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Abstract

H ighly parallel architectures, such as GPUs or CPUs with vector instructions, require
a lot of code tuning to achieve high utilization, i.e., in the order of the theoretical
maximum performance. One of the main reasons is that due to technological limitations
(e.g., power consumption, power density, availability of instruction level parallelism)
highly parallel architectures trade off single-instructions-stream performance for maximum
raw-performance. This puts a burden on the workload to provide enough parallelism to
keep the architectural resources busy. While some workloads are inherently highly parallel
(such as what is known as embarrassingly parallel), many interesting, compute-intensive
workloads (animation, pattern recognition, ray-tracing) become harder to parallelize as the

parallelism degree increases.

In this research we developed a simulator for highly parallel architectures (up to 2048
cores) that can simulate existing parallel benchmarks (any benchmark that runs on the
Linux platform) and we use it to study a suite of interesting parallel workloads, the Parsec

benchmark suite.

We characterize parallelism scalability of each benchmark, namely how the performance
scales with the scaling of the architecture’s parallelism (core count without overhead). We
study another aspect of the Parsec benchmark suite -- shared cache performance (miss-rate)
when running with high parallelism degree. We compare the actual performance to an

analytical model proposed in the literature.

We find that the inherent parallelism scalability of the various benchmarks in the Parsec
benchmark suite varies widely, from as poor as achieving peak performance at 4 threads
(ferret) to unlimited, embarrassingly parallel (blackscholes). However the majority of

benchmarks do not scale beyond 128 threads.

For cache performance, we find that while for most benchmarks it is compatible with a
cache performance analytical model that is proposed in the literature, the performance is
highly sensitive to the cache performance and therefore the small differences between the

analytical and actual cache performance lead to large differences between analytical



performance estimation based on the analytical cache performance model and the actual

performance.
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Chapter 1.
Introduction

1.1. Research overview

Contemporary CPU architecture trend for increasing performance is primarily towards
increased parallelism, due to technological challenges such as power dissipation, power
consumption, micro-architecture improvements etc. However, parallel architectures
require the program to explicitly expose suitable degree of parallelism (e.g., number of
threads) to be able to actually utilize the available architecture parallelism. Moreover, the
parallelism needs to be exposed for the different type of resources such as utilize cores
through threads, utilize cache through data working-set arrangement, utilize interconnect
through communication/computation pipelining etc. Underutilization is the result of
algorithmic dependencies such as data dependency, inter-task dependency, etc. Often, the
situation is in between: part of the time the resources are fully utilized and the rest of the
time they are underutilized. Adding resources may increase the performance during full
utilization but the extent of the improvement is subject to Amdahl’s Law [1], i.e., it depends

on the fraction of full utilization periods and may be negligible.

Moreover, whether the architecture’s resources are fully utilized and at what times
during the program execution depends on the type of resource and on the structure of the
program. For example, a program may have a certain data working set at certain times that
may or may not fit in cache, depending on the amount of cache in the underlying
architecture. If the working set doesn’t fit in the cache, then a fast CPU will be underutilized
because it can’t access data fast enough to utilize its compute power. If the program reduced
its working set it could achieve higher CPU utilization. Thus, matching the workload and
the architecture can have a dramatic effect on the performance. This is more so with the
high-performance architectures which have to tradeoff the amount of resources put into the
architecture and technological limitations such as power consumption, DRAM latency,
interconnect throughput etc. In this research we study some aspects of parallel benchmark

on highly parallel architectures.



There are many aspects of benchmarks that can be measured and studied, at least one
for each type of resource. We chose to study the first-order performance limiting factor of
a parallel benchmark — its ability to utilize more cores. We study this for a diverse set of
benchmarks of the Parsec benchmark suite [2][3]. We find the maximum number of cores
that each benchmark can utilize on architecture with unlimited resources, thus we capture

the inherent parallelism limitation of the benchmarks.

Another aspect of parallel benchmarks that we study is the effect of high parallelism
degree on shared cache performance. With high parallelism degree and assuming
independent parallel tasks®, the nature of the basic assumption that makes cache useful,
namely locality-of-reference, changes. At the extreme, when no data is shared among the
parallel tasks, the cache is effectively divided between the parallel tasks. This assumption
can be used to construct an analytical model for shared cache performance (miss-rate) [4]
We extract the actual cache performance from simulation and show that the analytical
model for the cache performance is a good first-order approximation, nevertheless it is not
ideal for analytical performance studies because the latter can be highly sensitive to the
actual cache performance so that even a small mismatch between the analytical and actual
cache performance results in a large mismatch between the analytical and actual

performance.

1.2. Summary of Contributions

The main contributions of our research are:

- Construct efficient simulator for highly parallel architectures that can run any Linux
benchmark.

- Identify and studying the maximal number of cores that each benchmark in the
Parsec benchmark suite can utilize.

- Validating an analytical shared cache performance (miss-rate) model for highly

parallel architectures.

! Task independence is extremely important to minimize algorithmic dependency and therefore is a
reasonable assumption for parallel workloads.



1.3. Research Method

Studying the interaction of highly parallel workloads and architectures requires
simulating architectures with a parameterized degree of parallelism that scales to high
numbers (hundreds and thousands of cores). Moreover, it requires benchmarks that are
representative of parallel workloads. We use the benchmarks in the Parsec benchmark
suite [3], which includes diverse workloads and provides control over the parallelism
degree. For the architecture, we find that full-system simulators are not suitable for our
purpose because these do not scale well to the parallelism degrees we want to study and
the OS (Operating System) they run (general-purpose OS, typically Linux) does not
support such high parallelism degrees. Furthermore, parallel benchmarks are compute-
intensive, hence OS kernel space processing is not only unessential to simulate, it actually
constitutes noise because of compute resource consumption by background processing
(e.g., interrupts, daemons). Therefore, we developed our own simulator that can execute
Linux programs, and thus supports any Linux benchmark, and yet simulates only user-
space code. We use this simulator to study the various aspects of workloads behavior, both
global execution summary statistics and performance counters that reflect the behavior

over time.






Chapter 2.
Many-core Architecture Model

2.1. System Model

Our system model is the unified multi-/many-cores model defined in [4], depicted in
Figure 2-1. It is a shared-memory system with an array of Npe homogenous Processing
Elements (PEs or cores) and a memory hierarchy that consists of PE-private caches
(traditionally referred to as L1 caches) a shared cache (traditionally referred to as Last-
Level-Cache or LLC) of size Sg, and main memory (RAM). It is a Symmetrical Multi-
Threading (SMT) architecture system [5], i.e., has a register file with room for possibly
more thread-contexts than PEs. A scheduler assigns thread-contexts to PEs and changes
this assignment according to some scheduling policy (e.g., context-switch when a thread is
stalled waiting for data from RAM). It should be noted that when the number of thread-
contexts is equal to the number of PEs, the system is not an SMT one so non-SMT systems
also map to this model.



Multi/Many-core CPU

thread-contexts
(reqgister-file)

PE PE PE PE PE PE PE PE PE

shared-cache

Main Memory

Figure 2-1: Architecture model

The memory hierarchy model is a simple fixed-latency-per-hierarchy-level model with
shared cache latency of ts and main memory latency of tm. The private cache latency is
modeled indirectly in a workload parameter, discussed later.

The PEs are simple in-order cores with a fixed-latency for the computation part of the
instructions denoted CPlee. A memory access adds the memory-hierarchy latency to the
respective instruction latency. Table 2-1 summarizes the parameters of the hardware
architecture part of the model.

10



Parameter Description
Npe Number of PEs (in-order processing elements)
Ss Cache size [Bytes]
Nmax Maximal number of thread-contexts in the register
file
CPlexe Average number of cycles required to execute an
instruction assuming a perfect (zero-latency) memory
system [cycles]
ts Cache latency [cycles]
tm Memory latency [cycles]

Table 2-1: System parameters

2.2. Analytical Model

[4] defines an analytical model for the combination of the above system model and
synthetic workload. A fundamental assumption of this synthetic model is that the task can

be partitioned to any number of n sub-tasks, each handled by a separate thread. This

assumption effectively ignores data-dependent variability.

The fraction of memory instructions in the synthetic workload’s dynamic instructions
stream is denoted by r'm (0 < r'm < 1). Assuming the private cache miss-rate is P”miss, the

fraction of instructions that access the shared cache is rm = r'm - P'miss. In particular, with

no private cache (i.e., P miss = 1) frm = r'm.

The shared cache miss-rate depends on the specific workload characteristics (e.g., the

working set, amount of data sharing between the threads), the number of threads n and the

11




size of the cache Ss. The workload characteristics are captured in the miss-rate function

Pmiss(Ss, n). Table 2-2 summarizes the workload parameters.

Parameter Description

n Number of threads that execute or are in running state

(not blocked) concurrently

I'm Fraction of instructions accessing memory out of the

total number of instructions [o<r, <1]

Pmiss(Ss, N) Miss-rate for cache of size Sg shared by n threads

Table 2-2: Workload parameters

In this model the only shared resource is the shared cache. Thus, the shared cache miss-
rate function captures the shared resource contention effects of the interaction between the
architecture and the workload. This analytical model does not capture the data dependency

effects.

The parameters defined in Table 2-1 and Table 2-2 are used to analyze expected
performance. In this context, for simplicity it is assumed that the workload parameters are
fairly static, and do not vary much over time or space (i.e., between different threads of the
same application). Therefore, the performance analysis uses average values in the

equations below.

With no loss of generality, time is measured in cycles rather than in time units. This
saves the need to incorporate the operational frequency into the analysis. Converting a

result that is given in cycles units to the respective result in time units is straight-forward.

Given the per-thread shared cache miss-rate function and the cache and memory
latencies as defined by the system model, the average number of cycles needed for data
access, denoted tayg (Sometimes called Average Memory Access Time - AMAT) is given

by:

(2-1) tavg(S$» n) [Cycles] = (1 - Pmiss(S$' n)) ) t$ + Pmiss(sﬂ;: n) "y

12



Formulating the average CPI is straight forward:
(22) CPl,,(Ss,n) = CPl,,, + Ty, ~ ty,,(Ss, 1)

Assuming a thread scheduling policy of context-switch whenever a thread is stalled on
a memory access, any given thread needs to stall once every 1/ry instructions on average,
and wait until the data it accesses is received from memory. During this stall time, the PE
is left unutilized, unless other threads are available to switch-in. The number of threads

needed in order to fill a single PE’s stall time, i.e., to saturate the PE, is:

'm
(2-3) Nmax =1+ tavg Fm

With all the PEs saturated, i.e., n > Npe'Nmax, each PE executes 1/CPleye instructions-
per-cycle (IPC) and the aggregate performance of all the PEs is thus Npg/CPlexe. With the
PEs not saturated, i.e., n < Npe‘Nmax, €ach thread executes 1/CPlaygy(Ss, n) instructions-per-

cycle so the aggregate performance of all the threads is given by:

n

(2-4) Performance(Sg, n)[IPC] = CPluye(Sen)
avg (9§,

Rewriting equation (2-4) in term of the model parameters we get:

n

(2-5) Performance(Sg, n)[IPC] = TN (R P T TR Py

2.3. Simulation Model

We developed a simulator for the architecture model depicted in section 2.1. The
simulated system includes an array of Nee simple cores, with fixed latency per instruction?.
Memory instructions suffer additional latency incurred by accessing the memory hierarchy,

determined by a memory hierarchy model.

