
Oak: A Scalable Off-Heap Allocated Key-Value Map
Hagar Meir

∗

IBM Research, Israel

Dmitry Basin

Yahoo Research, Israel

Edward Bortnikov

Yahoo Research, Israel

Anastasia Braginsky

Yahoo Research, Israel

Yonatan Gottesman

Yahoo Research, Israel

Idit Keidar

Technion and Yahoo Research, Israel

Eran Meir

Yahoo Research, Israel

Gali Sheffi
∗

Technion, Israel

Yoav Zuriel
∗

Technion, Israel

Abstract
Efficient ordered in-memory key-value (KV-)maps are para-

mount for the scalability of modern data platforms. In man-

aged languages like Java, KV-maps face unique challenges

due to the high overhead of garbage collection (GC).

We present Oak, a scalable concurrent KV-map for envi-

ronments with managed memory. Oak offloads data from

the managed heap, thereby reducing GC overheads and im-

proving memory utilization. An important consideration

in this context is the programming model since a standard

object-based API entails moving data between the on- and

off-heap spaces. In order to avoid the cost associated with

such movement, we introduce a novel zero-copy (ZC) API.

It provides atomic get, put, remove, and various conditional

put operations such as compute (in-situ update).

We have released an open-source Java version of Oak. We

further present a prototype Oak-based implementation of

the internal multidimensional index in Apache Druid. Our

experiments show that Oak is often 2x faster than Java’s

state-of-the-art concurrent skiplist.

CCS Concepts • Theory of computation→Data struc-
tures design and analysis; Concurrent algorithms;

Keywords memory management, concurrent data struc-

tures, key-value maps

1 Introduction
Concurrent ordered key-value (KV-)maps are an indispens-

able part of today’s programming toolkits. Doug Lee’s Con-

currentSkipListMap [35], for instance, has been widely used

∗
Work done while at Yahoo Research.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6818-6/20/02. . . $15.00

https://doi.org/10.1145/3332466.3374526

for more than a decade. Such maps are essential for building

real-time data storage, retrieval, and processing platforms

including in-memory [7] and persistent [1, 21, 39] KV-stores.

Another notable use case is in-memory analytics, whose

market is projected to grow from $1.26B in 2017 to $3.85B

in 2022 [6]. For example, the Apache Druid [25] analytics

engine is adopted by Airbnb, Alibaba, eBay, Netflix, Paypal,

Verizon Media, and scores of others.

Today, many data platforms are implemented in managed

programming languages like Java [1, 4, 25, 39]. Despite re-

cent advances, garbage collection (GC) algorithms struggle

to scale with the volume of managed (on-heap) memory,

often leading to low utilization and unpredictable perfor-

mance [12]. This shortcoming has led a number of systems

to adopt home-grown off-heap memory allocators, e.g., Cas-

sandra [8], Druid [26], and HBase [5, 14, 40]. Most of these

use cases, however, are limited to immutable data and avoid

the complexity of implementing synchronization.

In this paper, we address the demand for scalable in-memory

KV-maps in Java and similar languages. We design and imple-

ment Oak –Off-heap Allocated KV-map – an efficient ordered

concurrent KV-map that self-manages its memory off-heap.

Our design emphasizes (1) performance, (2) programming

convenience, and (3) correctness under concurrency.

These objectives are facilitated by Oak’s novel zero-copy
(ZC) API, which allows applications to access and manipu-

late data directly in Oak’s internal buffers, yet in a thread-

safe way. For backward compatibility, Oak also supports the

(less efficient) legacy KV-map API (in JDK, ConcurrentNav-

igableMap [34]). Either way, Oak preserves the managed-

memory programming experience through internal garbage

collection. We discuss our programming model in §2.

Oak achieves high performance by (1) reduced copying,

(2) efficient data organization both on- and off-heap, and (3)

lightweight synchronization. Oak further features a novel

approach to expedite descending scans, which are prevalent

in analytics use cases. Data organization is the subject of

§3, and the concurrent algorithm appears in §4; we formally

prove its correctness in the full paper [41].

https://doi.org/10.1145/3332466.3374526

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Hagar Meir et al.

We have released a Java implementation of Oak as an

off-the-shelf open-source package under the Apache 2.0 Li-

cense [43]. Its evaluation in §5 shows significant improve-

ments over ConcurrentSkipListMap, e.g., 2x speed up for

puts and gets. Oak’s descending scans are 10x faster than

the state-of-the-art thanks to the built-in support for such

scans. In terms of memory utilization, Oak can ingest over

30% more data within a given DRAM size.

Finally, §6 features a case study of integrating Oak into

Apache Druid [25] – a popular open-source real-time analyt-

ics database. We re-implement Druid’s centerpiece incremen-

tal index component around Oak. This speeds up Druid’s

data ingestion by above 80% and reduces the metadata space

overhead by 90%.

We next describe Oak’s key features and survey prior art.

1.1 Oak’s design
Off-heap allocation and GC. The principal motivation

for Oak is offloading data from the managed-memory heap.

Oak allocates key and value buffers within large off-heap

memory pools. This alleviates the GC performance overhead,

as well as the memory overhead associated with the Java

object layout. The internal memory reclamation policy is

customizable, with a low-overhead default that serves big

data systems well. Oak also supports fast estimation of its

RAM footprint – a common application requirement [38].

For simplicity, Oak manages its metadata, e.g., the search

index, on-heap; note that metadata is typically small and

dynamic, and Java’s memory manager deals with it well.

Zero-copy API. For backward compatibility, Oak exposes

the legacy JDK8 ConcurrentNavigableMap API, where input

and output parameters are Java objects. With off-heap stor-

age, however, this interface is inefficient because it requires

serialization and deserialization of objects in every query or

update. This is particularly costly in case keys and values are

big, as is common in analytics applications. To mitigate this

cost, Oak offers a novel ZC API, allowing the programmer

direct access to off-heap buffers, both for reading and for

updating-in-place via user-provided lambda functions. Oak’s

internal GC guarantees safety – buffer space that might be

referenced from outside Oak is not reclaimed.

Linearizability. Oak provides atomic semantics (lineariz-

ability) for traditional point access (get, put, remove) as well

as for in-situ updates (compute, put-if-absent, put-if-absent-

compute-if-present). Note that consistency is ensured at the

level of user data, i.e., lambda functions are executed atom-

ically. In contrast, Java’s concurrent collections do not of-

fer atomic update-in-place (e.g., its compute method is not

atomic). Supporting atomic conditional updates alongside

traditional (unconditional) puts necessitated designing a new

concurrent algorithm. We are not aware of any previous al-

gorithm addressing this challenge.

Efficientmetadata organization. Orderedmap data struc-

tures like search trees and skiplists consist of many small

objects (“nodes”) with indirection among them. This in-

duces penalties both on memory management – due to frag-

mentation – and on search time – because of lack of local-

ity. Similarly to a number of recently suggested data struc-

tures [13, 16, 17], Oak’s metadata is organized in contiguous

chunks, which reduces the number of metadata objects and

speeds up searches through locality of access. This is chal-

lenging in the presence of variable-sized keys and values;

previous chunk-based data structures [13, 16, 17] maintain

fixed-size keys and values inline, without the additional in-

direction level required to support variable-sized data.

Fast two-way scans. Like ConcurrentSkipListMap, and as

required by many applications, Oak provides iterators to

support (non-atomic) scans. The scans are not atomic in the

sense that the set of keys in the scanned range may change

during the scan. Supporting atomic scans would be more

costly in time and space, and is rarely justified in analytics

scenarios where results are inherently approximate.

Although analytics require both ascending and descending

range scans, existing concurrent data structure do not have

built-in support for the latter. Rather, descending scans are

implemented as a sequence of gets. We leverage Oak’s chunk-

based organization to expedite descending scans without the

complexity of managing a doubly-linked list.

Summary of contributions. All in all, Oak is the first con-

current KV-map explicitly designed to address big-data de-

mands; the following aspects of Oak are novel:

• a data structure offering a managed programming ex-

perience with off-heap data allocation;

• a chunk-based organization that supports in-place

atomic updates of variable-size keys and values;

• a concurrent algorithm supporting both conditional

and unconditional updates;

• an efficient descending scan mechanism that does not

require a doubly-linked list; and

• a zero-copy API.

On the practical side, this work contributes

• an open-source [43] implementation;

• an extensive synthetic evaluation showingmajor gains;

• a prototype of Druid’s incremental index that uses

Oak, achieving major reductions in memory overhead

and data ingestion times.

1.2 Related work
Substantial efforts have been dedicated to developing effi-

cient concurrent ordered maps [10, 11, 13, 16–20, 22–24, 27,

28, 30, 32, 35, 42, 45]. However, most previous works do

not implement functionalities such as update-in-place, con-

ditional puts, and descending iterators. Many of these are

academic prototypes, which hold only an ordered key set

Oak: A Scalable Off-Heap Allocated Key-Value Map PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

and not key-value pairs [19, 22, 24, 27, 30, 42]. Moreover, the

ones that do hold key-value pairs typically maintain fixed-

size keys and values [13, 16, 17] and do not support large,

variable-size keys and values as Oak does.

