
Motivation
• Transactions are powerful

• Transactional memory is costly

• Long transactions are not likely to succeed

Contribution
• A Java transactional data structure library

with support for nesting

• Additional transactional data structures

• A benchmark for transactional libraries
and frameworks

• Guidelines for composition of
transactional libraries

Nesting
• Create checkpoints, retry less → save time

and work

• Child transactions are isolated until
migrated

• Lock management is required

Nesting: Limit Scope of
Abort

TXbegin()

[Parent code]

TXbegin()

[Child code]

nTXend()

[Parent code]

TXend()

On abort – retry parent

On commit – migrate changes to parent

On commit – apply changes to shared state

On abort – retry child or parent

Data-structure Specific
Nested Operations

head tail

shared queue

enq()

parent queue child queue

to return
from deq deq() … deq()

new

new

head tail new

shared queue parent queue child queue

deq()

X

Case Study: NIDS
• Network intrusion detection system benchmark

• Long transactions

• Multiple objects

• Significant computations

processed
fragments map

processed
fragments map

producer task consumer task (atomic)

stateful
IDS

match
signature

create
output

output
log

packet map
fragment

pool

put / get

processed
fragments map

extract
header

capture
packet

Nesting and Composition in Transactional Data
Structure Libraries

Atomic
{

a.Op1()
a.Op2(b.Op3())
....

}

Gal Assa‡ Hagar Meir† Guy Golan-Gueta* Idit Keidar‡ Alexander Spiegelman*

‡Technion, Israel †IBM Research *VMware Research