The memory hierarchy model consists of per-core private caches (L1), a cache that is
shared by all the cores (Last-Level-Cache — LLC) and main memory (typically DRAM).

Every level of the memory hierarchy is fixed latency and according to where the data is

2 Including branches — effectively assuming a perfect branch predictor.

13



found, the latency is added to the latency of the respective instruction. Thus memory-

hierarchy contention effects are not modeled (e.g., bandwidth constraints; queuing effects).

There are Nmax thread-contexts (Nmax > Npe) and a scheduler that switches contexts when
a thread stalls due to a memory operand that needs to be fetched from Main memory.

Context switch takes zero time.

The analytical model depicted in section 2.2 is defined in terms of averages, thus it
doesn’t capture the effect of space and time variations. In particular it doesn’t capture data-
dependency effects. The simulation does capture the space and time variations effect
because it actually executes the program and it does capture data-dependency effects
through correctly simulating inter-thread synchronization: when a thread blocks through
the OS (typically waiting on synchronization object), it is removed from the simulation
scheduling, and once it is unblocked it is re-added. Thus simulation progresses with the
blocked threads on one hand not making progress and on the other hand not consuming

resources (compute, cache), which exactly matches the effects of the data-dependency.

Using this simulator we can study how real benchmarks behave under the architecture
model depicted in section 2.1. Specifically, we can extract both architecture-level and
workload-level statistics, with single cycle resolution. Examples for architecture-level
statistics are core utilization, average memory access latency, context switch rate etc.
Examples for workload-level statistics are instruction mix in the instruction stream (such
as the rm parameter for the analytical model, described in Table 2-2) memory access
locality in space and time, inter-thread dependency such as synchronization etc. In
particular, we use simulator statistics for extracting the workload-specific model
parameters of Table 2-2, which themselves may depend on architecture parameters (which
are therefore simulation parameters) such as cache size (Ss in Table 2-1).

14



Chapter 3.
The Simulator

In this chapter we present the simulator that we developed to study the behavior of
existing benchmarks under the system model depicted in section 2.1. Our simulator
executes native Linux benchmarks, and thus allows running standard benchmarks as well
as custom benchmarks written in any of the abundant of programming tools that are

available for Linux.

The simulator allows easy modifications of architecture parameters (e.g., core count,
memory hierarchy configuration, cache configuration, etc.) and collecting comprehensive

micro-architecture-level statistics (e.g., core stalls, cache lines utilization).

3.1. Basic requirements

Our basic requirements for our simulator are that it runs Linux programs and that it
simulates only the user-space execution. We argue that for the purpose of simulating
benchmarks that target highly parallel architectures, simulating the kernel-space code
execution is not only unnecessary, it’s undesirable. In this section we explain the

motivation behind these basic requirements.

Benchmarks that are not tied to a specific architecture are typically implemented for
general-purpose operating systems, primarily Linux (but sometimes also for Windows
and/or UNIX) to make them usable across many environments. In particular, there is an
abundance of software development tools for general-purpose OSs, which facilitates
implementing custom benchmarks as well as tweaking existing ones. Therefore, we target

our simulator to be able to execute benchmarks implemented for Linux.

A straightforward approach for simulating a program implemented for a specific OS is
a full system simulator [6][7][8], i.e., simulating an entire computer system and running a
real-world operating system. However, in general, highly parallel architectures target

compute intensive workloads. In fact, contemporary existing highly parallel architectures

15



are typically used as accelerators [9][10], with no OS at all and no direct 1/0 capabilities®.

Thus, simulating OS 1/O services is not essential for throughput benchmarks.

Even when a throughput workload is running on a full-fledged OS, maximizing compute
throughput typically involve preventing context switches to avoid the associated overhead.
This is achieved by spawning no more threads than there are hardware thread-contexts.
With this and under an assumption that no other programs are running on the system, no
context-switch is needed, effectively neutralizing the OS scheduler. Thus, although the
benchmarks we target for our simulator are implemented for a general-purpose OS (Linux),
we assume that no OS-level scheduling is taking place so it’s not necessary to simulate the
OS scheduler.

Moreover, general-purpose OSs (such as Linux) perform background maintenance
operations (interrupts, daemons) which trigger context-switches and consume core cycles,
thus “polluting” the simulation with unrelated and non-deterministic computation resource
consumption. As an example, in [11] a full-system simulator was used to gather traces for
offline trace-driven simulation but the OS computation was filtered out of the trace because

it was undesirable in the simulation.

Not all effects of OS services on throughput benchmarks simulation are undesirable.
The effects of Inter-Thread Communication (ITC) such as locking, are essential for
capturing the inter-thread data dependency, which can be a principal performance limiting
factor in parallel workloads. Therefore, we target our simulator to be execution-driven (as
opposed to trace-driven) to capture this important aspect of throughput benchmarks.
However, we do argue that it’s desirable to factor out the OS computation of ITC services
in order to capture the workload’s inherent data-dependency effects on the performance
regardless of specific OS implementation of ITC services. ITC implementations are subject
to various optimization tradeoffs that may be configurable or evolve between versions of

the OS. Moreover, highly parallel architectures may implement ITC primitives in

% In practice the benchmarks do use the OS 1/0 services, but primarily for setup (e.g., taking
execution parameters) and teardown (e.g., reporting results) but the core of the benchmark doesn’t
use OS 1/O services.
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hardware. So we would like to preserve the effects of ITC on the simulated benchmarks

without simulating their implementation.

To summarize, we want our simulator to simulate only the user-space code of the
workloads, effectively assuming that all OS services (I/O or otherwise) do not consume

computation resources but still preserve ITC effects.

An existing simulator that scales to the degree of parallelism that we need is
Graphite [12]. However Graphite is optimized for low single-simulation latency and for
that it exploits distributed setting. However, to facilitate distributed simulation, Graphite
employs relaxed synchronization model. For our study, accurate synchronization is vital

because synchronization can be a principal parallelism-limiting factor.

It should be noted that the simulation captures shared-resource contention effects,
namely the memory hierarchy, similar to the analytical model, but it also captures the data-
dependency effects, by simulating the ITC effects, which the analytical model doesn’t

capture.

3.2. Architecture

We implement user-space simulation by means of binary instrumentation. Binary
instrumentation is the process of in-memory modification of a program while it executes,
allowing interleaving of the program’s code with custom instrumentation code that can
observe and/or affect the original code’s behavior. Binary-instrumentation-based
simulation has the additional benefit of not requiring the simulated application to be
implemented using a specific language or framework and doesn’t require re-compilation.
Among other things, this allows simulating applications that execute under a runtime-
environment program such as the Java Virtual Machine. Our simulator is built on the Pin

binary instrumentation framework from Intel [13].

3.2.1. Functional execution scheduling

Since with binary instrumentation the application’s instructions are functionally

executed on a physical processor, the physical processor provides the ISA functional-
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model. Thus, simulation requires the program instructions to be scheduled to the physical
processor in the order imposed by the timing model of the simulated architecture. For
example, when two threads contend on changing the same memory location (typically
using atomic Read-Modify-Write instructions), the one that would execute first according

to the timing model should be scheduled first to the physical processor.

Simulation is implemented through binary instrumentation by having the binary

instrumentation framework instrument the benchmark program with simulator code that:

e observes the program’s dynamic instructions streams (threads)

e executes a timing model of the simulated architecture on the observed
instructions streams

e schedules the execution continuation according to the outcome of the timing

model execution.

This is depicted in Figure 3-1. The instruction streams of the application threads are
instrumented with callback operations into the simulator’s code. These provide the
simulator with all the information about the subsequent instruction of each instruction
stream, such as whether it’s a memory instruction or not, and if it is, whether it is a read or
write operation, the referenced address, the operand size, etc. Therefore, as the code

executes the simulator gets to see each instruction and its operands before it executes.
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Figure 3-1: Application-Simulator interaction

To achieve the effect of execution-driven simulation, the instructions of the different
threads must be executed in the relative order that the simulated architecture imposes. This
means that the next instruction of a given thread must be allowed to execute only when it
is determined that all the next instructions of all other running threads are ordered after it
according to the simulated architecture’s timing model. In other words, given a set of next
instructions of all running threads, the next instruction to schedule for functional execution
is the one that is going to complete first according to the timing model. Thus, given the set
of next instructions of all running threads, the simulator executes the timing model until it
determines which of these instructions will be completed first. Then it lets the respective
thread execute this instruction. It then gets notified about the subsequent instruction of that

thread, and it again has a set of next instructions of all running threads. It continues the
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execution of the timing model from where it left off and determines the next instruction

that will be completed, and so on.

Controlling the next instruction execution requires the ability to suspend and resume
application threads. This is achieved through a per-thread functional execution scheduling
semaphore that is maintained in a per-thread-context block. When a callback is called with
the information about the next instruction, the instruction is added to the current set of next
instructions and the thread is suspended by waiting on its respective semaphore. When the
next instruction to execute is determined from the timing model, the instruction is allowed
to functionally execute by signaling the respective thread’s semaphore, which make the

callback return and the next instruction to execute.

3.2.2. Inter-thread communication effects preservation

To further maintain execution-driven simulation, the ITC effects on the execution must
be preserved. There are two main forms of ITCs: one that involves the OS and one that

doesn’t.

In ITC that involves the OS a thread makes a syscall (system call into the OS kernel)
that blocks until another thread makes a complementary syscall that makes the former
syscall return. When the blocking syscall is allowed to execute, the respective thread will
get blocked inside the syscall. For the syscall to return, the other running threads need to
be allowed to make progress in order for the complementary syscall to be reached. During
this time the blocked thread cannot make progress. To reflect this, a thread that is about to
execute a syscall is removed from the set of currently running threads. This allows
simulation scheduling to continue because the timing model no longer expects to have a
next instruction from that thread to participate in the timing model execution. When the
complementary syscall is executed, the blocking syscall returns, which causes the
instrumentation callback following the syscall to be called and the thread is added back to
the set of running threads and it again participates in timing model execution and functional

execution scheduling.

Instead of distinguishing between blocking and non-blocking syscalls to determine

whether to exclude a thread from the set of running threads or not, we treat all syscalls as
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blocking. If the syscall is not really blocking, it will return quickly and the thread will be
added back to the set. Under the assumption that non-ITC syscalls are rarely used in
throughput workloads, the treatment of all syscalls as ITC should have negligible effect on

simulation results.