Java collections such as ConcurrentSkipListMap [35] do

support general objects as keys and values and also imple-

ment the full ConcurrentNavigableMap API. Nevertheless,

their compute is not necessarily atomic, their organization is

not chunk-based and so searches do not benefit from locality,

and their descending scans are slow as we show in §5.

Chunk-based allocation has been used in concurrent data

structures [13, 16, 17] but not with variable-size entities or

off-heap allocation. It is also a common design pattern in

persistent (disk-resident) key-value storage. Oak, in contrast,

is memory-resident.

Off-heap allocation is gaining popularity in various sys-

tems [8, 9, 14, 26, 40]. Yet the only off-the-shelf data structure
library implementation that we are aware of is within the

MapDB open-source package [36], which implements Sa-

giv’s concurrent B
∗
-tree [44]. We are not aware of safety

guarantees of this implementation with respect to in-situ

updates; it is also at least an order-of-magnitude slower than

Oak (§5).

2 Programming Model
Oak is unique in offering a map interface for self-managed

data. This affects the programming model as it allows appli-

cations to access data in Oak’s buffers directly. §2.1 discusses

the serialization of application objects into Oak buffers. §2.2
presents Oak’s novel zero-copy API, which reduces the need

for serialization and deserialization (and hence copying).

2.1 Oak buffers and serialization
Oak keys and values are variable-sized. Keys are immutable,

and values may be modified. In contrast to Java data struc-

tures holding Java objects, Oak stores data in internal buffers.

To convert objects (both keys and values) to and from their

serialized forms, the user must implement a (1) serializer,

(2) deserializer, and (3) serialized size calculator. To allow

efficient search over buffer-resident keys, the user is further

required to provide a comparator.

Oak’s insertions use the size calculator to deduce the

amount of space to be allocated, then allocate space for the

given object, and finally invoke the serializer to write the

object to the allocated space. By using the user-provided

serializer, we create the binary representation of the object

directly into Oak’s internal memory.

Oak provides OakRBuffer and OakWBuffer abstractions
for accessing internal readable and writable buffers, resp.

These types are lightweight on-heap facades to off-heap

storage, which provide the application with managed object

semantics. These objects may be accessed safely for arbitrar-

ily long. Furthermore, user code can access them without

worrying about concurrent access. Since keys are immutable,

they are always accessed through OakRBuffers, whereas
values can be accessed both ways.

2.2 Zero-copy API
We introduce ZeroCopyConcurrentNavigableMap, Oak’s ZC

API. Table 1 compares it to the essential methods of the

legacy API using a slightly simplified Java-like syntax, ne-

glecting some technicalities (e.g., the use of Collections in-

stead of Sets in some cases). To use the ZC API, an appli-

cation creates a ConcurrentNavigableMap-compliant Oak

map, and accesses it through the zc() method, e.g., calling

map.zc().get(key) instead of the legacy map.get(key).
The API is changed only in so far as to avoid copying. The

get() and scans (keySet(), valueSet(), and entrySet())
return Oak buffers instead of Java objects, while continuing

to offer the same functionality. In particular, scans offer the

Set interface with its standard tools such as a stream API for

mapreduce-style processing [37]. Likewise, sub-range and

reverse-order views are provided by familiar subMap() and

descendingMap() methods on Sets.

The drawback of the Set APIs is that they create a new

ephemeral Java object for each scanned entry. To mitigate

this cost in long scans, we additionally introduce a special-

ized stream scan API which re-uses the same ephemeral ob-

ject to store multiple scanned entries. For instance, the set s
returned by keyStreamSet() contains a single OakRBuffer
object and s.getNext() changes that OakRBuffer’s content.
Note that this semantics is non-standard in Java iterators;

in particular, if the reusable object is stored in another data

structure, the programmer must be aware of the fact that its

contents may change.

The update methods differ from their legacy counter-

parts in that they do not return the old value (in order to

avoid copying it). The last two – computeIfPresent() and

putIfAbsentComputeIfPresent() – atomically update val-

ues in place. Both take a user (lambda) function to apply to

the OakWBuffer of the value mapped to the given key. Un-

like the legacy map, Oak ensures that the lambda is executed

atomically, exactly once, and extends the value’s memory

allocation if its code so requires.

While all operations are atomic, get() returns access to
the same underlying memory buffer that other operations

update in-place, while the granularity of Oak’s concurrency

control is at the level of individual method calls on that buffer

(e.g., reading a single integer from it). Therefore, buffer access

methods may encounter different values – and even value

deletions
1
– when accessing a buffer multiple times. This is

an inevitable consequence of avoiding copying.

1
A get() method throws a ConcurrentModificationException
in case the mapping is concurrently deleted.

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Hagar Meir et al.

ZeroCopyConcurrentNavigableMap (Legacy) ConcurrentNavigableMap
Queries – get and scans

OakRBuffer get(K) V get(K)

Set⟨OakRBuffer⟩ keySet() / keyStreamSet() Set⟨K⟩ keySet()

Set⟨OakRBuffer⟩ valueSet() / valueStreamSet() Set⟨V⟩ valueSet()

Set⟨OakRBuffer, OakRBuffer⟩ entrySet() / entryStreamSet() Set⟨K, V⟩ entrySet()

Updates
void put(K, V) V put(K, V)

void remove(K) V remove(K)

boolean putIfAbsent(K, V) V putIfAbsent(K, V)

boolean computeIfPresent(K, Function(OakWBuffer)) non-atomic V computeIfPresent(K, Function(K,V))

boolean putIfAbsentComputeIfPresent(K, V, Function(OakWBuffer)) non-atomic V merge(K, V, Function(K,V))

Table 1. Oak’s zero-copy API versus the legacy ConcurrentNavigableMap API. Key and value types are K and V, resp. Get and

scans return OakRBuffers instead of objects. Updates do not return the old value in order to avoid copying.

3 Data Organization
Oak allocates keys and values off-heap and metadata on-

heap, as described in §3.1. §3.2 presents Oak’s simple internal

off-heap memory manager. Oak allows user code safe access

to data in off-heap Oak buffers without worrying about con-

current access or dynamic reallocation, as discussed in §3.3.

3.1 Off-heap data and on-heap metadata
Oak’s on-heap metadata maps keys to values. It is organized

as a linked list of chunks – large blocks of contiguous key

ranges, as in [16]. Each chunk has a minKey, which is invari-

ant throughout its lifespan. We say that key k is in the range
of chunk C if k ≥ C .minKey and k < C .next .minKey.

A chunk holds a linked list of entries, sorted in ascending

key order. The entries refer to off-heap keys and values. Oak

makes sure that each key appears in at most one entry.

To allow fast access to the linked list we employ an addi-

tional index that maps minKeys to their respective chunks,

as in [13, 15, 31, 32, 45]; see Figure 1. The index can be an

arbitrary map data structure – our implementation uses a

skiplist. Index updates are lazy, and so the index may be

outdated, in which case, locating a chunk may involve a

partial traversal of the chunk linked list. A locateChunk(k)
method returns the chunk whose range includes key k by

querying the index and traversing the chunk list if needed.

As noted above, programmers access keys and values via

the OakRBuffer and OakWBuffer views. These are ephemeral

on-heap Java objects created and returned by gets and scans.

3.2 Memory management
Oak offers a simple default memory manager that can be

overridden by applications. The default manager is suitable

for real-time analytics settings, where dynamic data struc-

tures used to ingest new data exist for limited time [1, 25]

and deletions are infrequent.

Oak’s allocator manages a shared pool of large (100MB

by default) pre-allocated off-heap arenas. The pool supports

multiple Oak instances. Each arena is associated with a single

Oak instance and returns to the pool when that instance is

disposed. Key and value buffers are allocated from the arena’s

flat free list using a first-fit approach; they return to the free

list upon KV-pair deletion or value resize.

The memory manager exposes methods for allocating

and initializing keys and values, allocateKey(key) and

allocateValue(val), both returning references consisting

of an arena id, an offset, and a length.

The memory manager can efficiently compute the total

size of an Oak instance’s off-heap footprint.

3.3 Value access and concurrency control
Oak allows atomic access to an off-heap value v via the

methods v.put(val), v.compute(func), v.remove(), and
v.isDeleted(). To this end, it allocates headers to all values
at the beginning of their buffers. Oak’s default concurrency

control mechanism uses a read-write lock (in the header)

to ensure that these methods execute atomically; it can be

overridden, e.g., by an optimistic approach. The header also

includes a bit indicating whether the value is deleted. If the

value is deleted, the method calls fail (returning false).
There are different ways to implement memory reclama-

tion with this approach. Oak’s default mechanism (tested in

this paper) simply refrains from reclaiming headers while

allowing reuse of the space taken up by the deleted value.

