
Byzantine Agreement & SMR
with Sub-Quadratic

Communication
Idit Keidar, Technion

Shout Out

Not a COINcidence: Sub-Quadratic
Asynchronous Byzantine
Agreement WHP.
Shir Cohen, Idit Keidar, and
Alexander Spiegelman

Expected Linear Round
Synchronization: The Missing Link
for Linear Byzantine SMR.
Oded Naor and Idit Keidar

3

Byzantine Agreement (BA)

• Consensus among n processes
• Up to f can be controlled by an adversary and act arbitrarily

• A building block for State Machine Replication (SMR)

4

New Frontiers for BA & Byzantine SMR

• Permissioned blockchains – shared ledger
• Other FinTech infrastructures

5

BA Has Been Around for Four Decades

[Pease, Shostak, Lamport 1980], [Lamport, Pease, Shostak 1980]
• 2500+, 7000+ citations, resp.
• Traditional use-cases – a handful of processes

6

Will it scale?

Traditional BFT According to James Mickens

7

Scalability Challenges

• Synchrony vs. asynchrony
• Latency bounds defined in minutes
• But deterministic fault-tolerant asynchronous consensus is impossible

[Fisher, Lynch, Paterson 1985]

• Communication (word) complexity (of all processes together)
• Ω(𝑛𝑛2) lower bound

In the worst-case, in deterministic algorithms, regardless of synchrony
[Dolev and Reischuk 1985]

8

Making It Scale

• Assume asynchrony
• Solve BA

with high probability (WHP)
(probability of being correct
tends to 1 as n → ∞)

• Assume eventual synchrony
• Solve deterministic SMR
• Reduce expected complexity in

some optimistic cases

9

VRFs Threshold signatures

Not a COINcidence:
Sub-Quadratic Asynchronous
Byzantine Agreement WHP

Shir Cohen, Idit Keidar, Alexander Spiegelman
DISC 2020

Contribution

The first sub-quadratic asynchronous BA WHP algorithm
• �𝑂𝑂(𝑛𝑛) word complexity and 𝑂𝑂(1) expected time
• Safety and Liveness properties are gurenteed WHP
• Binary BA

• Previous sub-quadratic works made synchrony assumptions
[King and Saia 2011], Algorand [Gilad et al. 2017]

11

Model

• Asynchronous
• 𝑛𝑛 processes (permissioned)
• Up to 𝑓𝑓 Byzantine processess for 𝑛𝑛 ≈ 4.5𝑓𝑓
• Trusted PKI

• Inherent for sub-quadratic algorithms
[Abraham et al. 2019] [Blum et al. 2020] [Rambaud 2020]

• Delayed adaptive adversary:
• Can use the contents of a message 𝑚𝑚 sent by a correct process for scheduling

a message 𝑚𝑚′ only if 𝑚𝑚 → 𝑚𝑚′

12

Verifiable Random Function (VRF)

• A pseudorandom function that provides a proof of its correct
computation

• For a secret key sk with a matching public key pk
• VRFsk(x) is a random value
• Verifiable using pk

13

Use VRFs for

1. Flipping a shared coin
• First step: O(n2) word complexity

2. Committee sampling
• Cryptographic sortition
• Reduces word complexity to O(n log n)

Following Algorand [Gilad et al. 2017]

14

Shared Coin with Success Rate 𝜌𝜌

All correct processes output 𝑏𝑏 with probability at least 𝜌𝜌, for any value
𝑏𝑏 ∈ {0,1}

15

Shared Randomness

16

Background: A Simple VRF-Based Shared Coin

• Synchronous
[Micali 2017]

• If the minimum VRF is of a
correct process, all agree

• With probability ≥ 2
3

17

Background: A Simple VRF-Based Shared Coin

• Synchronous
[Micali 2017]

• If the minimum VRF is of a
correct process, all agree

• With probability ≥ 2
3

18

Requires Synchrony

Asynchronous Shared Coin – Take 1

19

wait for n-f
messages

Asynchronous Shared Coin – Take 1

20

wait for n-f messages,
send minimum

wait for n-f
messages

Asynchronous Shared Coin - Analysis

• We prove:
• Ω(𝜖𝜖) bound the number of common values
• our adversary “commits” to them in advance

