is timely in round k, and (ii) communication closed rounds: the action receive(〈m, k〉)i,j

can only occur in pi in round k. Note that GIRAF is more general than RRFD. First, the
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range of the failure detector output in GIRAF can be arbitrary, unlike in RRFD, where it

is always a subset of suspected processes. Thus, GIRAF can express models that cannot

be expressed in RRFD, e.g., it allows to express Ω and majority, which is impossible in

RRFD, as explained in Section 1.2. Second, unlike RRFD, GIRAF models do not have to

be communication closed. For example, this allows us to express models that assume re-

liable albeit untimely links, which is not possible in RRFD. Finally, we prove (Chapter 5)

that GIRAF is general enough to capture any oracle-based asynchronous algorithm in the

model of [11].

GIRAF also allows us to addresses several open problems, and to revisit the notion of

model reducibility defined by [12, 11] to take the time (round) complexity into account,

and thus give a better notion of similarity between models. Most of the reductions used

previously in distributed systems, did not take time in to account. A few reductions that

do take time into account were suggested, e.g., [42]. Our definition is more abstract and

is based on the notion of rounds rather than actual time, and thus is more convenient to

use.

2.3 Performance after Stabilization

Algorithms and models that tolerate an unbounded period of asynchrony are called indul-

gent [30]. It was shown [29] that an indulgent algorithm that solves consensus also solves

uniform consensus, a variant of consensus in which no two processes (whether correct or

faulty) are allowed to decide differently. In this research we are interested in indulgent

models, and therefore in solving uniform consensus. In the synchronous model, the tight

bound on the number of message exchange rounds for global decision of a uniform con-

sensus algorithm is t + 2 [34, 13]. In the eventually synchronous model, there obviously

cannot be a bound on the number of rounds needed for global decision, since the system

can be asynchronous for an arbitrary long period of time. Several approaches were taken

to define this bound differently. The first approach was dedicated to understanding the

performance of asynchronous algorithms in runs that are synchronous (or the failure de-

tector is perfect) from the outset [33, 22, 31, 25, 23], typically focusing on the case that

all failures are initial. This corresponds to GSR= 0 in our model.
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The round-based algorithm in DLS for the crash-failure model with n ≥ 2t + 1 pro-

gresses in rounds of message exchange and uses the rotating coordinator approach. Each

time a different coordinator is given 4 rounds to achieve a global decision. These 4 rounds

are called a phase. The algorithm achieves global consensus by round GST + 4(n + 1),

and since each round is chosen to be n + ∆ clock ticks, it will take at most GST + 4(n +

1)(n + ∆) time. In this model, since GST might occur in the middle of a round, it might

take up to n + ∆ time to reach GSR from GST. A closer look on the presented proto-

col shows that it achieves a global decision by round GSR + 2 + 4(t + 1): GSR might

occur in the second round of a phase and thus waste that phase (3 rounds are wasted),

and the next t phases might be wasted if they belong to faulty coordinators (4t rounds are

wasted) and then 4 additional rounds are needed to reach the decision. Since DLS do not

assume (as we do) that there are no process failures after GST, O(t) is optimal to within

a constant factor since t+2 rounds are needed for uniform consensus even if processors

and communication are synchronous and crash failures are assumed [34, 13]. In general,

as mentioned by its authors, DLS does not put emphasis on the most efficient way to im-

plement consensus in their models, and leave the optimizations as a direction for future

work.

Only very recently, the issue of performance following asynchronous periods has be-

gun to get attention [21, 24]. As noted above, [21] shows that GSR+2 is a tight bound for

global decision in ES. It uses Gafni’s RRFD [28] framework. In [24], Dutta et al. focus

on actual time rather than rounds, again in ES; they present an algorithm that decides by

GST + 17δ, where δ is a bound on message delay from GST onward (but give no match-

ing lower bound). This result gives a more accurate assessment of the actual running

time after GST than our round-count offers. Nevertheless, a similar assessment might be

obtained in our model if one can quantify the time it takes the environment’s synchroniza-

tion to establish GSR after GST; this is an interesting subject for future study. We believe

that the clean separation we offer between round synchronization and the consensus algo-

rithm’s logic allows for more abstract and easier to understand protocol formulations and

complexity analyses, as well as for proving lower bounds.

The only previous algorithm presented in the ♦LM model, Paxos [37], may require

a linear number of rounds after GSR [20]. Most other Ω-based protocols, e.g., [22, 31],
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wait for messages from a majority in each round (including before GSR), which is unde-

sirable, as it may cause processes to be in arbitrarily unsynchronized rounds when some

process first reaches round GSR, causing GSR itself to take a long time. For example,

suppose that a model requires that from round GSR onward each process receives the

round’s message from all correct processes (e.g., ES), and in a given run GSR = 1000

and some processes reached round 1000 by GST, but other processes are only in round 3.

If no requirements are made before GSR, processes could just skip to round 1000 without

further communication. But if the algorithm requires a process to receive messages (e.g.,

from a majority) in each round even before GSR, they might have to exchange messages

many times until they reach round 1000, and only then send round 1000 messages, which

are needed to complete round GSR. Dutta et al. [20] allow processes to “skip” rounds in

order to re-synchronize in such situations. Implementing such an approach in our frame-

work yields an algorithm that requires one more round than our leader based algorithm,

presented in Chapter 6.

Several works, such as [45, 8], provided consensus algorithms for models with dif-

ferent failure types using translations of algorithms for the crash-failure model. These

works deal with the synchronous communication model, whereas in this thesis we deal

with models that are weaker than the ES model. The closest analogy to the type of failures

we deal with might be the general omission model (both receive and send omissions). As

proved by [45], simulating the crash failure model is possible if n ≥ 2t + 1 where t is

the number of processes that experience the general omission failures. Let us observe the

♦AFM model as an example. Even if we consider GSR to be 0, i.e. a synchronous and

not ES system, we cannot assure that only a fixed group of minority of processes expe-

rience the failures - each process might lose part of its outgoing messages. Using these

methods of translation as an alternative to a direct algorithm, such as the one suggested

by us for the ♦AFM model in Chapter 8, is therefore not possible.
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Chapter 3

Model and Problem Definition

3.1 Distributed Computation Model

We consider an asynchronous distributed system consisting of a set Π of n > 1 processes,

p1, p2, . . . , pn, fully connected by communication links. Processes and links are modeled

as deterministic state-machines, called I/O automata [41].

Formally, an I/O automaton is defined as the following four-tuple1: a signature, com-

posed of actions, which are classified as input, output, and internal; a set of states; a set

of initial states (note that the initial state is not unique), and a transition function - from

the cross-product between states and actions, to states. The transitions are triggered by

actions. An automaton’s interface is determined by its input and output actions, which are

collectively called external actions.

An action π of automaton A is enabled in state s if A has a transition of the form

(s, π, s′). The transitions triggered by input actions are always enabled, whereas those

triggered by output and internal actions (collectively called locally controlled actions),

are preconditioned on the automaton’s current state. Since every input action is required

to be enabled in every state, automata are said to be input-enabled. This assumption

means that the automaton is not able to somehow “block” input actions from occurring.

A run of I/O automaton A is a sequence of alternating states and actions s0, π1, s1, . . . ,

where s0 is an initial state of A (from A’s set of initial states), and each triple (si−1, πi, si)

1The definition of [41] includes a fifth component, called tasks. This notion in not used in this thesis.
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is a transition of A. The trace of a run α of A is the subsequence of α consisting of the

external actions in α. An infinite run α of A is fair if every locally controlled action of A

either occurs infinitely often in α or is disabled infinitely often in α. A fair trace of A is

the trace of a fair run of A. An automatons external behavior is specified in terms of the

properties of its traces (e.g., the properties specified in Section 3.2). Liveness properties

are required to hold only in fair traces. We only consider infinite fair runs in this thesis.

Action a of process pi is denoted ai. A process pi interacts with its incoming link from

process pj via the receive(m)i,j action, and with its outgoing link to pj via the send(m)i,j

action. Communication links do not create, duplicate, or alter messages (this property is

called integrity). Messages may be lost by links.

A threshold of t of the processes may fail by crashing. The failure of process pi is

modeled using the action crashi, which disables all locally controlled actions of pi. A

process that does not fail is correct. The actual number of failures occurring in a run

is denoted f . Process pi is equipped with a failure detector oracle, which can have an

arbitrary output range [11], and is queried using the oraclei function.

3.2 GIRAF – General Round-Based Algorithm Frame-

work

Figure 3.1 presents GIRAF, a generic round-based distributed algorithm framework. To

implement a specific algorithm, GIRAF is instantiated with two functions: initialize(), and

compute(). Both are passed the oracle output, and compute() also takes as parameters the

set of messages received so far and the round number. These functions are non-blocking,

i.e. they are not allowed to wait for any other event.

Each process’s computation proceeds in rounds. The advancement of rounds is con-

trolled by the environment via the end-of-round input action. The end-of-roundi actions

occur separately in each process pi, and there are no restrictions on the relative rate at

which they occur at different processes, i.e., rounds are not necessarily synchronized

among processes. The end-of-round action first occurs in round 0, whereupon it queries

the oracle and calls initialize(), which creates the message for sending in the first round
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States:
ki ∈ N , initially 0 /*round number*/
senti[Π] ∈ Boolean array, initially ∀pj ∈ Π : senti[j] = true
FDi ∈ OracleRange, initially arbitrary
Mi[N ][Π] ∈Messages∪{⊥}, initially ∀k ∈ N∀pj ∈ Π : Mi[k][j] = ⊥

Actions and Transitions:
input receive(〈m, k〉)i,j , k ∈ N output send (〈Mi[ki][i], ki〉)i,j

Effect: Mi[k][j]← m Precondition: senti[j] = false
Effect: senti[j]← true

input end-of-roundi

Effect: FDi ← oraclei (ki)
if (ki = 0) then Mi[1][i]← initialize (FDi)
else Mi[ki + 1][i]← compute (ki, Mi, FDi)
ki ← ki + 1
∀pj ∈ Π : senti[j]← false

Figure 3.1: GIRAF: Generic algorithm for process pi (I/O automaton).

(round one). Subsequently, during each round, the process sends a message to all pro-

cesses and receives messages available on incoming links, until the end-of-round action

occurs, at which point the oracle is queried and compute() is called, which returns the

message for the next round. We say that an event of process pi occurs in round k of run

r, if there are exactly k invocations of end-of-roundi (i.e., end-of-round invocations at

process pi), before that event in r.

For simplicity, we have the algorithm send the same message to all processes in each

round; this is without loss of generality as we are not interested in message complexity as

a performance metric. The outgoing message is stored in the incoming message buffer,

Mi[ki+1][i], hence self-delivery is ensured. The environment might decide not to send the

message of a round to any subset of processes, i.e., it might invoke end-of-roundi in round

k without a send(m)i,j action ever happening in round k for a process pj . However, some

of our environment definitions below will restrict this behavior and require messages to

be sent. In any case, self-delivery is always preserved.

Our framework can capture any asynchronous oracle-based message-passing algo-

rithm in the general model of [11] (see Chapter 5). Thus, GIRAF does not restrict the

allowed algorithms in any way, but rather imposes a round structure that allows for ana-
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lyzing them.

Each run is determined by the algorithm automaton’s state transitions, and the envi-

ronment’s actions, consisting of (i) scheduling end-of-round actions; (ii) oracle outputs;

and (iii) send and receive actions of the communication links. Environments are spec-

ified using round properties, which are predicates evaluated on a run, that restrict the

oracle outputs or message arrivals in each round. Formally, a round property is a predi-

cate φ(k, r) of round number k in run r. For simplicity of notation, we omit the r, and

write φ(k). For example, “the link from ps to pd is timely in round k” is a round property.

We consider two types of environment properties: perpetual properties, which hold in

each round, and eventual properties, which hold from some (unknown) round onward. A

perpetual property P is a property of the form: (∀l ≥ 0)(φ(l)), where φ(l) is a round prop-

erty. For P as above, the eventual property ♦P is defined as: (∃l ≥ 0)(∀l′ ≥ l)(φ(l′)). In

every run r of environment model M , there exists a round GSR(r)M , from which onward

there are no failures, and all eventual properties of M hold. Formally:

Definition (GSR(r)M ): Let M be a model. In each run r in M , GSR(r)M is the

first round k, s.t. ∀ round k′ ≥ k no process fails, and for every eventual property

♦P = (∃l ≥ 0)(∀l′ ≥ l)(φ(l′)) in M , φ(k′) holds.