We have implemented a more elaborate solution that uses

generations (epochs) in order to reclaim headers as well; this

mechanism is beyond the scope of the current paper.

4 Oak Algorithm
We now describe the Oak algorithm. The ZC and legacy API

implementations share the most of it. We focus here on the

ZC variant; supporting also the legacy API mainly entails

serialization and deserialization.

We begin in §4.1 with an overview of chunk objects. We

then proceed to describe Oak’s operations. In §4.2 we discuss

Oak: A Scalable Off-Heap Allocated Key-Value Map PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Figure 1. Oak layout: Meta-data (index and chunks) is on heap, whereas data (keys and values) is allocated in off-heap arenas.

Each value is preceded by a header facilitating concurrency control and reclamation. Programmers access off-heap data via the

lightweight OakRBuffer and OakWBuffer views.

Oak’s queries, namely get and ascending and descending

scans. Oak’s support for both conditional and unconditional

updates raises some subtle interactions that need to be han-

dled with care. We divide our discussion of such operations

into two types: insertion operations that may add a new

value to Oak are discussed in §4.3, whereas operations that

only take actions when the affected key is already in Oak

are given in §4.4. To argue that Oak is correct, we identify in

§4.5 linearization points for all operations, so that concurrent
operations appear to execute in the order of their lineariza-

tion points. A formal correctness proof is given in the full

paper [41].

4.1 Chunk objects
A chunk object exposes methods for searching, allocating,

and writing, as we describe in this section. In addition, the

chunk object has a rebalance method, which splits chunks

when they are over-utilized, merges chunks when they are

under-used, and reorganizes chunks’ internals. Our rebal-

ance is implemented as in previous constructions [13, 17].

Since it is not novel and orthogonal to our contributions, we

do not detail it, but rather outline its guarantees. Implement-

ing the remaining chunk methods is straightforward.

When a new chunk is created (by rebalance), some prefix

of the entries array is filled with data, and the suffix con-

sists of empty entries for future allocation. The full prefix is

sorted, that is, the linked list successor of each entry is the

ensuing entry in the array. The sorted prefix can be searched

efficiently using binary search. When a new entry is inserted,

it is stored in the first free cell and connected via a bypass in

the sorted linked list. If insertion order is random, inserted

entries are most likely to be distributed evenly between the

ordered prefix entries, keeping the search time logarithmic.

Rebalance guarantees. The rebalancer preserves the in-

tegrity of the chunks list in the following sense: Consider a

locateChunk(k0) operation that returns C0 at some time t0
in a run, and a traversal of the linked list using next pointers

from C0 reaching a chunk whose range ends with k1 at time

t1. For each traversed chunk C , choose an arbitrary time

t0 ≤ tC ≤ t1 and consider the sequence of keys C holds at

time tC . LetT be the concatenation of these sequences. Then:

RB1 T includes every key k ∈ [k0,k1] that is inserted
before time t0 and is not removed before time t1;

RB2 T does not include any key that is either not in-

serted before time t1 or is removed before time t0 and
not re-inserted before time t1; and

RB3 T is sorted in monotonically increasing order.

Chunkmethods. The chunk’s LookUp(k)method searches

for an entry corresponding to key k. This is done by first

running a binary search on the entries array prefix and con-

tinuing the search by traversing the entries linked list. Note

that Oak ensures that there is at most one relevant entry.

The allocateEntry(keyRef)method allocates a new en-

try (in the chunk array) that refers to the given key; this

entry does not hold a value (its value reference is ⊥) and is

not yet part of the chunk’s linked list. Hardware operations

like F&A ensure that the same space is not allocated twice. In

case the chunk is full, allocateEntry triggers a rebalance
and fails (returning ⊥), in which case Oak retries the update.

entriesLLputIfAbsent(entry) adds an (already allo-

cated) entry to the linked list; it uses CAS in order to preserve

the invariant of a key not appearing more than once. If it

encounters an entry with the same key, then it returns the

encountered entry. While a chunk is being rebalanced, calls

to entriesLLputIfAbsent fail and return ⊥.

Updates that add or remove keys from the chunk inform

the rebalancer of the operation they are about to perform by

calling the publish method, which uses a dedicated array

with an entry per thread for reporting its ongoing operation.

This method, too, fails in case the chunk is being rebalanced.

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Hagar Meir et al.

In principle, rebalance may help published operations com-

plete (for lock-freedom), but for simplicity, our description

herein assumes that it does not. Hence, we always retry an

operation upon failure. When the update operation has fin-

ished its published action, it calls unpublish, clearing the

thread’s entry in the dedicated array.

Note that whereas chunk update methods that encounter

a rebalance fail (return ⊥), lookUp and unpublish, which
do not modify the entries list, proceed concurrently with

rebalance without aborting.

4.2 Queries – get and scans
The get operation is given in Algorithm 1. It returns a read-

only view (oakRBuffer) of the value mapped to the given

key. Since it is a view and not an actual copy, if the value

is then updated by a different operation, the view will refer

to the updated value. Furthermore, a concurrent operation

can remove the key from Oak, in which case the value will

be marked as deleted; reads from the oakRBuffer check this
flag and throw an exception in case the value is deleted.

Algorithm 1 Get

1: procedure get(key)
2: C, ei, v← ⊥
3: C← locateChunk(key) ; ei← C.lookUp(key)
4: if ei , ⊥ then v← C.entries[ei].valRef

5: if v = ⊥ ∨ v.isDeleted() then return null

6: else return new OakRBuffer(v)

The algorithm first locates the relevant chunk and calls

lookUp (line 3) to search for an entry with the given key.

If the entry is found, then it obtains the value and checks

if it is deleted. If an entry holding a valid and non-deleted

value is found, it creates a new oakRBuffer and returns it.

Otherwise, get returns null.

The ascending scan begins by locating the first chunk with

a relevant key in the scanned range using locateChunk. It
then traverses the entries within each relevant chunk using

the intra-chunk entries linked list, and continues to the next

chunk in the chunks linked list. The iterator returns an entry

it encounters only if its value reference is not⊥ and the value

is not deleted. Otherwise, it continues to the next entry.

The descending iterator begins by locating the last rele-
vant chunk. Within each relevant chunk, it first locates the

last relevant entry in the sorted prefix, and then scans the

(ascending) linked list from that entry until the last relevant

entry in the chunk, while saving the entries it traverses in a

stack. After returning the last entry, it pops and returns the

stacked entries. Upon exhausting the stack and reaching an

entry in the sorted prefix, the iterator simply proceeds to the

previous prefix entry (one cell back in the array) and rebuilds

the stack with the linked list entries in the next bypass.

Figure 2. Example entries linked list (left) and stacks built

during its traversal by a descending scan (right).

Figure 2 shows an example of an entries linked list and the

stacks constructed during its traversal. In this example, the

ordered prefix ends with 9, which does not have a next entry,

so we can return it. Next, we move one entry back in the

prefix, to entry 6, and traverse the linked list until returning

to an already seen entry within the prefix (9 in this case),

while creating the stack 8→ 7→ 6. We then pop and return

each stack entry. Now, when the stack is empty, we again

go one entry back in the prefix and traverse the linked list.

Since after 5 we reach 6, which is also in the prefix, we can

return 5. Finally, we reach 2 and create the stack with entries

4→ 3→ 2, which we pop and return. When exhausting

a chunk, the descending scan queries the index again, but

now for a the chunk with the greatest minKey that is strictly

smaller than the current chunk’s minKey.

The standard implementation of descending iterators in a

skiplist calls lookUp anew after each key. This results in an

asymptotic complexity of O(S logN) for a descending scan
covering S keys in a map of N keys. With chunks of size B,
and assuming the insertion order is random, Oak reduces

the descending scan complexity to O(S/B · logN + S).
By RB1-3 it is easy to see that the scan algorithm described

above guarantees the following:

1. A scan returns all keys in the scanned range that were

inserted to Oak before the start of the scan and not

removed until its end.

2. A scan does not return keys that were never present

or were removed from Oak before the start of the scan

and not re-inserted until it ends.

3. A scan does not return the same key more than once.

Note that relevant keys inserted or removed concurrently

with a scan may be either included or excluded.

4.3 Insertion operations
The three insertion operations – put, putIfAbsent, and
putIfAbsentComputeIfPresent – use the doPut function
in Algorithm 2. DoPut first locates the relevant chunk and

searches for an entry.We then distinguish between two cases:

if a non-deleted value v is found (case 1: lines 19 – 26) thenwe
say that the key is present. In this case, putIfAbsent returns
false (line 20), put calls v.put (line 21) to associate the new
value with the key, and putIfAbsentComputeIfPresent
calls v.compute (line 23). These operations return false

Oak: A Scalable Off-Heap Allocated Key-Value Map PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

if the value is deleted (due to a concurrent remove), in which

case we retry (line 25).

