
THE INTERACTION 

BETWEEN WORKLOADS AND 

ARCHITECTURE IN HIGHLY-

PARALLEL CHIP MULTI-

PROCESSORS 

 

 

 

 

 

 

Oved Izchak 



 

 



 

 

THE INTERACTION 

BETWEEN WORKLOADS AND 

ARCHITECTURE IN HIGHLY-

PARALLEL CHIP MULTI-

PROCESSORS 

Research Thesis 

 

In Partial Fulfillment of the Requirements for the Degree of 

Master of Science in Electrical Engineering 

 

Oved Izchak 

 

 

Submitted to the Senate of the  

Technion – Israel Institute of Technology 

 

Tamuz 5773 Haifa June 2013 



 

 



 

 

Acknowledgements 

The research thesis was done under the supervision of Prof. Uri C. Weiser, Prof. Idit 

Keidar, and Prof. Avinoam Kolodny, in the Faculty of Electrical Engineering. 

I am deeply grateful to my three advisors for their wise guidance, inspiration, passion 

and patience. My appreciation for your care and support for my education and growth 

cannot be overstated; thank you. 

I thank Dr. Zvika Guz for introducing me to this area of research and for his 

collaboration and contribution to this work. 

I thank Prof. Ran Ginosar and Prof. Avi Mendelson for their insights and valuable 

advice. 

I thank Yaniv Ben-Yitzhak for his collaboration and illuminating discussions, in 

particular about architecture aspects close to the scope of this work and beyond it, which 

greatly improved my perspective and understanding. 

Last but not least, I thank my colleagues in Prof. Idit Keidar’s research group: Liat 

Atzmon-Guz, Ittay Eyal, Dmitri Perelman, Dmitry Basin, Nathaniel Azuelos, Elad Gidron, 

Eyal Zohar, Mark Silberstein and Stacy Patterson. Collaborating and having discussions 

with you was pure joy. 

 

  



 

 

  



 

 

Table of Content 

Abstract .............................................................................................................................. 1 

Abbreviations .................................................................................................................... 3 

Chapter 1. Introduction ................................................................................................. 5 

1.1. Research overview .............................................................................................. 5 

1.2. Summary of Contributions .................................................................................. 6 

1.3. Research Method ................................................................................................. 7 

Chapter 2. Many-core Architecture Model ................................................................. 9 

2.1. System Model ...................................................................................................... 9 

2.2. Analytical Model ............................................................................................... 11 

2.3. Simulation Model .............................................................................................. 13 

Chapter 3. The Simulator ............................................................................................ 15 

3.1. Basic requirements ............................................................................................ 15 

3.2. Architecture ....................................................................................................... 17 

3.2.1. Functional execution scheduling ................................................................ 17 

3.2.2. Inter-thread communication effects preservation ....................................... 20 

3.2.3. Achieving execution-driven simulation ..................................................... 22 

3.3. Implementation.................................................................................................. 22 

3.3.1. Reducing context switches ......................................................................... 22 

3.3.2. Timing model execution thread.................................................................. 25 

3.3.3. Limiting the size of a segment ................................................................... 28 

3.3.4. Simulated architecture software scheduling ............................................... 29 

3.4. Summary ........................................................................................................... 30 



 

 

Chapter 4. Benchmarks parallelism scalability study .............................................. 31 

4.1. Introduction ....................................................................................................... 31 

4.2. Measurement methodology ............................................................................... 35 

4.3. Simulation results .............................................................................................. 38 

4.3.1. blackscholes ............................................................................................... 38 

4.3.2. bodytrack .................................................................................................... 39 

4.3.3. canneal ........................................................................................................ 42 

4.3.4. dedup .......................................................................................................... 45 

4.3.5. facesim ....................................................................................................... 49 

4.3.6. ferret ........................................................................................................... 52 

4.3.7. fluidanimate ................................................................................................ 55 

4.3.8. raytrace ....................................................................................................... 58 

4.3.9. streamcluster............................................................................................... 61 

4.3.10. swaptions .................................................................................................. 64 

4.3.11. vips ........................................................................................................... 67 

4.3.12. x264 .......................................................................................................... 70 

4.3.13. freqmine ................................................................................................... 73 

4.4. Conclusions ....................................................................................................... 74 

Chapter 5. Cache analytical modeling study ............................................................. 77 

5.1. Introduction ....................................................................................................... 77 

5.2. Methodology ..................................................................................................... 78 

5.3. Simulation results .............................................................................................. 81 

5.3.1. Blackscholes ............................................................................................... 81 

5.3.2. Bodytrack ................................................................................................... 84 



 

 

5.3.3. Canneal ....................................................................................................... 86 

5.3.4. dedup .......................................................................................................... 90 

5.3.5. facesim ....................................................................................................... 92 

5.3.6. ferret ........................................................................................................... 94 

5.3.7. fluidanimate ................................................................................................ 96 

5.3.8. raytrace ....................................................................................................... 98 

5.3.9. streamcluster............................................................................................. 100 

5.3.10. swaptions ................................................................................................ 103 

5.3.11. vips ......................................................................................................... 105 

5.3.12. x264 ........................................................................................................ 108 

5.4. Conclusions ..................................................................................................... 111 

Chapter 6. Summary .................................................................................................. 113 

Appendix: simulation environment ............................................................................. 115 

References ...................................................................................................................... 117 

 

 

  



 

 

  



 

 

List of Figures 

Figure 2-1: Architecture model .................................................................................... 10 

Figure 3-1: Application-Simulator interaction ............................................................. 19 

Figure 3-2: Weak memory consistency-model ............................................................ 24 

Figure 3-3: Functional execution scheduling ............................................................... 25 

Figure 3-4: The combination of functional and timing-model execution, resulting 

effectively an execution-driven simulation ....................................................................... 26 

Figure 3-5 Execution scheduling with a dedicated thread for timing model execution 

(TE) .................................................................................................................................... 27 

Figure 3-6 Execution scheduling without a dedicated thread for timing model execution

 ........................................................................................................................................... 28 

Figure 4-1: thread-context occupancy illustration ....................................................... 34 

Figure 4-2: Parallelism scalability - blackscholes ........................................................ 38 

Figure 4-3: Running threads over time - blackscholes ................................................. 39 

Figure 4-4: Parallelism scalability – bodytrack............................................................ 39 

Figure 4-5: Parallelism scalability – bodytrack (scaled) .............................................. 40 

Figure 4-6: Running threads over time - bodytrack ..................................................... 42 

Figure 4-7: Parallelism scalability - canneal ................................................................ 43 

Figure 4-8: Parallelism scalability – canneal (scaled) .................................................. 43 

Figure 4-9: Running threads over time - canneal ......................................................... 45 

Figure 4-10: Parallelism scalability – dedup ................................................................ 46 

Figure 4-11: Parallelism scalability - dedup (scaled) ................................................... 47 

Figure 4-12: Running threads over time - dedup ......................................................... 49 

Figure 4-13: Parallelism scalability – facesim ............................................................. 50 



 

 

Figure 4-14: Parallelism scalability - facesim (scaled) ................................................ 50 

Figure 4-15: Running threads over time - facesim ....................................................... 52 

Figure 4-16: Parallelism scalability - ferret.................................................................. 53 

Figure 4-17: Parallelism scalability – ferret (scaled) ................................................... 53 

Figure 4-18: Running threads over time - ferret .......................................................... 55 

Figure 4-19: Parallelism scalability - fluidanimate ...................................................... 56 

Figure 4-20: Running threads over time - fluidanimate ............................................... 58 

Figure 4-21: Parallelism scalability - raytrace ............................................................. 59 

Figure 4-22: Parallelism scalability – raytrace (scaled) ............................................... 59 

Figure 4-23: Running threads over time - raytrace ...................................................... 61 

Figure 4-24: Parallelism scalability – streamcluster .................................................... 62 

Figure 4-25: Running threads over time - streamcluster .............................................. 64 

Figure 4-26: Parallelism scalability - swaptions .......................................................... 65 

Figure 4-27: Running threads over time - swaptions ................................................... 67 

Figure 4-28: Parallelism scalability - vips.................................................................... 67 

Figure 4-29: parallelism scalability – vips (scaled) ..................................................... 68 

Figure 4-30: Running threads over time - vips ............................................................ 70 

Figure 4-31: Parallelism scalability - x264 .................................................................. 71 

Figure 4-32: Parallelism scalability - x264 (scaled)..................................................... 71 

Figure 4-33: Running threads over time - x264 ........................................................... 73 

Figure 5-1: Performance sensitivity to miss-rate for different values of rm ................. 80 

Figure 5-2: Performance sensitivity to miss-rate for different values of t$ .................. 81 

Figure 5-3: Miss-rate from simulation – blackscholes ................................................. 82 

Figure 5-4: Miss-rate model fitting – blackscholes ...................................................... 82 



 

 

Figure 5-5: Actual vs. analytical performance with different cache sizes - blackscholes

 ........................................................................................................................................... 83 

Figure 5-6: Miss-rate from simulation – bodytrack ..................................................... 84 

Figure 5-7: Miss-rate model fitting – bodytrack .......................................................... 85 

Figure 5-8: Actual vs. analytical performance with different cache sizes - bodytrack 86 

Figure 5-9: Miss-rate from simulation – canneal ......................................................... 87 

Figure 5-10: Miss-rate from simulation – canneal (zoom) .......................................... 88 

Figure 5-11: Average #running threads vs. #Worker-threads – canneal ...................... 88 

Figure 5-12: Miss-rate model fitting – canneal ............................................................ 89 

Figure 5-13: Actual vs. analytical performance with different cache sizes - canneal .. 90 

Figure 5-14: Miss-rate from simulation – dedup ......................................................... 91 

Figure 5-15: Miss-rate model fitting – dedup .............................................................. 91 

Figure 5-16: Actual vs. analytical performance with different cache sizes - dedup .... 92 

Figure 5-17: Miss-rate from simulation – facesim ....................................................... 93 

Figure 5-18: Miss-rate model fitting – facesim ............................................................ 93 

Figure 5-19: Actual vs. analytical performance with different cache sizes - facesim . 94 

Figure 5-20: Miss-rate from simulation – ferret .......................................................... 95 

Figure 5-21: Miss-rate model fitting – ferret ............................................................... 95 

Figure 5-22: Actual vs. analytical performance with different cache sizes - ferret ..... 96 

Figure 5-23: Miss-rate from simulation – fluidanimate ............................................... 97 

Figure 5-24: Miss-rate model fitting – fluidanimate .................................................... 97 

Figure 5-25: Actual vs. analytical performance with different cache sizes - fluidanimate

 ........................................................................................................................................... 98 

Figure 5-26: Miss-rate from simulation – raytrace ...................................................... 99 

Figure 5-27: Miss-rate model fitting – raytrace ........................................................... 99 



 

 

Figure 5-28: Actual vs. analytical performance with different cache sizes - raytrace 100 