As was defined earlier, the first communication round is round one. By slight abuse of

terminology, we say that GSR(r)M = 0 in a run r if (i) there are no failures in r; (ii) the

oracle properties of M (if defined) hold from round zero in r; and (iii) the communication

properties of M hold from round one in r. (We henceforth omit the M and (r) where it is

clear from the context)

Note that although, in general, rounds are not synchronized among processes, we

specify certain environment properties that do require some synchronization, e.g., that

some messages are received at one process at the same round in which they are sent by

another. Therefore, an implementation of an environment that guarantees such properties

needs to employ some sort of round or clock synchronization mechanism (e.g. [26, 5], or

using GPS clocks).

21



3.3 Environment Properties

We define several environment properties in GIRAF, mostly in perpetual form. Prefixing

a property with ♦ means that it holds from GSR onward.

Communication Properties Every process has a “link” with itself, and though it is not

an actual physical link, it counts toward the j timely links in the definitions below. Some

of the properties that require j timely links may appear with a subscript v (variable),

which indicates that the set of j timely links is allowed to change in each round. Note that

link integrity is assumed by the model. When characterizing a link, we denote the source

process of the link by ps, and the recipient by pd.

reliable link: ∀k ∈ N+ if end-of-rounds occurs in round k and pd is correct, then pd

receives the round k message of ps.

timely link in round k: if end-of-rounds occurs in round k and pd is correct, then pd

receives the round k message of ps, in round k.

Synchrony: ∀k ∈ N+ all links are timely in round k.

Eventual Synchrony (ES): ♦Synchrony.

j-source: process p is a j-source if there are j processes to which it has timely outgoing

links in every round; p is a j-sourcev if in every round it has j timely outgoing links.

(Correctness is not required from the recipients.)

j-destination: correct process p is a j-destination if there are j correct processes from

which p has timely incoming links in every round; p is a j-destinationv if it has j

timely incoming links from correct processes in every round.

j-accessible: correct process p is j-accessible if there are j correct processes with which

p has timely bidirectional links in every round. (We do not consider variable j-

accessibility in this thesis.)

Note that the reliable and timely link properties assure that the environment sends mes-

sages on the link, i.e., the end-of-rounds action in round k is preceded by a send(m)s,d

action in round k.
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Failure Detector Properties We next define several oracle properties [11, 12]. The

range of the oracle() function for S (and ♦S) is 2Π – a group of suspected processes. For

leader (and Ω), the range is Π.

S failure detector: ♦SC (strong completeness) – eventually every faulty process is sus-

pected by every correct process, and WA (weak accuracy) – some correct process

is not suspected.

leader: ∃ correct pi s.t. for every round k ∈ N and every pj ∈ Π, oraclej(k) = i.

Ω failure detector: ♦ leader.

3.4 Consensus and Global Decision

A consensus problem is defined for a given value domain, Values. In this thesis, we

assume that Values is a totally ordered set. In a consensus algorithm, every process pi has

a read-only variable propi ∈ Values and a write-once variable deci ∈ Values ∪{⊥}. In

every run r, propi is initialized to some value v ∈ Values, and deci is initialized to ⊥. We

say that pi decides d ∈Values in round k of r if pi writes d to deci when ki = k in r.

An algorithm A solves consensus if in every run r of A the following three properties

are satisfied: (a) (validity) if a process decides v then propi = v for some process pi,

(b) (agreement) no two correct processes decide differently, and (c) (termination) every

correct process eventually decides.

We say that a run of A achieves global decision at round k if (1) every process that

decides in that run decides at round k or at a lower round; and (2) at least one process

decides at round k.
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Chapter 4

Complexity of Reductions

In discussing different models, the question of reducibility naturally arises – one is often

interested in whether one model is stronger than another, or how “close” two models are.

The classical notion of reducibility among models/oracles [12, 11] does not take com-

plexity into account. We use GIRAF to provide a more fine-grained notion of similarity

between models.

We first explain how classical reducibility is expressed for GIRAF models. Reducibil-

ity (in the “classical” sense) means that one model can be emulated in another. A simula-

tion from a GIRAF model M1 to another (GIRAF or non-GIRAF) model M2, must work

within the initialize() and compute() functions in M1, which must be non-blocking. Sim-

ulating a GIRAF model M2 means invoking the initializeA() and computeA() functions of

some algorithm A that works in M2, while satisfying the properties of M2. In particular, if

M1 and M2 are both GIRAF models, then a reduction algorithm TM1→M2 instantiates the

initialize() and compute() functions, denoted initializeT () and computeT (), and invokes

initializeA() and computeA() in model M1. If algorithm TM1→M2 exists, we say that M2 is

reducible to M1 (or weaker than M1), and denote this by M1 ≥ M2. M1 is equivalent to

M2 if M1 ≥M2 and M2 ≥M1.

We next extend the notion of reducibility, and introduce

α-reducibility, which takes the reduction time (round) complexity into account. Note that

the definition of a run’s GSR is model-specific: GSR(r) = k in model M if k is the first

round from which onward no process fails and the eventual properties of M are satisfied.
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We denote GSR in model M and run r by GSRM (r).

Definition (α-reducibility). For α : N → N, we say that model M2 is α-reducible to

model M1, denoted M1 ≥α M2, if there exists a reduction algorithm TM1→M2 s.t. for

every run r and every l ∈ N, round GSRM2(r) + l in model M2 occurs at most in round

GSRM1(r) + α(l) in model M1.

Definition (k-round reducibility). Model M2 is k-round reducible (k ∈ N ) to model

M1, denoted M1 ≥k M2, if M1 ≥α M2 s.t. α(l) = l + k.

In particular, if M1 ≥0 M2 then model M2 can be simulated in model M1 with no perfor-

mance penalty. In Chapter 7 we use the notion of k-round reducibility to prove that ♦S is

0-round reducible to ♦n-source.
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Chapter 5

Generality of GIRAF

In this chapter we show how GIRAF relates to the framework of [11]. A computation

step in the model of [11] consists of (i) receiving a message, (ii) consulting the oracle,

(iii) using the process’s algorithm (A(p) in their notation) to perform local computation

and generate an outgoing message; and (iv) sending the message. Moreover, reliable links

are assumed.

Lemma 5.1. Every model M1 in the framework of [11] is equivalent to a GIRAF model

M2, where the only environment properties are the same oracle properties as in M1 and

reliable links.

Proof. We prove that the framework of [11] with model M1 can be used to implement the

environment for GIRAF resulting in model M2. Note that in [11], A(p) is invoked upon

every message receipt after the oracle is queried, and the oracle output and incoming mes-

sage are available to it. To run the generic GIRAF algorithm in model M1, we have A(p)

first invoke initialize(), and subsequently invoke compute() every time it is called to take a

step. A(p) passes to these functions the oracle output. To compute(), it also passes the set

of messages received thus far, and a counter of the number of times compute() is called.

compute() or initialize() returns a message, which is sent immediately afterwards. Every

perpetual property guaranteed by the oracle of M1 holds starting from the first round in

M2, and every eventual property of the oracle is eventually true in M2, guaranteeing that

the properties of M2’s oracle are preserved.

We next prove that GIRAF with model M2 can be used to simulate the framework
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of [11]. Given an algorithm A(p) designed for the framework of [11] and model M1, we

make the compute() function of GIRAF invoke a series of steps of A(p) – one invocation

for every message m added to M since the previous time compute() was activated. com-

pute() then aggregates all the messages that these steps return into one composite message

which is returned to GIRAF generic algorithm (to be sent in the next round). When a step

of A(p) queries the oracle, it is given the oracle output passed to compute(). Note that

each step of A(p) does not wait for anything, and therefore compute() is non-blocking, as

required by GIRAF. Since the message arrival order is arbitrary in [11], this a valid run

in M1. Every perpetual property of M2’s oracle is preserved starting from the first round

and is therefore true starting from the first activation of A(p), and every eventual property

will hold starting from GSR in M2 and therefore eventually holds in M1.

Suppose we have an algorithm A(p) running in the framework of [11]. The above

lemma shows how to run the same algorithm in GIRAF. An interesting question to ask is

whether by running it in GIRAF, its performance was compromised. To address perfor-

mance of A(p) in the CHT framework, we use a metric suggested by [33] for indulgent

algorithms: the number of communication steps in failure free synchronous runs. This

metric was used in numerous papers dealing with CHT (and other) models. Recall that by

definition, in synchronous runs, processes execute in synchronous communication steps

(also called rounds). In each step, every process can send messages to any number of

other processes. In CHT, processes send messages to every other process. For the pur-

pose of this analysis, we assume that each message takes exactly ∆ time units, and that

the local computation takes 0 time.

Let us observe a failure free synchronous run of A(p). By the end of each communi-

cation step, every process pi receives a message from all processes. It then invokes A(p)

once for every received message. Assuming that the execution of A(p) takes 0 time and

the communication step takes ∆, the round will take ∆ time units. When we run A(p) in

GIRAF, using the simulation described in Lemma 5.1 above, ∆ time units after the start of

a round, the requirements of the synchronous model are satisfied, and thus end-of-roundi

is called at every process pi. The execution of the callback for end-of-roundi takes 0 time

- it simply queries the oracle once and then executes compute() (or initialize()) which

in turn call A(p) for each message received in the current round. Therefore, each round
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will take ∆ time units as well. We therefore have the algorithm proceed in rounds that

take the same time as the rounds in the CHT framework, and will thus take the same time

to finish its task. We conclude, that running the algorithm in GIRAF does not incur a

penalty according to this metric.

Note that even if an indulgent algorithm does not have every process send in every step

to all processes, having every process send to all and wait for messages from all every ∆

time does not hamper performance in synchronous runs, since in these runs every message

takes ∆ time to arrive.
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Chapter 6

Optimal Leader-Based Algorithm in

♦LM

The ♦LM model requires that each process have a majority of timely incoming links

(from GSR onward), which can vary in each round, and an Ω oracle that selects a correct

♦n-source as leader. Formally:

♦LM (Leader-Majority) : t < n/2, Ω failure detector, the leader is a ♦n-source, and

every correct process is a ♦(
⌊

n
2

⌋
+ 1)-destinationv.

The ♦LM model is strictly weaker than ES: it is easy to show that ES ≥0 ♦LM , i.e.

to simulate ♦LM in ES with no penalty on GSR, since ♦LM requires less ♦timely links

than ES, and the Ω failure detector output in any given round k can be (for example) the

lowest-id of a process whose round k message was received in round k. Starting from

GSRES this process is assured to be correct and since in ES all correct processes receive

the same set of messages in each round, all simulated oracles will believe in the same

correct process starting at round GSRES , meaning that GSR♦LM = GSRES .

6.1 Algorithm

Figure 6.1 presents a leader-based consensus algorithm for ♦LM, which reaches global

decision by round GSR+2. In runs with GSR = 0, this means that consensus is achieved

in 2 rounds, which is tight [13, 33]. In runs with GSR > 0, global decision is reached in
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1: Additional state
2: esti ∈ Values, initially propi

3: tsi, maxTSi, lastApprovali ∈ N , initially 0
4: prevLDi, newLDi ∈ Π
5: msgTypei ∈ {PREPARE, COMMIT, DECIDE}, initially PREPARE

6: Message format
7: 〈msgType ∈ {PREPARE, COMMIT, DECIDE}, est ∈ Values, ts ∈ N , leader ∈ Π, lastApprovali ∈

N〉
8: procedure initialize(leaderi)
9: prevLDi ← newLDi ← leaderi

10: return message 〈msgTypei, esti, tsi, newLDi, lastApprovali〉 /*round 1 message*/

11: procedure compute(ki, M[*][*], leaderi)
12: if deci = ⊥ then
13: /*Update variables*/
14: prevLDi ← newLDi; newLDi ← leaderi

15: maxTSi ← max{ m.ts |m ∈M [ki][∗] }
16: if |{ j |M [ki][j] 6= ⊥ }| > bn/2c then
17: lastApprovali ← ki

18: /*Round Actions*/
19: if ∃m ∈M [ki][∗] s.t. m.msgType = DECIDE then /*decide-1*/
20: deci ← esti ← m.est; msgTypei ← DECIDE
21: else if (|{ j |M [ki][j].msgType = COMMIT }| > bn/2c)

and (M [ki][prevLDi].msgType = M [ki][i].msgType = COMMIT) then /*decide-2*/
22: deci ← esti; msgTypei ← DECIDE
23: else if (|{ j |M [ki][j].leader = prevLDi }| > bn/2c) /*commit-1*/

and (M [ki][prevLDi].lastApproval = ki − 1 ∧ M [ki][prevLDi].leader =
prevLDi) /*commit-2*/

and (newLDi = prevLDi) then /*commit-3*/
24: esti ←M [ki][prevLDi].est; tsi ← ki; msgTypei ← COMMIT;
25: else
26: esti ← any est′ ∈ {M [ki][j].est |M [ki][j].ts = maxTSi }
27: tsi ← maxTSi; msgTypei ← PREPARE
28: return message 〈msgTypei, esti, tsi, newLDi, lastApprovali〉 /*round ki + 1 message*/

Figure 6.1: Optimal leader–based algorithm for ♦LM , code for process pi.