The other form of ITC doesn’t involve the OS, i.e., user-space-only ITC. Such ITC
necessarily uses shared variables for the communication. The effects of such ITC are
implicitly maintained by the user-space-only simulation as described above. The canonical
example for user-space-only ITC is a spin-lock mutex [14]. A possible straight-forward

implementation of spin-lock mutex is the following:

1 subroutine Acquire (Mutex)

2 while (CAS (Mutex.state, FREE, OWNED) = OWNED)
3 end while

4 End subroutine

5 subroutine Release (Mutex)

6 Mutex.state € FREE

7 MemoryFence

8 end subroutine

Since instructions are executed in the order imposed by the timing model, the thread
that would execute the acquisition CAS first in the simulated architecture will be the one
that is scheduled first by the simulator’s functional execution scheduler and therefore end
up owning the mutex first. Until the mutex is released all other threads will be spinning
inside the Acquire subroutine and thus will not make computational progress, which is

exactly the inter-thread data dependency effect that the simulator should capture.
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3.2.3. Achieving execution-driven simulation

The timing model part of our simulator is effectively a trace-driven simulator — its input
is the instruction traces of the application threads. It so happens that the trace is of a single
instruction from each thread. Once an instruction is executed, and therefore removed from
the trace, the following instruction constitutes the next single instruction trace of that thread
and again the input of the timing model is a trace of a single instruction from each thread.
The online feedback from this trace-driven timing model to the trace collecting mechanism
by mean of binary instrumentation callbacks makes our simulator effectively an execution-

driven simulator.

The timing simulation is implemented using classical event-driven simulation design.
From an architecture point of view, this allows arbitrarily detailed simulation, e.g., on-chip
network routing, cache-coherency protocols, DRAM controller etc. This also allows
trading off accuracy for simulation speed through a simplified timing model, e.g., fixed

latencies memory hierarchy.

3.3. Implementation

3.3.1. Reducing context switches

Following from the description in section 3.2.1, when two consecutively scheduled
workload instructions are from different threads, there is at least one OS-level context
switch because after the first instruction executes, the callback blocks on the semaphore
and then the second instruction’s thread semaphore is signaled and the respective thread
unblocks. The more threads are running, the bigger the chance for any pair of consecutively
executed instructions to come from different threads. So the number of context switches is
in the order of the total number of executed instructions. This is a huge performance

overhead.

A Kkey observation here is that in order to preserve the effect of the simulated
architecture’s timing on the computation, it is not necessary to functionally execute all the
instructions in the global order that is imposed by the timing model — it suffices that the

functional execution order maintains the relative execution order. In particular, the
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functional execution of a single thread is not affected by other threads if there are no shared
operands. For example, suppose a thread Ta executes a computation sequence that involves
only Register operands and no memory operand. The results of this sequence cannot be
affected by computations of other threads because other threads cannot change any of Ta‘s
registers and therefore cannot change any of its operands. Thus, the results are not affected
by whether other threads’ computations are executed before, during or after Ta‘s
computation. In other words, this Ta‘s computation sequence is unordered relative to other

threads.

Similarly to register only operands sequences, if it can be shown that a computation
sequence that uses memory operands do not share these memory operands with other
threads, then such a sequence is also not affected by the execution of other threads and
therefore is unordered relative to other threads. With Linux supporting processors with
relaxed memory consistency models [15], i.e., modifications to memory locations may be
observed in different order by different threads, the program must use memory fences to
make any visibility order guarantees. While in theory different threads may observe fences
from different other threads in different order (therefore also in non-real-time order), a
simple fence ordering scheme that maintains the appropriate semantics is global real-time
order, i.e., all fences are observed by all threads in the same order that also reflect their

real-time order.

The order of memory modifications is defined relative to memory fences in their
respective thread as depicted in Figure 3-2. It shows the real time execution of two threads
Tal and TaZ. The instruction streams are segmented on memory fence boundaries — the
thick black lines denote memory fence instructions. Si* and S;! are consecutive segments
of Tal. Similarly Si? and S>? are consecutive segments of Ta?. The instructions in S;* are
unordered relative to S;2— each may or may not see modifications made to shared variables
by the other. The same is true for Si* and S,?. However, it is guaranteed that S,* sees the
modifications made by Si? because S,! is ordered after the fence at t4, which is ordered
after the fence in t3 (because fences are globally ordered), which in turn is ordered after
S12. So a segment Sp' is guaranteed to see the changes made by a segment in another thread
S/ IFF the memory fence preceding Sm' in Ta' is ordered after the memory fence

succeeding Sy in Tal. Otherwise the segments are unordered. Therefore, correct programs
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must ensure that there are no accesses with undefined relative ordering to the same
operands by multiple threads because otherwise, the same initial program state may

produce different results in different runs.

TAl I

Ta?

th b ts t ts to
Figure 3-2: Weak memory consistency-model

Whether unordered segments see the memory modifications of each other is undefined.
Therefore, they cannot have common operands. Thus, unordered segments can be
functionally executed in any order with no change of semantics, i.e., independent of their
exact timing according to the timing model. To maintain correct execution semantics it
suffices that ordered segments are functionally executed in the right order according to the
simulated architecture timing model and for that it suffices that only memory fences are
executed exactly according to the timing model. This allows functionally executing
instructions of a single thread atomically (i.e., continuously) without considering the timing
model as long as no memory fence is encountered. Once a memory fence is encountered,
its functional execution must be delayed until all memory fences that precede it according
to the timing model have been executed so that subsequent instructions get to see the
functional results of other threads’ segments that are ordered before them. This is illustrated
in Figure 3-3. It shows 3 instructions streams of 3 threads: Tal, Ta? and Ta%. The small
black rectangles denote instructions that are memory fences. Figure 3-3(a) shows the
functional execution timing in the simulated architecture. The arrows show order
dependency, from a segment that is ordered after to the segments that are ordered before
it. Figure 3-3(b) shows functionally equivalent execution: memory fences are executed in

the same order as in Figure 3-3(a) and segments that are ordered execute in the right order.
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Figure 3-3: Functional execution scheduling

Segment execution includes trace collection. The timing model still works with one
instruction trace per thread but after an instruction is determined to be completed, the next
instruction for that thread is taken from the respective thread’s trace, if it’s not empty. If it
is empty, the next segment is allowed to execute and a new trace is collected. Now again
there are non-empty traces for all the running threads and the timing model execution can

continue.

3.3.2. Timing model execution thread

Figure 3-4 depicts how the functional-execution scheduling is combined with timing
model execution to achieve the effect of execution-driven simulation. When an application

code segment executes, a trace is collected. Timing simulation takes place when a non-
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empty trace is available for all running threads. During timing simulation all the threads
are blocked on their execution scheduling semaphore. The exhaustion of any of the per-
thread traces implies that the next instruction in that thread is next in the global order. At
this point timing simulation is suspended and functional execution of the thread whose
trace was exhausted is resumed and a new trace is collected, up to the next fence
(excluding). Now again there are non-empty traces available for all running threads and

again timing simulation can take place.

T R T P, e D P
1 1 = [ = = = =
Ta I 51 2 2 2 2 £
— =T S S e == S peeeeemre e e =T =
H (S o (S (S (S)
i L) [ L) L) a
H > x x > >
————————————————— U F-=-=-==4 @ U pemmmmmmmmm === 1 @ a ———————
Ta? z 3 st ||| B z SRR I
_________________ e bo___-_J] ¢ [T S —— o ——mm— -
g g g g g
_ & & & &
_______________ £ E |I”°~~"""7| £ = -TT==" £ Tt
T3 E sPHH E E I 55 E E
e e e e e e —— - = L [ (==l [P Ll
Real execution time
: ; ; : d : >
21 t ts ty s ts

Figure 3-4: The combination of functional and timing-model execution, resulting effectively an

execution-driven simulation

To summarize, the simulator alternates between two execution phases:
I.  Functional execution and Trace-collection
Il.  Timing-simulation

In phase I, the workload’s code executes on the physical processor (functional
execution) and the instrumentation code collects trace by observing the instructions stream.
Once traces are collected for all running threads, simulation changes to phase Il by
suspending the functional execution (all threads are blocked on their respective execution
scheduling Semaphore) and executing the timing simulation. Once the timing simulation
exhausts any of the thread traces, simulation changes back to Phase | by suspending the
timing simulation and resuming the execution of the thread whose trace was exhausted by
signaling its execution scheduling semaphore. After the resumed thread collects a new
trace, once again traces are available for all threads and timing simulation can continue and

SO on.
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Executing the timing model requires an execution thread-context. One possible
approach is to have a dedicated thread Te. That thread would determine the next instruction
to execute, unblock the respective thread Ta' and wait for it to complete collecting a new
trace for that thread. When trace collection completes, the callback of that thread will make
the trace available to Tg, unblock it and then block on its scheduling semaphore. This is

depicted in Figure 3-5.
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Figure 3-5 Execution scheduling with a dedicated thread for timing model execution (TE)

t;

This approach implies that for every executed segment there will be two context
switches: one from Te to TA' after Ta' has been determined from the timing model and one

from TAl to Te once trace collection for Ta' completes.

It should be noted that in this approach the execution of Te is completely serialized with
the execution of the application’s threads — when one executes all the others are blocked.
Therefore, we exploit this fact to save one context-switch per-segment by executing the
timing model in the application thread within the callback. This is depicted in Figure 3-6.
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Figure 3-6 Execution scheduling without a dedicated thread for timing model execution

3.3.3. Limiting the size of a segment

We saw that partitioning instruction streams into segments along memory fences and
executing the segments atomically is consistent with weak memory consistency model and
also allows incurring only one context switch per segment execution. However, a thread
may execute an unbounded number of instructions between memory fences, implying that
segments lengths are unbounded which in turn implies that trace lengths are unbounded.
Long traces increase the memory working-set, potentially incurring significant overhead
(e.g., reduces cache utilization, thrashes physical memory). Also, the marginal gain of
amortizing the context-switch overhead across long segments diminishes quickly — for
example the gain in amortizing the context switch overhead across segments of 20
instructions instead of 10 instructions is much larger than the gain in amortizing across
1010 instructions instead of 1000 instructions. Therefore, it is beneficial to limit the
segment length (and therefore the trace length) — it avoids the overhead of larger memory
working set on the expense of negligible context-switch overhead due to what could have

been a longer segment.

It is important to note that in general, the segment-based functional execution
scheduling ensures that first instructions in each segment are executed in the global order
that is dictated by the timing model (which is not the case with instructions that are not first
in a segment). Thus, instructions that must execute in the correct global order, such as
memory fences, must be first in an execution segment. However, any instruction can be
executed in the correct global without affecting correctness. So a segment can be made
arbitrarily short without affecting correctness, as long as memory fences are always first in
a segment. In particular, a segment can be limited to 1 instruction, thus making all
instructions first in a segment and hence all instructions are executed in the correct global
order, as would be the case if we didn’t employ longer traces. This also allows suspending
trace collection conservatively, i.e., if an operation may be a fence but not necessarily, e.g.,

a syscall.