Figure 5-29: Miss-rate from simulation – streamcluster ............................................ 101 

Figure 5-30: Miss-rate model fitting – streamcluster ................................................. 101 

Figure 5-31: Actual vs. analytical performance with different cache sizes - streamcluster

 ......................................................................................................................................... 102 

Figure 5-32: Miss-rate from simulation – swaptions ................................................. 103 

Figure 5-33: Miss-rate model fitting – swaptions ...................................................... 104 

Figure 5-34: Actual vs. analytical performance with different cache sizes - swaptions

 ......................................................................................................................................... 105 

Figure 5-35: Miss-rate from simulation – vips .......................................................... 106 

Figure 5-36: Miss-rate model fitting – vips ............................................................... 107 

Figure 5-37: Actual vs. analytical performance with different cache sizes - vips ..... 108 

Figure 5-38: Miss-rate from simulation – x264 ......................................................... 109 

Figure 5-39: Miss-rate model fitting – x264 .............................................................. 110 

Figure 5-40: Actual vs. analytical performance with different cache sizes – x264 ... 111 



 

 

List of Tables 

Table 2-1: System parameters ...................................................................................... 11 

Table 2-2: Workload parameters .................................................................................. 12 

Table 4-1: Model parameters for the parallelism scalability study .............................. 32 

Table 4-2: Parsec per-benchmark inherent parallelism limitations .............................. 75 

Table 5-1 Model parameters for the cache modeling study ......................................... 79 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

Abstract 

ighly parallel architectures, such as GPUs or CPUs with vector instructions, require 

a lot of code tuning to achieve high utilization, i.e., in the order of the theoretical 

maximum performance. One of the main reasons is that due to technological limitations 

(e.g., power consumption, power density, availability of instruction level parallelism) 

highly parallel architectures trade off single-instructions-stream performance for maximum 

raw-performance. This puts a burden on the workload to provide enough parallelism to 

keep the architectural resources busy. While some workloads are inherently highly parallel 

(such as what is known as embarrassingly parallel), many interesting, compute-intensive 

workloads (animation, pattern recognition, ray-tracing) become harder to parallelize as the 

parallelism degree increases.  

In this research we developed a simulator for highly parallel architectures (up to 2048 

cores) that can simulate existing parallel benchmarks (any benchmark that runs on the 

Linux platform) and we use it to study a suite of interesting parallel workloads, the Parsec 

benchmark suite.  

We characterize parallelism scalability of each benchmark, namely how the performance 

scales with the scaling of the architecture’s parallelism (core count without overhead). We 

study another aspect of the Parsec benchmark suite -- shared cache performance (miss-rate) 

when running with high parallelism degree. We compare the actual performance to an 

analytical model proposed in the literature. 

We find that the inherent parallelism scalability of the various benchmarks in the Parsec 

benchmark suite varies widely, from as poor as achieving peak performance at 4 threads 

(ferret) to unlimited, embarrassingly parallel (blackscholes). However the majority of 

benchmarks do not scale beyond 128 threads. 

For cache performance, we find that while for most benchmarks it is compatible with a 

cache performance analytical model that is proposed in the literature, the performance is 

highly sensitive to the cache performance and therefore the small differences between the 

analytical and actual cache performance lead to large differences between analytical 

H 



 

2 

performance estimation based on the analytical cache performance model and the actual 

performance. 

  



 

3 

Abbreviations 

AMAT Average Memory Access Time 

EPTCS Effective Per-Thread Cache-Size 

LLC Last Level Cache 

LRU Least Recently Used 

IPC Instructions Per Cycle 

SMT Symmetrical Mutli-Threading 

ITC Inter-thread communication 

  



 

4 

  



 

5 

Chapter 1.  

Introduction 

1.1. Research overview 

Contemporary CPU architecture trend for increasing performance is primarily towards 

increased parallelism, due to technological challenges such as power dissipation, power 

consumption, micro-architecture improvements etc. However, parallel architectures 

require the program to explicitly expose suitable degree of parallelism (e.g., number of 

threads) to be able to actually utilize the available architecture parallelism. Moreover, the 

parallelism needs to be exposed for the different type of resources such as utilize cores 

through threads, utilize cache through data working-set arrangement, utilize interconnect 

through communication/computation pipelining etc. Underutilization is the result of 

algorithmic dependencies such as data dependency, inter-task dependency, etc. Often, the 

situation is in between: part of the time the resources are fully utilized and the rest of the 

time they are underutilized. Adding resources may increase the performance during full 

utilization but the extent of the improvement is subject to Amdahl’s Law [1], i.e., it depends 

on the fraction of full utilization periods and may be negligible. 

Moreover, whether the architecture’s resources are fully utilized and at what times 

during the program execution depends on the type of resource and on the structure of the 

program. For example, a program may have a certain data working set at certain times that 

may or may not fit in cache, depending on the amount of cache in the underlying 

architecture. If the working set doesn’t fit in the cache, then a fast CPU will be underutilized 

because it can’t access data fast enough to utilize its compute power. If the program reduced 

its working set it could achieve higher CPU utilization. Thus, matching the workload and 

the architecture can have a dramatic effect on the performance. This is more so with the 

high-performance architectures which have to tradeoff the amount of resources put into the 

architecture and technological limitations such as power consumption, DRAM latency, 

interconnect throughput etc. In this research we study some aspects of parallel benchmark 

on highly parallel architectures. 



 

6 

There are many aspects of benchmarks that can be measured and studied, at least one 

for each type of resource. We chose to study the first-order performance limiting factor of 

a parallel benchmark – its ability to utilize more cores. We study this for a diverse set of 

benchmarks of the Parsec benchmark suite [2][3]. We find the maximum number of cores 

that each benchmark can utilize on architecture with unlimited resources, thus we capture 

the inherent parallelism limitation of the benchmarks. 

Another aspect of parallel benchmarks that we study is the effect of high parallelism 

degree on shared cache performance. With high parallelism degree and assuming 

independent parallel tasks1, the nature of the basic assumption that makes cache useful, 

namely locality-of-reference, changes. At the extreme, when no data is shared among the 

parallel tasks, the cache is effectively divided between the parallel tasks. This assumption 

can be used to construct an analytical model for shared cache performance (miss-rate) [4] 

We extract the actual cache performance from simulation and show that the analytical 

model for the cache performance is a good first-order approximation, nevertheless it is not 

ideal for analytical performance studies because the latter can be highly sensitive to the 

actual cache performance so that even a small mismatch between the analytical and actual 

cache performance results in a large mismatch between the analytical and actual 

performance. 

1.2. Summary of Contributions  

The main contributions of our research are:  

- Construct efficient simulator for highly parallel architectures that can run any Linux 

benchmark. 

- Identify and studying the maximal number of cores that each benchmark in the 

Parsec benchmark suite can utilize. 

- Validating an analytical shared cache performance (miss-rate) model for highly 

parallel architectures. 

                                                 

1 Task independence is extremely important to minimize algorithmic dependency and therefore is a 

reasonable assumption for parallel workloads. 



 

7 

 

1.3. Research Method 

Studying the interaction of highly parallel workloads and architectures requires 

simulating architectures with a parameterized degree of parallelism that scales to high 

numbers (hundreds and thousands of cores). Moreover, it requires benchmarks that are 

representative of parallel workloads. We use the benchmarks in the Parsec benchmark 

suite [3], which includes diverse workloads and provides control over the parallelism 

degree. For the architecture, we find that full-system simulators are not suitable for our 

purpose because these do not scale well to the parallelism degrees we want to study and 

the OS (Operating System) they run (general-purpose OS, typically Linux) does not 

support such high parallelism degrees. Furthermore, parallel benchmarks are compute-

intensive, hence OS kernel space processing is not only unessential to simulate, it actually 

constitutes noise because of compute resource consumption by background processing 

(e.g., interrupts, daemons). Therefore, we developed our own simulator that can execute 

Linux programs, and thus supports any Linux benchmark, and yet simulates only user-

space code. We use this simulator to study the various aspects of workloads behavior, both 

global execution summary statistics and performance counters that reflect the behavior 

over time.  

  



 

8 

  



 

9 

Chapter 2.  

Many-core Architecture Model 

2.1. System Model 

Our system model is the unified multi-/many-cores model defined in [4], depicted in 

Figure 2-1. It is a shared-memory system with an array of NPE homogenous Processing 

Elements (PEs or cores) and a memory hierarchy that consists of PE-private caches 

(traditionally referred to as L1 caches) a shared cache (traditionally referred to as Last-

Level-Cache or LLC) of size S$, and main memory (RAM). It is a Symmetrical Multi-

Threading (SMT) architecture system [5], i.e., has a register file with room for possibly 

more thread-contexts than PEs. A scheduler assigns thread-contexts to PEs and changes 

this assignment according to some scheduling policy (e.g., context-switch when a thread is 

stalled waiting for data from RAM). It should be noted that when the number of thread-

contexts is equal to the number of PEs, the system is not an SMT one so non-SMT systems 

also map to this model. 



 

10 

PE

L1

PE

L1

PE

L1

PE

L1

PE

L1

PE

L1

PE

L1

PE

L1

PE

L1

PE

L1

shared-cache

Main Memory

Multi/Many-core CPU

thread-contexts

(register-file)

 

Figure 2-1: Architecture model 

The memory hierarchy model is a simple fixed-latency-per-hierarchy-level model with 

shared cache latency of t$ and main memory latency of tm. The private cache latency is 

modeled indirectly in a workload parameter, discussed later. 

The PEs are simple in-order cores with a fixed-latency for the computation part of the 

instructions denoted CPIexe. A memory access adds the memory-hierarchy latency to the 

respective instruction latency. Table 2-1 summarizes the parameters of the hardware 

architecture part of the model. 

  



 

11 

Parameter Description 

NPE Number of PEs (in-order processing elements) 

S$ Cache size [Bytes] 

Nmax Maximal number of thread-contexts in the register 

file 

CPIexe Average number of cycles required to execute an 

instruction assuming a perfect (zero-latency) memory 

system [cycles] 

t$ Cache latency [cycles] 

tm Memory latency [cycles] 

Table 2-1: System parameters 

 

2.2. Analytical Model 

[4] defines an analytical model for the combination of the above system model and 

synthetic workload. A fundamental assumption of this synthetic model is that the task can 

be partitioned to any number of n sub-tasks, each handled by a separate thread. This 

assumption effectively ignores data-dependent variability. 

The fraction of memory instructions in the synthetic workload’s dynamic instructions 

stream is denoted by r*
m (0 ≤ r*

m ≤ 1). Assuming the private cache miss-rate is P*
miss, the 

fraction of instructions that access the shared cache is rm = r*
m ∙ P*

miss. In particular, with 

no private cache (i.e., P*
miss = 1) rm = r*

m. 

The shared cache miss-rate depends on the specific workload characteristics (e.g., the 

working set, amount of data sharing between the threads), the number of threads n and the 



 

12 

size of the cache S$. The workload characteristics are captured in the miss-rate function 

Pmiss(S$, n). Table 2-2 summarizes the workload parameters. 