3 rounds, numbered GSR, GSR+1, and GSR+2, which also matches the lower bound for

ES [21].

The algorithm in Figure 6.1 works in GIRAF, and therefore implements only the ini-

tialize() and compute() functions. These function are passed leaderi, the leader trusted by

the oracle.

The main idea of the algorithm, which ensures fast convergence, is to trust the leader

even if it competes against a higher bid of another process. In contrast, Paxos [37]

initiates a new “ballot”, that is, aborts any pending attempts to decide on some value,
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whenever a higher timestamp is observed, potentially leading to linear running time after

GSR [20]. In order to ensure that the leader does not propose a value that contradicts pre-

vious agreement, the lastApproval variable (and message-field) conveys the “freshness”

of the leader’s proposed value, and the leader’s proposals are not accepted if it is not

up-to-date.

We now describe the protocol in more detail. Process pi maintains the following local

variables: an estimate of the decision value, esti initialized to the proposal value (propi);

the timestamp of the estimated value, tsi, and the maximal timestamp received in the

current round, maxTSi, both initialized to 0; the index of the last round in which pi

receives a message from a majority of processes, lastApprovali, initialized to 0; the leader

provided by the oracle at the end of the previous round, prevLDi, and in the current round,

newLDi; and the message type, msgTypei, which is used as follows: If pi sees a possibility

of decision in the next round, then it sends a COMMIT message. Once pi decides, it sends

a DECIDE message in all subsequent rounds. Otherwise, the message type is PREPARE.

We now describe the computation of round ki. If pi has not decided, it updates its

variables as follows. It saves its previous leader assessment in prevLDi, and its new leader

(as passed by the oracle) in newLDi (line 14). It stores the highest timestamp received in

maxTSi. If pi receives a message from a majority, it sets lastApprovali to the round

number, ki. It then executes the following conditional statements:

• If pi receives a DECIDE message then it decides on the received estimate by writing

that estimate to deci (line 20).

• If pi receives COMMIT messages from a majority of processes, including itself and

its leader, then pi decides on its own estimate (line 22).

• Let prevLDi be the leader indicated in pi’s round ki message. Consider the fol-

lowing three conditions (line 23): commit-1: pi receives round ki messages from a

majority of processes that indicate prevLDi as their leader; commit-2: pi receives a

message from prevLDi that has prevLDi as the leader, and lastApproval set to ki−1;

and commit-3: prevLDi = newLDi. If all three conditions are satisfied, then pi sets

its message type (for the round ki + 1 message) to COMMIT, adopts the estimate
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received from prevLDi, say est′, and sets its timestamp to the current round number

ki (line 24). We say that pi commits in round ki with estimate est′.

• Otherwise, pi adopts the estimate and the timestamp of an arbitrary message with

the highest timestamp maxTSi, and sets the message type to PREPARE (lines 26–

27).

Finally, pi returns the message for the next round.

Theorem 6.1. The algorithm solves consensus by round GSR(r) + 2.

Proof. From Lemma 6.8, every correct process decides by round GSR(r) + 2. Validity

holds, since the decision can only be one of the initial estimates of the processes. Uniform

agreement is proven in Lemma 6.7.

6.2 Correctness

We first informally explain the correctness of the algorithm. Our main lemma (Lemma 6.7)

shows that no two processes decide differently, by showing that if some process decides

x in round k, then from round k − 1 onward, the only committed estimate is x. (This

proves agreement since a decision is made when either a DECIDE or a majority of COM-

MITs is received.) We now intuitively explain why this is correct. The claim is proven

by induction on round number. Let pi be the first process that decides, and denote its

decision value by x, and the decision round by k. (the decision is by rule decide-2; rule

decide-1 is not applicable since pi is the first process to decide). Therefore, in round k, pi

hears COMMIT from majority M , including itself and its round k prevLD, pl, and decides

on its own estimate, x. Let us first examine round k − 1. Processes of M commit in this

round. Rules commit-1 and commit-3 ensure that all COMMIT messages sent in this round

have the same estimate and leader fields, namely, x, and pl. Additionally, it is easy to see

that a process’s timestamp never decreases. Thus, since processes of M commit in round

k − 1, they have timestamps of at least k − 1 in all ensuing rounds. Now consider round

k. Any process that commits in round k hears from a majority with the same leader, and

since this majority intersects M , the leader is pl. Therefore, any commitment in round k

is made with the estimate of pl, i.e., x.
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We now consider the inductive step, i.e., round k′ > k. If pi commits in round k′,

it commits on the estimate of its leader. If that leader sends a COMMIT message, by

induction, its estimate is x. Otherwise, the leader sends a PREPARE message. By commit-

2, that leader’s lastApproval field is set to k′ − 1 ≥ k, implying that the leader receives a

message from a majority of processes in round k′ − 1. Therefore, it receives at least one

message from a process in M with timestamp at least k − 1. Since the highest timestamp

received is adopted, the leader adopts timestamp ts ≥ k − 1 and some estimate z. It is

easy to see that if a message (other than DECIDE) is sent with timestamp ts and estimate

z, then some process commits z in round ts. Therefore, some process commits z in a

round ≥ k − 1. By induction, we get that z = x. Therefore, the leader adopts x with the

maximal timestamp in round k′ − 1, and pi commits x in round k′.

We now formally prove correctness.

Lemma 6.2. A process’s timestamp at the start of round k is less than k.

Proof. We prove the claim by induction on the round number k′. Base case: k′ = 1. The

claim is correct since a process’s timestamp is initialized to 0. The induction hypothesis

is that the claim holds up to round k′. Let us inspect the possible actions of processes at

the end of round k′. A process can decide and in this case its timestamp does not change

and in round k′ + 1 it will remain less or equal to k′ − 1, by the induction hypothesis.

Alternatively, a process may commit, and then (on line 24) it will adopt k′ as its new

timestamp for round k′+1, and the claim holds here as well. Finally, a process may adopt

the timestamp of a round k′ message it received (lines 26-27) and again, by induction

hypothesis, the claim is true.

Lemma 6.3. A process’s timestamp is non-decreasing.

Proof. Observe that when a process decides, its timestamp does not change. It does not

change in the following rounds as well. If a process pi does not decide in round k, then

it can change its timestamp by adopting either k (when committing on line 24) or the

maximum timestamp (of a round k message) it received in round k as its new timestamp

(lines 26-27). Since pi receives its own message in round k, the latter is not lower than its
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current timestamp. In case it commits, since according to Lemma 6.2, its old timestamp

cannot exceed k − 1, by adopting k it can only increase.

Lemma 6.4. For every round k, all processes that commit in round k, have the same est

and newLD values.

Proof. Consider two processes pi and pj that commit in round k with estimates esti

and estj , and leader values newLDi and newLDj , respectively. Also, in round k,

let prevLDi be the leader of pi and prevLDj be the leader of pj . From commit-1,

each of them has received in round k a majority of messages that contain prevLDi and

prevLDj as leader, respectively. As two majorities intersect, prevLDi = prevLDj .

Furthermore, from commit-3, newLDi = prevLDi and newLDj = prevLDj . So,

newLDi = prevLDi = prevLDj = newLDj . From the algorithm, pi commits with

the estimate sent by prevLDi, and pj commits with the estimate sent by prevLDj . As

prevLDi = prevLDj , pi and pj commit with the same estimate.

Lemma 6.5. If some process sends a PREPARE or COMMIT message with timestamp

ts > 0 and estimate x then some process commits in round ts with estimate x.

Proof. We prove the claim by induction on the round number k′, starting from a round

k0 in which a message with the timestamp ts is first sent with some estimate x′, by some

process pj .

Base Case. k‘ = k0. From the definition of k0, pj does not receive a message with ts from

another process in an earlier round. Thus, pj commits with timestamp ts and estimate x′

in round k0 − 1, and by the algorithm, k0 − 1 = ts.

Induction Hypothesis. If any process sends a PREPARE or COMMIT message in round

k1, such that k0 ≤ k1 ≤ k′, with timestamp ts and some estimate x′′, then some process

commits in round ts with estimate x′′.

Induction Step. We need to show that if in round k′ + 1, a process sends a PREPARE or

COMMIT message with timestamp ts and some estimate x′′ then some process commits

in round ts with estimate x′′. Observe, that if a COMMIT message is sent, it would have a
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timestamp equal to the previous round number k′, and since ts = k0−1 < k′ (by the base

case), this case is not possible. Observe that if a PREPARE message is sent in round k′+ 1

with timestamp ts and estimate x′′, the sending process must have adopted the timestamp

together with the estimate from some PREPARE or COMMIT message sent in round k′.

By the induction hypothesis, we get that some process commits in round ts and estimate

x′′.

Please note that the claim in Lemma 6.5 does not hold for DECIDE messages, since a

process decides adopting only the estimate and not the associated timestamp from another

DECIDE message.

Lemma 6.6. If a process pi decides in round k by rule decide-2 on estimate x, then every

process that commits in round k, commits with estimate x.

Proof. Suppose for the purpose of contradiction that a process pj commits with y 6= x

in round k. Since pj does not decide in round k, it evaluates rules decide-1 and decide-2

to false. pj commits the estimate that it receives from its leader (line 24). We denote

this leader by pl. By rule commit-1, there is a majority of proccesses that send a round

k message with pl as leader. Let us denote this majority by M1. Observe process pi

that decides in round k. pi receives a COMMIT message from a majority of processes,

including its leader prevLDi and itself. We denote this majority by M2. By Lemma 6.4

every COMMIT message sent by a process in M2 has the same leader field and the same

estimate (x). Since M1 and M2 intersect, the leader field indicates pl. Since pi receives

a COMMIT message from itself, it also sends a round k message with pl as leader. Since

what pi actually sent is now in his prevLDi variable, we get that prevLDi = pl. Since

pi receives a message Mi[k][prevLDi] with msgType = COMMIT, we conclude that pl

sends a COMMIT message in round k and as was explained, this means that its message

includes x as the estimate. This contradicts our assumption that pj sees an estimate y 6= x

sent by pl.

Lemma 6.7 (Uniform Agreement). No two processes decide differently.

Proof. Let k be the lowest numbered round in which some process decides. Suppose

process pi decides x in round k. Since no process decides in an earlier round, pi decides
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by rule decide-2. Therefore, pi receives a majority of COMMIT messages in round k, and

it decides on the estimate of one of the COMMIT messages (the one from itself). From

Lemma 6.4, all COMMIT messages include the same estimate and leader, say pl.

Thus pi receives a round k message of the form 〈COMMIT, x, k − 1, pl, ∗〉 from a

majority of processes, and hence, a majority of processes commit in round k − 1 with

estimate x. Let us denote this majority of processes by Sx. Note that k − 1 ≥ 1 since

according to the pseudo-code, the first round of the algorithm is round number 1. We

claim that if any process commits or decides in round k′ ≥ k − 1 then it commits or

decides x. The proof is by induction on round number k′.

Base Case. k′ = k − 1. As processes in Sx commit x in round k − 1, from Lemma 6.4,

no process commits with an estimate different from x in round k− 1. By the definition of

k, no process decides in round k − 1.

Induction Hypothesis. If any process commits or decides in any round k1 such that k−1 ≤
k1 ≤ k′, then it commits with estimate x or decides x.

