# Byzantine Agreement & SMR with Sub-Quadratic Communication

Idit Keidar, Technion

# Shout Out

Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP. Shir Cohen, Idit Keidar, and Alexander Spiegelman Expected Linear Round Synchronization: The Missing Link for Linear Byzantine SMR. Oded Naor and Idit Keidar





# Byzantine Agreement (BA)

- Consensus among *n* processes
- Up to *f* can be controlled by an adversary and act arbitrarily
- A building block for State Machine Replication (SMR)

# New Frontiers for BA & Byzantine SMR

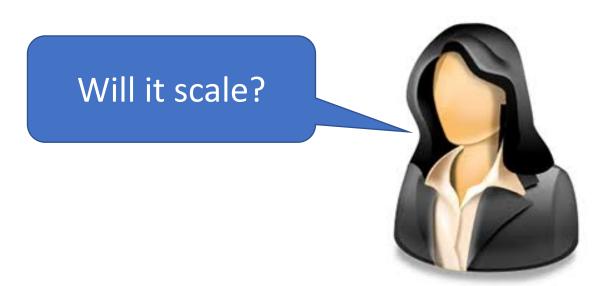
- Permissioned blockchains shared ledger
- Other FinTech infrastructures



#### BA Has Been Around for Four Decades

[Pease, Shostak, Lamport 1980], [Lamport, Pease, Shostak 1980]

- 2500+, 7000+ citations, resp.
- Traditional use-cases a handful of processes



#### Traditional BFT According to James Mickens

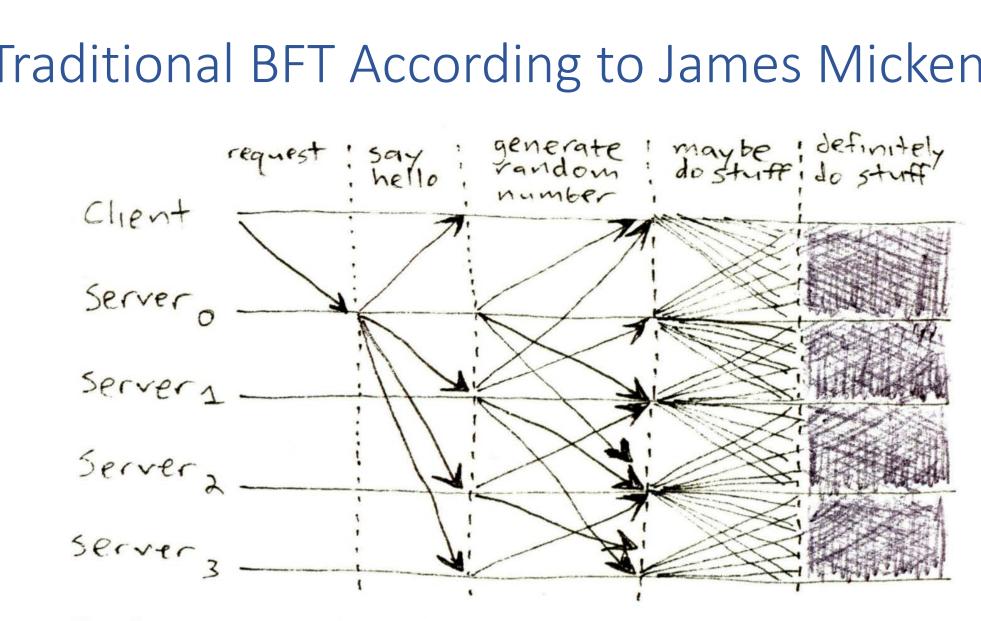
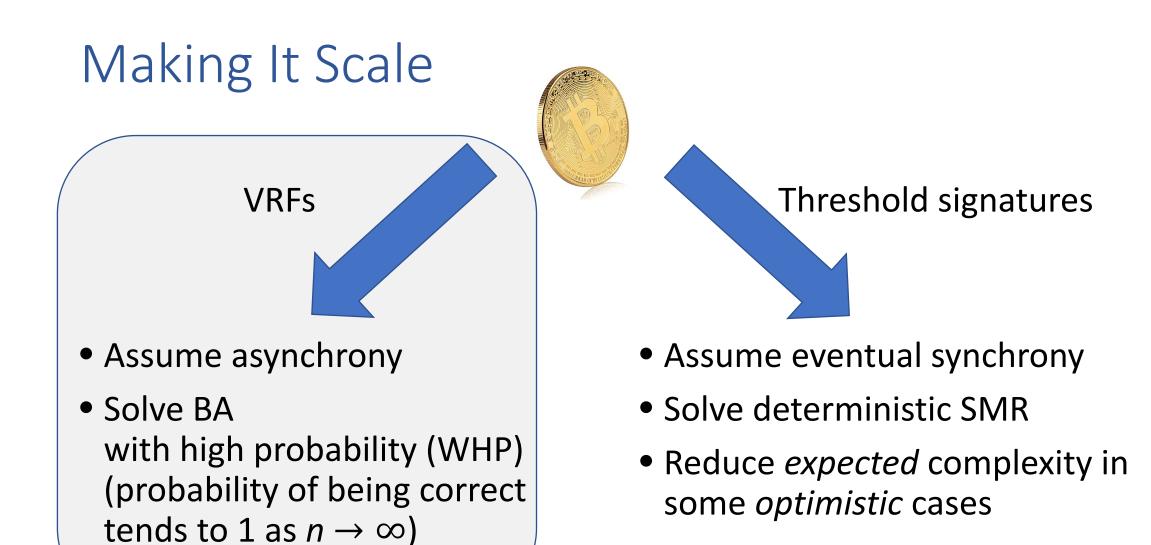


Figure 1: Typical Figure 2 from Byzantine fault paper: Our network protocol

# Scalability Challenges

- Synchrony vs. asynchrony
  - Latency bounds defined in minutes
  - But deterministic fault-tolerant asynchronous consensus is impossible [Fisher, Lynch, Paterson 1985]
- Communication (word) complexity (of all processes together)
  - Ω(n<sup>2</sup>) lower bound In the worst-case, in deterministic algorithms, regardless of synchrony [Dolev and Reischuk 1985]



# Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

Shir Cohen, Idit Keidar, Alexander Spiegelman

**DISC 2020** 

## Contribution

#### The first sub-quadratic asynchronous BA WHP algorithm

- $\tilde{O}(n)$  word complexity and O(1) expected time
- Safety and Liveness properties are gurenteed WHP
- Binary BA