Parameter Description 

n Number of threads that execute or are in running state 

(not blocked) concurrently 

rm Fraction of instructions accessing memory out of the 

total number of instructions [ 0 1mr  ] 

Pmiss(S$, n) Miss-rate for cache of size S$ shared by n threads 

Table 2-2: Workload parameters 

In this model the only shared resource is the shared cache. Thus, the shared cache miss-

rate function captures the shared resource contention effects of the interaction between the 

architecture and the workload. This analytical model does not capture the data dependency 

effects. 

The parameters defined in Table 2-1 and Table 2-2 are used to analyze expected 

performance. In this context, for simplicity it is assumed that the workload parameters are 

fairly static, and do not vary much over time or space (i.e., between different threads of the 

same application). Therefore, the performance analysis uses average values in the 

equations below. 

With no loss of generality, time is measured in cycles rather than in time units. This 

saves the need to incorporate the operational frequency into the analysis. Converting a 

result that is given in cycles units to the respective result in time units is straight-forward. 

Given the per-thread shared cache miss-rate function and the cache and memory 

latencies as defined by the system model, the average number of cycles needed for data 

access, denoted tavg (sometimes called Average Memory Access Time - AMAT) is given 

by: 

(2-1) 𝒕𝒂𝒗𝒈(𝑺$, 𝒏)[𝑪𝒚𝒄𝒍𝒆𝒔] = (𝟏 − 𝑷𝒎𝒊𝒔𝒔(𝑺$, 𝒏)) ∙ 𝒕$ + 𝑷𝒎𝒊𝒔𝒔(𝑺$, 𝒏) ∙ 𝒕𝒎 



 

13 

Formulating the average CPI is straight forward: 

(2-2) 𝑪𝑷𝑰𝒆𝒙𝒆(𝑺$, 𝒏) = 𝑪𝑷𝑰𝒆𝒙𝒆 + 𝒓𝒎 ∙ 𝒕𝒂𝒗𝒈(𝑺$, 𝒏) 

Assuming a thread scheduling policy of context-switch whenever a thread is stalled on 

a memory access, any given thread needs to stall once every 1/rm instructions on average, 

and wait until the data it accesses is received from memory. During this stall time, the PE 

is left unutilized, unless other threads are available to switch-in. The number of threads 

needed in order to fill a single PE’s stall time, i.e., to saturate the PE, is: 

(2-3) 𝑵𝒎𝒂𝒙 = 𝟏 + 𝒕𝒂𝒗𝒈
𝒓𝒎

𝑪𝑷𝑰𝒆𝒙𝒆
 

With all the PEs saturated, i.e., n ≥ NPE∙Nmax, each PE executes 1/CPIexe instructions-

per-cycle (IPC) and the aggregate performance of all the PEs is thus NPE/CPIexe. With the 

PEs not saturated, i.e., n < NPE∙Nmax, each thread executes 1/CPIavg(S$, n) instructions-per-

cycle so the aggregate performance of all the threads is given by: 

(2-4) 𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞(𝐒$, 𝐧)[𝐈𝐏𝐂] =  
𝐧

𝐂𝐏𝐈𝐚𝐯𝐠(𝐒$,𝐧)
  

Rewriting equation (2-4) in term of the model parameters we get: 

(2-5) 𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞(𝐒$, 𝐧)[𝐈𝐏𝐂] =  
𝐧

𝐂𝐏𝐈𝐞𝐱𝐞+𝐫𝐦∙{(𝟏−𝑷𝒎𝒊𝒔𝒔(𝑺$,𝒏))∙𝒕$+𝑷𝒎𝒊𝒔𝒔(𝑺$,𝒏)∙𝒕𝒎}
  

2.3. Simulation Model 

We developed a simulator for the architecture model depicted in section 2.1. The 

simulated system includes an array of NPE simple cores, with fixed latency per instruction2. 

Memory instructions suffer additional latency incurred by accessing the memory hierarchy, 

determined by a memory hierarchy model. 

The memory hierarchy model consists of per-core private caches (L1), a cache that is 

shared by all the cores (Last-Level-Cache – LLC) and main memory (typically DRAM). 

Every level of the memory hierarchy is fixed latency and according to where the data is 

                                                 

2 Including branches – effectively assuming a perfect branch predictor. 



 

14 

found, the latency is added to the latency of the respective instruction. Thus memory-

hierarchy contention effects are not modeled (e.g., bandwidth constraints; queuing effects). 

There are Nmax thread-contexts (Nmax ≥ NPE) and a scheduler that switches contexts when 

a thread stalls due to a memory operand that needs to be fetched from Main memory. 

Context switch takes zero time. 

The analytical model depicted in section 2.2 is defined in terms of averages, thus it 

doesn’t capture the effect of space and time variations. In particular it doesn’t capture data-

dependency effects. The simulation does capture the space and time variations effect 

because it actually executes the program and it does capture data-dependency effects 

through correctly simulating inter-thread synchronization: when a thread blocks through 

the OS (typically waiting on synchronization object), it is removed from the simulation 

scheduling, and once it is unblocked it is re-added. Thus simulation progresses with the 

blocked threads on one hand not making progress and on the other hand not consuming 

resources (compute, cache), which exactly matches the effects of the data-dependency. 

Using this simulator we can study how real benchmarks behave under the architecture 

model depicted in section 2.1. Specifically, we can extract both architecture-level and 

workload-level statistics, with single cycle resolution. Examples for architecture-level 

statistics are core utilization, average memory access latency, context switch rate etc. 

Examples for workload-level statistics are instruction mix in the instruction stream (such 

as the rm parameter for the analytical model, described in Table 2-2) memory access 

locality in space and time, inter-thread dependency such as synchronization etc. In 

particular, we use simulator statistics for extracting the workload-specific model 

parameters of Table 2-2, which themselves may depend on architecture parameters (which 

are therefore simulation parameters) such as cache size (S$ in Table 2-1). 

  



 

15 

Chapter 3.  

The Simulator 

In this chapter we present the simulator that we developed to study the behavior of 

existing benchmarks under the system model depicted in section 2.1. Our simulator 

executes native Linux benchmarks, and thus allows running standard benchmarks as well 

as custom benchmarks written in any of the abundant of programming tools that are 

available for Linux. 

The simulator allows easy modifications of architecture parameters (e.g., core count, 

memory hierarchy configuration, cache configuration, etc.) and collecting comprehensive 

micro-architecture-level statistics (e.g., core stalls, cache lines utilization). 

3.1. Basic requirements 

Our basic requirements for our simulator are that it runs Linux programs and that it 

simulates only the user-space execution. We argue that for the purpose of simulating 

benchmarks that target highly parallel architectures, simulating the kernel-space code 

execution is not only unnecessary, it’s undesirable. In this section we explain the 

motivation behind these basic requirements. 

Benchmarks that are not tied to a specific architecture are typically implemented for 

general-purpose operating systems, primarily Linux (but sometimes also for Windows 

and/or UNIX) to make them usable across many environments. In particular, there is an 

abundance of software development tools for general-purpose OSs, which facilitates 

implementing custom benchmarks as well as tweaking existing ones. Therefore, we target 

our simulator to be able to execute benchmarks implemented for Linux. 

A straightforward approach for simulating a program implemented for a specific OS is 

a full system simulator [6][7][8], i.e., simulating an entire computer system and running a 

real-world operating system. However, in general, highly parallel architectures target 

compute intensive workloads. In fact, contemporary existing highly parallel architectures 



 

16 

are typically used as accelerators [9][10], with no OS at all and no direct I/O capabilities3. 

Thus, simulating OS I/O services is not essential for throughput benchmarks.  

Even when a throughput workload is running on a full-fledged OS, maximizing compute 

throughput typically involve preventing context switches to avoid the associated overhead. 

This is achieved by spawning no more threads than there are hardware thread-contexts. 

With this and under an assumption that no other programs are running on the system, no 

context-switch is needed, effectively neutralizing the OS scheduler. Thus, although the 

benchmarks we target for our simulator are implemented for a general-purpose OS (Linux), 

we assume that no OS-level scheduling is taking place so it’s not necessary to simulate the 

OS scheduler. 

Moreover, general-purpose OSs (such as Linux) perform background maintenance 

operations (interrupts, daemons) which trigger context-switches and consume core cycles, 

thus “polluting” the simulation with unrelated and non-deterministic computation resource 

consumption. As an example, in [11] a full-system simulator was used to gather traces for 

offline trace-driven simulation but the OS computation was filtered out of the trace because 

it was undesirable in the simulation. 

Not all effects of OS services on throughput benchmarks simulation are undesirable. 

The effects of Inter-Thread Communication (ITC) such as locking, are essential for 

capturing the inter-thread data dependency, which can be a principal performance limiting 

factor in parallel workloads. Therefore, we target our simulator to be execution-driven (as 

opposed to trace-driven) to capture this important aspect of throughput benchmarks. 

However, we do argue that it’s desirable to factor out the OS computation of ITC services 

in order to capture the workload’s inherent data-dependency effects on the performance 

regardless of specific OS implementation of ITC services. ITC implementations are subject 

to various optimization tradeoffs that may be configurable or evolve between versions of 

the OS. Moreover, highly parallel architectures may implement ITC primitives in 

                                                 

3 In practice the benchmarks do use the OS I/O services, but primarily for setup (e.g., taking 

execution parameters) and teardown (e.g., reporting results) but the core of the benchmark doesn’t 

use OS I/O services. 



 

17 

hardware. So we would like to preserve the effects of ITC on the simulated benchmarks 

without simulating their implementation. 

To summarize, we want our simulator to simulate only the user-space code of the 

workloads, effectively assuming that all OS services (I/O or otherwise) do not consume 

computation resources but still preserve ITC effects. 

An existing simulator that scales to the degree of parallelism that we need is 

Graphite [12]. However Graphite is optimized for low single-simulation latency and for 

that it exploits distributed setting. However, to facilitate distributed simulation, Graphite 

employs relaxed synchronization model. For our study, accurate synchronization is vital 

because synchronization can be a principal parallelism-limiting factor. 

It should be noted that the simulation captures shared-resource contention effects, 

namely the memory hierarchy, similar to the analytical model, but it also captures the data-

dependency effects, by simulating the ITC effects, which the analytical model doesn’t 

capture. 

3.2. Architecture 

We implement user-space simulation by means of binary instrumentation. Binary 

instrumentation is the process of in-memory modification of a program while it executes, 

allowing interleaving of the program’s code with custom instrumentation code that can 

observe and/or affect the original code’s behavior. Binary-instrumentation-based 

simulation has the additional benefit of not requiring the simulated application to be 

implemented using a specific language or framework and doesn’t require re-compilation. 

Among other things, this allows simulating applications that execute under a runtime-

environment program such as the Java Virtual Machine. Our simulator is built on the Pin 

binary instrumentation framework from Intel [13]. 