Induction Step. decision in round k′ + 1. If some process p decides in round k′ + 1, then

in that round either some other process sends a DECIDE message with decision value y or

p sends a COMMIT message with estimate y. In both cases, by the induction hypothesis,

y = x.

commit in round k′ + 1. Suppose by contradiction that some process pj commits in

round k′ + 1 with estimate z 6= x. First, since pi decides by rule decide-2 in round k,

by Lemma 6.6 we have that k′ + 1 6= k. Since we know by the induction hypothesis

that k′ ≥ k − 1 we now get that k′ > k − 1. Since pj commits, it does not receive any

DECIDE message in round k′ + 1. Since commit-2 evaluated to true for pj , a message

m = 〈type (6= DECIDE), z, tsz, ld, k′〉 was received by pj in round k′ + 1 from the

leader ld. Notice that tsz might be different than maxTSi of round k′ + 1.

Observe the lastApproval field of the message m. Its value is k′. Since k′ > k−1 ≥ 1

we get that k′ > 1. Since the lastApproval field can become greater than 0 only on line

17 of the compute() function, this indicates that the leader received a message from a
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majority of processes in round k′, and therefore it must have heard from at least one

process pa ∈ Sx. Recall that every process in Sx commits in round k− 1 with estimate x.

Thus pa has timestamp k−1 at the end of round k−1. From Lemma 6.3, since k′ > k−1,

pa’s timestamp is at least k − 1.

If type =COMMIT, this means that tsz = k′ (line 24). As was explained, k′ > 1,

and by Lemma 6.5 we get that some process commits in round k′ with estimate z 6= x.

This is a contradiction to the induction hypothesis. If type = PREPARE, it means that tsz

is the maximum timestamp the leader received in any message of round k′ (lines 26-27).

Because it received a message from pa and because, according to Lemma 6.2, the highest

timestamp that can be received in round k′ + 1 is k′, we get that k − 1 ≤ tsz ≤ k′, and

since (by Lemma 6.5) there must be a process that commits in round tsz with estimate

z 6= x (recall that k − 1 > 0), this is a contradiction to the induction hypothesis.

6.3 Performance

We first give an intuitive explanation why in round GSR+1, every correct process pi that

does not decide by the end of that round evaluates the three commit rules (line 23) to

true. Since pi does not decide by the end of GSR+1, all the processes it hears from in

this round do not decide by round GSR. By definition of ♦LM , from round GSR onward,

each correct process receives messages from a majority of correct processes, including

its leader, pl. Therefore, the lastApproval field of every round GSR+1 message is GSR

(notice for the case of GSR= 0 that lastApproval is initialized to 0). Moreover, it is

assured by the Ω failure detector, that from round GSR onward, all processes trust the

same leader, pl. Therefore, from round GSR+1 onward, all running processes (including

the leader pl) send the same leader identifier in their messages. (Note that rule commit-3

is assured to be true only starting at round GSR+1, since prevLDi of round ki = GSR is

based on the oracle’s output in round GSR−1, in which it is not assured that all processes

trust the same leader.) We conclude that in round GSR+2 every correct process sends a

COMMIT or DECIDE message, and by the end of that round, every correct process decides.

We now give a formal proof.
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Lemma 6.8. In every run r, all correct processes decide by round GSR(r) + 2.

Proof. Observe that in our model every correct process executes an infinite number of

rounds, and in particular, executes round GSR(r) + 2. We prove the lemma by contra-

diction. Assume that some correct process pj does not decide by round GSR(r) + 2 in

some run r. Therefore, pj does not receive a COMMIT message from a majority of pro-

cesses (including from itself and the leader) in round GSR(r) + 2. Since, in our model,

from GSR(r) onward, every correct process receives messages from a majority of cor-

rect processes (including itself and the leader), it must have received at least one message

with type t other than COMMIT. t cannot be DECIDE, since pj didn’t decide in round

GSR(r) + 2. Therefore, t must be PREPARE. Therefore, there must be a process pi that

sent in round GSR(r) + 2, a message with msgType = PREPARE.

In round GSR(r)+1, pi does not decide or commit, since it sent a PREPARE message

in the next round. Therefore, one of the commit rules evaluates to false for pi. It is not

commit-1 or commit-3, because all correct processes agree on the identity of the leader

from GSR(r) onward, and each process receives a message from a majority of processes

(commit-1), and starting from round GSR(r) + 1, the rule commit-3 evaluates to true as

was explained in the description of the algorithm.

Therefore, commit-2 must be the rule that evaluates to false. The only possible reason

for this is that the leader indicated lastApproval 6= GSR(r) in its round GSR(r) + 1

message. If GSR(r) = 0 we get a contradiction since lastApproval is initialized to

0. Otherwise (GSR(r) > 0), notice that the leader couldn’t have decided by start of

round GSR(r), since otherwise all correct processes would decide by end of GSR(r).

Therefore, according to our algorithm, the leader had to set lastApproval = GSR(r) in

round GSR(r) (since every process hears from a majority starting at round GSR(r)), and

this is a contradiction.
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Chapter 7

Linear Lower Bound for ♦SR

We use the notion of k-round reducibility, to prove that at least n rounds starting at GSR

are needed to solve consensus in the ♦SR model. We formally define the ♦SR model as

follows:

♦SR (Strong-Reliable) : t < n/2, reliable links, ♦S failure detector, the unsuspected

process is ♦n-source and all correct processes are (n− f − 1)-destinationsv, where

f < n
2
− 1).

Lemma 7.1. Any model M♦S that requires a ♦S failure detector and environment prop-

erties P is 0-round reducible to a model M♦n that assumes a correct ♦n-source process

and P , i.e. M♦n ≥0 M♦S .

Proof. We implement the reduction algorithm TM♦n→M♦S
as follows: computeT () receives

a multi-set of messages M received so far, and the current round number k, but no oracle

output (since M♦n does not include an oracle) and produces the set of suspected processes

FDT as follows: FDT ← { j | M [k][j] = ⊥ }. It then passes M , k and FDT to

computeA(). initializeT () calls initializeA() with ∅ as the set of suspected processes. Since

in every round k′ ≥ GSRM♦n
there exists one process (the ♦n-source correct process)

whose k′ round message reaches every correct process by the end of round k′, this process

is not included in any of the FDT sets produced by algorithm TM♦n→M♦S
at any process

in round k′, i.e. is not suspected. Since no faulty process enters round GSRM♦n
, no

such process sends a round k′ message, and thus every faulty process is suspected from
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round GSRM♦n
onward. Therefore, the produced set FDT satisfies the specification of

♦S in our framework such that the eventual properties of ♦S are satisfied from GSRM♦n

onward. Since M (the message set) and k are not altered by TM♦n→M♦S
, all the other

properties P are still preserved from round GSRM♦n
onward. Therefore, GSRM♦n

=

GSRM♦S
and M♦n ≥0 M♦S .

From Lemma 7.1, it follows that it suffices to prove the lower bound for a model just

like ♦SR, but without the assumption of ♦S. We denote this model by ♦SR\♦S.

We prove the lower bound using the impossibility of consensus in the mobile failure

model [46], in which no process crashes, and in each communication step there is one

process whose messages may be lost.

Below we denote the prefix of length l rounds of a run r by r(l).

Lemma 7.2. For any k ∈ N , let r be a run in the mobile failure model. There exists a

run r′ in ♦SR\♦S with GSR(r′) = k and f = 0 such that r′(k + n− 2) = r(k + n− 2).

Proof. We construct r′ as follows: (i) f = 0 and GSR(r′) = k, (ii) r′ is identical to r in

the first k + n− 2 rounds, except that messages are delayed to round k + n− 1 instead of

being lost, and (iii) from round k + n− 1 onward, r′ is synchronous (all links are timely).

We show that r′ is a run in model ♦SR\♦S. In each round of r′(k+n−2), a subset of

messages sent by at most one process is delayed and all other messages arrive in the same

round in which they are sent, and from round k + n − 1 onward, no message is delayed

in r′. Therefore, in r′, each process receives messages from at least n − 1 processes in

every round and is therefore an (n − f − 1)-destinationv (recall that f = 0 in r′). Since

r′(k + n− 2) lasts only n− 1 rounds starting from GSR(r′) (and there are n processes),

there exists some correct process whose messages are not delayed in any round from

GSR(r′). This process is a correct ♦n-source in r′. Finally, since every message sent

before round k + n − 1 in r′ arrives at the latest in round k + n − 1 and every message

sent in later round arrives in the same round in which it is sent, we conclude that links are

reliable in r′.

We strengthen the lower bound by proving that it is impossible to reach global decision in

less than n rounds from GSR in the ♦SR\♦S model, even with an algorithm especially

tailored for some specific GSR.
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Lemma 7.3. For k ∈ N, k ≥ 1, no algorithm exists that in every run r in which GSR(r)

= k achieves global decision before round GSR(r)+(n− 1), in the ♦SR\♦S model.

Proof. For k ∈ N, k ≥ 1, assume there exists an algorithm Ak that solves consensus in

♦SR\♦S, and in every run with GSR= k reaches global decision by round k + n − 2.

Then we run Ak in the mobile model for k + n − 2 rounds. Denote this run by r. From

Lemma 7.2, there is a run r′ in ♦SR\♦S with GSR(r′) = k and f = 0, such that

r′(k + n − 2) = r(k + n − 2). Therefore, Ak cannot distinguish r from r′ in the first

k + n− 2 rounds and decides by round k + n− 2 in r as it does in r′. We conclude that

Ak reaches a global decision for every run r in the mobile failure model. A contradiction

to [46].

Note that our proof (combined with Algorithm 2, which achieves global decision by

GSR+2 in ♦LM ) immediately implies that ♦SR �k ♦LM for any k < n − 3, since

otherwise, we could use the reduction algorithm to simulate ♦LM in ♦SR in any run

r with GSR♦LM < GSR♦SR(r) + n − 3 and use the algorithm in Figure 6.1 on top

of the reduction algorithm. Since the algorithm in Figure 6.1 assures global decision by

GSR♦LM(r) + 2 we get that there exists an algorithm that for any run r achieves global

decision before round GSR♦SR(r) + n− 1, a contradiction to our lower bound.
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Chapter 8

Constant-Time Algorithm in ♦AFM

In this chapter, we investigate whether constant time decision is possible without an oracle

in a model weaker than ES. We are not aware of any previous constant-time algorithms

for such a model.

In the ♦AFM model, each process has timely incoming links from a correct majority

of processes, and a majority of timely outgoing links (from GSR onward), both can vary

in each round. The number of outgoing links may decrease if more incoming links are

timely. Formally:

♦AFM (All-From-Majority) : t < n/2, ∃m ∈ N , f ≤ m < n/2 such that every correct

process is a ♦(n − m)-destinationv and a ♦(m + 1)-sourcev. Note that m can be

different in each run.

8.1 Algorithm

Figure 8.1 presents a majority-based algorithm for ♦AFM, which always reaches global

decision by round GSR+5. In runs with GSR = 0, this means that consensus is achieved

in 5 rounds. In runs with GSR > 0, global decision is reached in 6 rounds. At the end of

this chapter we present an optimization of the algorithm for the case of n = 2m + 1 (i.e.,

when both (m + 1) and (n −m) are majorities), and in the following sections we prove

that the optimized algorithm reaches global decision by round GSR+4 for n = 2m + 1

(when GSR > 0), and by round GSR+5 for other values of m (f ≤ m < n/2). The
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1: Additional state
2: esti, maxESTi ∈ Values, initially propi

3: tsi, maxTSi ∈ N, initially 0
4: IgotCommiti ∈ Boolean, initially false

5: gotCommiti ∈ 2Π, initially ∅
6: msgTypei ∈ {PREPARE, PRE-COMMIT, COMMIT, DECIDE}, initially PREPARE

7: procedure initialize()
8: return message 〈msgTypei, esti, tsi , IgotCommiti, gotCommiti 〉 /*round 1 message*/

9: procedure compute(ki, M[*][*])
10: if deci = ⊥ then
11: /*Update variables*/
12: maxTSi ← max{ m.ts |m ∈M [ki][∗] }
13: maxESTi ← max{ m.est |m ∈M [ki][∗] ∧m.ts = maxTSi }
14: IgotCommiti ← ∃m ∈M [ki][∗] s.t. m.msgType = COMMIT

15: gotCommiti ← { j |M [ki][j].IgotCommit }
16: /*Round Actions*/
17: if ∃m ∈M [ki][∗] s.t. m.msgType = DECIDE then /*decide-1*/
18: deci ← esti ← m.est; msgTypei ← DECIDE
19: else if |{ j |M [ki][j].msgType = COMMIT }| > bn/2c ∧ M [ki][i].msgType = COMMIT

then /*decide-2*/
20: deci ← esti; msgTypei ← DECIDE

21: else if |
⋃

j∈Π M [ki][j].gotCommit| > bn/2c then /*decide-3*/

22: deci ← esti ← maxESTi; msgTypei ← DECIDE

23: else if |{ j |M [ki][j].est = maxESTi }| > bn/2c then /*pre-commit*/
24: if ∃j s.t. M [ki][j].est = maxESTi∧M [ki][j].msgType = COMMIT or PRE-COMMIT then

/*commit*/
25: esti ← maxESTi; tsi ← ki; msgTypei ← COMMIT;
26: else
27: esti ← maxESTi; tsi ← maxTSi; msgTypei ← PRE-COMMIT;
28: else
29: tsi ← maxTSi; esti ← maxESTi; msgTypei ← PREPARE
30: return message 〈msgTypei, esti, tsi , IgotCommiti, gotCommiti 〉 /*round ki + 1 message*/

Figure 8.1: Majority–based algorithm for ♦AFM model. Code for process pi. Optimization for
n = 2m + 1 is marked in gray.

code used for optimization is marked in gray in Figure 8.1 and should be ignored until its

explanation in the next section.