Algorithm 2 Oak’s insertion operations

7: procedure put(key, val)
8: doPut(key, val, ⊥, put)
9: return

10: procedure putIfAbsent(key, val)
11: return doPut(key, val, ⊥, putIf)

12: procedure putIfAbsentComputeIfPresent(key, val,
func)

13: doPut(key, val, func, compute)
14: return

15: procedure doPut(key, val, func, op)
16: C, ei, v, newV← ⊥; result, succ← true

17: C← locateChunk(key); ei← C.lookUp(key)
18: if ei , ⊥ then v← C.entries[ei].valRef

19: if v , ⊥ ∧ ¬v.isDeleted() then
▷ Case 1: key is present

20: if op = putIf then return false

21: if op = put then succ← v.put(val)

22: if op = compute then
23: succ← v.compute(func)

24: if ¬succ then ▷ On failure, retry doPut

25: return doPut(key, val, func, op)

26: return true

▷ Case 2: key is absent

27: if ei = ⊥ then ▷ No entry found

28: ei← C.allocateEntry(allocateKey(key))
29: ei←C.entriesLLputIfAbsent(ei)

30: newV←allocateValue(val)
31: if ei = ⊥∨ newV = ⊥ then ▷ allocate or insert failed
32: return doPut(key, val, func, op)

33: if ¬C.publish(ei, newV, func, op) then
34: return doPut(key, val, func, op)

35: result← CAS(C.entries[ei].valRef, ⊥, newV)
36: C.unpublish(ei, newV, func, op)
37: if ¬result then ▷ On CAS failure, retry doPut

38: return doPut(key, val, func, op)

39: return true

In the second case, the key is absent. If we discover a

removed entry that points to the same key but with valRef =
⊥ or a deleted value, then we reuse this entry. Otherwise,

we call allocateEntry to allocate a new entry referring to

the given key (line 28), and then try to link this new entry

into the entries linked list (line 29). Either way, we allocate

and write the value (line 30). These functions might fail and

cause a retry (line 31).

If entriesLLputIfAbsent(ei) receives⊥ as a parameter

(because the allocation in line 28 fails) then it just returns

⊥ as well. If it encounters an already linked entry with the

same key as ei, then it returns it. In this case, the ei passed

to it, (which was allocated in line 28), remains unlinked in

the entries array and other operations never reach it; the

rebalancer eventually removes it from the array. Next, we

allocate and write the value (off-heap, line 30).

We complete the insertion by using CAS to make the entry

point to the new value (line 35). Before doing so, we publish

the operation (as explained in §4.1), which can also lead to a

retry (line 34). After the CAS, we unpublish the operation

(line 36). If CAS fails, we retry (line 38).

To see why we retry, observe that the CAS may fail be-

cause of a concurrent non-insertion operation that sets the

value reference to ⊥ (as described in §4.4 below) or because

of a concurrent insertion operation that sets the value refer-

ence to a different value. In the latter case, we cannot order

(linearize) the current operation before the concurrent in-

sertion, because the concurrent insertion operation might

be a putIfAbsent, and would have returned false had the

current operation preceded it.

4.4 Non-insertion operations
The non-inserting updates, computeIfPresent and remove,
use the doIfPresent function in Algorithm 3. It first locates

the value associated with the given key in Oak, and if there

is none, returns false (line 44).
In computeIfPresent, if the value exists and is not deleted

(case 1), we execute the function using v.compute, and if

it is successful, return true(line 46). Otherwise (case 2), a
subtle race may arise: it is possible for another operation to

insert the key after we observe it as deleted and before this

point. In this case, to ensure correctness, computeIfPresent
must assure that the key is in fact removed. To this end, it

performs a CAS to change the entry’s value reference to

⊥ (line 52). Since this affects the chunk’s entries, we need

to synchronize with a possibly ongoing rebalance, so we

publish before the CAS and unpublish when done. If publish

or CAS fails then we retry (lines 51 and 54). The operation

returns false whenever it does not find the entry, or finds

the entry but with ⊥ as its value reference (line 44), or CAS

to ⊥ is successful (line 55).

In remove, if a non-deleted value exists (case 1), it also up-
dates the value, in this case, marking it as deleted by calling

v.remove (line 48), and we say that the remove is successful.
This makes other threads aware of the fact that the key has

been removed, which suffices for correctness. However, as

an optimization, remove also performs a second task after

marking the value as deleted, namely, marking the appropri-

ate entry’s value reference as ⊥. This serves two purposes:

first, rebalance does not check whether a value is deleted, so

removing the reference facilitates garbage collection; second,

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Hagar Meir et al.

Algorithm 3 Oak’s non-insertion update operations

40: procedure doIfPresent(key, func, op)
41: C, ei, v← ⊥; result← true

42: C← locateChunk(key); ei← C.lookUp(key)
43: if ei , ⊥ then v← C.entries[ei].valRef

44: if v = ⊥ then return false ▷ Key not found

45: if ¬v.isDeleted() then
▷ Case 1: value exists and is not deleted

46: if op = comp ∧ v.compute(func) then
47: return true

48: if op = rm ∧ v.remove() then
49: return finalizeRemove(key, v)

▷ Case 2: value is deleted – ensure entry is removed

50: if ¬C.publish(ei, ⊥, func, op) then
51: return doIfPresent(key, func, op)

52: result← CAS(C.entries[ei].valRef, v, ⊥)
53: C.unpublish(ei, ⊥, func, op)
54: if ¬result then return doIfPresent(key, func, op)

55: return false

56: procedure computeIfPresent(key, func)
57: return doIfPresent(key, func, comp)

58: procedure remove(key)
59: doIfPresent(key, ⊥, rm)
60: return

61: procedure finalizeRemove(key, prev)
62: C, ei, v← ⊥
63: C← locateChunk(key); ei← C.lookUp(key)
64: if ei , ⊥ then v← C.entries[ei].valRef

65: if v , prev then ▷ Key removed or replaced

66: return true

67: if ¬C.publish(ei, ⊥, ⊥, rm) then
68: return finalizeRemove(key, prev)

69: CAS(C.entries[ei].valRef, v, ⊥)
70: C.unpublish(ei, ⊥, ⊥, rm)
71: return true

updating the entry expedites other operations, which do not

need to access the value in order to see that it is deleted.

Thus, a successful remove calls finalizeRemove, which
tries to CAS the value reference to ⊥. We have to take

care, however, in case the value had already changed, not to

change it to ⊥. To this end, finalizeRemove takes a param-

eter prev – the value that remove marked as deleted. If the

entry no longer points to it, we do nothing (line 65). Note that

prev holds a reference to the value header, which, using our

simple value access mechanism (§3.3) is not reused, avoiding

potential ABA problems. When using a more sophisticated

approach to reclamation, we check a monotonically increas-

ing ABA counter at this point.

Since remove is linearized at the point where it marks the

value as deleted, it does not have to succeed in performing

the CAS in finalizeRemove. If CAS fails, this means that

either some insertion operation reused this entry or another

non-insertion operation set the index to ⊥.

If remove finds an already deleted value (case 2), it cannot

simply return, since by the time remove notices that the value

is deleted, the entry might point to another one. Therefore,

similarly to computeIfPresent, it makes sure that the key

is removed by performing a successful CAS of the value

reference to ⊥ (line 52). In this case (case 2) it does not

perform finalizeRemove, but rather retries if the CAS fails
(line 54). Note the difference between the two cases: in case 1,

we set the value to deleted, and so changing the entry’s value

reference to ⊥ is merely an optimization, and should only

occur if the entry still points to the deleted one. In the second

case, on the other hand, remove does not delete any value,

and so it must make sure that the entry’s value reference is

indeed ⊥ before returning.

4.5 Linearization points
In the full paper [41], we show that Oak’s operations (except

for scans) are linearizable [33]; that is, every operation ap-

pears to take place atomically at some point (the linearization

point, abbreviated l.p.) between its invocation and response.

We now list the linearization points.

putIfAbsent – if it returns true, the l.p. is the successful
CAS (line 35). Otherwise, the l.p. is when it finds a non-

deleted value (line 19).

put – if it inserts a new key, the l.p. is the successful

CAS (line 35). Otherwise, the l.p. is upon a successful

nested call to v.put (line 21).
putIfAbsentComputeIfPresent – if it inserts a new

key, the l.p. is the successful CAS (line 35). Otherwise,

the l.p. is upon a successful nested call to v.compute
(line 23).

computeIfPresent – if it returns true, the l.p. is upon
a successful nested call to v.compute (line 46). Other-

wise, the l.p. is when the entry is not found, or it is

found but with ⊥ as its value reference (line 44), or, in

case it is found but has been deleted, a successful CAS

to ⊥ (line 52).

remove – if it is successful, the l.p. is when a success-

ful nested call to v.remove sets the value to deleted

(line 48). Otherwise, the l.p. is when the entry is not

found, or value reference is⊥ (line 44), or a deleted han-

dle is found and a successful CAS to ⊥ occurs (line 52).