3.2.1. Functional execution scheduling 

Since with binary instrumentation the application’s instructions are functionally 

executed on a physical processor, the physical processor provides the ISA functional-



 

18 

model. Thus, simulation requires the program instructions to be scheduled to the physical 

processor in the order imposed by the timing model of the simulated architecture. For 

example, when two threads contend on changing the same memory location (typically 

using atomic Read-Modify-Write instructions), the one that would execute first according 

to the timing model should be scheduled first to the physical processor. 

Simulation is implemented through binary instrumentation by having the binary 

instrumentation framework instrument the benchmark program with simulator code that: 

 observes the program’s dynamic instructions streams (threads) 

 executes a timing model of the simulated architecture on the observed 

instructions streams 

 schedules the execution continuation according to the outcome of the timing 

model execution. 

This is depicted in Figure 3-1. The instruction streams of the application threads are 

instrumented with callback operations into the simulator’s code. These provide the 

simulator with all the information about the subsequent instruction of each instruction 

stream, such as whether it’s a memory instruction or not, and if it is, whether it is a read or 

write operation, the referenced address, the operand size, etc. Therefore, as the code 

executes the simulator gets to see each instruction and its operands before it executes. 



 

19 

 

Figure 3-1: Application-Simulator interaction 

To achieve the effect of execution-driven simulation, the instructions of the different 

threads must be executed in the relative order that the simulated architecture imposes. This 

means that the next instruction of a given thread must be allowed to execute only when it 

is determined that all the next instructions of all other running threads are ordered after it 

according to the simulated architecture’s timing model. In other words, given a set of next 

instructions of all running threads, the next instruction to schedule for functional execution 

is the one that is going to complete first according to the timing model. Thus, given the set 

of next instructions of all running threads, the simulator executes the timing model until it 

determines which of these instructions will be completed first. Then it lets the respective 

thread execute this instruction. It then gets notified about the subsequent instruction of that 

thread, and it again has a set of next instructions of all running threads. It continues the 

Simulator 
Thread-context 

Instruction#1 

Instrumentation 
callback 

Instruction#2 

Instrumentation 
callback 

Instruction#3 

Instrumentation 
callback 

Instruction#4 

Instrumentation 
callback 

Instruction#5 

Instrumentation 
callback 

Execution 

scheduling 

semaphore 

Thread#3 

Simulator 
Thread-context 

Instruction#1 

Instrumentation 
callback 

Instruction#2 

Instrumentation 
callback 

Instruction#3 

Instrumentation 
callback 

Instruction#4 

Instrumentation 
callback 

Instruction#5 

Instrumentation 
callback 

Execution 
scheduling 

semaphore 

Thread#2 

Simulator 

Thread-context 

Simulator 

 

Scheduler 

Timing Model 

CPU Model 

Cache Model 

Instruction#1 

Instrumentation 

callback 

Instruction#2 

Instrumentation 
callback 

Instruction#3 

Instrumentation 
callback 

Instruction#4 

Instrumentation 
callback 

Instruction#5 

Instrumentation 
callback 

Execution 

scheduling 

semaphore 

Thread#1 



 

20 

execution of the timing model from where it left off and determines the next instruction 

that will be completed, and so on. 

Controlling the next instruction execution requires the ability to suspend and resume 

application threads. This is achieved through a per-thread functional execution scheduling 

semaphore that is maintained in a per-thread-context block. When a callback is called with 

the information about the next instruction, the instruction is added to the current set of next 

instructions and the thread is suspended by waiting on its respective semaphore. When the 

next instruction to execute is determined from the timing model, the instruction is allowed 

to functionally execute by signaling the respective thread’s semaphore, which make the 

callback return and the next instruction to execute. 

3.2.2. Inter-thread communication effects preservation 

To further maintain execution-driven simulation, the ITC effects on the execution must 

be preserved. There are two main forms of ITCs: one that involves the OS and one that 

doesn’t. 

In ITC that involves the OS a thread makes a syscall (system call into the OS kernel) 

that blocks until another thread makes a complementary syscall that makes the former 

syscall return. When the blocking syscall is allowed to execute, the respective thread will 

get blocked inside the syscall. For the syscall to return, the other running threads need to 

be allowed to make progress in order for the complementary syscall to be reached. During 

this time the blocked thread cannot make progress. To reflect this, a thread that is about to 

execute a syscall is removed from the set of currently running threads. This allows 

simulation scheduling to continue because the timing model no longer expects to have a 

next instruction from that thread to participate in the timing model execution. When the 

complementary syscall is executed, the blocking syscall returns, which causes the 

instrumentation callback following the syscall to be called and the thread is added back to 

the set of running threads and it again participates in timing model execution and functional 

execution scheduling. 

Instead of distinguishing between blocking and non-blocking syscalls to determine 

whether to exclude a thread from the set of running threads or not, we treat all syscalls as 



 

21 

blocking. If the syscall is not really blocking, it will return quickly and the thread will be 

added back to the set. Under the assumption that non-ITC syscalls are rarely used in 

throughput workloads, the treatment of all syscalls as ITC should have negligible effect on 

simulation results. 

The other form of ITC doesn’t involve the OS, i.e., user-space-only ITC. Such ITC 

necessarily uses shared variables for the communication. The effects of such ITC are 

implicitly maintained by the user-space-only simulation as described above. The canonical 

example for user-space-only ITC is a spin-lock mutex [14]. A possible straight-forward 

implementation of spin-lock mutex is the following: 

 

1 subroutine Acquire(Mutex) 

2  while (CAS(Mutex.state, FREE, OWNED) = OWNED) 

3  end while 

4 End subroutine 

5 subroutine Release(Mutex) 

6  Mutex.state  FREE 

7  MemoryFence 

8 end subroutine 

 

Since instructions are executed in the order imposed by the timing model, the thread 

that would execute the acquisition CAS first in the simulated architecture will be the one 

that is scheduled first by the simulator’s functional execution scheduler and therefore end 

up owning the mutex first. Until the mutex is released all other threads will be spinning 

inside the Acquire subroutine and thus will not make computational progress, which is 

exactly the inter-thread data dependency effect that the simulator should capture. 



 

22 

3.2.3. Achieving execution-driven simulation 

The timing model part of our simulator is effectively a trace-driven simulator – its input 

is the instruction traces of the application threads. It so happens that the trace is of a single 

instruction from each thread. Once an instruction is executed, and therefore removed from 

the trace, the following instruction constitutes the next single instruction trace of that thread 

and again the input of the timing model is a trace of a single instruction from each thread. 

The online feedback from this trace-driven timing model to the trace collecting mechanism 

by mean of binary instrumentation callbacks makes our simulator effectively an execution-

driven simulator. 

The timing simulation is implemented using classical event-driven simulation design. 

From an architecture point of view, this allows arbitrarily detailed simulation, e.g., on-chip 

network routing, cache-coherency protocols, DRAM controller etc. This also allows 

trading off accuracy for simulation speed through a simplified timing model, e.g., fixed 

latencies memory hierarchy. 

3.3. Implementation 

3.3.1. Reducing context switches 

Following from the description in section 3.2.1, when two consecutively scheduled 

workload instructions are from different threads, there is at least one OS-level context 

switch because after the first instruction executes, the callback blocks on the semaphore 

and then the second instruction’s thread semaphore is signaled and the respective thread 

unblocks. The more threads are running, the bigger the chance for any pair of consecutively 

executed instructions to come from different threads. So the number of context switches is 

in the order of the total number of executed instructions. This is a huge performance 

overhead. 

A key observation here is that in order to preserve the effect of the simulated 

architecture’s timing on the computation, it is not necessary to functionally execute all the 

instructions in the global order that is imposed by the timing model – it suffices that the 

functional execution order maintains the relative execution order. In particular, the 



 

23 

functional execution of a single thread is not affected by other threads if there are no shared 

operands. For example, suppose a thread TA executes a computation sequence that involves 

only Register operands and no memory operand. The results of this sequence cannot be 

affected by computations of other threads because other threads cannot change any of TA‘s 

registers and therefore cannot change any of its operands. Thus, the results are not affected 

by whether other threads’ computations are executed before, during or after TA‘s 

computation. In other words, this TA‘s computation sequence is unordered relative to other 

threads. 

Similarly to register only operands sequences, if it can be shown that a computation 

sequence that uses memory operands do not share these memory operands with other 

threads, then such a sequence is also not affected by the execution of other threads and 

therefore is unordered relative to other threads. With Linux supporting processors with 

relaxed memory consistency models [15], i.e., modifications to memory locations may be 

observed in different order by different threads, the program must use memory fences to 

make any visibility order guarantees. While in theory different threads may observe fences 

from different other threads in different order (therefore also in non-real-time order), a 

simple fence ordering scheme that maintains the appropriate semantics is global real-time 

order, i.e., all fences are observed by all threads in the same order that also reflect their 

real-time order. 

The order of memory modifications is defined relative to memory fences in their 

respective thread as depicted in Figure 3-2. It shows the real time execution of two threads 

TA
1 and TA

2. The instruction streams are segmented on memory fence boundaries – the 

thick black lines denote memory fence instructions. S1
1 and S2

1 are consecutive segments 

of TA
1. Similarly S1

2 and S2
2 are consecutive segments of TA

2. The instructions in S1
1 are 

unordered relative to S1
2 – each may or may not see modifications made to shared variables 

by the other. The same is true for S1
1 and S2

2. However, it is guaranteed that S2
1 sees the 

modifications made by S1
2 because S2

1 is ordered after the fence at t4, which is ordered 

after the fence in t3 (because fences are globally ordered), which in turn is ordered after 

S1
2. So a segment Sm

i is guaranteed to see the changes made by a segment in another thread 

Sn
j IFF the memory fence preceding Sm

i in TA
i is ordered after the memory fence 

succeeding Sn
j in TA

j. Otherwise the segments are unordered. Therefore, correct programs 



 

24 

must ensure that there are no accesses with undefined relative ordering to the same 

operands by multiple threads because otherwise, the same initial program state may 

produce different results in different runs. 

 

Figure 3-2: Weak memory consistency-model 

Whether unordered segments see the memory modifications of each other is undefined. 

Therefore, they cannot have common operands. Thus, unordered segments can be 

functionally executed in any order with no change of semantics, i.e., independent of their 

exact timing according to the timing model. To maintain correct execution semantics it 

suffices that ordered segments are functionally executed in the right order according to the 

simulated architecture timing model and for that it suffices that only memory fences are 

executed exactly according to the timing model. This allows functionally executing 

instructions of a single thread atomically (i.e., continuously) without considering the timing 

model as long as no memory fence is encountered. Once a memory fence is encountered, 

its functional execution must be delayed until all memory fences that precede it according 

to the timing model have been executed so that subsequent instructions get to see the 

functional results of other threads’ segments that are ordered before them. This is illustrated 

in Figure 3-3. It shows 3 instructions streams of 3 threads: TA
1, TA

2 and TA
3. The small 

black rectangles denote instructions that are memory fences. Figure 3-3(a) shows the 

functional execution timing in the simulated architecture. The arrows show order 

dependency, from a segment that is ordered after to the segments that are ordered before 

it. Figure 3-3(b) shows functionally equivalent execution: memory fences are executed in 

the same order as in Figure 3-3(a) and segments that are ordered execute in the right order. 