In general, the algorithm in Figure 8.1 is similar to the leader-based algorithm pre-

sented in Chapter 6. We therefore focus mainly on the differences from the leader-based

algorithm. Since ♦AFM does not assume a failure detector, the oracle’s output is not a

parameter for compute().

The variables maintained by each process pi are similar to those of the algorithm
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in Chapter 6. A new variable, maxESTi, holds the maximal estimate received with

timestamp maxTSi in the current round (recall that Values is a totally ordered set). A

new message type is introduced, PRE-COMMIT. Intuitively, pre-committing is similar to

committing, but without increasing the timestamp. An estimate must be pre-committed

by some process before it is committed.

Pre-commit is needed, since, unlike ♦LM, where the leader is a ♦n-source, ♦AFM

never assures that a process is able to convey information to all other processes in a sin-

gle round. If we hadn’t introduced PRE-COMMIT, it would have been possible for two

different estimates to be committed in alternating rounds, where a majority of processes

hear and adopt estimate est1, (which has the maximal timestamp) but some other pro-

cess does not hear est1 and commits to est2, increasing its timestamp. In the next round

the situation flips, and est2 is adopted by a majority while est1 is committed, and so on,

precluding decision.

In ♦AFM, in every round from GSR onward, each process hears from (n −m) cor-

rect processes, and its outgoing message reaches m + 1 processes. Note that the m + 1

processes the message reaches overlaps the set of (n −m) correct processes every other

process hears from in the next round, allowing information to propagate to all correct

processes in two rounds. Thus, a single pre-commit phase suffices to eliminate races as

described above, where two different values are repeatedly committed after GSR.

We now describe pi’s computation. If pi does not decide, it evaluates the following

two conditions: pre-commit (line 23): pi receives messages from a majority of processes

with maxESTi as their estimate; and commit (line 24): at least one COMMIT or PRE-

COMMIT message is received with maxESTi. If both conditions are true, then pi sets its

message type (for the round ki + 1 message) to COMMIT, adopts the estimate maxESTi,

and sets its timestamp to the current round number ki (line 25). We say that pi commits in

round ki with estimate maxESTi. If, however, only the first condition holds, then pi sets

its message type to PRE-COMMIT, adopts the estimate maxESTi, and sets its timestamp

to maxTSi (line 27). We say that pi pre-commits in round ki with estimate maxESTi.

If neither condition holds, pi prepares (sets his message type to PREPARE) and adopts the

estimate maxESTi and timestamp maxTSi (line 29).
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8.2 Optimization for n = 2m + 1

We present an optimization of the algorithm for the case of n = 2m + 1 (i.e., when

both (m + 1) and (n−m) are majorities). The additional code used for the optimization

is marked in gray in Figure 8.1. In the following sections, we prove that the optimized

algorithm reaches global decision by round GSR+4 (five rounds) for n = 2m + 1 (when

GSR > 0), and by round GSR+5 (six rounds when GSR > 0 and five when GSR = 0)

for other values of m (f ≤ m < n/2).

The optimization relies on the IgotCommit and gotCommit variables, that are used for

“gossiping” about COMMIT messages. Whenever a process receives a COMMIT message,

it indicates this in its next round message by setting IgotCommit to true. In order to

have all processes learn about commits, we use the gotCommit message field. A process

includes in the gotCommit set that it sends in round k + 1, all processes that it knows

have gotten COMMIT messages in round k − 1 (based on IgotCommit indications sent in

round k). Thus, in round k + 1, the incoming gotCommit sets from different processes

can give pi a better picture about which processes got COMMIT messages in round k − 1.

In the following sections of this chapter, we prove that if the union of the gotCommit

groups that a process gets exceeds bn/2c, it is safe for the process to decide on maxEST

(rule decide-3) and this optimization allows us to speed up global decision to be by round

GSR+4 instead of by round GSR+5, when GSR > 0 (i.e., to decide in 5 instead of

6 rounds). Note that if GSR = 0 or GSR = 1 the unoptimized algorithm takes 5

rounds. We formally prove the correctness of the optimized algorithm in Figure 8.1 in the

following section.

Theorem 8.1. The algorithm solves consensus in our model with global decision by round

GSR(r) + 5 (or GSR(r) + 4 in case n = 2m + 1).

Proof. From Lemma 8.14, every correct process decides by round GSR(r) + 4, if n =

2m + 1. From Lemma 8.15, every process decides by round GSR(r) + 5. Validity holds,

since the decision can only be one of the initial estimates of the processes. Uniform

agreement is proven in Lemma 8.8.
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8.3 Correctness

We first give informal explanation of correctness. A process may commit with different

estimates in different rounds. However, we show that starting from a round k in which

a majority of processes M commit with some estimate x onward, every commit is with

estimate x. Note that this implies agreement, since decision is impossible before a ma-

jority of processes commit (see decision rules). To understand why this is true, note first

that by rule pre-commit, all COMMIT and PRE-COMMIT messages sent in the same round

are with the same estimate. This explains why a commitment with y 6= x is impossible

in round k. Additionally, note that a process’s timestamp never decreases, and therefore

the processes in M have timestamps ≥ k in subsequent rounds. Suppose that a process pi

commits in round k′ > k. Rule pre-commit ensures that pi hears from a majority. Since

every two majorities intersect, pi hears from at least one process in M . Since pi commits

on maxESTi, which has the maximal timestamp, pi commits with a timestamp ≥ k. Us-

ing an inductive argument, we get that maxESTi = x. Since no decision is made before

a majority commits, and every decision is either on the value of a previous decision (rule

decide-1), or on the value sent in COMMIT messages (rule decide-2), which equals x from

round k onward, all decisions are with x.

We now formally prove correctness.

Lemma 8.2. A process’s timestamp at the start of round k is less than k.

Proof. We prove the claim by induction on the round number k′. Base case: k′ = 1. The

claim is correct since a process’s timestamp is initialized to 0. The induction hypothesis

is that the claim holds up to round k′. Let us inspect the possible actions of a process at

the end of round k′. A process can decide and in this case its timestamp does not change

and in round k′ + 1 it will remain less or equal to k′ − 1, by the induction hypothesis.

Alternatively, a process may commit, and then (on line 25) it will adopt k′ as its new

timestamp for round k′+1, and the claim holds here as well. Finally, a process may adopt

the timestamp of a round k′ message it received in round k′ (on line 27 or 29) and again,

by induction hypothesis, the claim is true.

Lemma 8.3. A process’s timestamp is non-decreasing.
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Proof. Observe that when a process decides, its timestamp does not change. It does not

change in the following rounds as well. If a process pi does not decide in round k, then

it can change its timestamp by adopting either k (when committing on line 25) or the

maximum timestamp (of a round k message) received in round k as its new timestamp

(on line 27 or 29). Since pi receives its own message in round k, the latter is not lower

than its current timestamp. In case it commits, since according to Lemma 8.2, its old

timestamp cannot exceed k − 1, by adopting k it can only increase.

Lemma 8.4. For every round k, no two processes commit or pre-commit with different

estimates in round k.

Proof. Consider two processes pi and pj that commit or pre-commit in round k with

estimates esti and estj . Thus, by pre-commit rule, each of them has received in round k a

majority of messages that contain esti and estj , respectively. As two majorities intersect,

esti = estj . Therefore, pi and pj commit or pre-commit with the same estimate.

Lemma 8.5. If some process sends a message other than DECIDE with timestamp ts > 0

and estimate x, then some process commits in round ts with estimate x.

Proof. We prove the claim by induction on the round number k′, starting from a round

k0 in which a message other than DECIDE with the timestamp ts is first sent with some

estimate x′ by some process pj .

Base Case. k′ = k0. From the definition of k0, pj could not receive a message with

ts from another process in an earlier round. Thus, pj commits with timestamp ts and

estimate x′ in round k0 − 1, and from the algorithm, k0 − 1 = ts.

Induction Hypothesis. If any process sends a PREPARE, PRE-COMMIT or COMMIT mes-

sage in round k1, such that k0 ≤ k1 ≤ k′, with timestamp ts and some estimate x′′, then

some process commits in round ts with estimate x′′.

Induction Step. We need to show that if, in round k′ + 1, a process sends a message other

than DECIDE with timestamp ts and some estimate x′′ then some process commits in

round ts with estimate x′′. Observe, that if a COMMIT message is sent, it has a timestamp
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equal to the previous round number k′, and since ts = k0 − 1 < k′ (from the base

case), this case is not possible. Observe that if a PREPARE or PRE-COMMIT message is

sent in round k′ + 1 with timestamp ts and estimate x′′, the sending process must have

adopted the timestamp together with the estimate from some PREPARE, PRE-COMMIT,

or COMMIT message sent in round k′ (this message couldn’t have been DECIDE since

otherwise the k′+1 round message would be DECIDE and not PREPARE ). By the induction

hypothesis, we get that some process commits in round ts and estimate x′′.

Please note that the claim in Lemma 8.5 does not hold for DECIDE messages, since a

process can decide adopting only the estimate and not the associated timestamp from

another DECIDE message.

Lemma 8.6. If rule decide-3 evaluates to true in some round k, there exists a majority of

processes that receive a COMMIT message in round k − 2.

Proof. Suppose rule decide-3 evaluates to true in some round k at process pi. There-

fore, the union of the gotCommit sets pi receives in round k messages includes more than

b(n/2)c indices. These gotCommit groups were created in round k− 1 by the processes

that sent these messages, according to the IgotCommit values that these processes re-

ceived. The fact that the union of the gotCommit groups has size > b(n/2)c indicates

that more than b(n/2)cmessages were received in round k−1 with IgotCommit = true

from different processes. A process sends a message with IgotCommit = true only

when it receives a COMMIT message in the previous round. Therefore, more than b(n/2)c
(a majority) of processes received a COMMIT message in round k − 2.

Lemma 8.7. (a) If some process receives a COMMIT message in round k with estimate

x, and some process commits in round k with estimate z, then z = x (b) if a process pi

commits to x in round k, or receives a COMMIT message with estimate x in round k, and

does not decide in this round, then it adopts x as its estimate with timestamp ts ≥ k − 1.

Proof. (a) If some process commits with estimate z in round k, it must have received a

COMMIT or PRE-COMMIT message with z (rule commit), and according to Lemma 8.4,

all such messages have the same estimate, and therefore z = x. (b) If pi commits x, then

it sets its timestamp to k and adopts x as its estimate. If pi receives a COMMIT message
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with estimate x, it cannot commit or pre-commit on a different value since according to

rule pre-commit a process can commit or pre-commit only on a value received with the

highest timestamp. Moreover, pi receives x with the timestamp k − 1 (which is maximal

at round k) and (Lemma 8.4) every message with this timestamp has x as estimate. Since

it does not commit on x either, it does not commit at all in round k. Since pi does not

decide in this round, it must either pre-commit or prepare with the estimate x and adopt

its timestamp: k − 1.

Lemma 8.8 (Uniform Agreement). Let k be the first round in which there exists a group

consisting of a majority of processes such that each process of the group either commits

or receives a COMMIT message. Then, no decision is made before round k + 1, and all

decisions and commitments made in rounds k′ ≥ k − 1 are with the same estimate.