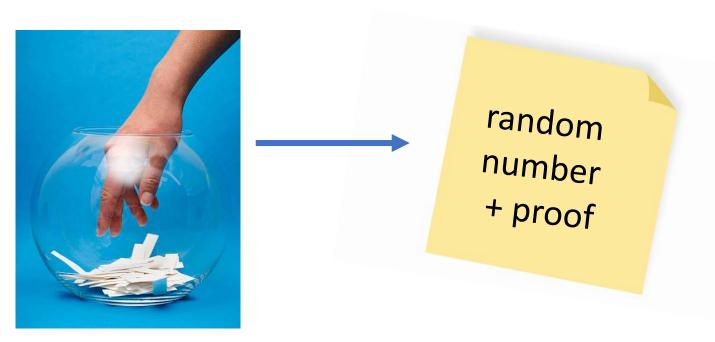
• Previous sub-quadratic works made synchrony assumptions [King and Saia 2011], Algorand [Gilad et al. 2017]

# Model

- Asynchronous
- n processes (permissioned)
- Up to f Byzantine processess for  $n \approx 4.5f$
- Trusted PKI
  - Inherent for sub-quadratic algorithms [Abraham et al. 2019] [Blum et al. 2020] [Rambaud 2020]
- Delayed adaptive adversary:
  - Can use the contents of a message m sent by a correct process for scheduling a message m' only if  $m \to m'$

# Verifiable Random Function (VRF)

- A pseudorandom function that provides a proof of its correct computation
- For a secret key sk with a matching public key pk
  - VRF<sub>sk</sub>(x) is a random value
  - Verifiable using pk



# Use VRFs for

- 1. Flipping a shared coin
  - First step: O(n<sup>2</sup>) word complexity
- 2. Committee sampling
  - Cryptographic sortition
  - Reduces word complexity to O(n log n)

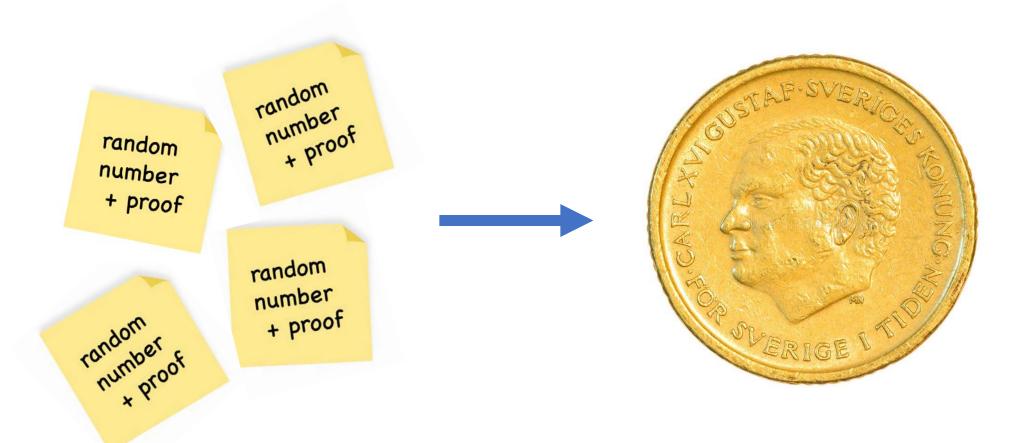
Following Algorand [Gilad et al. 2017]

# Shared Coin with Success Rate ho

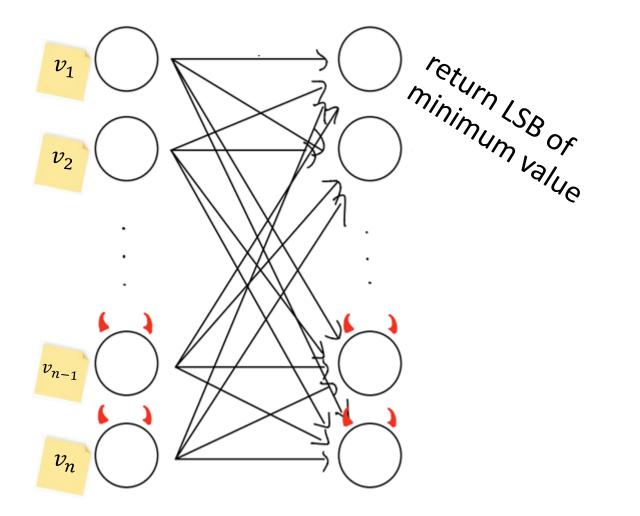
# All correct processes output b with probability at least $\rho$ , for any value $b \in \{0,1\}$



#### Shared Randomness



## Background: A Simple VRF-Based Shared Coin



- Synchronous [Micali 2017]
- If the minimum VRF is of a correct process, all agree