The actual trace length limit is a parameter of the simulator.
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3.3.4. Simulated architecture software scheduling

As explained in section 3.1, it is assumed that a throughput workload will not spawn
more threads than there are hardware thread-contexts in the simulated architecture and
therefore there is no need for a software scheduler, i.e., software-managed context-
switching, a software scheduler that suspends a running thread to free its hardware thread-
context and assigns another thread to that thread-context. However, in practice a workload
may have more active threads than hardware thread-context even if it doesn’t spawn more
worker thread than there are thread-contexts. For example, a workload may have a main
thread than spawn the worker threads and then waits for them to terminate. If all the worker
threads start running before the main thread reaches the blocking step, there are more active
threads in the program than there are hardware thread-contexts. The simulator handles this
by implementing a simple cooperative-multitasking software scheduler i.e., a scheduler
that holds aside threads if there is no vacant hardware thread-context and map them to a
hardware thread-context when one becomes available, i.e., by a running thread getting
blocked on an OS syscall. Thus, in the above workload example where the number of
running threads is one more than there are hardware thread-contexts, either the main thread
is assigned to a hardware thread-context or it is not. If it is, then one of the worker threads
cannot be mapped to a hardware thread-context and therefore the main thread can make
progress but one of the worker threads cannot. The main thread will quickly get to block
waiting for the worker threads to finish and hence will free its thread-context and the
cooperative scheduler will assign the last worker thread to that thread-context. Now only
the worker threads are active and therefore all are assigned to thread-contexts, all run in
parallel and no further context switch is needed even if any of them blocks. If the main
thread is not assigned to a thread-context (for example, because it blocked on something
else and then unblocked before blocking on waiting for the worker threads to finish) then
all the worker threads are assigned to hardware thread-contexts and they all run in parallel
until one of them blocks or terminates. When one blocks or terminates, its thread-context
is freed and the cooperative scheduler assigns the main thread to it. Again the main thread
will quickly get to the stage that it is blocked on the worker threads and again only worker
threads are active so there are at most as many active threads as there are thread-contexts

and the worker threads run in parallel until termination. Thus, in either case the worker
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threads end up running in parallel except for brief period it takes for the main thread to

block after spawning all the worker threads.

It should be noted that this software cooperative scheduler graceful handling of the
number of active threads exceeding the number of hardware thread-contexts is not limited
to exceeding only by one. It can be easily seen that exceeding by more than one is handled
equally gracefully, as long as the period of excessive active threads is very small relative

to the runtime of the worker threads.

3.4. Summary

To summarize, our simulator executes Linux programs, simulating only the user-space
code. It is oriented to throughput workloads, assuming no use of OS I/O or scheduling
services. The functional execution is provided by the physical processor and the timing
simulation is provided by an arbitrarily detailed timing model that is implemented using

event-driven architecture.
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Chapter 4.
Benchmarks parallelism scalability study

4.1. Introduction

In this chapter we use our simulator to study the inherent parallelism scalability of a
widely used parallel benchmarks: the Parsec benchmark suite [3]. What we would like to
capture is the benchmarks’ inherent limitations in exploiting highly parallel architectures.
We capture this through the performance as a function of the degree of parallelism that is

available in the underlying architecture (the number of Processing elements or Cores).

To capture the parallelism inherent in a benchmark’s algorithm, we use architecture with
no inherent parallelism limitation in the architecture itself, such as bandwidth limits or
memory latency. Therefore, for the parallelism scalability study we use architecture with a
perfect memory system — no cache and every memory access incurs a latency of 1 cycle.
We maintain a latency of 1 rather than 0 cycles as an expression of the fact that memory

instructions are inherently slower than non-memory instructions.

The metric we use for performance is the average instructions-per-cycle. This metric is
more appropriate than the conventional total execution-time metric because the latter
allows meaningful comparison only when the size of the problem is constant across
different parallelism degrees. Such parallelism model is compatible with the model used
by Amdahl’s Law [1]. However, a program may adjust the size of the problem according
to the execution parameters such as the parallelism degree. Such parallelism model is
compatible with Gustafson Law [16]. Indeed some benchmarks in the Parsec benchmark
suite adjust the problem size to the parallelism degree. The IPC metric effectively
normalizes the performance over the problem size. It should be noted that this assumes the
program does not include speculative computation or else the IPC metric does not reflect
the performance — an execution with higher degree of parallelism and higher IPC may have
larger portion of its speculative computation discarded than an execution with lower degree
of parallelism and lower IPC so that the latter completes faster, thus having higher
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performance while having lower IPC. The benchmarks in the Parsec benchmark suite do

not include speculative computation.

In the Parsec benchmark suite, the degree of parallelism is expressed by the number of
worker-threads, i.e. the number of threads the program spawns (not all worker-threads
necessarily perform computation throughout the program execution, e.g., a thread may
block waiting for other threads). The number of worker threads is a runtime parameter of
the benchmark. We use simulated architecture that has at least as much cores as there are
worker-threads so that core-to-thread allocation does not constitute a parallelism limiting

factor.

Table 4-1 summarizes the parameters of the architecture model that is used to study the

parallelism parameters.

Parameter Description
Npe >= #worker-threads
Ss 0 (no cache)
Nmax Npe
CPlexe 1 [cycles]
ts Not applicable (no cache)
tm 1 [cycles]

Table 4-1: Model parameters for the parallelism scalability study

With no algorithmic speculative computation, there are two performance limiting

factors (i.e., factors that reduce the IPC):

1. Memory latency
This reduces IPC through incurring extra latency. The degree of IPC reduction
depends on the mix of memory and non-memory instructions. This is captured

by the workload model parameter rm, as described in 2.2.
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2. Inter-thread synchronization
This reduces IPC through preventing a thread from executing any instructions

while waiting for another thread to complete some computation.

The Inter-thread synchronization reflects the ITC inherent in the workload. Inter-
thread synchronization is known to be a principal performance limiting factor for highly
parallel architectures, from GPUs to super-computers. The effect of inter-thread
synchronization can be visualized through graph of the number of running threads (as
opposed to blocked threads) over time. For example, suppose a parallel algorithm
involves each thread performing multiple iterations where the iterations of different
threads need to execute in lock-step. This requires that at the end of every iteration all
threads wait until all other threads complete the respective iteration. This type of
synchronization is typically achieved using a Barrier synchronization object [17]. Further
suppose that the time it takes a thread to execute an iteration is distributes uniformly
between t, and tx. The number of active threads over time for this algorithm is depicted in
Figure 4-1. From the beginning of an iteration to until to+t, the number of active thread is
equal to the number of worker threads and from there until to+tx the number decrease
linearly down to 1 (the last one to complete the iteration), at which time the next iteration

can start and all the waiting threads are unblocked.
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Figure 4-1: thread-context occupancy illustration

For a given number of worker-threads and in the absence of speculative computation,
maximum performance is achieved when all the threads are running throughout the
program execution. The performance in this case is provided by formula (2-5) in the
analytical model (section 2.2). The fact that the architecture that is used to study the
parallelism scalability has no cache is equivalent to Pmiss(Ss,n)=1. Therefore, the
performance formula (2-5) becomes:

(4-1) Performance,,,x(n)[IPC] = — ir n

n is the number of worker-threads; CPlexe and tm are described in Table 4-1; rm is

extracted from the simulation.

A workload is said to have perfect parallelism scalability over a range of worker-threads
count when its actual performance is equal to the maximum performance as depicted in
(4-1) over that range. Such a workload can fully utilize as much parallelism in the range as
available in underlying architecture.

In our study we show the actual performance vs. the number of worker-threads of the
actual and maximum performance of the various benchmarks in the Parsec benchmark

suite. For the ones that do not exhibit perfect parallelism scalability, i.e., limited by inter-
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thread synchronization, we show the inter-thread synchronization effects using the graph

of running threads over time for several worker-threads counts.

4.2. Measurement methodology

Using the simulator described in Chapter 3, we obtain the total number of executed
instructions and the total execution time (in cycles) and calculate the IPC. The details of

the simulation environment are provided in Appendix: simulation environment.

We measure with the benchmarks running with up to 1984 worker-threads. The upper
limit is derived from a limitation of the Pin binary instrumentation framework, which
supports programs with up to 2048 threads. Since most of the benchmarks have a control
thread in addition to the worker-threads, these benchmarks cannot be instantiated with 2048
worker-threads under Pin. 1984 was chosen because the higher worker-threads count were
selected to be multiple of 64 and 1984 is the largest multiple of 64 that is smaller than 2048.
To have measurements in reasonable resolution, the worker-threads counts are not spaced
evenly across the range. They are spaced more closely in the lower range. So the simulated
worker-threads counts are 4-64 in 4 threads interval, 64-128 in 16 threads interval and 128-
1984 in 64 threads interval.

Some benchmarks have constraints on the number of worker-threads, such as it must be
a power of two. Some do not run properly with order of hundreds and thousands worker-
threads. Some spawn multiple threads per worker-thread count so they hit the 2048 threads
limit of the Pin binary instrumentation framework with a lower number of worker-threads

parameter. We indicate this in the results of the specific benchmark.

The simulations are performed with the “simmedium” data-set unless otherwise

indicated in the results of the specific benchmark.

The benchmarks of the Parsec benchmark suite include setup and cleanup steps that are
not part of the parallel algorithm, e.g., reading input data from disk to memory, printing
summary information etc. To allow excluding these operation from the measurement, the
Parsec benchmark suites define Region of Interest (ROI), which is the part of the execution

that performs the actual parallel algorithm. The ROI start and end are signaled by calls to
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specific functions. These signals are made available inside the simulator by sensing these
calls. To enable this ROI detection by the simulator, the simulator takes the names of the
ROI start/end functions as parameters. The ROI start/end notifications inside the simulator
are used to reset/sample the simulator’s internal performance counters (on ROI begin/end,
respectively) so that the startup and cleanup operations are excluded from the simulation

statistics.