Proof. Let k be the lowest numbered round in which each one out of a majority of pro-

cesses either commits x (from Lemma 8.4 all commitments in some round are with the

same value) or receives a COMMIT message with a value x (x is well defined according

to Lemma 8.7). Denote this group of processes by Sx. According to Lemma 8.7, every

process in Sx has timestamp≥ k−1 at the end of round k (we prove below that a decision

is not possible in round k). Note also, that k − 1 > 0. This is true since by definition of

k, processes in Sx either commit or receive a COMMIT message in round k. Therefore, in

round k − 1 some process must either commit or pre-commit and since round numbering

starts from 1, we have that k − 1 > 0.

There are three decision rules in the algorithm. We show that none of them could

evaluate to true for any process before round k + 1. Let k′ be the first round in which any

process decides. Rule decide-1 may be true only after some process has already decided,

and thus cannot cause the first decision. Rule decide-2 can evaluate to true only if a

majority of processes committed in the previous round. Since the first round in which this

happens is k, this rule may evaluate to true only starting from round k + 1. The last one

is rule decide-3. According to Lemma 8.6, if this rule evaluates to true in round k′, there

must have been a majority of processes that received a COMMIT message in round k′− 2.

Since the first round in which this could happen is k, we get that k′ ≥ k + 2. So in any

case, no decision is possible before round k + 1. We now prove that all decisions and

commitments made in rounds k′ ≥ k − 1 are with estimate x.
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Base Case. k′ = k − 1. As proven above, no process decides in round k′ < k + 1.

Assume by contradiction that some process commits on a value z 6= x in round k − 1.

By Lemma 8.4, no process can commit or pre-commit on x in the same round. Therefore,

in round k, no process receives a COMMIT or PRE-COMMIT message with the estimate x.

Thus, no process commits x in round k (rule commit). This contradicts the definition of

k.

Induction Hypothesis. If any process commits or decides in any round k1 such that k−1 ≤
k1 ≤ k′, then it commits with estimate x or decides x.

Induction Step. decision in round k′ + 1. Suppose some process p decides in round

k′ + 1. If it decides using rule decide-1 or decide-2, then in that round either some other

process sends a DECIDE message with decision value y or p sends a COMMIT message

with estimate y. In both cases, by the induction hypothesis, y = x.

If it decides by rule decide-3, then according to Lemma 8.6, there must be a majority

of processes that receive COMMIT messages two rounds earlier, in round k′ − 1. Since

the first round in which this can happen is k, we have that k′ − 1 ≥ k. According to

the induction hypothesis, the commit messages received are with estimate x. Therefore,

in round k′ − 1, some majority of processes M received a COMMIT message with the

estimate x. According to Lemma 8.7, if a process in M does not decide in round k′ − 1,

it will adopt x with timestamp ≥ k′ − 2. By the induction hypothesis, every process that

decides in round k′ − 1 or k′, decides x and no process commits with a different value in

round k′ − 1 or k′ − 2. Therefore, in round k′, all estimates different from x are sent with

a timestamp < k′ − 2. No process can commit or pre-commit on an estimate other than

x in round k′ since x is the value processes in M send and every two majorities intersect

(rule pre-commit must be false for any other value).

p receives a round k′ + 1 message from at least one process pi that receives a round

k′ message from some process in M . Therefore, pi receives a round k′ message with

the estimate x and timestamp ≥ k′ − 2. As was explained above, no other estimate can

have a timestamp that high in round k′, so if pi prepares or pre-commits, it must be with
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estimate x. If pi commits, it is with the estimate x as well, according to the induction

hypothesis. pi does not decide, since otherwise p would decide by rule decide-1 and not

decide-3. Therefore, pi sends a round k′+1 message with the estimate x and a timestamp

≥ k′ − 2. Since no process can commit on a value different than x in round k′ or k′ − 1,

this timestamp is higher than the timestamp of any other estimate sent in round k′ + 1.

Therefore maxEST of p must be equal to x. Therefore, p decides x.

commit in round k′ + 1. Suppose by contradiction that some process pj commits in

round k′ + 1 with estimate z 6= x. Then pj does not receive any DECIDE message in

round k′ + 1. Also note that according to rule pre-commit, pj commits on an estimate

that it receives with the highest timestamp: maxTS. Therefore, some process sends a

round k′+1 message with timestamp maxTS and estimate z. By Lemma 8.2, the highest

timestamp that can be received in round k′ + 1 is k′, and therefore maxTS ≤ k′. Since

pj commits in round k′ + 1, it receives round k′ + 1 messages from a majority of process

(rule pre-commit) and hence, receives a round k′ + 1 message from at least one process

pi ∈ Sx. According to Lemma 8.7, pi has at least timestamp k − 1 at the end of round

k. By Lemma 8.3, pi’s timestamp is at least k − 1 and therefore maxTS ≥ k − 1. Thus,

we have k − 1 ≤ maxTS ≤ k′. Since k − 1 > 0 (as shown above), and since pj does

not receive any DECIDE messages in round k′ + 1, by Lemma 8.5 there is a process that

commits z in round maxTS. By the induction hypothesis, every process that commits in

round maxTS commits x 6= z; a contradiction.

8.4 Performance

We start by informally explaining why the algorithm decides by round GSR+5. First, if

some process decides by round GSR+3, then its DECIDE message reaches every process

by the end of round GSR+5. Assume no process decides by GSR+3. Second, if no

process commits in round GSR, the maximum timestamp sent in GSR is the same as the

maximum timestamp sent in round GSR+1, and it reaches every correct process by the

end of round k1 =GSR+1, at which point all processes have the same maxEST . Finally,

if a process commits in GSR (note that this cannot happen if GSR = 0 or GSR = 1), the

use of pre-commit ensures that no different value is committed in GSR+1, and thus this
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value has the highest timestamp among those sent in round GSR+2, and this timestamp

and its estimate reach every process by the end of round k2 =GSR+2. In both cases,

every process has the same maxEST at the end of round k = k1 or k = k2. Thus, all

processes send the same estimate in round k + 1, and in the ensuing round, a majority

of processes receives it and pre-commits (at least). In round k + 2, every correct process

receives the same estimate from majority and a PRE-COMMIT or COMMIT message, and

commits. Finally, by round k +3, which is at most GSR+5, every process decides by rule

decide-2.

We now give a formal proof.

Lemma 8.9. If n = 2m + 1, in every run r, if some process p commits in round GSR(r)

with an estimate x, then all processes decide by the end of round GSR(r) + 3.

Proof. Suppose that some process pi does not decide by the end of round GSR(r) + 3.

This means that it evaluates rules decide-1, decide-2 and decide-3 to false. Therefore,

pi does not receive any DECIDE message, and |
⋃

j∈Π M [ki][j].gotCommit| ≤ bn/2c. pi

receives a round GSR(r) + 3 message from a group M of (n − m) processes. Thus,

there are (n − m) processes that together receive in round GSR(r) + 2 messages with

IgotCommit = true from at most bn/2c processes. Every process in M does not receive

a DECIDE message in round GSR(r)+2, since otherwise their next round message would

be DECIDE. Since each process’s message reaches (m + 1) from GSR(r) onward, it

reaches at least one process from any group of (n−m) processes. Therefore, the number

of processes that send a message with IgotCommit = true in round GSR(r) + 2 is at

most b(n/2)c. We get that in round GSR(r) + 1, at most b(n/2)c processes received a

COMMIT message. Every process whose message reaches a process in M does not decide

in round GSR(r) + 1, since otherwise their next round message would be DECIDE and

processes in M do not receive any such messages. Since p sends a COMMIT message,

its message should reaches at least m + 1 processes (a majority when n = 2m + 1). As

explained above, we get a contradiction the assumption that p sends a COMMIT message

in round GSR(r) + 1.

Notations: (relating to a specific run r)
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absMaxTS(k) = max{ m.ts | message m is sent in round k}

absMaxEST (k) = max{ m.est |message m is sent in round k s.t. m.ts = absMaxTS(k)}

Lemma 8.10. In every run r, if no correct process decides by the end of round k ≥
GSR(r), then in round k at least m+1 correct processes adopt the estimate absMaxEST (k)

with timestamps equal to absMaxTS(k) or to k (in case it is adopted by committing).

Proof. Let us observe round k messages.

Denote by pmax the (correct) process that sends absMaxEST (k) with the timestamp

absMaxTS(k). By the assumptions of our model, the round k message 〈∗, absMaxEST (k),

absMaxTS(k), ∗, ∗〉 will reach at least m + 1 correct processes. Denote the group of

processes that actually get this message by A. Note that since a process receives a sub-

set of all messages sent in round k, for any pi ∈ A, maxTSi = absMaxTS(k) and

maxESTi = absMaxEST (k). The conditions of the lemma assume that no correct

process decides by the end of round k. Therefore, each process pi ∈ A must commit,

pre-commit or just prepare for the next round. If pi commits or pre-commits, rule pre-

commit must hold for it. This rule makes sure that the estimate pi adopts is equal to

maxESTi. Therefore, pi will adopt absMaxEST (k). If pi prepares, it will execute line

29 of the pseudo-code, adopting absMaxEST (k) as well. Therefore all the processes in

A (at least m+1 processes) will adopt the same estimate absMaxEST (k). Observe, that

they will either adopt it with timestamp absMaxTS(k) (if they pre-commit or prepare)

or with timestamp k if they commit.

Lemma 8.11. In every run r, if no correct process decides by the end of round GSR(r)+

1, and no process commits in round GSR(r), all processes will have the same estimate

by the end of round GSR(r) + 1.

Proof. By Lemma 8.10, at the end of round GSR(r), at least m+1 of processes adopt the

estimate absMaxEST (GSR(r)) with a timestamp equal to absMaxTS(GSR(r)). No-

tice that an estimate est′ 6= absMaxEST (GSR(r)) can become absMaxEST (GSR(r)+

1) only by adopting a new timestamp (that was not sent in round GSR(r)). This can

be done only if a process commits with est′ in round GSR(r), and this is not possible

by the assumptions of our lemma. We conclude that absMaxEST (GSR(r) + 1) =

absMaxEST (GSR(r)) (6= est′).
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No process decides in round GSR(r) + 1, and each pi process receives a round

GSR(r) + 1 message from n − m processes, including one message of the form 〈∗,
absMaxEST (GSR(r) + 1), ts, ∗, ∗〉 and ts is either equal to absMaxTS(GSR(r))

(ts 6= GSR(r) since we assume in this lemma that no process commits in round GSR(r)).

Whether pi commits, pre-commits or prepares, because of rule pre-commit and line 29, the

estimate pi adopts is equal to maxESTi. Therefore, pi will adopt absMaxEST (GSR(r)+

1), and we get that all processes adopt the same estimate by the end of round GSR(r) +

1.

Lemma 8.12. In every run r, if no correct process decides by the end of round GSR(r)+

2, and some process commits in round GSR(r), all processes will have the same estimate

by the end of round GSR(r) + 2.

Proof. By Lemma 8.10, at the end of round GSR(r) + 1, at least m + 1 of processes

adopt the

estimate absMaxEST (GSR(r) + 1) with a timestamp equal to GSR(r). Notice that an

estimate est′ 6=
absMaxEST (GSR(r)+1) can become absMaxEST (GSR(r)+2) only by adopting a

new timestamp (that was not sent in round GSR(r)+1). This can be done only if a process

commits with est′ in round GSR(r) + 1, and this is not possible because some process

will receive the COMMIT message sent in this round, and Lemma 8.7. We conclude that

absMaxEST (GSR(r) + 2) = absMaxEST (GSR(r) + 1) (6= est′).

No process decides in round GSR(r) + 2, and each pi process receives a round

GSR(r) + 2 message from n − m processes, including one message of the form 〈∗,
absMaxEST (GSR(r)+2), ts, ∗, ∗〉 and ts is either equal to GSR(r) or to GSR(r)+1.

Whether pi commits, pre-commits or prepares, because of rule pre-commit and line 29, the

estimate pi adopts is equal to maxESTi. Therefore, pi will adopt absMaxEST (GSR(r)+

1), and we get that all processes adopt the same estimate by the end of round GSR(r) +

2.

Lemma 8.13. If in a round k ≥ GSR(r) all estimates being sent are the same, all correct

processes decide by round k + 2.
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Proof. Observe that in our model every correct process executes an infinite number of

rounds, and in particular, executes round k +2. Also, it is obvious that all estimates being

sent remain the same in all rounds starting at k. We prove the lemma by contradiction.