• With probability 
$$\geq \frac{2}{3}$$

## Background: A Simple VRF-Based Shared Coin

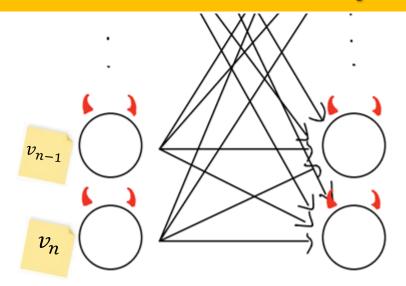


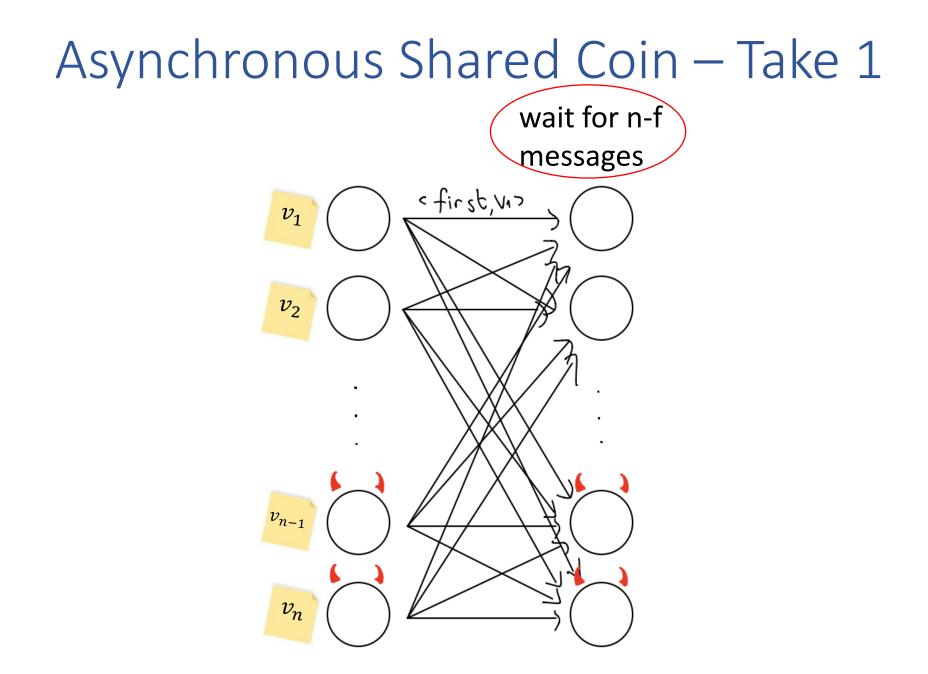
• Synchronous [Micali 2017]

• If the minimum \/PE is of a

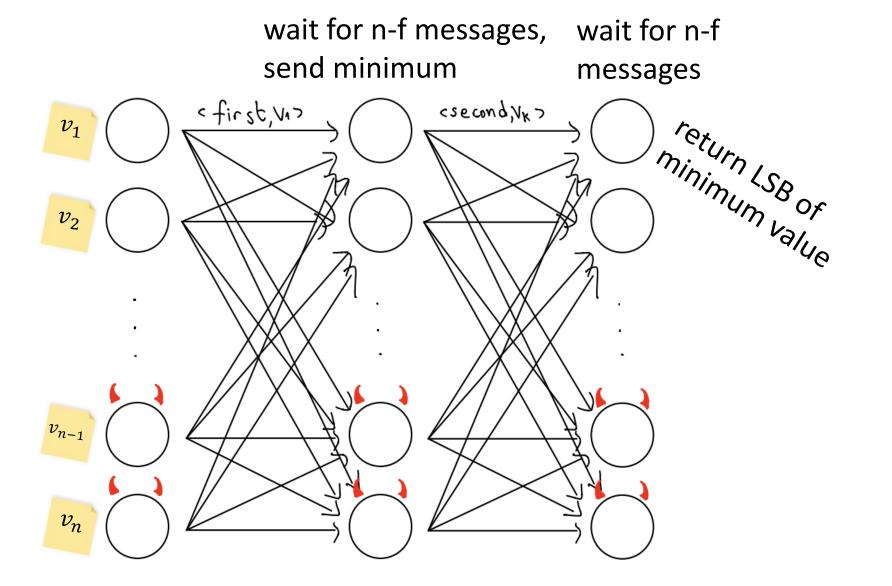
3

# **Requires Synchrony**

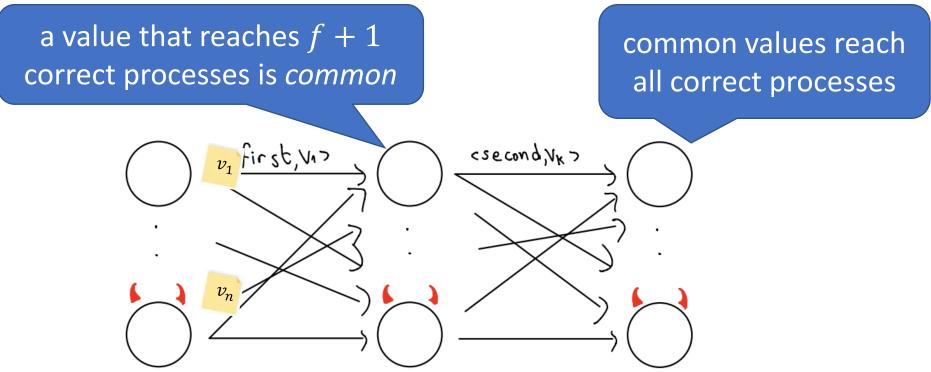




#### Asynchronous Shared Coin – Take 1

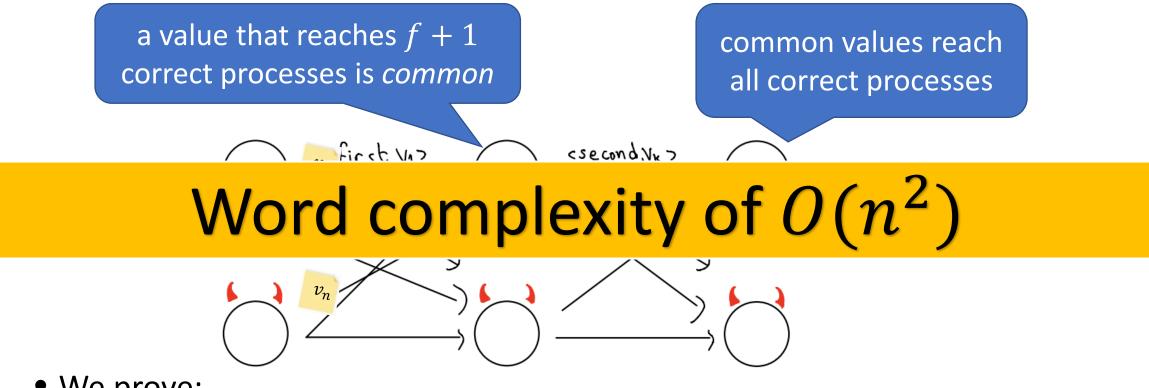


## Asynchronous Shared Coin - Analysis



- We prove:
  - $\Omega(\epsilon)$  bound the number of common values
  - our adversary "commits" to them in advance
- ⇒With a constant probability, the global minimum is common

# Asynchronous Shared Coin - Analysis



- We prove:
  - $\Omega(\epsilon)$  bound the number of common values
  - our adversary "commits" to them in advance
- ⇒With a constant probability, the global minimum is common