The benchmarks in the Parsec benchmark suite notify the ROI start just before spawning
the worker threads, after preparing the input data-set in memory. However, this means that
the thread spawning operation is included in the ROI but this is not really part of the parallel
algorithm. Spawning a thread involves some computation that executes in the context of
the spawning thread and some thread-startup computation that executes in the context of
the newly spawned thread. We’ll refer to these as Cprepare and Cstartup, respectively. While
Cstartup OF different worker threads can execute in parallel because they execute in the
context of different threads, Cprepare Of different worker threads all execute in the context
of the spawning thread and hence are serialized. Thus, spawning the worker threads incurs
a serial-execution component that is proportional to the number of worker threads; hence
its effect increases with the degree of parallelism. To exclude Cprepare and Cstartup from the
ROI, our simulator supports an alternate ROI detection mode, different than detecting the
calls to the ROI start/end functions. In this mode the ROI begin is implied from all the
threads reaching the thread-entry point function, i.e., after all Cprepare and Cstartup
computations have finished. For this mechanism the simulator takes 2 parameters: a list of
thread entry-point functions* and the expected number of threads to enter these functions.
To ensure all the parallel computation is included in the ROI, the simulator freezes the
threads as they reach the thread-entry function so that they do not execute code until all
worker-threads have been spawned and reached the thread entry-function (i.e., after
Cstartup). This has the effect of a barrier at the beginning of the thread-entry functions.
Indeed some benchmarks have explicit barrier in the beginning of their thread-entry
function to achieve exactly that. However, the Simulator’s effective barrier has the

4 some benchmarks have several entry functions, for different types of worker-threads
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advantage that it takes zero simulation time to unblock all the threads, as opposed to a
barrier in the benchmark itself, which does consumes simulation execution cycles while
actually not being part of the parallel algorithm. Therefore, for the purpose of our
simulations we removed barriers in the beginning of thread-entry functions. We indicate

this in the results of the specific benchmarks.

Complementary to notifying ROI start just before spawning the worker threads, the
benchmarks in the Parsec benchmark suite notify ROI end just after all the worker threads
terminate, traditionally referred to as join-ing the thread handles. Similar to the case of
spawning a thread, joining a thread involves thread-cleanup computations that execute in
the context of the joined threads, and computations that execute in the contexts of the
joining thread. We’ll call them Cterminate, and Cjoin, respectively. While Cierminate OF different
threads can run in parallel, the Cjoin Of different threads are serialized in the joining thread.
Moreover, worker threads are not necessarily symmetrical with regards to execution time,
i.e., some threads may exit sooner than others. This means that the degree of parallelism is
reduced towards the end of execution. Like serial execution computation segments, the
effect of this “reduced parallelism tail” increases with the increase in the degree of
parallelism so we would like to exclude it from the simulation too. This is achieved by the
simulator sensing the exit from the thread entry-point functions and using the first exit as
the ROI end indicator. This excludes the Cterminate and Cjoin Of all threads from ROI, as well
as the “reduced parallelism tail”. While we recognize that theoretically the “reduced
parallelism tail” can be a principal performance bottleneck of a parallel workload®, we
assume that even if it is, this is not inherent to the parallel algorithm but rather a
consequence of the particular implementation. Under this assumption, the tail is not
representative of the benchmark’s inherent parallelism so excluding it for the purpose of

studying the parallel part is desirable.

® Reference to map-reduce handling of “reduced parallelism tail”.
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4.3. Simulation results

4.3.1. blackscholes

The blackscholes benchmark contains a barrier at the beginning of the worker-threads in
order to maximize parallelism by making all the threads start only after all have been
created and reached the starting point. As described in section 4.2, a barrier in the workload
itself introduces a serial phase so for our measurements we removed the barrier from the
benchmark and replaced it by the simulator’s support for worker-threads start
synchronization.

The blackscholes benchmark exhibits perfect parallelism scalability, as shown in

Figure 4-2 (the curves of the maximum and actual performance overlap).
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Figure 4-2: Parallelism scalability - blackscholes

The blackscholes benchmark is embarrassingly parallel, i.e., there is an abundance of
the parallel units of work and they are completely independent — the data-set is partitioned
evenly between the worker-threads, which operate on them independently, i.e., with no
inter-thread synchronization. This is seen in Figure 4-3, which shows that all worker
threads are running throughout the benchmark execution, i.e., they never block to
synchronize with other threads (we use the 1948 worker-threads execution as a

representative — it is the same with smaller number of worker-threads):
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Figure 4-3: Running threads over time - blackscholes

4.3.2. bodytrack

The performance of the bodytrack benchmark is shown in Figure 4-4. Figure 4-5 is
similar to Figure 4-4 except that the vertical axis is scaled, to provide a more detailed view
of the actual performance curve. It shows good scalability up to ~32 threads and the

performance plateaus at ~128 worker-threads.
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Figure 4-4: Parallelism scalability — bodytrack
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Figure 4-5: Parallelism scalability — bodytrack (scaled)

The bodytrack benchmark has poor scalability and the running threads over time curves
in Figure 4-6 provides the explanation: there is a serial component that is ~53-10" cycles

long that increasingly dominates the execution time as the number of worker threads
increases.
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4.3.3. canneal

Figure 4-6: Running threads over time - bodytrack

The performance of the canneal benchmark is shown in Figure 4-7. Figure 4-8 is similar

only doesn’t increase, it decreases.
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to Figure 4-7 except that the vertical axis is scaled, to provide a more detailed view of the
actual performance curve. It shows that this benchmark has good scalability up to ~128
worker-threads and peak performance at ~256 threads. Beyond that the performance not
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The running threads over time curve of Figure 4-9 explain the performance: this

benchmark has a serial component that is not of fixed length but rather grows with the

number of worker threads. It is completely masked with 32 worker threads but emerges

and becomes increasingly dominant fast with the increase in worker-threads count.
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Figure 4-9: Running threads over time - canneal
4.3.4. dedup

The dedup benchmark has 3-stage pipelined design, each stage with as many worker
threads as the parallelism degree specified in the benchmark invocation. Thus, this

benchmark spawns three times the number of worker threads than the number specified in
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the program invocation. Since our simulator is limited to 2048 threads, this benchmark was

simulated with up to 640 threads specified in the program invocation.

Due to the pipeline design, the end of ROI (Region-Of-Interest) was not taken to be
when the first thread exits because there are several types of worker-threads (per pipeline
stage) and some exit significantly earlier than others. Therefore, for this benchmark the
special ROI inference based on worker thread exiting was not used. Instead the ROI end
was inferred from the benchmark’s built-in ROI end function call, i.e., after all worker-
threads have exited.

The performance of the dedup benchmark is shown in Figure 4-10. Figure 4-11 is
similar to Figure 4-10 except that the vertical axis is scaled, to provide a more detailed

view of the actual performance curve. It shows that the performance plateaus at 64 threads.
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Figure 4-10: Parallelism scalability — dedup
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Figure 4-11: Parallelism scalability - dedup (scaled)

The running threads over-time curves are shown in Figure 4-12. Indeed they show that
adding worker threads beyond 64 does not change the execution pattern. However, we see
that there are periods of time with more running threads than the number of thread the
benchmarks was invoked to because the benchmark actually spawns 3 times this number
so although Figure 4-11 seems to indicate that up to 64 threads the performance scalability

is very good, in fact it requires more cores to reach that performance.
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4.3.5. facesim

The facesim benchmark requires the number of worker threads to be a power of 2 and
is limited to 128 worker-threads. This limit is both hard-coded and there is no suitable data-
set for more than 128 worker-threads. Thus, merely changing the hard-coded limit and

invoking with more threads fails to run due to lack of appropriate data set.
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The performance of the facesim benchmark is shown in Figure 4-13. Figure 4-14 is
similar to Figure 4-13 except that the vertical axis is scaled, to provide a more detailed
view of the actual performance curve. It shows very poor performance scalability — while
the performance is monotonously increasing, the marginal performance increase decreases
rapidly and the maximal performance, achieved at 128 threads is equal to the theoretical

maximal performance at ~8 threads.
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Figure 4-14: Parallelism scalability - facesim (scaled)
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The running threads over-time curves are shown in Figure 4-15. They show that there
is a leading serial part of ~11E+10 cycles long that occupies around half of the execution
time with 4 worker threads and increasingly dominates the execution time, which explains

the poor performance scalability.

facesim
4 worker-threads

hat
in

S

w
in

(]

i
n

=
in

=

#Ready worker-threads

=}
in

[=]

SE+09 1E+10 1.5E+10 2E+10

[=]

time [cycles]

facesim
8 worker-threads

=]

#Ready worker-threads
4=

[

=}

o] 2E+09 4E+09 GE+09 8E+09 1E+10 1.2E+10 1.4E+10

time [cycles]

51



facesim
32 worker-threads

[ w
u =]
!

=
=]

[
Q

#Ready worker-threads

u

=]

2E+09 4E+09 6E+09 8E+09 1E+10 1.2E+10

time [cycles]

=]

facesim
128 worker-threads

140
% 120
m
E 100
=
v
5 &0
2
9 s
2
5
o 40
Q
% 20

0 T T T T T 1
o 2E+09 4E+09 BE+09 8E+09 1E+10 1.2E+10
time [cycles]
Figure 4-15: Running threads over time - facesim
4.3.6. ferret

The ferret benchmark has 4-stage pipelined design, each stage with as many worker
threads as the parallelism degree specified in the benchmark invocation. Thus, this
benchmark spawns four times the number of worker threads than the number specified in
the program invocation. Since our simulator is limited to 2048 threads, this benchmark was

simulated with up to 448 threads specified in the program invocation.
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The performance of the ferret benchmark is shown in Figure 4-16. Figure 4-17 is similar
to Figure 4-16 except that the vertical axis is scaled, to provide a more detailed view of the
actual performance curve. It shows that the performance plateaus at 8 threads and there is
very little performance difference between 4 and 8 threads. Thus, this benchmark has poor

performance scalability.
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Figure 4-17: Parallelism scalability — ferret (scaled)
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The running threads over-time curves are shown in Figure 4-18. Indeed they show that
most of the time there are no more than 8 threads running and at most 12 are running at
any given time. Also, they show the same execution pattern for 8 threads as for 256 threads,
which Figure 4-17 shows that both result the same performance.
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Figure 4-18: Running threads over time - ferret

4.3.7. fluidanimate

The fluidanimate benchmark requires the number of worker threads to be a power of

2. Also, it doesn’t support 2048 threads: it requires an image block per worker-thread and

in the simmedium and simlarge data sets there are not enough image blocks for 2048

worker-threads. Therefore, this benchmark is simulated with up to 1024 threads.
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The performance of the fluidanimate benchmark is shown in Figure 4-19. It shows very

good performance scalability — almost linear and close to the theoretical maximum
performance.
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Figure 4-19: Parallelism scalability - fluidanimate

The running threads over-time curves are shown in Figure 4-20. They show that there
is no serial phase, and most of the time all threads are running, which explains the good
scalability. The fraction of the time that all threads are running decreases, which explains

the increasing gap between the theoretical maximum and actual performance.
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Figure 4-20: Running threads over time - fluidanimate

4.3.8. raytrace

The raytrace benchmark contains a barrier at the beginning of the worker-threads in
order to maximize parallelism by making all the threads start only after all have been
created and reached the starting point. As described in section 4.2, a barrier in the workload

itself introduces a serial phase so for our measurements we removed the barrier from the
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benchmark and replaced it by the simulator’s support for worker-threads start
synchronization.