 

25 

 

(a) Simulated architecture execution timing 

 

(b) Valid observed functional execution of (a) under week memory consistency model 

 

Figure 3-3: Functional execution scheduling 

Segment execution includes trace collection. The timing model still works with one 

instruction trace per thread but after an instruction is determined to be completed, the next 

instruction for that thread is taken from the respective thread’s trace, if it’s not empty. If it 

is empty, the next segment is allowed to execute and a new trace is collected. Now again 

there are non-empty traces for all the running threads and the timing model execution can 

continue. 

3.3.2. Timing model execution thread 

Figure 3-4 depicts how the functional-execution scheduling is combined with timing 

model execution to achieve the effect of execution-driven simulation. When an application 

code segment executes, a trace is collected. Timing simulation takes place when a non-



 

26 

empty trace is available for all running threads. During timing simulation all the threads 

are blocked on their execution scheduling semaphore. The exhaustion of any of the per-

thread traces implies that the next instruction in that thread is next in the global order. At 

this point timing simulation is suspended and functional execution of the thread whose 

trace was exhausted is resumed and a new trace is collected, up to the next fence 

(excluding). Now again there are non-empty traces available for all running threads and 

again timing simulation can take place. 

 

Figure 3-4: The combination of functional and timing-model execution, resulting effectively an 

execution-driven simulation 

To summarize, the simulator alternates between two execution phases: 

I. Functional execution and Trace-collection 

II. Timing-simulation 

In phase I, the workload’s code executes on the physical processor (functional 

execution) and the instrumentation code collects trace by observing the instructions stream. 

Once traces are collected for all running threads, simulation changes to phase II by 

suspending the functional execution (all threads are blocked on their respective execution 

scheduling Semaphore) and executing the timing simulation. Once the timing simulation 

exhausts any of the thread traces, simulation changes back to Phase I by suspending the 

timing simulation and resuming the execution of the thread whose trace was exhausted by 

signaling its execution scheduling semaphore. After the resumed thread collects a new 

trace, once again traces are available for all threads and timing simulation can continue and 

so on. 



 

27 

Executing the timing model requires an execution thread-context. One possible 

approach is to have a dedicated thread TE. That thread would determine the next instruction 

to execute, unblock the respective thread TA
i and wait for it to complete collecting a new 

trace for that thread. When trace collection completes, the callback of that thread will make 

the trace available to TE, unblock it and then block on its scheduling semaphore. This is 

depicted in Figure 3-5. 

 

Figure 3-5 Execution scheduling with a dedicated thread for timing model execution (TE) 

This approach implies that for every executed segment there will be two context 

switches: one from TE to TA
i after TA

i has been determined from the timing model and one 

from TA
i to TE once trace collection for TA

i completes. 

It should be noted that in this approach the execution of TE is completely serialized with 

the execution of the application’s threads – when one executes all the others are blocked. 

Therefore, we exploit this fact to save one context-switch per-segment by executing the 

timing model in the application thread within the callback. This is depicted in Figure 3-6. 

 



 

28 

Figure 3-6 Execution scheduling without a dedicated thread for timing model execution 

3.3.3. Limiting the size of a segment 

We saw that partitioning instruction streams into segments along memory fences and 

executing the segments atomically is consistent with weak memory consistency model and 

also allows incurring only one context switch per segment execution. However, a thread 

may execute an unbounded number of instructions between memory fences, implying that 

segments lengths are unbounded which in turn implies that trace lengths are unbounded. 

Long traces increase the memory working-set, potentially incurring significant overhead 

(e.g., reduces cache utilization, thrashes physical memory). Also, the marginal gain of 

amortizing the context-switch overhead across long segments diminishes quickly – for 

example the gain in amortizing the context switch overhead across segments of 20 

instructions instead of 10 instructions is much larger than the gain in amortizing across 

1010 instructions instead of 1000 instructions. Therefore, it is beneficial to limit the 

segment length (and therefore the trace length) – it avoids the overhead of larger memory 

working set on the expense of negligible context-switch overhead due to what could have 

been a longer segment. 

It is important to note that in general, the segment-based functional execution 

scheduling ensures that first instructions in each segment are executed in the global order 

that is dictated by the timing model (which is not the case with instructions that are not first 

in a segment). Thus, instructions that must execute in the correct global order, such as 

memory fences, must be first in an execution segment. However, any instruction can be 

executed in the correct global without affecting correctness. So a segment can be made 

arbitrarily short without affecting correctness, as long as memory fences are always first in 

a segment. In particular, a segment can be limited to 1 instruction, thus making all 

instructions first in a segment and hence all instructions are executed in the correct global 

order, as would be the case if we didn’t employ longer traces. This also allows suspending 

trace collection conservatively, i.e., if an operation may be a fence but not necessarily, e.g., 

a syscall. 

The actual trace length limit is a parameter of the simulator. 



 

29 

3.3.4. Simulated architecture software scheduling 

As explained in section 3.1, it is assumed that a throughput workload will not spawn 

more threads than there are hardware thread-contexts in the simulated architecture and 

therefore there is no need for a software scheduler, i.e., software-managed context-

switching, a software scheduler that suspends a running thread to free its hardware thread-

context and assigns another thread to that thread-context. However, in practice a workload 

may have more active threads than hardware thread-context even if it doesn’t spawn more 

worker thread than there are thread-contexts. For example, a workload may have a main 

thread than spawn the worker threads and then waits for them to terminate. If all the worker 

threads start running before the main thread reaches the blocking step, there are more active 

threads in the program than there are hardware thread-contexts. The simulator handles this 

by implementing a simple cooperative-multitasking software scheduler i.e., a scheduler 

that holds aside threads if there is no vacant hardware thread-context and map them to a 

hardware thread-context when one becomes available, i.e., by a running thread getting 

blocked on an OS syscall. Thus, in the above workload example where the number of 

running threads is one more than there are hardware thread-contexts, either the main thread 

is assigned to a hardware thread-context or it is not. If it is, then one of the worker threads 

cannot be mapped to a hardware thread-context and therefore the main thread can make 

progress but one of the worker threads cannot. The main thread will quickly get to block 

waiting for the worker threads to finish and hence will free its thread-context and the 

cooperative scheduler will assign the last worker thread to that thread-context. Now only 

the worker threads are active and therefore all are assigned to thread-contexts, all run in 

parallel and no further context switch is needed even if any of them blocks. If the main 

thread is not assigned to a thread-context (for example, because it blocked on something 

else and then unblocked before blocking on waiting for the worker threads to finish) then 

all the worker threads are assigned to hardware thread-contexts and they all run in parallel 

until one of them blocks or terminates. When one blocks or terminates, its thread-context 

is freed and the cooperative scheduler assigns the main thread to it. Again the main thread 

will quickly get to the stage that it is blocked on the worker threads and again only worker 

threads are active so there are at most as many active threads as there are thread-contexts 

and the worker threads run in parallel until termination. Thus, in either case the worker 



 

30 

threads end up running in parallel except for brief period it takes for the main thread to 

block after spawning all the worker threads. 

It should be noted that this software cooperative scheduler graceful handling of the 

number of active threads exceeding the number of hardware thread-contexts is not limited 

to exceeding only by one. It can be easily seen that exceeding by more than one is handled 

equally gracefully, as long as the period of excessive active threads is very small relative 

to the runtime of the worker threads. 

3.4. Summary 

To summarize, our simulator executes Linux programs, simulating only the user-space 

code. It is oriented to throughput workloads, assuming no use of OS I/O or scheduling 

services. The functional execution is provided by the physical processor and the timing 

simulation is provided by an arbitrarily detailed timing model that is implemented using 

event-driven architecture. 

  



 

31 

Chapter 4.  

Benchmarks parallelism scalability study 

4.1. Introduction 

In this chapter we use our simulator to study the inherent parallelism scalability of a 

widely used parallel benchmarks: the Parsec benchmark suite [3]. What we would like to 

capture is the benchmarks’ inherent limitations in exploiting highly parallel architectures. 

We capture this through the performance as a function of the degree of parallelism that is 

available in the underlying architecture (the number of Processing elements or Cores). 

To capture the parallelism inherent in a benchmark’s algorithm, we use architecture with 

no inherent parallelism limitation in the architecture itself, such as bandwidth limits or 

memory latency. Therefore, for the parallelism scalability study we use architecture with a 

perfect memory system – no cache and every memory access incurs a latency of 1 cycle. 

We maintain a latency of 1 rather than 0 cycles as an expression of the fact that memory 

instructions are inherently slower than non-memory instructions. 

The metric we use for performance is the average instructions-per-cycle. This metric is 

more appropriate than the conventional total execution-time metric because the latter 

allows meaningful comparison only when the size of the problem is constant across 

different parallelism degrees. Such parallelism model is compatible with the model used 

by Amdahl’s Law [1]. However, a program may adjust the size of the problem according 

to the execution parameters such as the parallelism degree. Such parallelism model is 

compatible with Gustafson Law [16]. Indeed some benchmarks in the Parsec benchmark 

suite adjust the problem size to the parallelism degree. The IPC metric effectively 

normalizes the performance over the problem size. It should be noted that this assumes the 

program does not include speculative computation or else the IPC metric does not reflect 

the performance – an execution with higher degree of parallelism and higher IPC may have 

larger portion of its speculative computation discarded than an execution with lower degree 

of parallelism and lower IPC so that the latter completes faster, thus having higher 



 

32 

performance while having lower IPC. The benchmarks in the Parsec benchmark suite do 

not include speculative computation. 

In the Parsec benchmark suite, the degree of parallelism is expressed by the number of 

worker-threads, i.e. the number of threads the program spawns (not all worker-threads 

necessarily perform computation throughout the program execution, e.g., a thread may 

block waiting for other threads). The number of worker threads is a runtime parameter of 

the benchmark. We use simulated architecture that has at least as much cores as there are 

worker-threads so that core-to-thread allocation does not constitute a parallelism limiting 

factor.  

Table 4-1 summarizes the parameters of the architecture model that is used to study the 

parallelism parameters. 

Parameter Description 

NPE >= #worker-threads 

S$ 0 (no cache) 

Nmax NPE 

CPIexe 1 [cycles] 

t$ Not applicable (no cache) 

tm 1 [cycles] 

Table 4-1: Model parameters for the parallelism scalability study 

With no algorithmic speculative computation, there are two performance limiting 

factors (i.e., factors that reduce the IPC): 

1. Memory latency 

This reduces IPC through incurring extra latency. The degree of IPC reduction 

depends on the mix of memory and non-memory instructions. This is captured 

by the workload model parameter rm, as described in 2.2. 