# Use VRFs for

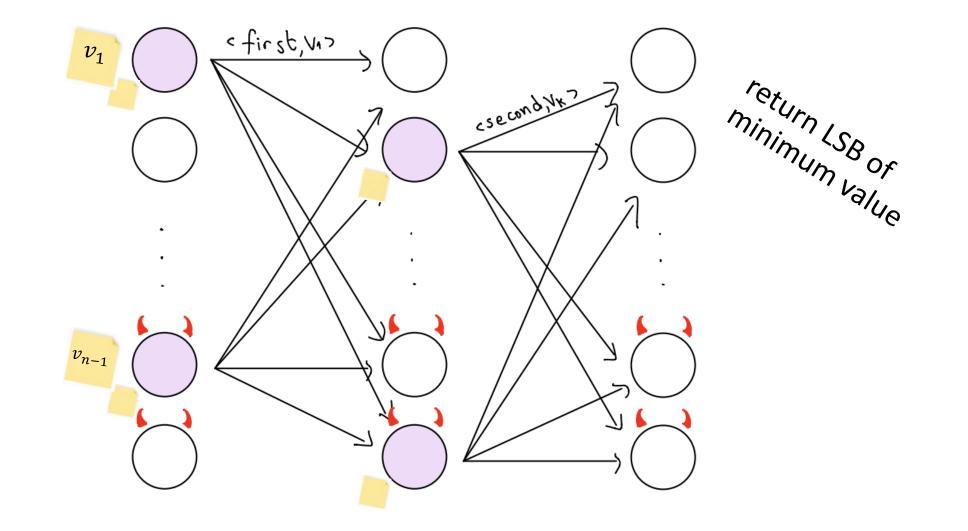
- 1. Flipping a shared coin
  - First step: O(n<sup>2</sup>) word complexity
- 2. Committee sampling
  - Cryptographic sortition
  - Reduces word complexity to O(n log n)

Following Algorand [Gilad et al. 2017]

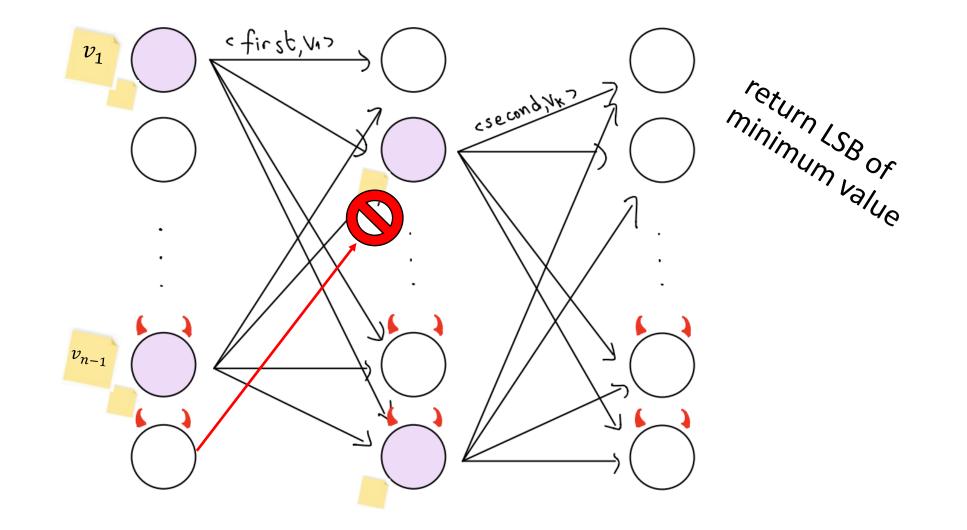
# **Committee Sampling**

- Use the VRF to sample O(log n) processes to a committee in each round
- Replace all-to-all rounds with committee-to-all rounds
- Evading the adversary:
  - Use a new committee in each round
  - Send to all since committees are unpredictable
  - By Chernoff bounds, "not too many" faulty processes in each committee

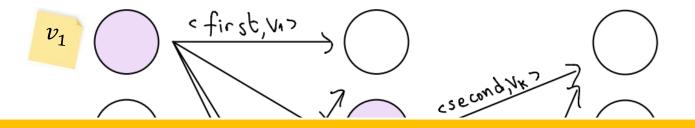
#### Shared Coin – Take 2



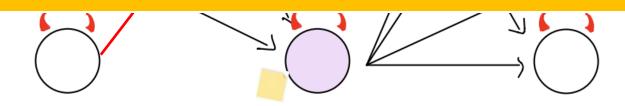
#### Shared Coin – Take 2



#### Shared Coin – Take 2



# Word complexity of $O(n \log n)$ , but how many processes do we wait for?

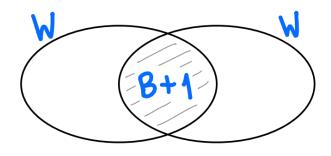


# Committee Sampling in Asynchronous Model

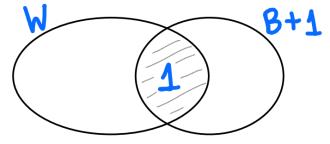
- Committee based protocols cannot wait for n f processes. Instead, they wait for W processes.
- We choose W, B so that using Chernoff bounds, WHP:
- 1. At least *W* processes in each committee are correct
- 2. At most *B* processes in in each committee are Byzantine

# Committee Sampling in Asynchronous Model

3. Every two subsets in a committee of size W intersect by at least B + 1 processes



4. Every two subsets in a committee of size W and B + 1 intersect by at least 1 process



#### Shir Cohen's Shared Coin wait for W wait for W messages messages <first, Vaz $v_1$ return LSB or Minimum value ese condive? $v_{n-1}$ $\geq$

# From Coin Flipping to (Binary) BA WHP



- Approver based on [Bracha 1987] reliable broadcast
  - But with committee sampling
- BA based on [Mostefaoui et al. 2015]