Oak: A Scalable Off-Heap Allocated Key-Value Map PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

get – if it returns a value, then the l.p. is the read of a non-

deleted value (line 4). If it returns null because there

is no relevant entry with a non-⊥ value reference, then

the l.p. is when lookUp (line 3) returns ⊥, or when get

reads a⊥ value reference (line 4). Otherwise, get reads
a deleted value (line 5, second condition in disjunction).

However, the l.p. cannot be the read of the deleted flag

in the value header, since by that time, a new valuemay

have been inserted to the entry. Instead, the l.p. is the

later between (1) the read of the value reference by the

same get (line 4) and (2) immediately after the deleted

bit is set by some remove (note that since headers are

not reused, exactly one remove sets the bit to true).

5 Evaluation
We now evaluate Oak’s Java implementation using synthetic

benchmarks. In §6 below, we discuss a real-world use case.

5.1 Experiment setup
We generate a variety of workloads using the popular syn-

chrobench tool [29].We run these experiments on an AWS in-

stancem5d.16xlarge, utilizing 32 cores (with hyper-threading

disabled) on two NUMA nodes.

Compared solutions. We mostly focus on Oak’s ZC API.

To quantify the benefit of zero-copying, we also run gets

with the legacy API, to which we refer as Oak-Copy. For

scans, we experiment with both the Set and Stream APIs.

Since our goal is to offer Oak as an alternative to Java’s

standard skiplist, our baseline is the JDK8ConcurrentSkipList-

Map [35], which we call Skiplist-OnHeap.

To isolate the impact of off-heap allocation from other

algorithmic aspects, we also implement an off-heap variant

of the Java skiplist, which we call Skiplist-OffHeap. Note

that whereas Skiplist-OnHeap and Oak-Copy offer an object-

based API, Skiplist-OffHeap also exposes Oak’s ZC API. In-

ternally, Skiplist-OffHeap maintains a concurrent skiplist

over an intermediate cell object. Each cell references a key

buffer and a value buffer allocated in off-heap arenas through

Oak’s memory manager. This solution is inspired by off-heap

support in production systems, e.g., HBase [5].

We also experimented with the open-source concurrent

off-heap B-tree implementation from MapDB [36], but it

failed to scale to big datasets, performing at least ten-fold

slower than Oak; we omit these results.

Methodology. The exercised key and value sizes are 100B

and 1KB, respectively. In each experiment, a specific range
of keys is accessed. Accessed keys are sampled uniformly at

random from that range. The range is used to control the

dataset size: Every experiment starts with an ingestion stage,

which runs in a single thread and populates the KV-map

with 50% of the unique keys in the range using putIfAbsent
operations. It is followed by the sustained-rate stage, which

runs the target workload for 30 seconds through one or more

symmetric worker threads. Every data point is the median

of 3 runs; the deviations among runs were all within 10%.

In each experiment, all algorithms run with the same RAM

budget. Oak and Skiplist-OffHeap split the available memory

between the off-heap pool and the heap, allocating the former

with just enough resources to host the raw data. Skiplist-

OnHeap allocates all the available memory to heap.

We configure Oak to use 4K entries per chunk, and invoke

rebalance whenever the unsorted linked list exceeds half of

the sorted prefix. The arena size is 100MB.

5.2 Results
Memory efficiency. We first study how much of the avail-

able RAM can be utilized for storing raw data, and how the

memory budget affects performance. Figure 3a depicts the

throughput of the ingestion stage with 128GB of RAM as the

number of ingested unique keys goes up from 1M (approx-

imately 1.1GB of raw data) to 100M (110GB). In Figure 3b,

we fix the dataset size to 10M KV-pairs (11GB), and vary the

RAM budget from 14GB to 26GB.

We observe that the off-heap solutions can accommodate

bigger datasets within the same RAM, and conversely, re-

quire less RAM to accommodate the same amount of data.

For example, with 128GB of RAM, Skiplist-OnHeap caps at

40M KV-pairs (44GB) whereas Skiplist-OffHeap and Oak can

accommodate 60M pairs and 100M pairs, respectively. This

is due to the overhead for storing Java objects, as well as the

headroom required by the Java GC.

Oak utilizes the RAM most effectively because it stores

much fewer metadata objects (index nodes and chunks) than

the number of KV-pairs. In contrast, Skiplist-OnHeap uti-

lizes less than 40% of the available RAM for raw data in the

same setting. Neither algorithm benefits from extra memory

beyond its minimum serving capacity.

The throughput of all algorithms deteriorates as the dataset

scales, which is inherent because the search becomes asymp-

totically slower as the data structure grows. While the per-

formance of on- and off-heap skiplists is similar, Oak is much

faster, especially for large datasets. There is a tradeoff be-

tween the on- and off-heap approaches: Off-heap solutions

pay an overhead for copying all ingested data to off-heap

buffers, but they also eliminate much of the GC. We see that

in the skiplist, these effects, by and large, cancel each other

out. The advantage of Oak then stems from its ultra-low GC

footprint as well as its locality-friendly data organization.

Scalability with parallelism. In the next set of experi-

ments, shown in Figure 4, we fix the available memory to

32GB and the ingested dataset size to 10M KV-pairs. We

measure the sustained-rate stage throughput for multiple

workloads, while scaling the number of worker threads from

1 to 32. In this setting, the raw data is less than 35% of the

available memory, so the GC effect in all algorithms is minor.

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Hagar Meir et al.

0 20 40 60 80 100
GB

0

50

100

150

200

250

300

Ko
ps
/s
ec

Oak
SkipList-OnHeap
SkipList-OffHeap

(a) Fixed RAM (128GB), varying dataset

16 18 20 22 24 26
GB

0

50

100

150

200

250

300

Ko
ps
/s
ec

Oak
SkipList-OnHeap
SkipList-OffHeap

(b) Fixed dataset (11GB), varying RAM

Figure 3. Ingestion throughput scaling with available RAM, single-threaded execution.

Figure 4a depicts the results of a put-only workload. Oak is

markedly faster than the alternatives already with one thread

and continues to outperform Skiplist-OnHeap by at least 2x

with any number of threads. Moreover, whereas Skiplist-

OnHeap’s throughput flattens out with around 16 threads,

Oak continues to improve all the way up to 32. Skiplist-

OffHeap scale as well as Oak does, suggesting that GC is the

limiting factor for Skiplist-OnHeap’s scalability. Moreover,

Oak’s improvement over Skiplist-OffHeap remains steady

with the number of threads, suggesting that Oak’s advantage

stems from factors that affect also the sequential execution

speed, such as better locality, fewer Java objects (and conse-

quently, less GC overhead), and fewer redirections.

Figure 4b evaluates incremental updates invoked using

Oak’s computeIfPresent API and (non-atomic) merge in

the skiplists. Each in-place update modifies 8 bytes of the

value. This workload does not increase the number of objects,

and hence, the GC effect is minor. As expected, all algorithms

exhibit near-linear scaling with similar performance.

Figure 4c illustrates the get-only workload. As expected

in a read-only workload, all solutions scale linearly without

saturating at 32 threads. Here, too, Oak is much faster than

the alternatives. In particular, Oak scales 25x with 32 threads

compared to its single-threaded execution, and outperforms

Skiplist-OnHeap by 1.7x at peak performance. We also exer-

cise the legacy API Oak-Copy, finding that copying induces

a significant penalty and inhibits scalability.

A mix of 95% gets and 5% puts (Figure 4d) shows similar

results: Oak scales 24x with 32 threads and out-performs

Skiplist-OnHeap by 1.7x to 2x in all thread counts, while

Skiplist-OffHeap is slower than both.

We proceed to ascending scans, shown in Figure 4e. We

focus on long scans traversing 10K key-value pairs. In such

scans, performance is dominated by the iteration through the

entries rather than the search time for the first key, which

differentiates them from gets. In this scenario, Oak’s Set API

is 2x slower than the alternatives. Its performance suffers

from the creation of ephemeral OakRBuffer objects for all

traversed keys and values, while its competitors retrieve ref-

erences to existing objects. Oak’s Stream API, which re-uses

the same object for all the entries returned throughout the

scan, eliminates this overhead. The locality of access offered

by the chunk-based organization is particularly beneficial in

this case, allowing Oak’s Stream API to outperform Skiplist-

OnHeap by nearly 8x with 32 threads.

Finally, Figure 4f depicts the performance of descending

scans over 10K KV pairs. Recall that the skiplists implement

such scans by issuing a new lookup for each traversed key,

and thus pay the (logarithmic) search cost 10K times per scan.