⇒With a constant probability, the global minimum is common
21

a value that reaches 𝑓𝑓 + 1
correct processes is common

common values reach
all correct processes

Asynchronous Shared Coin - Analysis

• We prove:
• Ω(𝜖𝜖) bound the number of common values
• our adversary “commits” to them in advance

⇒With a constant probability, the global minimum is common
22

a value that reaches 𝑓𝑓 + 1
correct processes is common

common values reach
all correct processes

Word complexity of 𝑂𝑂(𝑛𝑛2)

Use VRFs for

1. Flipping a shared coin
• First step: O(n2) word complexity

2. Committee sampling
• Cryptographic sortition
• Reduces word complexity to O(n log n)

Following Algorand [Gilad et al. 2017]

23

Committee Sampling

• Use the VRF to sample O(log n) processes to a committee in each
round

• Replace all-to-all rounds with committee-to-all rounds

• Evading the adversary:
• Use a new committee in each round
• Send to all since committees are unpredictable
• By Chernoff bounds, “not too many” faulty processes in each committee

24

Shared Coin – Take 2

25

Shared Coin – Take 2

26

Shared Coin – Take 2

27

Each process
returns LSB of
minimum value

Word complexity of 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛),
but how many processes do we wait

for?

Committee Sampling in Asynchronous Model

• Committee based protocols cannot wait for 𝑛𝑛 − 𝑓𝑓 processes. Instead,
they wait for 𝑊𝑊 processes.

• We choose 𝑊𝑊,𝐵𝐵 so that using Chernoff bounds, WHP:
1. At least 𝑊𝑊 processes in each committee are correct
2. At most 𝐵𝐵 processes in in each committee are Byzantine

28

Committee Sampling in Asynchronous Model

3. Every two subsets in a committee of size 𝑊𝑊 intersect by at least
𝐵𝐵 + 1 processes

4. Every two subsets in a committee of size 𝑊𝑊 and 𝐵𝐵 + 1 intersect by
at least 1 process

29

Shir Cohen’s Shared Coin

30

wait for W
messages

wait for W
messages

From Coin Flipping to (Binary) BA WHP

• Approver based on [Bracha 1987] – reliable broadcast
• But with committee sampling

• BA based on [Mostefaoui et al. 2015]

31

Approver
👍👍

BA WHP+

Approver 👍👍

API: approvei(vi) returns a set of values
We assume approve is called with at most two different values

WHP the following hold:
• Validity: If all correct processes invoke 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎𝑎𝑎(𝑎𝑎) then the only

possible return value of correct processes is {𝑎𝑎}
• Graded agreement: If correct processes return both {𝑎𝑎} and {𝑤𝑤} then
𝑎𝑎 = 𝑤𝑤

• Termination: If all correct processes invoke approve then it returns
with a non-empty set at all of them

32

Approver 👍👍Without Sampling

33

Echo v upon
receiving f+1 v

Send <ok, v> with n-f
signatures upon
receiving n-f <echo, v>

Return the set of values in the first n-f ok messages

v

v May speak twice

Approver 👍👍With Sampling

34

Echo v upon
receiving B+1 v

Return the set of values in the first W ok messages

Send <ok, v> with W
signatures upon
receiving W <echo, v>

Approver 👍👍With Sampling

35

Echo v upon
receiving B+1 v

Return the set of values in the first W ok messages

Send <ok, v> with W
signatures upon
receiving W <echo, v>

Word complexity of 𝑂𝑂(𝑛𝑛 log2 𝑛𝑛)

From Coin Flipping to (Binary) BA WHP

• Approver based on [Bracha 1987] – reliable broadcast
• But with committee sampling

• BA based on [Mostefaoui et al. 2015]

36

Approver
👍👍

BA WHP+

BA WHP

37

BA WHP

38

BA WHP

39

Word complexity of 𝑂𝑂(𝑛𝑛 log2 𝑛𝑛)