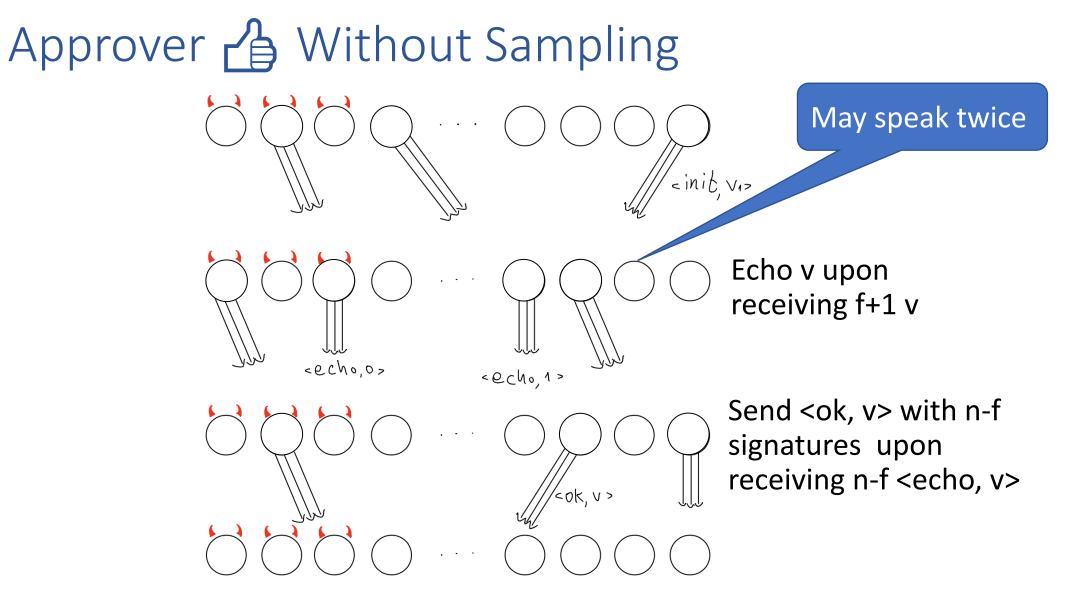


API:  $approve_i(v_i)$  returns a <u>set</u> of values

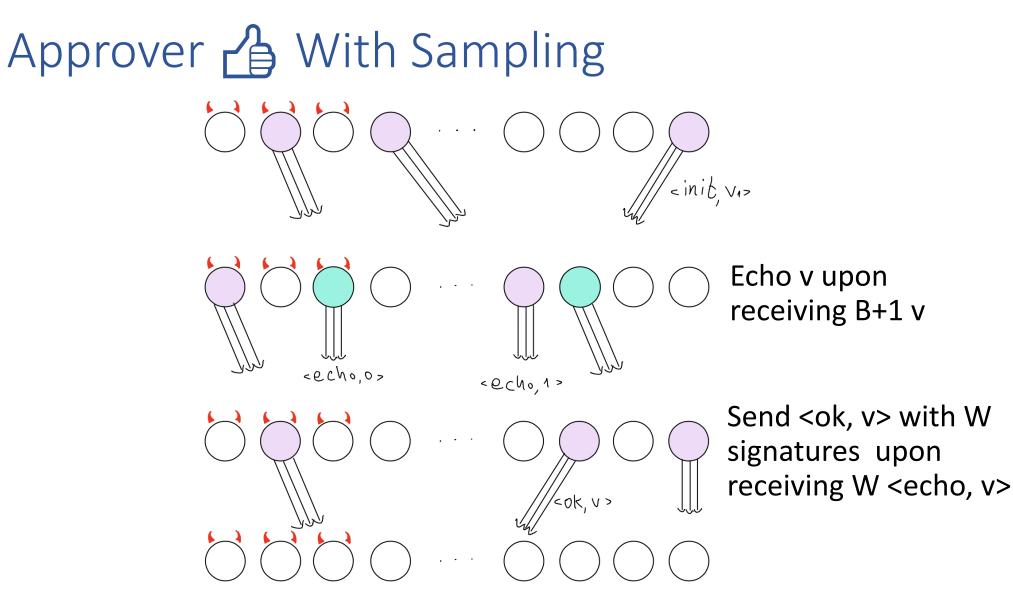
We assume *approve* is called with at most two different values

WHP the following hold:

- Validity: If all correct processes invoke approve(v) then the only
  possible return value of correct processes is {v}
- Graded agreement: If correct processes return both  $\{v\}$  and  $\{w\}$  then v = w
- Termination: If all correct processes invoke approve then it returns with a non-empty set at all of them



Return the set of values in the first n-f ok messages



Return the set of values in the first W ok messages

# Approver 🔂 With Sampling

< e cho, 0 >

YM

# Word complexity of $O(n \log^2 n)$

< e cho, 1 >

UU

Send <ok, v> with W signatures upon receiving W <echo, v>

Return the set of values in the first W ok messages

# From Coin Flipping to (Binary) BA WHP



- Approver based on [Bracha 1987] reliable broadcast
  - But with committee sampling

• BA based on [Mostefaoui et al. 2015]

#### **BA WHP**

- 1:  $est_i \leftarrow v_i$ 2:  $decision_i \leftarrow \bot$
- 3: for r = 0, 1, ... do 4:  $vals \leftarrow approve(est_i)$
- 5: **if**  $vals = \{v\}$  for some v **then**
- 6:  $propose_i \leftarrow v$
- 7: **otherwise**  $propose_i \leftarrow \bot$
- 8:  $c \leftarrow \text{whp}_{-}\text{coin}(r)$

| 9:         | $props \leftarrow approve(propose_i)$                                                               |
|------------|-----------------------------------------------------------------------------------------------------|
| 10:        | if $props = \{v\}$ for some $v \neq \bot$ then                                                      |
| 11:        | $est_i \leftarrow v$                                                                                |
| 12:        | $\mathbf{if} \ decision_i = \perp \ \mathbf{then}$                                                  |
| 13:        | $decision_i \leftarrow v$                                                                           |
| 14:        | else                                                                                                |
|            |                                                                                                     |
| 15:        | $\mathbf{if} \ props = \{\bot\} \ \mathbf{then}$                                                    |
| 15:<br>16: | $\begin{array}{l} \mathbf{if} \ props = \{\bot\} \ \mathbf{then} \\ est_i \leftarrow c \end{array}$ |
|            |                                                                                                     |
| 16:        | $est_i \leftarrow c$                                                                                |

#### BA WHP

- 1:  $est_i \leftarrow v_i$ 2:  $decision_i \leftarrow \bot$
- 3: for r = 0, 1, ... do 4:  $vals \leftarrow approve(est_i)$
- 5: **if**  $vals = \{v\}$  for some v **then**
- 6:  $propose_i \leftarrow v$
- 7: **otherwise**  $propose_i \leftarrow \bot$
- 8:  $c \leftarrow whp\_coin(r)$

| 9:  | $props \leftarrow approve(propose_i)$            |  |  |
|-----|--------------------------------------------------|--|--|
| 10: | if $props = \{v\}$ for some $v \neq \bot$ then   |  |  |
| 11: | $est_i \leftarrow v$                             |  |  |
| 12: | $\mathbf{if} \ decision_i = \perp \mathbf{then}$ |  |  |
| 13: | $decision_i \leftarrow v$                        |  |  |
| 14: | else                                             |  |  |
| 15: | $\mathbf{if} \ props = \{\bot\} \ \mathbf{then}$ |  |  |
| 16: | $est_i \leftarrow c$                             |  |  |
|     | - ~                                              |  |  |
| 17: | $	extbf{else} \qquad \% props = \{v, \bot\}$     |  |  |