The performance of the raytrace benchmark is shown in Figure 4-21. Figure 4-22 is
similar to Figure 4-21 except that the vertical axis is scaled, to provide a more detailed
view of the actual performance curve. It shows good performance scalability up to ~80
threads at which point it virtually plateaus.
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Figure 4-21: Parallelism scalability - raytrace
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Figure 4-22: Parallelism scalability — raytrace (scaled)
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The running threads over-time curves are shown in Figure 4-23. They show that as the

number of worker-threads increases, there is a tail that above 128 threads is not affected by

the number of threads and increasingly dominant the execution time.
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Figure 4-23: Running threads over time - raytrace

4.3.9. streamcluster

The streamcluster benchmark has a data-set that is proportional to the number of

benchmark is simulated with up to 640 threads.

61

worker-threads and therefore its execution time is proportional to the number of threads.

Large number of threads takes exceedingly long time to simulate. Therefore, this




The performance of the streamcluster benchmark is shown in Figure 4-24. It shows

good performance scalability — linear and about half of the maximum performance.
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Figure 4-24: Parallelism scalability — streamcluster

The running threads over-time curves are shown in Figure 4-25. They show that as the
number of worker threads increases the periods that all of them are running decreases but
on average the number of running threads is in the order of the worker number of worker
threads, which results good scalability.
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Figure 4-25: Running threads over time - streamcluster

4.3.10. swaptions

The performance of the swaptions benchmark is shown in Figure 4-26. It shows perfect
parallelism up to ~320 threads, and then it virtually plateaus up to 1024 threads, then

increases and plateaus again at ~1152 threads.
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Figure 4-26: Parallelism scalability - swaptions

The swaptions benchmark is embarrassingly parallel — it distributes the data-set evenly
between the worker-threads, which operate on them independently. However, unlike
blackscholes which is also embarrassingly parallel this benchmark doesn’t exhibit perfect
parallelism throughout the worker-threads count spectrum. This is because this benchmark
dynamically allocates memory throughout its parallel execution. Thus while there is no
inter-thread dependency in the algorithm, such a dependency is introduced through the
dynamic memory allocation heap manager, because the heap is shared by all threads and
therefore has to have some inter-thread synchronization. The running threads over-time
curves in Figure 4-27 reflect that — with 256 threads the heap synchronization is negligible.
With 512 and above, the computation involves in the heap management dwarfs the
computation of the actual algorithm so there is excessive contention which prevents all the
threads from running simultaneously. Therefore, the measured parallelism scalability is
actually the heap manager’s parallelism scalability rather than the swaptions algorithm
itself.
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Figure 4-27: Running threads over time - swaptions
4.3.11. vips

The performance of the vips benchmark is shown in Figure 4-28. Figure 4-29 is similar

to Figure 4-28 except that the vertical axis is scaled, to provide a more detailed view of the

actual performance curve. It shows excellent scalability up to 80 threads but then the

performance plateaus and even slightly decreases.
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Figure 4-28: Parallelism scalability - vips
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Figure 4-29: parallelism scalability — vips (scaled)

The running threads over-time curves are shown in Figure 4-30. They show that while
with 64 thread or less all of the threads are running most of the time, with 128 threads and

above there are never more than 75 threads that are running simultaneously.
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Figure 4-30: Running threads over time - vips
4.3.12. x264

The performance of the x264 benchmark is shown in Figure 4-31. Figure 4-32 is similar
to Figure 4-31 except that the vertical axis is scaled, to provide a more detailed view of the
actual performance curve. The performance plateaus at 8 threads with a decrease at 36

threads.
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Figure 4-31: Parallelism scalability - x264
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Figure 4-32: Parallelism scalability - x264 (scaled)

The running threads over-time curves are shown in Figure 4-33. They show that there

are never more than 9 threads running simultaneously and the execution pattern from 64
threads and above is the same.
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Figure 4-33: Running threads over time - x264

4.3.13. fregmine

The fregmine benchmark doesn’t support parallelism through pthreads [17], only
OpenMP [18]. In particular, there is no notion of ROl when executed in the OpenMP mode.

Therefore, we did not study this benchmark.
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4.4. Conclusions

A principal limiting factor of workload’s ability to utilize parallel architectures is its
ability to partition the computation into enough independent tasks throughout its execution.
If not, the parallel processing elements that are available in the architecture cannot all be

fully utilized, implying mismatch between the workload and the architecture.

We study this ability of given workloads to partition the computation into enough tasks
through measuring their performance on a parallel-perfect architecture, i.e. one with no
parallelism limitation: as much processing elements as there are threads and no shared
resources that parallel tasks may contend over. Thus, any deviation from full utilization of
the processing elements is necessarily due to the workload, not the architecture. Such
deviation necessarily stems from inter-thread synchronization, where a thread waits for
another thread to complete an operation, hence cannot perform any computation, and thus
cannot utilize the processing element that is presumably available in the underlying

architecture.
From the performance measurements we make the following conclusions:

1. Most Parsec workloads have parallelism degrees that vary significantly during
their execution, i.e. their parallelism behavior is not stationary in time.

2. A workload that instantiates a lot of worker threads cannot necessarily make
all of them indeed work in parallel — the maximum number of simultaneously
active threads may never reach the number of worker threads.

3. Even when a workload is able to make all the worker threads active
simultaneously, the performance gain may be negligible relative to smaller
number of worker threads because the duration of this phase of peak utilization
may be small relative to the total execution time. For one benchmark (canneal)
beyond a certain number of worker threads the performance even degrades (on
a parallel-perfect architecture!).

4. The performance of most of the benchmarks in the Parsec suite peak at largely
varying numbers of worker threads, implying large differences in parallel
scaling capabilities. Table 4-2 shows the peak parallelism degree for each

benchmark, i.e., the parallelism degree beyond which the marginal gain in
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further increase in the parallelism degree of the underlying architecture (and
corresponding increase in the number of worker threads) is negligible. It is
important to note that the architecture’s parallelism degree referred to here is
the number of cores, not necessarily the number of threads. For example, with
a multi-threaded architecture, i.e., with more thread-contexts than cores and a
hardware scheduler that switches threads when a thread is stalled waiting for
long RAM access, the performance can be improved by having as many
threads as there are thread-contexts, which is more than the number of cores,
because the additional threads can utilize core’s cycles that would be idle if

there were as many cores as threads.

Minimum #threads and #cores

Benchmark for peak performance
blackscholes >1984
bodytrack 32
canneal 128
dedup 96°
facesim 32
ferret 4
Fluidanimate >1024
raytrace 80
streamcluster >640
swaptions 3207
vips 80
X264 8

Table 4-2: Parsec per-benchmark inherent parallelism limitations

8 This benchmark plateaus when invoked with 64 threads but it actually spawns 3 times this number of threads
and gets up to ~1.5 times running threads than the number of threads in the invocation, thus it can utilize
up to 1.5:64=96 cores

" The limiting factor is the heap. Thus, a different heap implementation may result substantially different
limitations
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5. The inter-thread dependency is captured by the graph of running threads over
time. This is useful for directing parallelism-oriented performance
optimization.

The graph of running threads over time is not easily obtained on actual
hardware — the actual collection of the data could distort the results, in
particular if the data, which may be huge, needs to be written to external store
(e.g., disk or network store). Thus, simulation is highly useful for detailed
study of this aspect of parallel workloads.
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Chapter 5.
Cache analytical modeling study

5.1. Introduction

In this chapter we use our simulator to extract the cache performance (miss-rate) of the
benchmarks in the Parsec benchmark suite with various degrees of parallelism (up to the
maximum supported by the simulator and the specific benchmark) and compare it with the

analytical cache performance model proposed in [19]:

~(a-1)
(5-1) Pmiss(s$) = (Sf + 1)

Where Sg is the cache size and o and B are parameters that depend on the workload. This
model is based on the well-known empirical power law from the 70’s (also known as the
30% rule or the V2 rule) [20]. In Equation (5-1), workload locality increases when

increasing o or decreasing 3.

[4] proposes a simple adaptation of (5-1) to parallel workloads: it is assumed that the
threads do not share data, in which case the cache store space is effectively divided between
the threads. In other words, the effective per-thread cache size (EPTCS henceforth, for
brevity) is the total size of the shared cache Ss divided by the number of threads n.

Incorporating this into (5-1), we get formula (5-2).

S$/ —(a-1)
(5-2) Phiss (Sg, ) = (T" + 1)

In (5-2) the parameter  may also account for the degree of sharing among the threads:
in case much of the cache is shared, each thread can utilize a larger portion of the cache,

which is represented by a smaller value of B.

While (5-2) is a two-dimensional function, we notice that it maintains equation (5-3)
and thus can be expressed as one-dimensional function. Therefore, for our analysis and

graphical representation we use this one-dimensional form of the miss-rate function.
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. /s
(5-3) Ppniss(Sg, ) = Ppics (—$)

n

5.2. Methodology

We extract the actual miss-rate functions of the various benchmarks in the Parsec
benchmark suite through simulation with different cache sizes and different parallelism
degree. The simulated parallelism degrees are the same as the ones used in the parallelism
scalability study in Chapter 4. Therefore, the simulations used for the study of the cache
performance use the same number of worker-threads, data sets, code modifications and

ROI detection mode as used for the parallelism scalability study simulations.

Using the number of worker-threads for n in (5-2) is not appropriate because not all
worker-threads are necessarily running all the time and therefore not all necessarily
compete for the cache storage space. In particular, if a workload instantiate many worker
threads but only a small number of them is active at any given time, then only those that
are active compete for the cache®. To reflect this, n is set to the average number of running

threads, as extracted from the simulation.

Table 5-1 summarizes the parameters of the simulation model that is used to study the
cache performance. As shown, the benchmarks are simulated with different cache sizes.
The cache-model that we use is 64-way set-associative with 64 bytes per cache-line, and

classical per-set Least-Recently-Used (LRU) replacement policy.

Note that the simulation model for this shared cache study does not include private
cache.

8 1t should be noted that in theory it is possible that the competition on the cache storage has the effect of
all the worker threads n competing even though only a small number of threads is active at any given time —
when each thread works for a very short time t and blocks for an order of n-z. However, we consider this to
be unlikely, especially with high degree of parallelism because it implies excessive inter-thread
synchronization.
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Parameter Description
Npe >= #worker-threads
Ss 512KB, 1MB, 2MB, 4MB, 8MB, 16MB
Nmax Npe
CPlexe 1 [cycles]
ts 1 [cycles]
tm 200 [cycles]

Table 5-1 Model parameters for the cache modeling study

For every benchmark we show the miss-rate curves vs. EPTCS for each cache size
separately in a single graph. The miss-rate may or may not be sensitive to the absolute
cache size. When the miss-rate is not sensitive to the cache size, i.e., affected only by

EPTCS, the graphs of the different cache sizes overlap.

In a separate graph we show all the data-points from all cache sizes and a curve of
formula (5-2) that is fitted to these data-points. For the fitted curve we need to find a and
B that would result a curve that is closest to the data-points. We do the fitting using the
Levenberg—Marquardt curve-fitting algorithm [21], specifically the Imfit open-source

implementation of that algorithm [22].