Not a COINcidence Summary

• First formalization of randomly sampled committees using cryptography in
asynchronous settings

• First sub-quadratic asynchronous shared coin and BA WHP algorithms
• Expected �𝑂𝑂(𝑛𝑛) word complexity and 𝑂𝑂(1) expected time

Limitations:
• Binary consensus only
• Safety and liveness only WHP
• One-shot algorithm (not SMR)
• Non-optimal resilience – improved by [Blum et al. 2020]

40

Making It Scale

• Assume asynchrony
• Solve BA

with high probability (WHP)
(probability of being correct
tends to 1 as n → ∞)

• Assume eventual synchrony
• Solve deterministic SMR
• Reduce expected complexity in

some optimistic cases

41

VRFs Threshold signatures

Expected Linear Round
Synchronization:

The Missing Link for Linear
Byzantine SMR

Oded Naor and Idit Keidar
DISC 2020

42

Model

• Eventual synchrony
• Initially asynchronous
• Synchronous after Global Stabilization Time (GST)
• With latency bound 𝛿𝛿

• Optimal resilience: f < n/3
• For simplicity, assume n=3f+1

• Crypto: threshold signatures, PKI
• Shared source of randomness

Threshold Signatures Reduce Communication

44

1

2

t

n

Size of one
signature

Byzantine SMR Communication Costs

Year Protocol Word complexity to reach a decision
1988 DLS O(n3)
1999 PBFT O(n2)
2007 Zyzzyva O(n2)
2016 Tendermint, Casper O(n)
2017 Algorand Committees
2018 HotStuff O(n)
2019 LibraBFT O(n)

45

O(n) once f+1 correct
processes follow a

correct leader

O(n) once 2f+1 correct
processes follow a

correct leader

Eventually Synchronous Byzantine SMR

• Each process divides its time into rounds (aka views)
• 2f+1 processes can make progress

46

𝟐𝟐𝟐𝟐 + 𝟏𝟏 𝑓𝑓4 5 6 7 8

Rounds

An Alternative Run

47

𝟐𝟐 + 𝟏𝟏

𝑓𝑓

𝟐𝟐
4 5 6 7 8

Rounds

Needed: Round Synchronization (RS)

48

𝟐𝟐 + 𝟏𝟏

𝑓𝑓

𝟐𝟐
4 5 6 7 8

Rounds

Round Synchronization Makes SMR Live

• Theorem 4 from HotStuff [Yin et al. 2019]:
“After GST, there exists a bounded time period Tf such that
if all correct replicas remain in view 𝑎𝑎 during Tf and
the leader for view 𝑎𝑎 is correct,
then a decision is reached.”

• Formulated and solved as a separate problem
HotStuff Pacemaker, Cogsworth [Naor et al. 2020], [Bravo et al. 2020]

49

The Round Synchronization Service

• Parametrized by a time period Δ (e.g., = 4𝛿𝛿)
• Repeatedly outputs round-leader pairs ⟨𝑎𝑎, 𝑎𝑎⟩

• Enter round 𝑎𝑎 with leader 𝑎𝑎
• Rounds are monotonically increasing
• Leaders are uniquely determined per round

• Guarantee:
For any time t, there is a synchronization time 𝑡𝑡𝑠𝑠 ≥ 𝑡𝑡 so that all
correct processes are in the same round with the same correct leader
from time 𝑡𝑡𝑠𝑠 for at least Δ

• The precondition needed for HotStuff’s liveness theorem

50

Round
Syncronization

⟨𝑎𝑎,𝑎𝑎⟩

RS is the Performance Bottleneck

• After round synchronization with a correct leader, we have
deterministic SMR

• O(n) word complexity per decision
• O(1) time per decision

HotStuff [Yin et al. 2019]
Tendermint [Buchman et al. 2018]
LibraBFT [Baudet et al. 2019]