Oak, in contrast, issues a lookup only when a chunk (holding

2K–4K KV pairs) is exhausted. Note that Oak’s descending

scans are still slower than its ascending ones because it stores

the traversed entries in a stack. But Oak’s slower Set API

achieves almost the same throughput as in ascending scans,

suggesting that the iteration time is dominated by the cre-

ation of ephemeral objects, and the overhead of using a stack

is substantially smaller than this cost. Even with this (slow)

API, Oak outperforms Skiplist-OnHeap by more than 3.5x.
With the Stream API, Oak’s throughput doubles. Here, the

overhead of using a stack is manifested, and so the descend-

ing scan throughput is lower than the ascending one.

6 Case Study: Druid
This section presents a case study of Oak’s applicability for

real-time analytics platforms. We build a prototype integra-

tion of Oak into Apache Druid [25] – a popular open-source

distributed analytics database in Java. Our goal is to enable

faster ingestion and improve RAM utilization, which, in turn,

can lead to I/O reduction. The code, which might be further

productized, is under community review [3].

More specifically, we target Druid’s Incremental Index (I
2
)

component, a data structure that absorbs new data while

serving queries in parallel. Data is never removed from an I
2
.

Once an I
2
fills up, its data gets reorganized and persisted,

and the I
2
is disposed; the data’s further lifecycle is beyond

the scope of this discussion.

Oak: A Scalable Off-Heap Allocated Key-Value Map PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

0 5 10 15 20 25 30
Threads

0
200
400
600
800

1000
1200
1400
1600

Ko
ps
/s
ec

Oak
SkipList-OnHeap
SkipList-OffHeap

(a) Put

0 5 10 15 20 25 30
Threads

0

500

1000

1500

2000

2500

3000

Ko
ps
/s
ec

Oak
SkipList-OnHeap
SkipList-OffHeap

(b) ComputeIfPresent / Merge

0 5 10 15 20 25 30
Threads

0

1000

2000

3000

4000

5000

Ko
ps
/s
ec

Oak
Oak-copy
SkipList-OnHeap
SkipList-OffHeap

(c) Get

0 5 10 15 20 25 30
Threads

0

1000

2000

3000

4000

5000

Ko
ps
/s
ec

Oak
SkipList-OnHeap
SkipList-OffHeap

(d) 95% get, 5% put

0 5 10 15 20 25 30
Threads

0

20

40

60

80

100

120
Ko

ps
/s
ec

Oak
SkipList-OnHeap
SkipList-OffHeap
Oak-stream

(e) Ascending scan, 10K KV pairs

0 5 10 15 20 25 30
Threads

0

2

4

6

8

10

12

Ko
ps
/s
ec

Oak
SkipList-OnHeap
SkipList-OffHeap
Oak-stream

(f) Descending Scan, 10K KV pairs

Figure 4. Sustained-rate throughput scaling with the the number of threads for uniform workloads, 11GB raw data.

1 2 3 4 5 6 7
Tuples (millions)

0

10

20

30

40

50

60

70

Ko
ps

/s
ec

I^2-Oak
I^2-legacy

(a) Throughput, 30GB RAM, varying dataset

25 26 27 28 29 30 31 32
Available RAM, GB

0

10

20

30

40

50

Ko
ps

/s
ec

I^2-Oak
I^2-legacy

(b) Throughput, 7M tuples, varying RAM

1 2 3 4 5 6 7
Tuples (millions)

0

2

4

6

8

10

RA
M

 u
til

iza
tio

n,
 G

B

Raw data
I^2-Oak
I^2-legacy

(c) RAM overhead

Figure 5. Single-thread ingestion performance, Druid incremental index with Oak versus legacy Skiplist-OnHeap.

I
2
keys and values are multi-dimensional. In plain I

2
’s, the

values are raw data, whereas in rollup I
2
’s they are material-

ized aggregate functions. Complex aggregates (e.g., unique

count and quantiles) are embodied through sketches [2] –
compact data structures for approximate statistical queries;

the rest are numeric counters. In order to save space, variable-

size (e.g., string) dimensions are mapped to numeric code-

words, through auxiliary dynamic dictionaries. A key maps

to a flat array of integers; time is always the primary dimen-

sion. Keys are typically up to a few hundreds of bytes long.

Values are usually up to a few KBs long in rollups, and may

vary widely in plain indexes. For every incoming data tuple,

I
2
updates its internal KV-map, creating a new pair if the

tuple’s key is absent, or updating in-situ otherwise.

We re-implement I
2
by replacing the JDK Concurrent-

SkiplistMap in the internal map with Oak; the auxiliary data

structures remain on-heap. We implement an adaptation

layer that controls the internal data layout and provides

Oak with the appropriate lamdba functions for serializa-

tion, deserialization, and in-situ compute. The write path

exploits Oak’s putIfAbsentComputeIfPresent() API for

atomic update of multiple aggregates within a single lambda.

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Hagar Meir et al.

The read path adapts the I
2
tuple abstraction to Oak’s ZC

API. Namely, the new tuple implementation is a lightweight

facade to off-heap memory, operating atop Oak buffers.

Evaluation. We evaluate the speed and memory utiliza-

tion of data ingestion with the new solution, I
2
-Oak, versus

the legacy implementation, I
2
-legacy. Our hardware testbed

features an industry-standard 12-core Xeon E5-4650 CPU

with 192 GB RAM. The first experiment generates 1M to 7M

unique tuples of size 1.25K and feeds them into the index, in

a single thread. The primary dimension is the current times-

tamp (in ms), so the workload is spatially-local. In order to

measure ingestion performance in isolation, all the input is

generated in advance.

Figure 5a depicts the throughput scaling with dataset size

for a fixed RAM budget of 30GB. When the ingested set

is small (1M tuples), the two solutions have similar perfor-

mance. But as the dataset grows, the GC overhead burdens

the legacy solution while I
2
-Oak continues to thrive. For

example, it ingests 7M tuples (8.6GB raw data) twice as fast

as I
2
-legacy.

Figure 5b studies the 7M-tuple dataset under a varying

memory budget. We see that I
2
-legacy cannot run with less

than 29GB. Finally, Figure 5c underscores I
2
-Oak’s memory

efficiency. We see that I
2
-Oak induces a negligible metadata

overhead of less than 5% (including Oak’s index and the on-

heap auxiliary data structures), whereas I
2
-legacy’s space

overhead is as high as 35%.

7 Conclusion
WepresentedOak – a concurrent ordered KV-map formemory-

managed programming platforms like Java. Oak features

off-heap memory allocation and GC, in-situ atomic data pro-

cessing, zero copy API, and internal organization for high

speed data access. It implements an intricate efficient con-

current algorithm. Multiple benchmarks demonstrate Oak’s

advantages in scalability and resource efficiency versus the

state-of-the-art. Oak’s code is production quality and open

sourced. Its prototype integration with Apache Druid (incu-

bating) demonstrates decisive performance gains.

References
[1] 2014. Apache HBase, a distributed, scalable, big data store. http:

//hbase.apache.org/. (April 2014).
[2] 2018. Druid DataSketches extension. https://druid.apache.org/docs/

latest/development/extensions-core/datasketches-extension.html.
[3] 2018. Druid Integration with Oak.

https://github.com/apache/incubator-druid/issues/5698.

[4] 2018. Elasticsearch: Open Source Search and Analytics. https://elastic.
co/.

[5] 2018. HBase Offheap write path. https://hbase.apache.org/book.html#
regionserver.offheap.writepath.

[6] 2018. In-Memory Analytics Market worth 3.85 Billion USD by

2022 (retrieved October 2018). https://www.marketsandmarkets.com/
PressReleases/in-memory-analytics.asp.

[7] 2018. Memcached, an open source, high-performance, distributed

memory object caching system. https://memcached.org/.
[8] 2018. Off-heap memtables in Cassandra 2.1. https://www.datastax.

com/dev/blog/off-heap-memtables-in-cassandra-2-1.
[9] 2018. Offheap read-path in production the Alibaba story. https://blog.

cloudera.com/blog/2017/03/.
[10] Yehuda Afek, Haim Kaplan, Boris Korenfeld, Adam Morrison, and

Robert E. Tarjan. 2012. CBTree: A Practical Concurrent Self-adjusting

Search Tree. In Proceedings of the 26th International Conference on
Distributed Computing (DISC’12). Springer-Verlag, Berlin, Heidelberg,
1–15. https://doi.org/10.1007/978-3-642-33651-5_1

[11] Maya Arbel and Hagit Attiya. 2014. Concurrent Updates with RCU:

Search Tree As an Example. In Proceedings of the 2014 ACM Symposium
on Principles of Distributed Computing (PODC ’14). ACM, New York,

NY, USA, 196–205. https://doi.org/10.1145/2611462.2611471
[12] Avoiding Full GC 2011. https://www.slideshare.net/cloudera/

hbase-hug-presentation.
[13] Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-

Gueta, Eshcar Hillel, Idit Keidar, and Moshe Sulamy. 2017. KiWi:

A Key-Value Map for Scalable Real-Time Analytics. In PPoPP’17. 13.
https://doi.org/10.1145/3018743.3018761

[14] Edward Bortnikov, Anastasia Braginsky, Eshcar Hillel, Idit Keidar, and

Gali Sheffi. 2018. Accordion: Better Memory Organization for LSM

Key-Value Stores. PVLDB 11, 12 (2018), 1863–1875. https://doi.org/10.
14778/3229863.3229873

[15] Anastasia Braginsky, Nachshon Cohen, and Erez Petrank. 2016. CBPQ:

High Performance Lock-Free Priority Queue. In Euro-Par.
[16] Anastasia Braginsky and Erez Petrank. 2011. Locality-conscious Lock-

free Linked Lists. In ICDCN’11. 107–118.
[17] Anastasia Braginsky and Erez Petrank. 2012. A Lock-free B+Tree. In

SPAA ’12. 58–67. https://doi.org/10.1145/2312005.2312016
[18] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun.