Assume that some correct process pj does not decide by round k+2 in some run r. There-

fore, pj couldn’t have received a COMMIT message from a majority of processes in round

k + 2. Since, in our model, from GSR(r) onward, every correct process receives mes-

sages from a majority of correct processes (including itself), it must have received a round

k + 2 message m s.t. m.msgType = t from some process pi with type t 6= COMMIT .

t 6=DECIDE, since pj didn’t decide in round k + 2. Therefore, t must be PREPARE or

PRE-COMMIT. If t =PREPARE, this can happen only if in round k + 1, process pi re-

ceived messages with different estimates, since otherwise (if all estimates it receives are

the same), even if there were no proper conditions (according to the algorithm) for pi to

DECIDE or COMMIT, its PRE-COMMIT rule would definitely evaluate to true and its round

k + 2 message would be (at least) PRE-COMMIT. Therefore, t =PREPARE is a contra-

diction to our assumption that in round k + 1 all estimates being sent are the same. If

t =PRE-COMMIT, this means that pi didn’t receive any DECIDE message in round k + 1,

and that rule pre-commit evaluated to true for pi, but rule commit did not. Therefore, pi re-

ceived k+1 round messages from a majority of processes with some estimate maxESTi,

but didn’t receive any of them with the type COMMIT or PRE-COMMIT. This means that

at the end of round k, there were processes that didn’t PRE-COMMIT. Lets observe one

such process pc (who’s round k + 1 message reached pi) at the end of round k. It couldn’t

have decided since pi didn’t receive any DECIDE messages in round k + 1. Since all es-

timates sent are the same in round k, its rule pre-commit must evaluate to true at the end

of round k, and it sends either a COMMIT or a PRE-COMMIT message in round k + 1, a

contradiction to the fact that pi received no such messages (since starting with round k,

all estimates are the same, est′ must be the estimate sent by pc).

Lemma 8.14. If n = 2m + 1 then in every run r in which GSR > 0, all correct processes

decide by round GSR(r) + 4, i.e., in 5 rounds.

Proof. If some process correct process decides by the end of round GSR(r) + 1, lets

denote by k the round in which this happens, or GSR(r)− 1 (the later round between the

two). Since k ≥ GSR(r)− 1, in round k + 1, it is assured that the decision message will
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reach m + 1 processes, and in round k + 2, it will reach all the process since each one

receives a message from n−m processes. Therefore, every process will decide by round

k + 2. If k = GSR(r) + 1, k + 2 = GSR(r) + 3, and the lemma holds.

Suppose that no correct process decides by the end of round GSR(r) + 1. If some

process commits in round GSR(r), all processes will decide by round GSR(r) + 3, by

Lemma 8.9. If no process commits in GSR(r), by Lemma 8.11, all processes will adopt

the same estimate by the end of round GSR(r)+1, and send it in round GSR(r)+2. By

Lemma 8.13, all processes will decide by the end of round GSR(r) + 4.

Lemma 8.15. In every run r all correct processes decide by round GSR(r) + 5.

Proof. If some process correct process decides by the end of round GSR(r) + 2, lets

denote by k the round in which this happens, or GSR(r)− 1 (the later round between the

two). Since k ≥ GSR(r)− 1, in round k + 1, it is assured that the decision message will

reach m + 1 processes, and in round k + 2, it will reach all the process since each one

receives a message from n−m processes. Therefore, every process will decide by round

k + 2. If k = GSR(r) + 2, k + 2 = GSR(r) + 4, and the lemma holds.

Suppose that no correct process decides by the end of round GSR(r)+2. If some pro-

cess commits in round GSR(r), , by Lemma 8.12, all processes adopt the same estimate

by the end of round GSR(r) + 2, and send it in round GSR(r) + 3. By Lemma 8.13,

all processes will decide by the end of round GSR(r) + 5. If no process commits in

GSR(r), by Lemma 8.11, all processes will adopt the same estimate by the end of round

GSR(r)+1, and send it in round GSR(r)+2. By Lemma 8.13, all processes will decide

by the end of round GSR(r) + 4. Note that if GSR(r) = 0, no process can commit in

round GSR(r), and therefore decision occurs in five rounds (i.e., by GSR(r) + 5).
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Chapter 9

Impossibility of Bounded Time Global

Decision in ♦MFM

We define the ♦MFM family of models, for m ∈ N+, f ≤ m < n/2, as follows:

♦MFM(m) (Majority-From-Majority) : t < n/2, reliable links, every correct process

is a ♦(n−m)-source and ♦m-accessible, m correct processes are ♦n-sources, and

(n−m) correct processes are ♦(n−m)-accessible.

Note that these models are only slightly weaker than ♦AFM, where we have shown

that constant-time decision is attainable. We show that the time for global decision after

GSR in all of these models is unbounded.

Lemma 9.1. For any m ∈ N+ s.t. f ≤ m < n/2, there exists no consensus algorithm

that reaches global decision in bounded time from GSR in ♦MFM(m).

Proof. Assume by contradiction that an algorithm A reaches global decision by round

GSR(r)+TA in every run r. We partition the processes into three groups: a group P of m

processes, a group Q of m processes, and a group R of the remaining n− 2m (≥ 1, since

m < n/2) processes.

We construct three runs in ♦MFM(m), in which no process fails (f = 0), and pro-

cesses of each group have perpetually timely bidirectional links to all other processes of

the same group. For each run we state which inter-group links are ♦timely. These links
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are timely only from GSR onward, and delay until round GSR all messages sent before

that round.

Each one of the three runs is a run in ♦MFM(m): in every run, either groups Q and R

or groups P and R are fully connected with timely links from GSR onward. The number of

processes in the resulting group is n−m. Therefore, in every run there are n−m processes

that are ♦(n −m)-accessible (and therefore ♦(n −m)-source and ♦m-accessible, since

n−m > m). The other m processes are correct and fully interconnected with timely links

from the start, i.e. m-accessible, and have ♦timely outgoing links to every process,i.e. m

correct ♦n-source processes. Therefore, the requirements of the model are fulfilled in

each one of the three runs below.

We construct a run σ0 in which from round GSR(σ0) = 1 onward (i) processes of

P have timely outgoing links to all other processes, and (ii) processes of Q and R have

timely links among them. All other links between groups deliver messages only after

round GSR(σ0)+TA = TA + 1. All processes propose 0. Since algorithm A always

reaches global decision by round GSR(r)+TA, and since GSR(σ0) = 1, processes of P

decide 0 (by validity) by round TA + 1.

We next construct a run σ1, which is identical to σ0 until round TA + 1, and from

round GSR(σ1) = TA+2 onward (i) processes of Q have timely outgoing links to all other

processes, and (ii) processes of P and R have timely links among them. All other links

between groups deliver messages only after round GSR(σ1)+TA. All processes propose

1. Since algorithm A always reaches global decision by round GSR(r)+TA, processes of

Q decide 1 (by validity) by round GSR(σ1)+TA.

Finally, we construct a run σ2 which is identical to σ1 (and σ0) until round TA + 1,

and in which, like in σ1, starting from round GSR(σ2) = TA + 2 onward (i) processes of

Q have timely outgoing links to all other processes, and (ii) processes of P and R have

timely links among them. All other links between groups deliver messages only after

round GSR(σ2)+TA. In σ2, processes of Q propose 1 and processes of P and R propose

0. Note that processes of Q decide 1 since they cannot distinguish this run from σ1 -

in both runs group Q is disconnected from other processes until GSR(σ2)+TA, and fully

connected within. Therefore, the messages between processes in Q must be the same in

both runs. Note that a run is fully determined by the initial states and the set of links that
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Figure 9.1: Illustration of the partition argument.

are timely in each round, because processing is deterministic, and all round messages are

delivered together to the protocol in one end-of-round action (compute() does not see the

order of arrival, only which set of messages was received in the round). Thus, processes

of group P cannot distinguish σ2 from σ0 by round TA + 1 and hence decide 0, violating

agreement. A contradiction.

Note that our notion of timely links is more abstract than the real-time-based defi-

nition used in [2, 3, 43], where messages arrive within bounded latency. Nevertheless,

since we never explicitly reason about time duration in constructing our runs, our proof is

applicable even if all messages on timely links in these runs are delivered within bounded

latency, and hence covers these models.
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Chapter 10

Probabilistic Comparison of Decision

Time in Different Models

This thesis has dealt with the number of rounds needed, starting from GSR, to reach a

global consensus decision in different models. It was already known that decision in

Eventual Synchrony (ES) takes 3 rounds from GSR, and we showed an algorithm for the

♦LM model that achieved termination in the same number of rounds, and an algorithm

for the ♦AFM model that incured a penalty of 2 (or 3, in some settings) rounds. We

justified this increase in rounds after GSR by assessing that our consensus algorithms for

♦AFM and ♦LM will actually reach decision much faster than the algorithm for ES,

even though the algorithm for ♦AFM takes more rounds. Intuitively, GSR is reached

faster in ♦AFM and ♦LM than in ES. We would like to probabilistically analyze this

claim.

For this analysis, we model link failure probabilities as Independent and Identically

Distributed (IID) Bernoulli random variables (like often done in the literature). By “link

failure” we mean that the link fails to deliver a message in a timely manner, i.e. in the

same round in which it was sent. In our calculations we make the simplification of not

distinguishing the link of every process to itself as a special case, and consider it as any

other link. We consider runs with f = 0, meaning that no process fails, and compare the

Eventual Synchrony (ES), ♦AFM (with n = 2m+1) and ♦LM models (with a predefined

arbitrary leader).
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All communication in some single round k can be represented as a n by n matrix A,

where the rows are the destination process indices, the columns are the source process

indices, and each entry Ai,j is 0 if a message sent by pj to pi does not arrive in round k,

and 1 if it does reach pi in round k. Let p be the probability of any entry Ai,j to be 1.

Recall that ES requires all entries in the matrix to be 1, for 3 consecutive rounds,

♦AFM (with n = 2m + 1) requires the matrix to have a majority of 1’s in every row and

column, for 5 consecutive rounds. ♦LM requires that for 3 consecutive rounds the matrix

to have a majority of 1’s in every row, such that every entry in the column corresponding

to the leader is 1. We define random variables DES , D♦LM and D♦AFM to be the number

of rounds until decision in the appropriate models.

10.1 Analysis of ES and ♦LM

The probability that A has 1 in every entry is: pn2 . An optimal ES consensus algorithm

reaches a global decision by round GSR + 2 in ES, thus we need the assumptions of ES

to be satisfied for 3 consecutive rounds starting at some round k ≥ 1. The probability of

this to happen at any given round k is p3n2 . Thus:

E(DES) =
1

p3n2 + 2 (10.1)

Notice that for any fixed p < 1, limn→∞E(DES) =∞, since limn→∞ p3n2
= 0.

For ♦LM , it is required that A has a majority of ones in all rows. If we assume that

the leader is some fixed process pk, we additionally require that ∀1 ≤ j ≤ n Aj,k = 1.

Denote the event that there is a majority of ones in row Aj by M and the event that

Aj,k = 1 by L. Note that Pr(L) = p. By the multiplication rule we have:

Pr(L ∩M) = Pr(L) ∗ Pr(M |L) = p · Pr(M |L)

If the entry Aj,k is 1, we are left with the n− 1 other entries in row Aj , out of which more
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than n
2
− 1 entries must be 1. We get:

Pr(M |L) =
n−1∑

i=bn
2 c

(
n− 1

i

)
pi(1− p)n−1−i

We have n rows (the rows are independent of each other), and global decision is achieved

by round GSR + 2 in ♦LM , thus:

E(D♦LM) =
1

(Pr(L ∩M))3n
+ 2 =

1

(p ·
∑n−1

i=bn
2 c

(
n−1

i

)
pi(1− p)n−1−i))3n

+ 2 (10.2)

For any fixed p < 1, its clear that limn→∞E(D♦LM) = ∞, since limn→∞ p3n = 0, and

Pr(M |L) ≤ 1. But E(D♦LM) grows much slower with n than E(DES), since the power

of p is linear in n in E(D♦LM), and quadratic in n in E(DES).

10.2 Analysis of ♦AFM

Consider a given row k of A. We first analyze the probability that the row includes a

majority of ones. To this end, let Xj be the random variable representing the cell Ak,j .