Given the actual and fitted miss-rates, we derive the respective analytical performance
as a function of the average number of running threads using formula (2-5). The
performance derived from the fitted miss-rate is the performance that is predicted by the
analytical performance model (section 2.2). We show the actual and fitted performance

graphs to compare the actual and predicted performance.

The magnitude of the difference between the actual and predicted performance
obviously corresponds to the magnitude of the difference between the actual and fitted
miss-rate. To capture the effect of differences in miss-rates on differences in performance

we define the performance sensitivity to miss-rate as the marginal change in performance
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on changes in miss-rate. This is captured by the derivative of the performance formula
(2-5) with respect to the miss-rate, shown in formula (5-4). As can be seen, the sensitivity
depends on the model parameters’ values. In particular, the sensitivity is proportional to
the number of threads n.

n-rm-(tm—t$)

2
<CPIexe+rm'((1_Pmiss (S$,n))-t$ +Pniss (S$,n)-tm)>

(5-4) Performance’(Sg,n) = —

Performance sensitivity to miss-rate (t;=1 cycle)
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'\ — s

) 3 10 13 20 25 30

Miss-rate [%]
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Figure 5-1: Performance sensitivity to miss-rate® for different values of rm

Figure 5-1 depicts the performance sensitivity to miss-rate for different values of rm
when tg is fixed (we use 1 cycle, because this is what was used in our simulations). The
values used for rn are between the minimum and maximum values that were measured in
our simulations — 0.25 and 0.6, respectively. This graph shows that there is little difference

in sensitivity across these values of rmy.

Figure 5-2 is a graphical depiction of the performance sensitivity to miss-rate for
different values of ts when rn is fixed (we use the value 0.425, which is in the middle

between the minimum and maximum values that were measured in our simulations). This

% The actual values on the vertical axis are not shown because they are proportional to n and the units are
not particularly meaningful (instructions-per-cycle-per-miss-rate). Hence this graph reflects the relative
differences of the sensitivity between different values of rn.
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shows monotonously increasing sensitivity as the miss-rate decreases, with the increase in
sensitivity being steeper with smaller values of ts. This means that a difference between
the fitted and actual miss-rates results increasingly larger difference between the actual and
predicted performance as the actual miss-rate becomes smaller. However, since the

sensitivity is proportional to the number of threads, the latter is a principal factor of the

sensitivity.
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Figure 5-2: Performance sensitivity to miss-rate for different values of ts

5.3. Simulation results

5.3.1. Blackscholes

Figure 5-3 shows the miss-rate as a function of EPTCS, for each cache size separately.
The overlapping of the graphs indicates that for this benchmark the miss-rate is not

sensitive to the total cache size, only to EPTCS.
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Figure 5-3: Miss-rate from simulation — blackscholes

Figure 5-4 shows all the actual miss-rate data-points, for all cache sizes and all thread
counts as measured by the simulation. It also shows the graph of the fitted closed form of
miss-rate model formula (5-2), with o and B that determine this closed form. It shows that
while the general shape is somewhat similar, the differences are quite large — around 20%
at the lower region of the horizontal axis and more than 10% around 2KB on the horizontal

axis.
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Figure 5-4: Miss-rate model fitting — blackscholes
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Figure 5-5 shows the comparison of the actual performance obtained from simulation
and the performance that is predicted by the analytical model using the workload

parameters (Table 2-2) obtained from the same simulation. For smaller cache sizes the

actual performance has a valley but the predicted performance is monotonously increasing.

As the cache size increases, the peak performance is achieved at higher thread counts. The

relative difference between the actual and the predicted performance is quite large — up to

4x. The peak difference is around EPTCS of 4KB, where the actual miss-rate becomes very

small, implying high sensitivity to miss-rate differences, as described in Figure 5-2.
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Figure 5-5: Actual vs. analytical performance with different cache sizes - blackscholes
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5.3.2. Bodytrack

Figure 5-6 shows the miss-rate as a function of EPTCS, for each cache size separately.
The graphs are mostly not overlapping, indicating that for this benchmark the miss-rate is

sensitive to the total cache size, not only to EPTCS.
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Figure 5-6: Miss-rate from simulation — bodytrack

Figure 5-7 shows the actual miss-rate data-points and the fitted closed form of miss-rate
model formula (5-2), with a and B that determine this closed form. It shows that while the
general shape is somewhat similar, the differences are significant — up to 5% around
EPTCS of 25KB on the horizontal axis. Moreover, due to the sensitivity to total cache size,
the data-points of the actual miss-rate are not monotonously decreasing — similar EPTCS

for different total cache size result significantly difference miss-rate.
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Figure 5-7: Miss-rate model fitting — bodytrack

Figure 5-8 shows the comparison of the actual performance and the performance that is
predicted by the analytical model. For larger cache sizes the graphs are quite close,
indicating that the analytical model provides good performance prediction. These
performance values correspond to EPTCS of 140KB and more, where the difference
between the actual and fitted miss-rates is relatively small. With the smaller caches, the
differences are larger, with the largest being at ~22 threads with 512KB cache, which
corresponds to EPTCS of ~23KB, which is the region where the difference between the
actual and fitted miss-rates is the largest, with some data-point being very small, i.e., the

area of large sensitivity of the performance to the miss rate.
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Figure 5-8: Actual vs. analytical performance with different cache sizes - bodytrack

5.3.3. Canneal

Figure 5-9 shows the miss-rate as a function of EPTCS, for each cache size separately.

The graphs are mostly not overlapping, indicating that for this benchmark the miss-rate is

sensitive to the total cache size, not only to EPTCS. Moreover, the miss-rate alternates

between higher and lower values as EPTCS increases, with the variation being bigger with

smaller caches. This is the result of canneal having inherent negative marginal

performance increase with the increase in the number of worker threads as described in

section 4.3.3. Specifically, Figure 5-11 shows the average number of running threads n as

a function of the number of worker-threads. Every graph has a region of increase and a

region of decrease of n as the number of worker-threads increases. This means that values




of n that are close'® correspond to distant number of worker threads. Since the EPTCS is a
function of n, this implies that close values of EPTCS correspond to distant number of
worker-threads. Figure 4-9 shows that the canneal benchmark has a serial phase and a
parallel phase where in the parallel phase all worker-threads are running. Therefore, all
running threads compete for the cache and therefore the cache performance depends on the

number of worker-threads rather than the average number of running threads.
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Figure 5-9: Miss-rate from simulation — canneal

10 «Close” rather than “identical” values because n is discrete.
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Figure 5-11: Average #running threads vs. #Worker-threads — canneal

Figure 5-12 shows the actual miss-rate data-points and the fitted closed form of miss-

rate model formula (5-2), with o and B that determine this closed form. It shows that while

the general shape is somewhat similar, the differences are quite large. This is inevitable

because the simulation data-point themselves vary a lot around the same EPTCS, as was

explained.
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Figure 5-12: Miss-rate model fitting — canneal

Figure 5-13 shows the comparison of the actual performance and the performance that
is predicted by the analytical model. The actual performance varies significantly with the
average number of running threads because of the large variation in the miss-rate for close

values of the average number of running threads n.
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Figure 5-13: Actual vs. analytical performance with different cache sizes - canneal

5.3.4. dedup

Figure 5-14 shows the miss-rate as a function of EPTCS, for each cache size separately.

The overlapping of the graphs indicates that for this benchmark the miss-rate is not

sensitive to the total cache size, only to EPTCS.

90




dedup

25
shared-cache
size
X 2
g 512KB
i1}
| et iMB
v 15
a ......... 2MB
.i ) amB
----- 8MB
05 k [ECTReE 16MB
O T T — —_— I- ----------------- — T 1
1] 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000
S¢/n [bytes]

Figure 5-14: Miss-rate from simulation — dedup

Figure 5-15 shows the actual miss-rate data-points and the fitted closed form of miss-
rate model formula (5-2), with o and P that determine this closed form. The fitted curve is
quite close to the actual data-point — a difference of up to ~0.2% around 250KB on the

horizontal axis.
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Figure 5-15: Miss-rate model fitting — dedup
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Figure 5-16 shows the comparison of the actual performance and the performance that
is predicted by the analytical model. The performance curves are very close, because the

fitted miss-rate curve is very close to the actual miss-rate data-points.
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Figure 5-16: Actual vs. analytical performance with different cache sizes - dedup

5.3.5. facesim

Figure 5-17 shows the miss-rate as a function of EPTCS, for each cache size separately.
The graphs are mostly not overlapping, indicating that for this benchmark the miss-rate is

sensitive to the total cache size, not only to EPTCS.
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Figure 5-17: Miss-rate from simulation — facesim

Figure 5-18 shows the actual miss-rate data-points and the fitted closed form of miss-

rate model formula (5-2), with a and B that determine this closed form. The fitted curve is

quite close to the actual data-point — a difference of up to ~0.7% in the lowest region of the

horizontal axis and no more than ~0.2% otherwise.
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Figure 5-18: Miss-rate model fitting — facesim

Figure 5-19 shows the comparison of the actual performance and the performance that

is predicted by the analytical model. The performance curves are very close, because the
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fitted miss-rate curve is very close to the actual miss-rate data-points, except at the highest

region of the horizontal axis, which corresponds to the lowest region of the horizontal axis

of Figure 5-18, where the difference between the actual and fitted miss-rate is the greatest.
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Figure 5-19: Actual vs. analytical performance with different cache sizes - facesim

5.3.6. ferret

Figure 5-20 shows the miss-rate as a function of EPTCS, for each cache size separately.

The graphs are mostly overlapping where applicable (i.e., where there is overlapping on

the horizontal axis) and otherwise contiguous, indicating that for this benchmark the miss-

rate is not sensitive to the total cache size, only to the EPTCS.
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Figure 5-20: Miss-rate from simulation — ferret

Figure 5-21 shows the actual miss-rate data-points and the fitted closed form of miss-

rate model formula (5-2), with o and P that determine this closed form. The fitted curve is

quite close to the actual data-point. The rightmost data-point is visibly distant from the

fitted curve but this distance is only 0.2%.
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Figure 5-21: Miss-rate model fitting — ferret
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Figure 5-22 shows the comparison of the actual performance and the performance that
is predicted by the analytical model. The performance curves are very close, because the

fitted miss-rate curve is very close to the actual miss-rate data-points.
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Figure 5-22: Actual vs. analytical performance with different cache sizes - ferret

5.3.7. fluidanimate

Figure 5-23 shows the miss-rate as a function of EPTCS, for each cache size separately.
The overlapping of the graphs indicates that for this benchmark the miss-rate is not

sensitive to the total cache size, only to EPTCS.
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Figure 5-23: Miss-rate from simulation — fluidanimate

Figure 5-24 shows the actual miss-rate data-points and the fitted closed form of miss-

rate model formula (5-2), with o and P that determine this closed form. The fitted curve is

very ¢

lose to the data-points. The largest difference of ~2.5% is in the region of 5KB on

the horizontal axis.
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Figure 5-24: Miss-rate model fitting — fluidanimate

Figure 5-25 shows the comparison of the actual performance and the performance that
is predicted by the analytical model. Although the fitted curve is very close to most of the

97




actual data-points, in the regions with the largest difference there is a large difference

between the actual and predicted performance, up to 2x. Where the predicted performance

shows a valley, the actual performance has a valley, but a deeper one. This may be

explained by the performance sensitivity to miss-rate variation. As can be seen, the largest

difference is around EPTCS of ~5KB. Indeed this is where there is a data-point with very

low miss-rate, i.e., high sensitivity and a relatively big difference between the actual and

fitted miss-rates.
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Figure 5-25: Actual vs. analytical performance with different cache sizes - fluidanimate

5.3.8. raytrace

Figure 5-26 shows the miss-rate as a function of EPTCS, for each cache size separately.