 

33 

2. Inter-thread synchronization 

This reduces IPC through preventing a thread from executing any instructions 

while waiting for another thread to complete some computation. 

The Inter-thread synchronization reflects the ITC inherent in the workload. Inter-

thread synchronization is known to be a principal performance limiting factor for highly 

parallel architectures, from GPUs to super-computers. The effect of inter-thread 

synchronization can be visualized through graph of the number of running threads (as 

opposed to blocked threads) over time. For example, suppose a parallel algorithm 

involves each thread performing multiple iterations where the iterations of different 

threads need to execute in lock-step. This requires that at the end of every iteration all 

threads wait until all other threads complete the respective iteration. This type of 

synchronization is typically achieved using a Barrier synchronization object [17]. Further 

suppose that the time it takes a thread to execute an iteration is distributes uniformly 

between tn and tx. The number of active threads over time for this algorithm is depicted in 

Figure 4-1. From the beginning of an iteration t0 until t0+tn the number of active thread is 

equal to the number of worker threads and from there until t0+tx the number decrease 

linearly down to 1 (the last one to complete the iteration), at which time the next iteration 

can start and all the waiting threads are unblocked. 

  



 

34 

 

Figure 4-1: thread-context occupancy illustration 

For a given number of worker-threads and in the absence of speculative computation, 

maximum performance is achieved when all the threads are running throughout the 

program execution. The performance in this case is provided by formula (2-5) in the 

analytical model (section 2.2). The fact that the architecture that is used to study the 

parallelism scalability has no cache is equivalent to Pmiss(S$,n)=1. Therefore, the 

performance formula (2-5) becomes: 

(4-1)  𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞𝐦𝐚𝐱(𝐧)[𝐈𝐏𝐂] =  
𝐧

𝐂𝐏𝐈𝐞𝐱𝐞+𝐫𝐦∙𝐭𝐦
  

n is the number of worker-threads; CPIexe and tm are described in Table 4-1; rm is 

extracted from the simulation. 

A workload is said to have perfect parallelism scalability over a range of worker-threads 

count when its actual performance is equal to the maximum performance as depicted in 

(4-1) over that range. Such a workload can fully utilize as much parallelism in the range as 

available in underlying architecture. 

In our study we show the actual performance vs. the number of worker-threads of the 

actual and maximum performance of the various benchmarks in the Parsec benchmark 

suite. For the ones that do not exhibit perfect parallelism scalability, i.e., limited by inter-



 

35 

thread synchronization, we show the inter-thread synchronization effects using the graph 

of running threads over time for several worker-threads counts. 

4.2. Measurement methodology 

Using the simulator described in Chapter 3, we obtain the total number of executed 

instructions and the total execution time (in cycles) and calculate the IPC. The details of 

the simulation environment are provided in Appendix: simulation environment. 

We measure with the benchmarks running with up to 1984 worker-threads. The upper 

limit is derived from a limitation of the Pin binary instrumentation framework, which 

supports programs with up to 2048 threads. Since most of the benchmarks have a control 

thread in addition to the worker-threads, these benchmarks cannot be instantiated with 2048 

worker-threads under Pin. 1984 was chosen because the higher worker-threads count were 

selected to be multiple of 64 and 1984 is the largest multiple of 64 that is smaller than 2048. 

To have measurements in reasonable resolution, the worker-threads counts are not spaced 

evenly across the range. They are spaced more closely in the lower range. So the simulated 

worker-threads counts are 4-64 in 4 threads interval, 64-128 in 16 threads interval and 128-

1984 in 64 threads interval. 

Some benchmarks have constraints on the number of worker-threads, such as it must be 

a power of two. Some do not run properly with order of hundreds and thousands worker-

threads. Some spawn multiple threads per worker-thread count so they hit the 2048 threads 

limit of the Pin binary instrumentation framework with a lower number of worker-threads 

parameter. We indicate this in the results of the specific benchmark. 

The simulations are performed with the “simmedium” data-set unless otherwise 

indicated in the results of the specific benchmark. 

The benchmarks of the Parsec benchmark suite include setup and cleanup steps that are 

not part of the parallel algorithm, e.g., reading input data from disk to memory, printing 

summary information etc. To allow excluding these operation from the measurement, the 

Parsec benchmark suites define Region of Interest (ROI), which is the part of the execution 

that performs the actual parallel algorithm. The ROI start and end are signaled by calls to 



 

36 

specific functions. These signals are made available inside the simulator by sensing these 

calls. To enable this ROI detection by the simulator, the simulator takes the names of the 

ROI start/end functions as parameters. The ROI start/end notifications inside the simulator 

are used to reset/sample the simulator’s internal performance counters (on ROI begin/end, 

respectively) so that the startup and cleanup operations are excluded from the simulation 

statistics. 

The benchmarks in the Parsec benchmark suite notify the ROI start just before spawning 

the worker threads, after preparing the input data-set in memory. However, this means that 

the thread spawning operation is included in the ROI but this is not really part of the parallel 

algorithm. Spawning a thread involves some computation that executes in the context of 

the spawning thread and some thread-startup computation that executes in the context of 

the newly spawned thread. We’ll refer to these as Cprepare and Cstartup, respectively. While 

Cstartup of different worker threads can execute in parallel because they execute in the 

context of different threads, Cprepare of different worker threads all execute in the context 

of the spawning thread and hence are serialized. Thus, spawning the worker threads incurs 

a serial-execution component that is proportional to the number of worker threads; hence 

its effect increases with the degree of parallelism. To exclude Cprepare and Cstartup from the 

ROI, our simulator supports an alternate ROI detection mode, different than detecting the 

calls to the ROI start/end functions. In this mode the ROI begin is implied from all the 

threads reaching the thread-entry point function, i.e., after all Cprepare and Cstartup 

computations have finished. For this mechanism the simulator takes 2 parameters: a list of 

thread entry-point functions4 and the expected number of threads to enter these functions. 

To ensure all the parallel computation is included in the ROI, the simulator freezes the 

threads as they reach the thread-entry function so that they do not execute code until all 

worker-threads have been spawned and reached the thread entry-function (i.e., after 

Cstartup). This has the effect of a barrier at the beginning of the thread-entry functions. 

Indeed some benchmarks have explicit barrier in the beginning of their thread-entry 

function to achieve exactly that. However, the Simulator’s effective barrier has the 

                                                 

4 some benchmarks have several entry functions, for different types of worker-threads 



 

37 

advantage that it takes zero simulation time to unblock all the threads, as opposed to a 

barrier in the benchmark itself, which does consumes simulation execution cycles while 

actually not being part of the parallel algorithm. Therefore, for the purpose of our 

simulations we removed barriers in the beginning of thread-entry functions. We indicate 

this in the results of the specific benchmarks. 

Complementary to notifying ROI start just before spawning the worker threads, the 

benchmarks in the Parsec benchmark suite notify ROI end just after all the worker threads 

terminate, traditionally referred to as join-ing the thread handles. Similar to the case of 

spawning a thread, joining a thread involves thread-cleanup computations that execute in 

the context of the joined threads, and computations that execute in the contexts of the 

joining thread. We’ll call them Cterminate, and Cjoin, respectively. While Cterminate of different 

threads can run in parallel, the Cjoin of different threads are serialized in the joining thread. 

Moreover, worker threads are not necessarily symmetrical with regards to execution time, 

i.e., some threads may exit sooner than others. This means that the degree of parallelism is 

reduced towards the end of execution. Like serial execution computation segments, the 

effect of this “reduced parallelism tail” increases with the increase in the degree of 

parallelism so we would like to exclude it from the simulation too. This is achieved by the 

simulator sensing the exit from the thread entry-point functions and using the first exit as 

the ROI end indicator. This excludes the Cterminate and Cjoin of all threads from ROI, as well 

as the “reduced parallelism tail”. While we recognize that theoretically the “reduced 

parallelism tail” can be a principal performance bottleneck of a parallel workload5, we 

assume that even if it is, this is not inherent to the parallel algorithm but rather a 

consequence of the particular implementation. Under this assumption, the tail is not 

representative of the benchmark’s inherent parallelism so excluding it for the purpose of 

studying the parallel part is desirable. 

                                                 

5 Reference to map-reduce handling of “reduced parallelism tail”. 



 

38 

4.3. Simulation results 

4.3.1. blackscholes 

The blackscholes benchmark contains a barrier at the beginning of the worker-threads in 

order to maximize parallelism by making all the threads start only after all have been 

created and reached the starting point. As described in section 4.2, a barrier in the workload 

itself introduces a serial phase so for our measurements we removed the barrier from the 

benchmark and replaced it by the simulator’s support for worker-threads start 

synchronization. 

The blackscholes benchmark exhibits perfect parallelism scalability, as shown in 

Figure 4-2 (the curves of the maximum and actual performance overlap). 

 

Figure 4-2: Parallelism scalability - blackscholes 

The blackscholes benchmark is embarrassingly parallel, i.e., there is an abundance of 

the parallel units of work and they are completely independent – the data-set is partitioned 

evenly between the worker-threads, which operate on them independently, i.e., with no 

inter-thread synchronization. This is seen in Figure 4-3, which shows that all worker 

threads are running throughout the benchmark execution, i.e., they never block to 

synchronize with other threads (we use the 1948 worker-threads execution as a 

representative – it is the same with smaller number of worker-threads): 



 

39 

 

Figure 4-3: Running threads over time - blackscholes 

4.3.2. bodytrack 

The performance of the bodytrack benchmark is shown in Figure 4-4. Figure 4-5 is 

similar to Figure 4-4 except that the vertical axis is scaled, to provide a more detailed view 

of the actual performance curve. It shows good scalability up to ~32 threads and the 

performance plateaus at ~128 worker-threads. 

 

Figure 4-4: Parallelism scalability – bodytrack 



 

40 

 

Figure 4-5: Parallelism scalability – bodytrack (scaled) 

The bodytrack benchmark has poor scalability and the running threads over time curves 

in Figure 4-6 provides the explanation: there is a serial component that is ~53∙107 cycles 

long that increasingly dominates the execution time as the number of worker threads 

increases. 

  



 

41 

 

 



 

42 

 

 

Figure 4-6: Running threads over time - bodytrack 

4.3.3. canneal 

The performance of the canneal benchmark is shown in Figure 4-7. Figure 4-8 is similar 

to Figure 4-7 except that the vertical axis is scaled, to provide a more detailed view of the 

actual performance curve. It shows that this benchmark has good scalability up to ~128 

worker-threads and peak performance at ~256 threads. Beyond that the performance not 

only doesn’t increase, it decreases. 



 

43 

 

Figure 4-7: Parallelism scalability - canneal 

 

Figure 4-8: Parallelism scalability – canneal (scaled) 

The running threads over time curve of Figure 4-9 explain the performance: this 

benchmark has a serial component that is not of fixed length but rather grows with the 

number of worker threads. It is completely masked with 32 worker threads but emerges 

and becomes increasingly dominant fast with the increase in worker-threads count. 



