
Motivation
• Transactions are powerful

• Transactional memory is costly

• Long transactions are not likely to succeed

Contribution
• A Java transactional data structure library 

with support for nesting

• Additional transactional data structures

• A benchmark for transactional libraries 
and frameworks

• Guidelines for composition of 
transactional libraries

Nesting
• Create checkpoints, retry less → save time 

and work

• Child transactions are isolated until 
migrated

• Lock management is required

Nesting: Limit Scope of 
Abort
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On abort – retry parent

On commit – migrate changes to parent

On commit – apply changes to shared state

On abort – retry child or parent

Data-structure Specific 
Nested Operations
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Case Study: NIDS
• Network intrusion detection system benchmark

• Long transactions

• Multiple objects

• Significant computations
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Nesting and Composition in Transactional Data 
Structure Libraries

Atomic
{

a.Op1()
a.Op2(b.Op3())
....

}
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