The graphs are overlapping except in the lower region of the horizontal axis. This indicates

that for this benchmark the miss-rate is sensitive to the total cache size, not only to EPTCS.
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Figure 5-26: Miss-rate from simulation — raytrace

Figure 5-27 shows the actual miss-rate data-points and the fitted closed form of miss-
rate model formula (5-2), with o and B that determine this closed form. It shows that while
the general shape is somewhat similar, the differences are relatively large in the region of
10-20KB of the horizontal axis — up to 0.7%.
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Figure 5-27: Miss-rate model fitting — raytrace

Figure 5-28 shows the comparison of the actual performance and the performance that

is predicted by the analytical model. The predicted performance is very close to the actual
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performance, except in the region of the largest difference between actual and fitted miss-

rate, where it still relatively close -- up to ~1.3x.
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Figure 5-28: Actual vs. analytical performance with different cache sizes - raytrace

5.3.9. streamcluster

Figure 5-29 shows the miss-rate as a function of EPTCS, for each cache size separately.

The overlapping of the graphs indicates that for this benchmark the miss-rate is not

sensitive to the total cache size, only to EPTCS.
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Figure 5-29: Miss-rate from simulation — streamcluster

Figure 5-30 shows the actual miss-rate data-points and the fitted closed form of miss-
rate model formula (5-2), with a and P that determine this closed form. The fitted curve is

very close to the data-points. The largest difference of ~5% is in the region of 4KB on the
horizontal axis.
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Figure 5-30: Miss-rate model fitting — streamcluster

Figure 5-31 shows the comparison of the actual performance and the performance that

is predicted by the analytical model. For cache sizes of 4MB and up, the entire data-set fits
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in the cache so the miss-rate is zero. The corresponding portion of the fitted miss-rate is

effectively zero!! and therefore the actual and analytical performance curves overlap. For

cache sizes of 2MB and below, although the analytical performance curve shows the same

general trend as the actual performance curve, the actual performance is as high as 2x of
the analytical performance with cache of 1MB and 200 threads, i.e., at EPTCS of ~5KB.

As shown in Figure 5-30, this is where the actual miss-rate becomes very small (~0.8%),

I.e., the performance sensitivity to the miss-rate becomes large, and the fitted miss-rate is

significantly larger (~3.3%).
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Figure 5-31: Actual vs. analytical performance with different cache sizes - streamcluster

11 The fitted miss-rate can never have a value of exactly 0 because of the way formula (5-2) is defined but

can be very small, which is the case here.
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5.3.10. swaptions

Figure 5-32 shows the miss-rate as a function of EPTCS, for each cache size separately.
The graphs are mostly not overlapping, indicating that for this benchmark the miss-rate is

sensitive to the total cache size, not only to EPTCS.
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Figure 5-32: Miss-rate from simulation — swaptions

Figure 5-33 shows the actual miss-rate data-points and the fitted closed form of miss-
rate model formula (5-2), with o and B that determine this closed form. It shows that while
the general shape is somewhat similar, the differences are quite large, in particular since
there are multiple data points with the same EPTCS but significantly different miss-rate,
e.g., in EPTCS of 33KB there are data points with miss-rate difference of 10%.
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Figure 5-33: Miss-rate model fitting — swaptions

Figure 5-34 shows the comparison of the actual performance and the performance that
is predicted by the analytical model in the left column and the respective actual
performance vs. the number of worker threads in the right column. Although the predicted
performance is monotonously increasing, the actual performance has a valley for all cache
sizes. Note that this benchmark is embarrassingly parallel but the worker threads contend

on the dynamic memory allocation heap (see section 4.3.10).
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Figure 5-34: Actual vs. analytical performance with different cache sizes - swaptions

5.3.11. vips

Figure 5-35 shows the miss-rate as a function of EPTCS, for each cache size separately.

The overlapping of the graphs indicates that for this benchmark the miss-rate is not

sensitive to the total cache size, only to EPTCS.
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Figure 5-35: Miss-rate from simulation — vips

Figure 5-36 shows all the actual miss-rate data-points, for all cache sizes and all thread
counts as measured by the simulation. It also shows the graph of the fitted closed form of
miss-rate model formula (5-2), with a and B that determine this closed form. The actual
miss-rate is small (<1.8%) across all data-points and therefore the difference between
actual and fitted miss-rate is small. The difference is relatively large with higher EPTCS
but this corresponds to lower numbers of running threads. As indicated in section 5.2 the
performance sensitivity to miss-rate is proportional to the number of running threads and
therefore the effect of the miss-rate difference with smaller number of running threads
should be small.
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Figure 5-36: Miss-rate model fitting — vips

Figure 5-37 shows the comparison of the actual performance and the performance that
is predicted by the analytical model. Since the difference between the fitted and actual

miss-rate is small, the actual and predicted performance are very close.
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Figure 5-37: Actual vs. analytical performance with different cache sizes - vips

5.3.12. x264

Figure 5-38 shows the miss-rate as a function of EPTCS, for each cache size separately.

The overlapping of the graphs indicates that for this benchmark the miss-rate is not

sensitive to the total cache size, only to EPTCS.
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Figure 5-38: Miss-rate from simulation — x264

Figure 5-39 shows all the actual miss-rate data-points, for all cache sizes and all thread
counts as measured by the simulation. It also shows the graph of the fitted closed form of
miss-rate model formula (5-2), with a and B that determine this closed form. The actual
miss-rate is small (<1.4%) across all data-points and therefore the difference between
actual and fitted miss-rate is small. The difference is relatively large with higher EPTCS
but this corresponds to lower numbers of running threads. As indicated in section 5.2 the
performance sensitivity to miss-rate is proportional to the number of running threads and
therefore the effect of the miss-rate difference with smaller number of running threads
should be small.
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Figure 5-39: Miss-rate model fitting — x264

Figure 5-40 shows the comparison of the actual performance and the performance that
is predicted by the analytical model. Since the difference between the fitted and actual

miss-rate is small, the actual and predicted performance are very close.
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Figure 5-40: Actual vs. analytical performance with different cache sizes — x264

5.4. Conclusions

We study the applicability of the cache performance (miss-rate) analytical model

depicted in formula (5-2) that was proposed in the literature. We measure the actual cache

performance on the diverse workloads of the Parsec benchmark suite and different cache

sizes, from which we extract the workload-dependent parameters of the analytical model

using curve-fitting. With these parameters we get a closed-form of the cache performance

analytical model, which we then compare to the actual cache performance.

Similarly, we derive a closed-form of the analytical performance model that is depicted

in formula (2-5) by placing the closed-form analytical cache performance model in it. We

compare the performance predicted by the analytical model to the actual performance.




We make the following conclusions from our cache analytical modeling study:

1. Formula (5-2) is a good first order analytical model for cache performance under
parallel workloads
2. The sensitivity of the analytical performance model of formula (2-5) to the miss-

rate makes Formula (5-2) inadequate for analytical performance prediction.
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Chapter 6.
Summary

In this research we developed a simulator for a simple many-core architecture model
and used it to study some aspects of the behavior of the Parsec benchmark suite on that

architecture model — the parallelism scalability and shared-cache behavior.

Our simulator can simulate hundreds and thousands of cores and run any Linux program
without re-compilation. This implies that it does not require special development toolset
(compiler, linker, libraries), no source code modifications and can simulate programs
written in any language (by simulating the execution environment program such as the
JVM for Java programs). The simulator maintains the effect of inter-thread communication
so that the timing effect on the program is preserved. In particular, when a thread blocks
waiting for some other computation to complete, this is correctly simulated, hence the
simulation captures the algorithmic parallelism effects on the performance. The simulator
takes the architecture parameters (such as number of cores, number of thread contexts,
cache size, memory hierarchy access latencies etc.) as invocation parameters, facilitating

the study of each parameter’s effect on the workload.

We studied the parallelism degree limitations, what we call parallelism scalability, of
the benchmarks in the Parsec benchmarks suite. This characterizes a program inherent
parallelism limitation by running it on a perfectly parallel architecture (one with no
parallelism limiting factors, i.e., no shared resource) with perfect memory hierarchy (1
cycle latency for all memory accesses). On such architecture, any deviation from perfect
scaling of the performance with the architecture is necessarily due to an algorithm in the
program, e.g. a serial portion that is a performance bottleneck. We find that most
benchmarks achieve peak performance with 128 threads or less, with one as low as 4
threads and another as low as 8 threads. This implies that these benchmarks are not suitable

for exploring architectures with higher degree of parallelism.

Another aspect of the Parsec benchmark suite that we studied is shared-cache
performance (miss-rate). Specifically, we compared it against an analytical model that is
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proposed in the literature. We find that for most benchmarks the actual cache performance
is compatible with the analytical model, but for some it is not. In particular, the model
assumes that the cache performance depends only on the quotient of the cache size and the
number of threads rather than on each individually. Simulation results show that this is not
always the case. There are benchmarks that even when the cache performance depends
only on the quotient, it still deviates significantly from the analytical model. Finally, even
benchmarks whose cache performance depends only on the quotient and is compatible with
the analytical model, when put into the analytical performance model there is a big
difference from the actual performance, because the performance is increasingly sensitive
to differences in miss-rate as the miss-rate decreases. Thus, in small miss-rates, small
differences between the actual and analytical miss-rate translates to big differences

between actual and analytical performance.
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Appendix: simulation environment

Hardware platform: HP Proliant DL785 G5, with 8 AMD Opteron™ Processor 8356
Quad-Core (total of 32 cores), 128GB RAM

Operating System: Linux Ubuntu 12.04 Server, 64-bit
Pin binary instrumentation framework: version 2.12
Parsec benchmark suite: version 2.1, with the following patches:

1. Syntax error in open()
2. Deadlock in ferret

3. Missing barrier in streamcluster
Compiled with GCC version 4.6.3 in gcc-hooks configuration mode

Simulator Pintool: compiled with GCC version 4.6.3
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