2010. A Practical Concurrent Binary Search Tree. In Proceedings of the
15th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’10). ACM, New York, NY, USA, 257–268. https:
//doi.org/10.1145/1693453.1693488

[19] Trevor Brown and Hillel Avni. 2012. Range queries in non-blocking k-

ary search trees. In International Conference On Principles Of Distributed
Systems. Springer, 31–45.

[20] Trevor Brown, Faith Ellen, and Eric Ruppert. 2014. A General Tech-

nique for Non-blocking Trees. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP
’14). ACM, New York, NY, USA, 329–342. https://doi.org/10.1145/
2555243.2555267

[21] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-

rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and

Robert E. Gruber. 2008. Bigtable: A Distributed Storage System for

Structured Data. ACM Trans. Comput. Syst. 26, 2 (June 2008), 4:1–4:26.
[22] Tyler Crain, Vincent Gramoli, and Michel Raynal. 2013. A Contention-

friendly Binary Search Tree. In Proceedings of the 19th International
Conference on Parallel Processing (Euro-Par’13). Springer-Verlag, Berlin,
Heidelberg, 229–240. https://doi.org/10.1007/978-3-642-40047-6_25

[23] Tyler Crain, Vincent Gramoli, and Michel Raynal. 2013. No Hot Spot

Non-blocking Skip List. In 2013 IEEE 33rd International Conference
on Distributed Computing Systems. 196–205. https://doi.org/10.1109/
ICDCS.2013.42

[24] Dana Drachsler, Martin Vechev, and Eran Yahav. 2014. Practical Con-

current Binary Search Trees via Logical Ordering. In Proceedings of
the 19th ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming (PPoPP ’14). ACM, New York, NY, USA, 343–356.

https://doi.org/10.1145/2555243.2555269
[25] Druid [n. d.]. (retrieved August 2018). http://druid.io/.
[26] Druid off-heap [n. d.]. (retrieved August 2018). http://druid.io/docs/

latest/operations/performance-faq.html.

http://hbase.apache.org/
http://hbase.apache.org/
https://druid.apache.org/docs/latest/development/extensions-core/datasketches-extension.html
https://druid.apache.org/docs/latest/development/extensions-core/datasketches-extension.html
https://elastic.co/
https://elastic.co/
https://hbase.apache.org/book.html#regionserver.offheap.writepath
https://hbase.apache.org/book.html#regionserver.offheap.writepath
https://www.marketsandmarkets.com/PressReleases/in-memory-analytics.asp
https://www.marketsandmarkets.com/PressReleases/in-memory-analytics.asp
https://memcached.org/
https://www.datastax.com/dev/blog/off-heap-memtables-in-cassandra-2-1
https://www.datastax.com/dev/blog/off-heap-memtables-in-cassandra-2-1
https://blog.cloudera.com/blog/2017/03/
https://blog.cloudera.com/blog/2017/03/
https://doi.org/10.1007/978-3-642-33651-5_1
https://doi.org/10.1145/2611462.2611471
https://www.slideshare.net/cloudera/hbase-hug-presentation
https://www.slideshare.net/cloudera/hbase-hug-presentation
https://doi.org/10.1145/3018743.3018761
https://doi.org/10.14778/3229863.3229873
https://doi.org/10.14778/3229863.3229873
https://doi.org/10.1145/2312005.2312016
https://doi.org/10.1145/1693453.1693488
https://doi.org/10.1145/1693453.1693488
https://doi.org/10.1145/2555243.2555267
https://doi.org/10.1145/2555243.2555267
https://doi.org/10.1007/978-3-642-40047-6_25
https://doi.org/10.1109/ICDCS.2013.42
https://doi.org/10.1109/ICDCS.2013.42
https://doi.org/10.1145/2555243.2555269
http://druid.io/
http://druid.io/docs/latest/operations/performance-faq.html
http://druid.io/docs/latest/operations/performance-faq.html

Oak: A Scalable Off-Heap Allocated Key-Value Map PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

[27] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.

2010. Non-blocking Binary Search Trees. In Proceedings of the 29th
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting (PODC ’10). ACM, New York, NY, USA, 131–140. https:
//doi.org/10.1145/1835698.1835736

[28] Keir Fraser. 2004. Practical lock-freedom. Technical Report. University

of Cambridge, Computer Laboratory.

[29] Vincent Gramoli. 2015. More Than You Ever Wanted to Know

About Synchronization: Synchrobench, Measuring the Impact of the

Synchronization on Concurrent Algorithms. In Proceedings of the
20th ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming (PPoPP 2015). ACM, New York, NY, USA, 1–10.

https://doi.org/10.1145/2688500.2688501
[30] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. 2006.

A provably correct scalable concurrent skip list. In Conference On
Principles of Distributed Systems (OPODIS). Citeseer.

[31] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. 2007. A

Simple Optimistic Skiplist Algorithm. In SIROCCO’07. 15.
[32] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Pro-

gramming. Morgan Kaufmann Publishers.

[33] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A

Correctness Condition for Concurrent Objects. ACM Trans. Program.
Lang. Syst. 12, 3 (July 1990), 463–492. https://doi.org/10.1145/78969.
78972

[34] Java Concurrent Navigable Map 2018. https://docs.oracle.com/javase/
8/docs/api/java/util/concurrent/ConcurrentNavigableMap.html.

[35] Java Concurrent Skip List Map 1993. https://docs.oracle.com/javase/8/
docs/api/java/util/concurrent/ConcurrentSkipListMap.html.

[36] Java Maps, Sets, Lists, Queues and other collections backed by off-heap

or on-disk storage 2019. http://www.mapdb.org/.
[37] Java Stream Package 2018. https://docs.oracle.com/javase/8/docs/api/

java/util/stream/package-summary.htmll.
[38] Anoop Sam John. 2017. Track memstore data size and heap overhead

separately. https://issues.apache.org/jira/browse/HBASE-16747.
[39] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentral-

ized Structured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (April
2010), 35–40.

[40] Yu Li, Yu Sun, Anoop Sam John, and Ramkrishna S Vasudevan. 2017.

Offheap Read-Path in Production - The Alibaba story. https://blogs.
apache.org/hbase/entry/offheap-read-path-in-production.

[41] Hagar Meir, Dmitry Basin, Edward Bortnikov, Anastasia Braginsky,

Idit Keidar, and Gali Sheffi. 2018. Oak – A Key-Value Map for Big Data

Analytics. (May 2018). https://hal.archives-ouvertes.fr/hal-01789846
working paper or preprint.

[42] Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-

free Binary Search Trees. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP
’14). ACM, New York, NY, USA, 317–328. https://doi.org/10.1145/
2555243.2555256

[43] Oak Repository 2018. Oak Open-Source Repository. https://github.
com/yahoo/Oak.

[44] Yehoshua Sagiv. 1985. Concurrent Operations on B-trees with Over-

taking. In Proceedings of the Fourth ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems (PODS ’85). ACM, New York, NY,

USA, 28–37. https://doi.org/10.1145/325405.325409
[45] Alexander Spiegelman, Guy Golan-Gueta, and Idit Keidar. 2016. Trans-

actional Data Structure Libraries. In PLDI ’16. 682–696. https://doi.
org/10.1145/2908080.2908112

A Artifact Evaluation Appendix
A.1 Abstract
Our artifact refers to the GitHub repository, which contains

all source files, scripts and benchmarks to reproduce the

results presented in the paper. We created a special branch

to keep the presented state of the library without further

enhancements that may come.

All compared solutions together with variety of work-

loads presented in the paper are integrated in the provided

version of the synchrobench tool. The scripts running the

synchrobench and creating the plots are also part of the

repository.

The hardware required is any industry standardmulti-core

machine with enough cores and RAM. We run the experi-

ments on an AWS instance m5d.16xlarge, utilizing 32 cores

(with hyper-threading disabled) on two NUMA nodes.