#### BA WHP

1:  $est_i \leftarrow v_i$ 2:  $decision_i \leftarrow \bot$  9:  $props \leftarrow approve(propose_i)$ 10: **if**  $props = \{v\}$  for some  $v \neq \bot$  **then** 11:  $est \leftarrow v$ 

# Word complexity of $O(n \log^2 n)$

- 6:  $propose_i \leftarrow v$
- 7: **otherwise**  $propose_i \leftarrow \bot$
- 8:  $c \leftarrow \text{whp}\_\text{coin}(r)$

CIBC

T.T.

15:

16:

18:

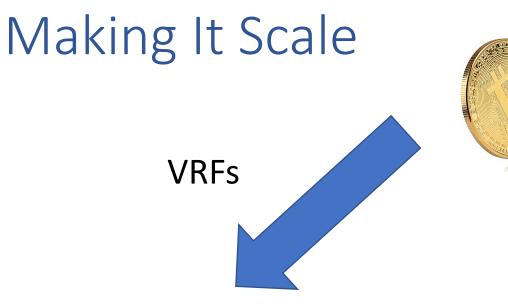
- $\begin{array}{l} \mathbf{if} \ props = \{\bot\} \ \mathbf{then} \\ est_i \leftarrow c \end{array}$
- 17: else  $\% props = \{v, \bot\}$ 
  - $est_i \leftarrow v$

### Not a COINcidence Summary

- First formalization of randomly sampled committees using cryptography in asynchronous settings
- First sub-quadratic asynchronous shared coin and BA WHP algorithms
- Expected  $\tilde{O}(n)$  word complexity and O(1) expected time

Limitations:

- Binary consensus only
- Safety and liveness only WHP
- One-shot algorithm (not SMR)
- Non-optimal resilience improved by [Blum et al. 2020]



- Assume asynchrony
- Solve BA with high probability (WHP) (probability of being correct tends to 1 as  $n \rightarrow \infty$ )

Threshold signatures

- Assume eventual synchrony
- Solve deterministic SMR
- Reduce *expected* complexity in some *optimistic* cases

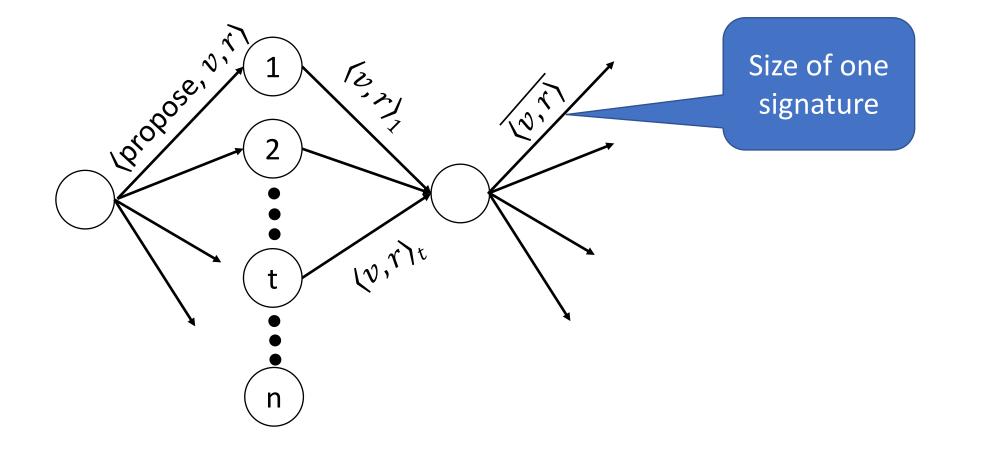
Expected Linear Round Synchronization: The Missing Link for Linear Byzantine SMR

> Oded Naor and Idit Keidar DISC 2020

# Model

- Eventual synchrony
  - Initially asynchronous
  - Synchronous after Global Stabilization Time (GST)
  - With latency bound  $\delta$
- Optimal resilience: f < n/3
  - For simplicity, assume *n=3f+1*
- Crypto: threshold signatures, PKI
- Shared source of randomness