 

44 

 

 



 

45 

 

 

 

Figure 4-9: Running threads over time - canneal 

4.3.4. dedup 

The dedup benchmark has 3-stage pipelined design, each stage with as many worker 

threads as the parallelism degree specified in the benchmark invocation. Thus, this 

benchmark spawns three times the number of worker threads than the number specified in 



 

46 

the program invocation. Since our simulator is limited to 2048 threads, this benchmark was 

simulated with up to 640 threads specified in the program invocation. 

Due to the pipeline design, the end of ROI (Region-Of-Interest) was not taken to be 

when the first thread exits because there are several types of worker-threads (per pipeline 

stage) and some exit significantly earlier than others. Therefore, for this benchmark the 

special ROI inference based on worker thread exiting was not used. Instead the ROI end 

was inferred from the benchmark’s built-in ROI end function call, i.e., after all worker-

threads have exited. 

The performance of the dedup benchmark is shown in Figure 4-10. Figure 4-11 is 

similar to Figure 4-10 except that the vertical axis is scaled, to provide a more detailed 

view of the actual performance curve. It shows that the performance plateaus at 64 threads.   

 

Figure 4-10: Parallelism scalability – dedup 



 

47 

 

Figure 4-11: Parallelism scalability - dedup (scaled) 

The running threads over-time curves are shown in Figure 4-12. Indeed they show that 

adding worker threads beyond 64 does not change the execution pattern. However, we see 

that there are periods of time with more running threads than the number of thread the 

benchmarks was invoked to because the benchmark actually spawns 3 times this number 

so although Figure 4-11 seems to indicate that up to 64 threads the performance scalability 

is very good, in fact it requires more cores to reach that performance. 

  



 

48 

 

 



 

49 

 

 

Figure 4-12: Running threads over time - dedup 

4.3.5. facesim 

The facesim benchmark requires the number of worker threads to be a power of 2 and 

is limited to 128 worker-threads. This limit is both hard-coded and there is no suitable data-

set for more than 128 worker-threads. Thus, merely changing the hard-coded limit and 

invoking with more threads fails to run due to lack of appropriate data set. 



 

50 

The performance of the facesim benchmark is shown in Figure 4-13. Figure 4-14 is 

similar to Figure 4-13 except that the vertical axis is scaled, to provide a more detailed 

view of the actual performance curve. It shows very poor performance scalability – while 

the performance is monotonously increasing, the marginal performance increase decreases 

rapidly and the maximal performance, achieved at 128 threads is equal to the theoretical 

maximal performance at ~8 threads. 

 

Figure 4-13: Parallelism scalability – facesim 

 

Figure 4-14: Parallelism scalability - facesim (scaled) 



 

51 

The running threads over-time curves are shown in Figure 4-15. They show that there 

is a leading serial part of ~11E+10 cycles long that occupies around half of the execution 

time with 4 worker threads and increasingly dominates the execution time, which explains 

the poor performance scalability. 

 

 



 

52 

 

 

Figure 4-15: Running threads over time - facesim 

4.3.6. ferret 

The ferret benchmark has 4-stage pipelined design, each stage with as many worker 

threads as the parallelism degree specified in the benchmark invocation. Thus, this 

benchmark spawns four times the number of worker threads than the number specified in 

the program invocation. Since our simulator is limited to 2048 threads, this benchmark was 

simulated with up to 448 threads specified in the program invocation. 



 

53 

The performance of the ferret benchmark is shown in Figure 4-16. Figure 4-17 is similar 

to Figure 4-16 except that the vertical axis is scaled, to provide a more detailed view of the 

actual performance curve. It shows that the performance plateaus at 8 threads and there is 

very little performance difference between 4 and 8 threads. Thus, this benchmark has poor 

performance scalability. 

 

Figure 4-16: Parallelism scalability - ferret 

 

Figure 4-17: Parallelism scalability – ferret (scaled) 



 

54 

The running threads over-time curves are shown in Figure 4-18. Indeed they show that 

most of the time there are no more than 8 threads running and at most 12 are running at 

any given time. Also, they show the same execution pattern for 8 threads as for 256 threads, 

which Figure 4-17 shows that both result the same performance. 

 

 



 

55 

 

 

Figure 4-18: Running threads over time - ferret 

4.3.7. fluidanimate 

The fluidanimate benchmark requires the number of worker threads to be a power of 

2. Also, it doesn’t support 2048 threads: it requires an image block per worker-thread and 

in the simmedium and simlarge data sets there are not enough image blocks for 2048 

worker-threads. Therefore, this benchmark is simulated with up to 1024 threads. 



 

56 

The performance of the fluidanimate benchmark is shown in Figure 4-19. It shows very 

good performance scalability – almost linear and close to the theoretical maximum 

performance. 

 

Figure 4-19: Parallelism scalability - fluidanimate 

The running threads over-time curves are shown in Figure 4-20. They show that there 

is no serial phase, and most of the time all threads are running, which explains the good 

scalability. The fraction of the time that all threads are running decreases, which explains 

the increasing gap between the theoretical maximum and actual performance. 

  



 

57 

 

 



 

58 

 

 

Figure 4-20: Running threads over time - fluidanimate 

4.3.8. raytrace 

The raytrace benchmark contains a barrier at the beginning of the worker-threads in 

order to maximize parallelism by making all the threads start only after all have been 

created and reached the starting point. As described in section 4.2, a barrier in the workload 

itself introduces a serial phase so for our measurements we removed the barrier from the 



 

59 

benchmark and replaced it by the simulator’s support for worker-threads start 

synchronization. 

The performance of the raytrace benchmark is shown in Figure 4-21. Figure 4-22 is 

similar to Figure 4-21 except that the vertical axis is scaled, to provide a more detailed 

view of the actual performance curve. It shows good performance scalability up to ~80 

threads at which point it virtually plateaus. 

 

Figure 4-21: Parallelism scalability - raytrace 

 

Figure 4-22: Parallelism scalability – raytrace (scaled) 



 

60 

The running threads over-time curves are shown in Figure 4-23. They show that as the 

number of worker-threads increases, there is a tail that above 128 threads is not affected by 

the number of threads and increasingly dominant the execution time. 

 

 



 

61 

 

 

Figure 4-23: Running threads over time - raytrace 

4.3.9. streamcluster 

The streamcluster benchmark has a data-set that is proportional to the number of 

worker-threads and therefore its execution time is proportional to the number of threads. 

Large number of threads takes exceedingly long time to simulate. Therefore, this 

benchmark is simulated with up to 640 threads. 



 

62 

The performance of the streamcluster benchmark is shown in Figure 4-24. It shows 

good performance scalability – linear and about half of the maximum performance. 

 

Figure 4-24: Parallelism scalability – streamcluster 

The running threads over-time curves are shown in Figure 4-25. They show that as the 

number of worker threads increases the periods that all of them are running decreases but 

on average the number of running threads is in the order of the worker number of worker 

threads, which results good scalability. 

  



 

63 

 

 



 

64 

 

 

Figure 4-25: Running threads over time - streamcluster 

4.3.10. swaptions 

The performance of the swaptions benchmark is shown in Figure 4-26. It shows perfect 

parallelism up to ~320 threads, and then it virtually plateaus up to 1024 threads, then 

increases and plateaus again at ~1152 threads. 



 

65 

 

Figure 4-26: Parallelism scalability - swaptions 

The swaptions benchmark is embarrassingly parallel – it distributes the data-set evenly 

between the worker-threads, which operate on them independently. However, unlike 

blackscholes which is also embarrassingly parallel this benchmark doesn’t exhibit perfect 

parallelism throughout the worker-threads count spectrum. This is because this benchmark 

dynamically allocates memory throughout its parallel execution. Thus while there is no 

inter-thread dependency in the algorithm, such a dependency is introduced through the 

dynamic memory allocation heap manager, because the heap is shared by all threads and 

therefore has to have some inter-thread synchronization. The running threads over-time 

curves in Figure 4-27 reflect that – with 256 threads the heap synchronization is negligible. 

With 512 and above, the computation involves in the heap management dwarfs the 

computation of the actual algorithm so there is excessive contention which prevents all the 

threads from running simultaneously. Therefore, the measured parallelism scalability is 

actually the heap manager’s parallelism scalability rather than the swaptions algorithm 

itself. 



 

66 

 

 



 

67 

 

Figure 4-27: Running threads over time - swaptions 

4.3.11. vips 

The performance of the vips benchmark is shown in Figure 4-28. Figure 4-29 is similar 

to Figure 4-28 except that the vertical axis is scaled, to provide a more detailed view of the 

actual performance curve. It shows excellent scalability up to 80 threads but then the 

performance plateaus and even slightly decreases. 

 

Figure 4-28: Parallelism scalability - vips 



 

68 

 

Figure 4-29: parallelism scalability – vips (scaled) 

The running threads over-time curves are shown in Figure 4-30. They show that while 

with 64 thread or less all of the threads are running most of the time, with 128 threads and 

above there are never more than 75 threads that are running simultaneously. 

  



 

69 

 

 

 



 

70 

 

 

Figure 4-30: Running threads over time - vips 

4.3.12. x264 

The performance of the x264 benchmark is shown in Figure 4-31. Figure 4-32 is similar 

to Figure 4-31 except that the vertical axis is scaled, to provide a more detailed view of the 

actual performance curve. The performance plateaus at 8 threads with a decrease at 36 

threads. 



 

71 

 

Figure 4-31: Parallelism scalability - x264 

 

Figure 4-32: Parallelism scalability - x264 (scaled) 

The running threads over-time curves are shown in Figure 4-33. They show that there 

are never more than 9 threads running simultaneously and the execution pattern from 64 

threads and above is the same. 



 

72 

 

 



 

73 

 

 

Figure 4-33: Running threads over time - x264 

4.3.13. freqmine 

The freqmine benchmark doesn’t support parallelism through pthreads [17], only 

OpenMP [18]. In particular, there is no notion of ROI when executed in the OpenMP mode. 

Therefore, we did not study this benchmark. 



 

74 

4.4. Conclusions 

A principal limiting factor of workload’s ability to utilize parallel architectures is its 

ability to partition the computation into enough independent tasks throughout its execution. 

If not, the parallel processing elements that are available in the architecture cannot all be 

fully utilized, implying mismatch between the workload and the architecture. 

We study this ability of given workloads to partition the computation into enough tasks 

through measuring their performance on a parallel-perfect architecture, i.e. one with no 

parallelism limitation: as much processing elements as there are threads and no shared 

resources that parallel tasks may contend over. Thus, any deviation from full utilization of 

the processing elements is necessarily due to the workload, not the architecture. Such 

deviation necessarily stems from inter-thread synchronization, where a thread waits for 

another thread to complete an operation, hence cannot perform any computation, and thus 

cannot utilize the processing element that is presumably available in the underlying 

architecture. 