A.2 Artifact check-list (meta-information)
• Algorithm: Java off-heap memory, skiplist search, binary

search, concurrency control

• Program: Java code

• Compilation: Maven compilation

• Binary: Binary not included

• Data set: The keys and values for the workloads are run-

time generated by internally provided synchrobench tool

• Run-time environment: Our code has been developed

and tested on Linux and iOS environments. However, it is

not restricted. The main software dependency is Java 8, Git

and Maven.

• Hardware: For experiments presented in the paper we

used an AWS instance m5d.16xlarge, utilizing 32 cores (with

hyper-threading disabled) on twoNUMAnodes and up to 256

GB RAM. Similar hardware should give comparable results.

Main memory usage is about 128GB.

• Metrics: Throughput

• Output: Throughputs and other benchmark parameters are

printed out as a table

• Experiments workflow: Git clone project; update and run
benchmark scripts; observe the results

• Howmuchdisk space required (approximately)?: None.
All in-memory.

• How much time is needed to prepare workflow (ap-
proximately)?: Time it takes to git clone the project

• How much time is needed to complete experiments
(approximately)?: Depends on number of threads and it-

erations, up to 24 hours

• Publicly available?: Yes

• Code licenses (if publicly available)?: Apache License

2.0

A.3 Description
A.3.1 How delivered
Our benchmarks, source code (including all compared solutions),

and scripts are available on Github: https://github.com/yahoo/oak

https://doi.org/10.1145/1835698.1835736
https://doi.org/10.1145/1835698.1835736
https://doi.org/10.1145/2688500.2688501
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentNavigableMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentNavigableMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
http://www.mapdb.org/
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.htmll
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.htmll
https://issues.apache.org/jira/browse/HBASE-16747
https://blogs.apache.org/hbase/entry/offheap-read-path-in-production
https://blogs.apache.org/hbase/entry/offheap-read-path-in-production
https://hal.archives-ouvertes.fr/hal-01789846
https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1145/2555243.2555256
https://github.com/yahoo/Oak
https://github.com/yahoo/Oak
https://doi.org/10.1145/325405.325409
https://doi.org/10.1145/2908080.2908112
https://doi.org/10.1145/2908080.2908112
https://github.com/yahoo/oak

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Hagar Meir et al.

A.3.2 Hardware dependencies
Our experiment workflows use 1 to 32 threads to compare with

competitors and hence we suggest a machine with at least 32 CPU

cores with hyper-threading disabled and with at least 128GB main

memory.

A.3.3 Software dependencies
The Oak open-source library is expected to run correctly under

variety of Linux x86_64 distributions. Building the JAR files requires

JDK 8. To use the automated scripts, we require git and python3 to

be installed. Python3 is needed just to build the plots, which might

be skipped.

A.4 Installation
First, clone the repository then compile using maven:

$ git clone https://github.com/yahoo/oak
$ cd oak
$ git checkout PPOPP20_AE
$ mvn clean package -DskipTests=true

A.5 Experiment workflow
The script run.sh runs the experiment. It can be found in directory:

oak/benchmarks/synchrobench/. The script is mostly prepared

to run the experiments presented in Fig 4 . However run.sh might

need to be updated if a different evaluation is done. For example

for evaluation of Fig 3. In Sec A.7 we will go through the script

structure.

A.6 Evaluation and expected result
To run the experiments do:

$ cd oak/benchmarks/synchrobench/
$./run.sh

The results are built in oak/benchmarks/synchrobench/output
directory. The log files per each experiments are less interest-

ing. Total results are summarized in summary.csv file, that can

be later directly used to build the plots. Hereby find an example of

summary.csv file layout:

Scenario Bench Heap size Direct Mem #Threads Final Size Throughput
4c-zc-get-only OakMap 12g 20g 1 1.00E+07 0.186242003
4c-zc-get-only OakMap 12g 20g 4 1.00E+07 0.7185844075
4c-zc-get-only OakMap 12g 20g 8 1.00E+07 1.510101392
4c-zc-get-only OakMap 12g 20g 12 1.00E+07 2.000772053

4c-get-only JavaSkipListMap 20g 20g 1 1.00E+07 0.09323596854
4c-get-only JavaSkipListMap 20g 20g 4 1.00E+07 0.4210559611
4c-get-only JavaSkipListMap 20g 20g 8 1.00E+07 0.8588087848
4c-get-only JavaSkipListMap 20g 20g 12 1.00E+07 1.394160355

Each block describes an experiment executing on different num-

ber of threads. The name of experiment (that may vary) is on the

left, the first two characters are the related paper figure. The sec-

ond column Bench represents the competitors that are: ’OakMap’,
’JavaSkipListMap’ and ’OffHeapList’ as explained in the paper.
The fourth Direct Mem column shows amount of off-heap allocated

memory, for ’JavaSkipListMap’ this value is irrelevant. The last

Throughput column shows millions of operations in seconds. This

column is used to present the results of Fig 4.

A.7 Experiment customization
Hereby we will go through the run.sh script structure, explaining

how it can be altered. The default parameters in the script may

vary from what define in the paper due to unintentional mistakes

and multiple usages. This is how script’s header looks like:

thread="01 04 08 12 16 20 24 28 32"
size="10000000"
keysize="100"
valuesize="1000"
writes="0"
warmup="0"
iterations="3"
duration="30000"

Only fields that can be altered are explained. Change thread to

limit number of threads to 12 or to use different number of threads.

Change size if different warm-up size of the map is requested

(currently 10M pairs). Change keysize or valuesize if you want

different size of the input in bytes. Change iterations to calculate
the average results over less or more iterations. Change duration
to make each experiment to run less or more milliseconds (currently

30 seconds). We continue to memory sizes:

declare -A heap_limit=(["OakMap"]="10g"
["OffHeapList"]="10g"
["JavaSkipListMap"]="32g"
)

declare -A direct_limit=(["OakMap"]="22g"
["OffHeapList"]="22g"
["JavaSkipListMap"]="0g"
)

Change heap_limit (or direct_limit) per competitor to change

the on-heap (or off-heap) heap size requirements. For fairness,

heap_limit plus direct_limit needs to be the same for each

competitor. JavaSkipListMap disregards direct_limit even if set.

We continue to tested scenarios:

declare -A scenarios=(
["4a-put"]="-a 0 -u 100"
["4b-putIfAbsentComputeIfPresent"]="--buffer -u 0 -s 100 -c"
["4c-get-zc"]="--buffer"
["4c-get-copy"]=""
["4d-95Get5Put"]="--buffer -a 0 -u 5"
["4e-entrySet-ascend"]="--buffer -c"
["4e-entryStreamSet-ascend"]="--buffer -c --stream-iteration"
["4f-entrySet-descend"]="--buffer -c -a 100"

)

The first two characters of the labels are the related paper figure.

The labels of the scenarios are self-explaining, e.g. 4a-put is put

only scenario to be run for all competitors.Scenario 4c-get-zc vs

4c-get-copy present average throughput of get operations with
zero-copy API vs legacy API, with copying and creating the ob-

jects for each get. For JavaSkipListMap that doesn’t have the zero-

copy API regular get operation will be invoked both for 4c-get-zc
and for 4c-get-copy. Scenario 4d-95Get5Put scenario runs 95%

get operations and 5% puts. Scenario 4e-entrySet-ascend (or

4f-entrySet-descend) runs ascending (or descending) scan of

10K pairs, returning both key and value either via zero-copy scan

iterator API (for OakMap and OffHeapList) or via conventional scan

iterator (for JavaSkipListMap). 4e-entryStreamSet-ascend is ap-

plicable only for OakMap and performs stream scan as explained in

Oak: A Scalable Off-Heap Allocated Key-Value Map PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

the paper. Each experiment is running after 10M pairs are inserted

as a warm up phase.

A.8 Creating the plots
Given the summary.csv file, in order to create the plots use script:

oak/benchmarks/synchrobench/generate.py. Both summary.csv
file and generate.py script need to be in the same directory. To

invoke the script do:

$ cd oak/benchmarks/synchrobench/
$ mv output/summary.csv .
$ python3 generate.py

The output PDFs files with the plots are going to be created in

the same directory.

A.9 Notes
To knowmore about our library, send feedback, or file issues, please

visit our Github page https://github.com/yahoo/oak.

A.10 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/artifact-review-badging

https://github.com/yahoo/oak
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging

	Abstract
	1 Introduction
	1.1 Oak's design
	1.2 Related work

	2 Programming Model
	2.1 Oak buffers and serialization
	2.2 Zero-copy API

	3 Data Organization
	3.1 Off-heap data and on-heap metadata
	3.2 Memory management
	3.3 Value access and concurrency control

	4 Oak Algorithm
	4.1 Chunk objects
	4.2 Queries – get and scans
	4.3 Insertion operations
	4.4 Non-insertion operations
	4.5 Linearization points

	5 Evaluation
	5.1 Experiment setup
	5.2 Results

	6 Case Study: Druid
	7 Conclusion
	References
	A Artifact Evaluation Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization
	A.8 Creating the plots
	A.9 Notes
	A.10 Methodology