#### Threshold Signatures Reduce Communication

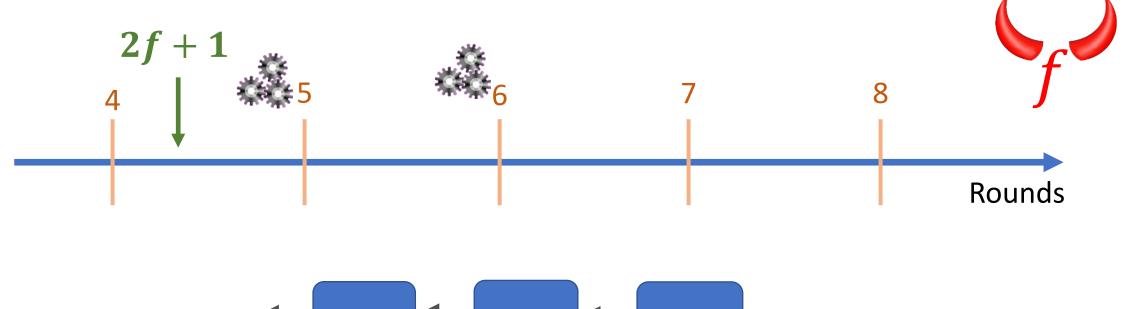


#### Byzantine SMR Communication Costs

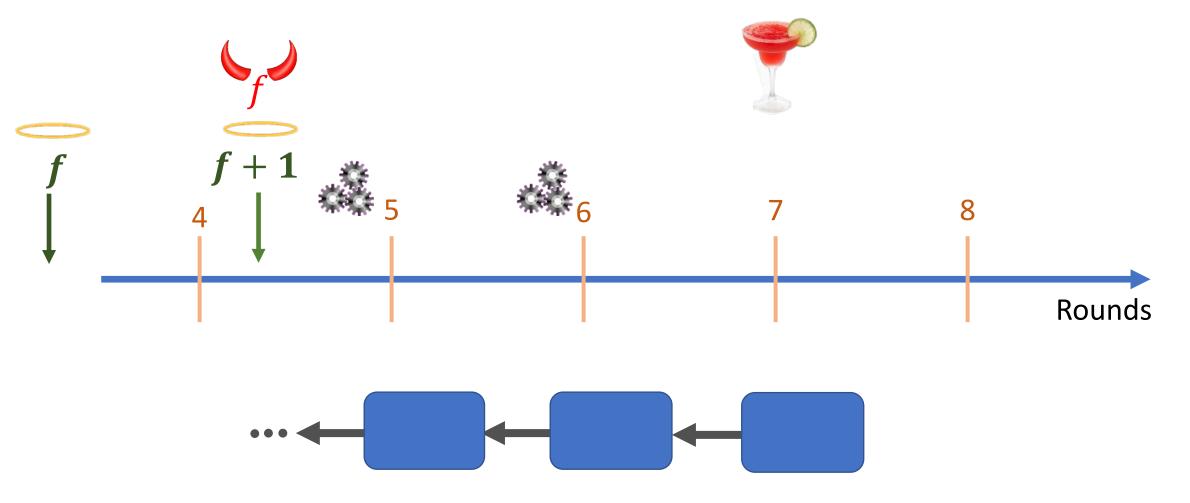
| Year | Protocol           | Word complexity to reach a decision       |
|------|--------------------|-------------------------------------------|
| 1988 | DLS                | O(n <sup>3</sup> )                        |
| 1999 | PBFT               | O(n <sup>2</sup> ) O(n) once 2f+1 correct |
| 2007 | Zyzzyva            | O(n <sup>2</sup> ) processes follow a     |
| 2016 | Tendermint, Casper | O(n) correct leader                       |
| 2017 | Algorand           | Committees                                |
| 2018 | HotStuff           | O(n)                                      |
| 2019 | LibraBFT           | O(n)                                      |
|      |                    |                                           |

# Eventually Synchronous Byzantine SMR

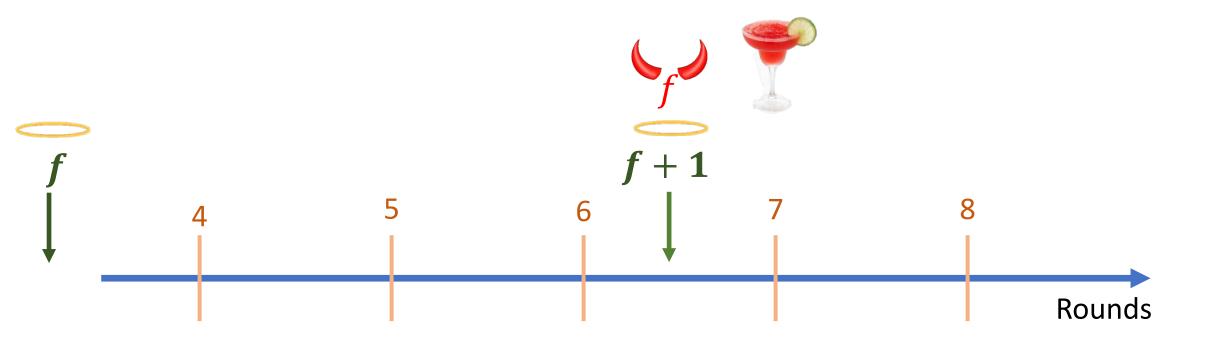
- Each process divides its time into rounds (aka views)
- 2*f*+1 processes can make progress



#### An Alternative Run



# Needed: Round Synchronization (RS)



#### Round Synchronization Makes SMR Live

• Theorem 4 from HotStuff [Yin et al. 2019]:

"After GST, there exists a bounded time period  $T_f$  such that if all correct replicas remain in view v during  $T_f$  and the leader for view v is correct,

then a decision is reached."

• Formulated and solved as a separate problem HotStuff Pacemaker, Cogsworth [Naor et al. 2020], [Bravo et al. 2020]

# The Round Synchronization Service

- Parametrized by a time period  $\Delta$  (e.g., =  $4\delta$ )
- Repeatedly outputs round-leader pairs  $\langle r, p \rangle$ 
  - Enter round *r* with leader *p*
  - Rounds are monotonically increasing
  - Leaders are uniquely determined per round
- Guarantee:

For any time t, there is a synchronization time  $t_s \ge t$  so that all correct processes are in the same round with the same correct leader from time  $t_s$  for at least  $\Delta$ 

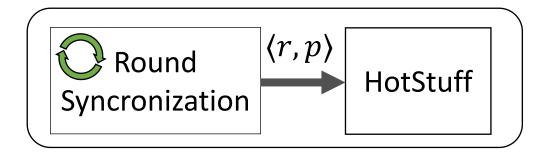
• The precondition needed for HotStuff's liveness theorem



# RS is the Performance Bottleneck

- After round synchronization with a correct leader, we have deterministic SMR
  - O(n) word complexity per decision
  - O(1) time per decision

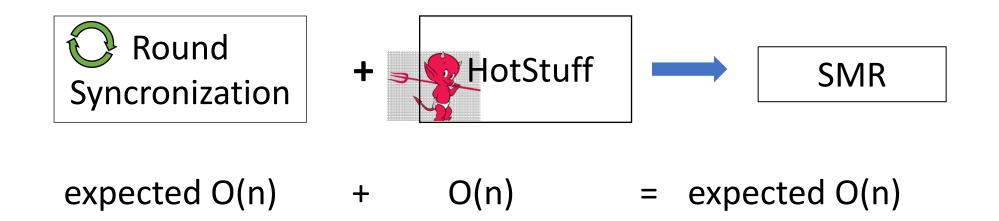
HotStuff [Yin et al. 2019] Tendermint [Buchman et al. 2018] LibraBFT [Baudet et al. 2019]