According to our assumption, X1, X2, ..., Xn are independent and identically distributed

Bernoulli random variables with probability of success p. Let X =
∑n

i=1 Xi. The proba-

bility that any given row in A has a majority of 1’s is:

Pr(X >
n

2
) =

n∑
i=bn

2 c+1

(
n

i

)
pi(1− p)n−i

For n (independent) rows we get that the probability is (Pr(X > n
2
))n. Now assume that

every row has a majority of 1 entries. The probability of any given entry to be 1 is still at

least p. We therefore can make an identical calculation for the columns. To get a bound

on the probability to have a majority of ones in each row and column, we therefore raise

the expression again to the power of 2. Since the algorithm presented in this thesis for

♦AFM with n = 2m + 1 (see Section 8.2) achieves global decision by round GSR + 4

(5 rounds from GSR), this needs to hold for 5 consecutive rounds, and therefore we will
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additionally raise the expression to the power of 5. We get:

E(D♦AFM) ≤ 1

(
∑n

i=bn
2 c+1

(
n
i

)
pi(1− p)n−i)10n

+ 4 (10.3)

In the following lemma we show that, asymptotically, E(D♦AFM) approaches the con-

stant value of 5 rounds, as n, the number of processes, goes to infinity.

Lemma 10.1. For a fixed p > 1
2
, limn→∞E(D♦AFM) = 5

Proof. To bound the probability that A has a majority of 1’s in a row, we use a Chernoff

bound [14]: Let X1, X2, ..., Xn and X be as defined above, and denote µ = E(X) = np.

By the Chernoff bound, for any 0 < ε < 1:

P (X ≤ (1− ε)µ) < e−µε2/2

We would like to bound the probability P (X ≤ n
2
) and therefore take ε = (1− 1

2p
). Thus,

for p > 1/2, we get:

P (X ≤ n

2
) ≤ e−(1− 1

2p
)2np/2

and

P (X >
n

2
) > 1− e−(1− 1

2p
)2np/2

This is a bound on the probability that any given row in A has a majority of 1’s. For

n (independent) rows, we get that the probability exceeds (1 − e−(1− 1
2p

)2np/2)n. As was

already explained, if we take p as the lower bound for the probability that given a majority

of ones in each row, any given entry in A is 1, we have to raise this expression to the power

of 2. Additionally, this needs to hold for 5 consecutive rounds, and thus:

E(D♦AFM) ≤ 1

(1− e−(1− 1
2p

)2np/2)10n
+ 4

For a fixed p < 1, the first expression in the sum above approaches 1 as n → ∞, and

therefore E(D♦AFM)→ 5.
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10.3 Numerical results

We construct graphs using formulas (10.1), (10.2) and (10.3), and compare E(D) - the

expected number of rounds until global decision in ES, ♦AFM (with n = 2m + 1) and

♦LM (with some fixed process acting as the leader). As the formulas suggest, the graphs

for ES and ♦LM show the expected E(DES) and E(DLM) round number, while the

graphs for ♦AFM show an upper bound on the expected E(DAFM) round number. The

graphs are shown either as a function of p, the probability of timely delivery on any single

link, or as a function of n, the number of processes.

The number of processes used in our comparison is similar to the one used to ana-

lyze Petal [40] (a distributed virtual disks system) and Frangipani [48] (a distributed file

system based on Petal), which employ Paxos and used up-to 8 servers to analyze system

performance. Note that although round numbers are really integers, the graphs are inter-

polated and thus to get the real value, the graph value must be rounded towards the closest

higher integer.

The graphs are presented in Figure 10.1. In Figure 10.1(a) we can see that even with

a relatively small n and very high probability of timely message delivery, performance

in ES deteriorates drastically as p decreases, while both ♦AFM and ♦LM maintain

excellent performance. Figure 10.1(b) zooms in on the area of p ≥ 0.99 in Figure 10.1(a),

and again emphasizes the quick deterioration of the performance in ES, showing also the

difference between the two other models in this high range of p - here ♦LM performs

better than ♦AFM . Figure 10.1(c) shows how the optimal algorithm in ES performs

relatively to the algorithms in the two other models, as we fix p to be 0.99 and increase

n. As was mentioned before, limn→∞E(DES) =∞ and this clearly shows on this graph,

even for these small values of n (notice that ♦LM deteriorates much slower, even though

limn→∞E(D♦LM) =∞ as well).

Figure 10.1(d) compares only ♦AFM and ♦LM (as is clear from Figure 10.1(a), ES

has extremely bad performance in this range of p). We can see that starting from about

p = 0.94, ♦LM and ♦AFM have a very close performance, and as we saw in Figure

10.1(b), in higher ranges ♦LM is even better than ♦AFM . As p gets smaller, ♦LM

performs much worse than ♦AFM . For example with p = 0.8, our ♦AFM algorithm
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Figure 10.1: Probabilistic comparison of rounds/time until decision.

is expected to reach decision after about 32 rounds, while ♦LM is expected to take more

than 1400 rounds. Figure 10.1(e) shows that ♦LM gets worse than ♦AFM when we

increase n as well (for a fixed p), while ♦AFM keeps constant excellent performance.

This is due to the asymptotic behavior of E(D♦LM) and E(D♦AFM) (discussed earlier in
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this chapter): while the first goes to∞ when n→∞, the second approaches the value of

5 rounds (Lemma 10.1).

The results in this section show that our models are much easier to implement than

ES (assuming IID), and that they should be preferred when messages might be late or lost

and as the network size increases, since they will allow a much faster consensus decision.

The intuition of why assuming ES will get such a bad performance, is that it is practically

impossible to get 3 matrices not containing even a single zero entry, if the probability for a

zero is non-negligible or the matrix is large enough. This is in contrast to the requirement

of ♦AFM , which is almost always expected to be satisfied having a realistic probability

of timely message delivery - for example, if a probability to get a 1 is 3/4 and the matrix

(the number of Bernoulli trials) is large enough, the ones are expected to be at least 3/4

of every row and column, which is even more than ♦AFM requires. ♦LM is almost

the same as ♦AFM when p is high, but (somewhat surprisingly), there is a considerable

difference in favor of ♦AFM when p is low. This is because ♦LM requires the messages

from a single known process not to be lost for 3 consecutive rounds. We can see that

the 2 round penalty of ♦AFM is worthwhile, both comparing to ES and ♦LM , and that

implementing the leader for ♦LM is really not worth the effort, if the network is IID as

we assumed in our analysis. We also conclude that the ♦AFM model has the potential to

greatly improve the scalability of distributed systems that use consensus.

10.4 Setting the Timeout in a Practical Scenario

We have shown that a higher p reduces the number of rounds for decision. On the other

hand, it is obvious that in order to achieve a higher p, one needs larger timeouts, and there-

fore each individual round is longer. We wish to explore this tradeoff in a real practical

setting. In this section, we examine one particular setting, using TCP latencies measured

by Cardwell et al. [10], and determine the optimal timeout in this setting. Of course, this

is but one example, and in different practical settings, the timeouts will be different.

Cardwell et al. [10] present a model of TCP latencies, validated by simulations. Specif-

ically, we use the measured cumulative distribution of latencies in TCP simulations pre-

sented in Figure 7 in [10]. For example, in that experiment, 99% of the packets arrived
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within a latency of 4.5sec, whereas 90% of packets arrived within 3.3sec.

In Figure 10.1(f), we present our upper bound on the actual duration of the ♦AFM -

based and ♦LM -based consensus algorithms, in seconds, in the setting of [10]. This

duration is computed by multiplying the upper bound on the number of rounds required

for decision with a given p from Equations (10.2) and (10.3), by the timeout required to

achieve this p in the measurements of [10]. We take n = 10 processes, and 0.85 < p < 1.

The graph of ♦AFM in Figure 10.1(f) demonstrates the tradeoff: for p < 0.92 while

the required number of rounds is increasing (as p gets smaller), the length of each round is

decreasing. For p > 0.92 (as p gets larger) the number of required rounds decreases, but

the cost of each round increases. For example - if we set our timeout to 4.03sec, although

the number of rounds will be almost minimal (approximately 5 rounds), the actual time

until decision will be approximately 20.17sec, which is about the same time we would

get if we waited for only 85.5% of the messages although the required number of rounds

would be higher. This shows that setting conservative timeouts (improving p) will not

necessarily improve performance. As we see from this graph - it might actually make it

worse. From Figure 10.1(f), we conclude that in this setting of [10], choosing the timeout

to 3.37sec is optimal for the ♦AFM algorithm.

It was shown in [9] and [7], that the maximal latency can be orders of magnitude

longer than the average latency on a TCP link, and therefore, it is not feasible to assure

that no messages are ever late ,i.e., to get p = 1. However, if we use p = 0.99 an ES-

based algorithm is expected to take 23 rounds (see Figure 10.1(b)), i.e. 101.2sec, which is

much worse than the ♦AFM -based algorithm, that is expected to take only 5 rounds, i.e.

22sec. Note that the ♦LM -based algorithm takes only about 3 rounds for p = 0.99 (see

Figure 10.1(b)), which take 14.2sec, and thus is better than ♦AFM for this p. This will

be the case for every p ≥ 0.97, as the figure shows. Moreover, the ♦LM -based algorithm

is expected to outperform the ♦AFM -based one, in another setting - when links are not

IID, and one process (the leader) has much better outgoing links than others [6, 7].
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Chapter 11

Conclusions and Future Directions

We have focused on the question of which timeliness or failure detector guarantees one

should attempt to implement in a distributed system. While it is obvious that weaker time-

liness/failure detector guarantees can be practically satisfied using shorter timeouts and

cheaper hardware than stronger ones, it was not previously established what implications

the use of weaker properties has on algorithm performance. Although from a theoretical

perspective it is interesting to discover the weakest conditions that can be used to ensure

eventual decision, in practice, timely decision is of essence. System designers are of-

ten willing to spend more on hardware, if this can ensure better performance. Likewise,

implementations are better off using longer timeouts if this can lead to faster decision

overall.

We have presented a general framework GIRAF, to answer such questions. GIRAF

does not restrict the set of allowed algorithms, models or failure patterns, but rather orga-

nizes algorithms in a “round” structure, which allows for analyzing their complexity. We

used our framework to show that some previously suggested guarantees were too weak to

solve consensus in a timely manner. We have further shown that it is possible to strengthen

a model in which consensus is not solvable in bounded time (♦MFM(m) for n = 2m+1)

to get a model in which consensus is solvable in constant time (♦AFM) by adding just

one ♦timely incoming link per process, for a minority of processes. In such situations,

it is worthwhile to increase timeouts and/or buy faster hardware in order to implement

stronger guarantees. On the other hand, we have shown that the strong ES model (which
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requires timely communication among all pairs of correct processes) can be weakened

in ways that are significant from a performance standpoint (as shown in Chapter 10 and

[6, 7]), and yet with little (for ♦AFM) or no (for ♦LM) penalty on the number of commu-

nication rounds employed by the consensus algorithm. In fact, our probabilistic analysis

(Chapter 10) has shown that ♦AFM is extremely scalable, significantly more than ES or

even ♦LM .

We believe that GIRAF has the potential to further enhance the understanding of

performance tradeoffs between different models, and opens vast opportunities for future

work. We now point out several exemplar directions for future research.

• One can use our new notion of α-reducibility (and k-round reducibility) to compare

various models more meaningfully than with the classical notion of reducibility, by

considering the time (round) complexity of the reduction.

• While this thesis focuses on the performance of the algorithm after synchroniza-

tion, an important complementary direction for future study is understanding the

performance of the environment’s synchronization mechanism, that is, the actual

time it takes to reach GSR in various timing models. Whereas GIRAF provides

generic analysis of the cost of algorithms in terms of different round-types (e.g.,

all-to-all communication in each round or communication with a majority of pro-

cesses), in order to deduce which algorithm is best for a given network setting, this

analysis should be complemented with a measurement study of the cost of rounds

of different types in that specific setting.

• It would be interesting to further study the fine line between models that allow

bounded and unbounded decision times. For example, is it possible to weaken

♦AFM by making fewer processes ♦(m + 1)-sources, and still achieve constant or

bounded time consensus? and what would be the effect of weakening the assump-

tion that the leader is a ♦n-source in ♦LM, on consensus performance?

• In this thesis, we have focused on global decision. It can be interesting to investigate

local consensus decision [25], i.e., the number of rounds until some process decides.
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• Finally, there are gaps between upper and lower bounds shown in Table 1, which

might be closed.
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