• Our solution: RS with expected linear word complexity, constant time

51

SMR

HotStuffRound
Syncronization

⟨𝑎𝑎,𝑎𝑎⟩

Fast RS is the Key to SMR Performance

52

SMRHotStuffRound
Syncronization +

expected O(n) + O(n) = expected O(n)

• We get: deterministic SMR, after GST, each decision with
• Expected O(n) word complexity, O(n3) worst-case
• Expected O(1) time, O(n2) worst case

Relay-Based Round Synchronization

• In each round r, a designated relay is responsible for synchronizing
the processes to this round r

• The relay collects threshold signatures to prove that enough
processes proceed with it

• On timeout, switch to another relay
• Randomly permute relays in each round

• In expected constant time, a correct relay is chosen

53

Relay-Based Round Synchronization

54

𝟏𝟏

𝟑𝟑

𝟐𝟐

4 5 6 7 8
𝟏𝟏𝟑𝟑 𝟐𝟐

Rounds

Byzantine Relays Can Split the Good Guys

• Solved by adding another protocol phase - finalize

55

𝟐𝟐 + 𝟏𝟏𝟐𝟐

4 5 6 7 8

First relay:

𝟐𝟐𝟏𝟏

Rounds

Message Flow – Synchronize in Round 5

56

relay(5, 1) relay(5, 1)

1

2

2f+1

1

2

2f+1

1

2

2f+1

relay(5, 1)

Processes are in
round < 5

Processes are in
round 5

1

2

f+1

Round Synchronization Summary

• Formalize RS abstraction
• Byzantine RS with

• Expected linear word complexity
• Expected constant latency

• The missing ingredient for Byzantine SMR with expected linear word
complexity

• Per decision
• HotStuff, LibraBFT

57
NESS

Conclusion

Sub-quadratic BA in two flavors:
1. Asynchronous, binary BA WHP
2. Eventually synchronous, multi-value SMR

Thank you!

58

Yes, it will scale!

	Slide Number 1
	Byzantine Agreement & SMR with Sub-Quadratic Communication
	Shout Out
	Byzantine Agreement (BA)
	New Frontiers for BA & Byzantine SMR
	BA Has Been Around for Four Decades
	Traditional BFT According to James Mickens
	Scalability Challenges
	Making It Scale
	Not a COINcidence: �Sub-Quadratic Asynchronous Byzantine Agreement WHP
	Contribution
	Model
	Verifiable Random Function (VRF)
	Use VRFs for
	Shared Coin with Success Rate 𝜌
	Shared Randomness
	Background: A Simple VRF-Based Shared Coin
	Background: A Simple VRF-Based Shared Coin
	Asynchronous Shared Coin – Take 1
	Asynchronous Shared Coin – Take 1
	Asynchronous Shared Coin - Analysis
	Asynchronous Shared Coin - Analysis
	Use VRFs for
	Committee Sampling
	Shared Coin – Take 2
	Shared Coin – Take 2
	Shared Coin – Take 2
	Committee Sampling in Asynchronous Model
	Committee Sampling in Asynchronous Model
	Shir Cohen’s Shared Coin
	From Coin Flipping to (Binary) BA WHP
	Approver 👍
	Approver 👍 Without Sampling
	Approver 👍 With Sampling
	Approver 👍 With Sampling
	From Coin Flipping to (Binary) BA WHP
	BA WHP
	BA WHP
	BA WHP
	Not a COINcidence Summary
	Making It Scale
	Expected Linear Round Synchronization:�The Missing Link for Linear Byzantine SMR
	Model
	Threshold Signatures Reduce Communication
	Byzantine SMR Communication Costs
	Eventually Synchronous Byzantine SMR
	An Alternative Run
	Needed: Round Synchronization (RS)
	Round Synchronization Makes SMR Live
	The Round Synchronization Service
	RS is the Performance Bottleneck
	Fast RS is the Key to SMR Performance
	Relay-Based Round Synchronization
	Relay-Based Round Synchronization
	Byzantine Relays Can Split the Good Guys
	Message Flow – Synchronize in Round 5
	Round Synchronization Summary
	Conclusion
	Correctness