SMR

• Our solution: RS with expected linear word complexity, constant time

#### Fast RS is the Key to SMR Performance

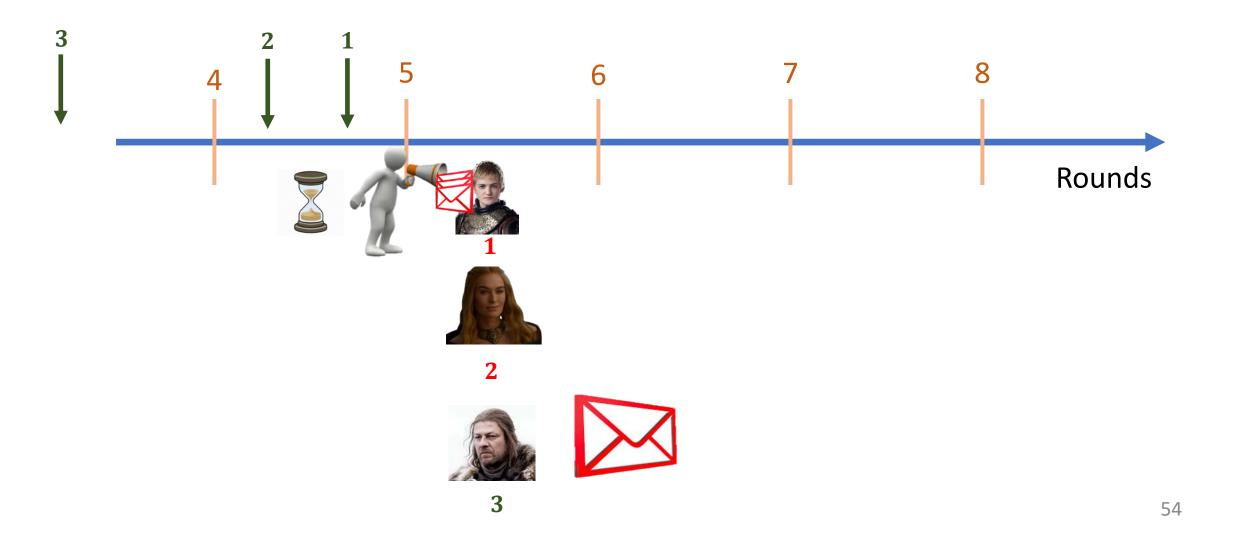


- We get: deterministic SMR, after GST, each decision with
  - Expected O(n) word complexity, O(n<sup>3</sup>) worst-case
  - Expected O(1) time, O(n<sup>2</sup>) worst case

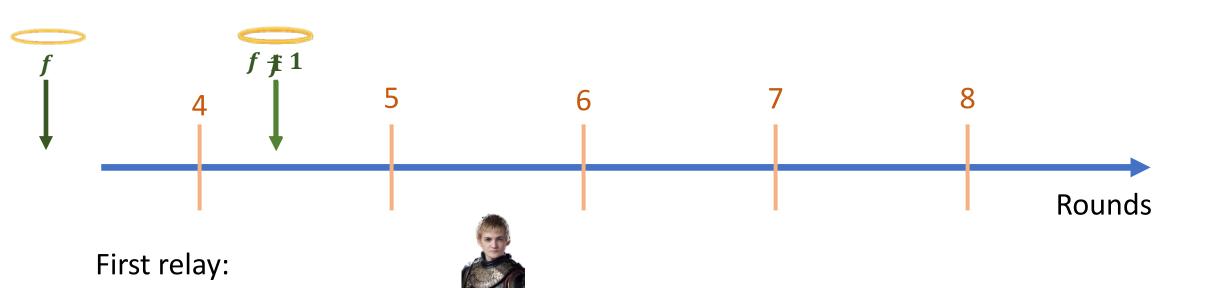
# Relay-Based Round Synchronization

- In each round *r*, a designated relay is responsible for synchronizing the processes to this round *r*
- The relay collects threshold signatures to prove that enough processes proceed with it
- On timeout, switch to another relay
- Randomly permute relays in each round
  - In expected constant time, a correct relay is chosen

#### Relay-Based Round Synchronization

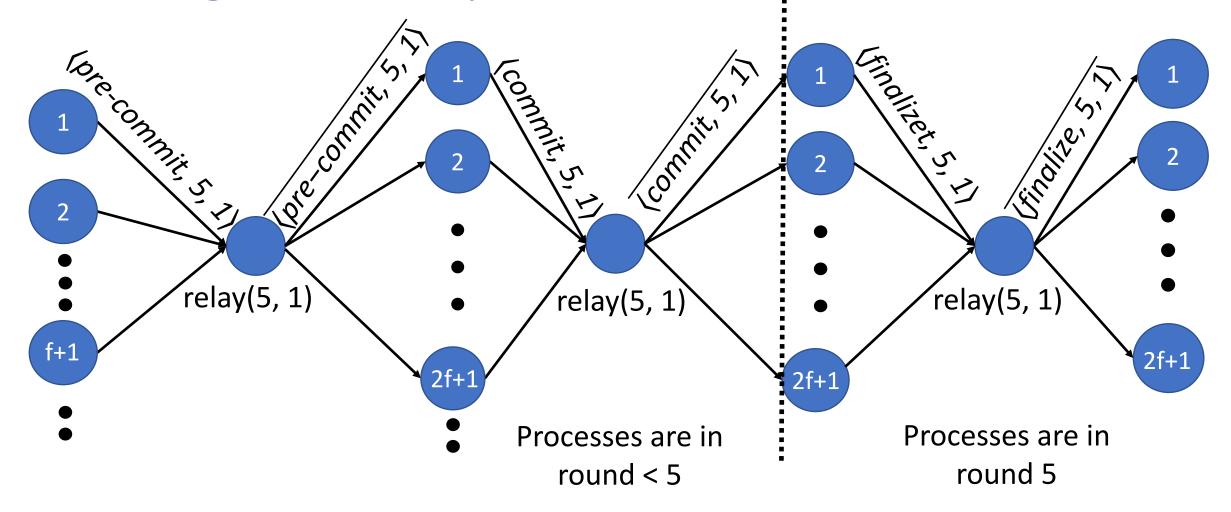


#### Byzantine Relays Can Split the Good Guys



• Solved by adding another protocol phase - finalize

#### Message Flow – Synchronize in Round 5



# Round Synchronization Summary

- Formalize RS abstraction
- Byzantine RS with
  - Expected linear word complexity
  - Expected constant latency
- The missing ingredient for Byzantine SMR with expected linear word complexity
  - Per decision
  - HotStuff, LibraBFT



#### Conclusion

Sub-quadratic BA in two flavors:

- 1. Asynchronous, binary BA WHP
- 2. Eventually synchronous, multi-value SMR

Thank you!