From the performance measurements we make the following conclusions: 

1. Most Parsec workloads have parallelism degrees that vary significantly during 

their execution, i.e. their parallelism behavior is not stationary in time. 

2. A workload that instantiates a lot of worker threads cannot necessarily make 

all of them indeed work in parallel – the maximum number of simultaneously 

active threads may never reach the number of worker threads. 

3. Even when a workload is able to make all the worker threads active 

simultaneously, the performance gain may be negligible relative to smaller 

number of worker threads because the duration of this phase of peak utilization 

may be small relative to the total execution time. For one benchmark (canneal) 

beyond a certain number of worker threads the performance even degrades (on 

a parallel-perfect architecture!). 

4. The performance of most of the benchmarks in the Parsec suite peak at largely 

varying numbers of worker threads, implying large differences in parallel 

scaling capabilities. Table 4-2 shows the peak parallelism degree for each 

benchmark, i.e., the parallelism degree beyond which the marginal gain in 



 

75 

further increase in the parallelism degree of the underlying architecture (and 

corresponding increase in the number of worker threads) is negligible. It is 

important to note that the architecture’s parallelism degree referred to here is 

the number of cores, not necessarily the number of threads. For example, with 

a multi-threaded architecture, i.e., with more thread-contexts than cores and a 

hardware scheduler that switches threads when a thread is stalled waiting for 

long RAM access, the performance can be improved by having as many 

threads as there are thread-contexts, which is more than the number of cores, 

because the additional threads can utilize core’s cycles that would be idle if 

there were as many cores as threads. 

Benchmark Minimum #threads and #cores 

for peak performance 

blackscholes ≥1984 

bodytrack 32 

canneal 128 

dedup 966 

facesim 32 

ferret 4 

Fluidanimate ≥1024 

raytrace 80 

streamcluster ≥640 

swaptions 3207 

vips 80 

x264 8 

Table 4-2: Parsec per-benchmark inherent parallelism limitations 

                                                 

6 This benchmark plateaus when invoked with 64 threads but it actually spawns 3 times this number of threads 

and gets up to ~1.5 times running threads than the number of threads in the invocation, thus it can utilize 

up to 1.5∙64=96 cores 
7 The limiting factor is the heap. Thus, a different heap implementation may result substantially different 

limitations 



 

76 

5. The inter-thread dependency is captured by the graph of running threads over 

time. This is useful for directing parallelism-oriented performance 

optimization. 

The graph of running threads over time is not easily obtained on actual 

hardware – the actual collection of the data could distort the results, in 

particular if the data, which may be huge, needs to be written to external store 

(e.g., disk or network store). Thus, simulation is highly useful for detailed 

study of this aspect of parallel workloads. 

  



 

77 

Chapter 5.  

Cache analytical modeling study 

5.1. Introduction 

In this chapter we use our simulator to extract the cache performance (miss-rate) of the 

benchmarks in the Parsec benchmark suite with various degrees of parallelism (up to the 

maximum supported by the simulator and the specific benchmark) and compare it with the 

analytical cache performance model proposed in [19]: 

(5-1)  𝐏𝐦𝐢𝐬𝐬(𝐒$) = (
𝑺$

𝜷
+  𝟏)

−(𝜶−𝟏)

 

Where S$ is the cache size and α and β are parameters that depend on the workload. This 

model is based on the well-known empirical power law from the 70’s (also known as the 

30% rule or the √2 rule) [20]. In Equation (5-1), workload locality increases when 

increasing α or decreasing β. 

[4] proposes a simple adaptation of (5-1) to parallel workloads: it is assumed that the 

threads do not share data, in which case the cache store space is effectively divided between 

the threads. In other words, the effective per-thread cache size (EPTCS henceforth, for 

brevity) is the total size of the shared cache S$ divided by the number of threads n. 

Incorporating this into (5-1), we get formula (5-2). 

(5-2)  𝐏𝐦𝐢𝐬𝐬(𝐒$, 𝐧) = (
𝑺$

𝒏⁄

𝜷
+  𝟏)

−(𝜶−𝟏)

 

In (5-2) the parameter β may also account for the degree of sharing among the threads: 

in case much of the cache is shared, each thread can utilize a larger portion of the cache, 

which is represented by a smaller value of β. 

While (5-2) is a two-dimensional function, we notice that it maintains equation (5-3) 

and thus can be expressed as one-dimensional function. Therefore, for our analysis and 

graphical representation we use this one-dimensional form of the miss-rate function. 



 

78 

(5-3)  𝐏𝐦𝐢𝐬𝐬(𝐒$, 𝐧) = 𝐏𝐦𝐢𝐬𝐬
′ (

𝐒$

𝐧
) 

5.2. Methodology 

We extract the actual miss-rate functions of the various benchmarks in the Parsec 

benchmark suite through simulation with different cache sizes and different parallelism 

degree. The simulated parallelism degrees are the same as the ones used in the parallelism 

scalability study in Chapter 4. Therefore, the simulations used for the study of the cache 

performance use the same number of worker-threads, data sets, code modifications and 

ROI detection mode as used for the parallelism scalability study simulations. 

Using the number of worker-threads for n in (5-2) is not appropriate because not all 

worker-threads are necessarily running all the time and therefore not all necessarily 

compete for the cache storage space. In particular, if a workload instantiate many worker 

threads but only a small number of them is active at any given time, then only those that 

are active compete for the cache8. To reflect this, n is set to the average number of running 

threads, as extracted from the simulation. 

Table 5-1 summarizes the parameters of the simulation model that is used to study the 

cache performance. As shown, the benchmarks are simulated with different cache sizes. 

The cache-model that we use is 64-way set-associative with 64 bytes per cache-line, and 

classical per-set Least-Recently-Used (LRU) replacement policy. 

Note that the simulation model for this shared cache study does not include private 

cache. 

  

                                                 

8 It should be noted that in theory it is possible that the competition on the cache storage has the  effect of 

all the worker threads n competing even though only a small number of threads is active at any given time – 

when each thread works for a very short time t and blocks for an order of n∙t. However, we consider this to 

be unlikely, especially with high degree of parallelism because it implies excessive inter-thread 

synchronization. 



 

79 

Parameter Description 

NPE >= #worker-threads 

S$ 512KB, 1MB, 2MB, 4MB, 8MB, 16MB 

Nmax NPE 

CPIexe 1 [cycles] 

t$ 1 [cycles] 

tm 200 [cycles] 

Table 5-1 Model parameters for the cache modeling study 

For every benchmark we show the miss-rate curves vs. EPTCS for each cache size 

separately in a single graph. The miss-rate may or may not be sensitive to the absolute 

cache size. When the miss-rate is not sensitive to the cache size, i.e., affected only by 

EPTCS, the graphs of the different cache sizes overlap.  

In a separate graph we show all the data-points from all cache sizes and a curve of 

formula (5-2) that is fitted to these data-points. For the fitted curve we need to find α and 

β that would result a curve that is closest to the data-points. We do the fitting using the 

Levenberg–Marquardt curve-fitting algorithm [21], specifically the lmfit open-source 

implementation of that algorithm [22]. 

Given the actual and fitted miss-rates, we derive the respective analytical performance 

as a function of the average number of running threads using formula (2-5). The 

performance derived from the fitted miss-rate is the performance that is predicted by the 

analytical performance model (section 2.2). We show the actual and fitted performance 

graphs to compare the actual and predicted performance. 

The magnitude of the difference between the actual and predicted performance 

obviously corresponds to the magnitude of the difference between the actual and fitted 

miss-rate. To capture the effect of differences in miss-rates on differences in performance 

we define the performance sensitivity to miss-rate as the marginal change in performance 



 

80 

on changes in miss-rate. This is captured by the derivative of the performance formula 

(2-5) with respect to the miss-rate, shown in formula (5-4). As can be seen, the sensitivity 

depends on the model parameters’ values. In particular, the sensitivity is proportional to 

the number of threads n. 

(5-4) 𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞′(𝐒$, 𝐧) = −
𝐧∙𝐫𝐦∙(𝐭𝐦−𝐭$)

(𝐂𝐏𝐈𝐞𝐱𝐞+𝐫𝐦∙((𝟏−𝑷𝒎𝒊𝒔𝒔(𝑺$,𝒏))∙𝒕$+𝑷𝒎𝒊𝒔𝒔(𝑺$,𝒏)∙𝒕𝒎))

𝟐  

 

Figure 5-1: Performance sensitivity to miss-rate9 for different values of rm 

Figure 5-1 depicts the performance sensitivity to miss-rate for different values of rm 

when t$ is fixed (we use 1 cycle, because this is what was used in our simulations). The 

values used for rm are between the minimum and maximum values that were measured in 

our simulations – 0.25 and 0.6, respectively. This graph shows that there is little difference 

in sensitivity across these values of rm. 

Figure 5-2 is a graphical depiction of the performance sensitivity to miss-rate for 

different values of t$ when rm is fixed (we use the value 0.425, which is in the middle 

between the minimum and maximum values that were measured in our simulations). This 

                                                 

9 The actual values on the vertical axis are not shown because they are proportional to n and the units are 

not particularly meaningful (instructions-per-cycle-per-miss-rate). Hence this graph reflects the relative 

differences of the sensitivity between different values of rm. 



 

81 

shows monotonously increasing sensitivity as the miss-rate decreases, with the increase in 

sensitivity being steeper with smaller values of t$. This means that a difference between 

the fitted and actual miss-rates results increasingly larger difference between the actual and 

predicted performance as the actual miss-rate becomes smaller. However, since the 

sensitivity is proportional to the number of threads, the latter is a principal factor of the 

sensitivity. 

 

Figure 5-2: Performance sensitivity to miss-rate for different values of t$ 

5.3. Simulation results 

5.3.1. Blackscholes 

Figure 5-3 shows the miss-rate as a function of EPTCS, for each cache size separately. 

The overlapping of the graphs indicates that for this benchmark the miss-rate is not 

sensitive to the total cache size, only to EPTCS. 

  



 

82 

 

Figure 5-3: Miss-rate from simulation – blackscholes 

Figure 5-4 shows all the actual miss-rate data-points, for all cache sizes and all thread 

counts as measured by the simulation. It also shows the graph of the fitted closed form of 

miss-rate model formula (5-2), with α and β that determine this closed form. It shows that 

while the general shape is somewhat similar, the differences are quite large – around 20% 

at the lower region of the horizontal axis and more than 10% around 2KB on the horizontal 

axis. 

 

Figure 5-4: Miss-rate model fitting – blackscholes 



 

83 

Figure 5-5 shows the comparison of the actual performance obtained from simulation 

and the performance that is predicted by the analytical model using the workload 

parameters (Table 2-2) obtained from the same simulation. For smaller cache sizes the 

actual performance has a valley but the predicted performance is monotonously increasing. 

As the cache size increases, the peak performance is achieved at higher thread counts. The 

relative difference between the actual and the predicted performance is quite large – up to 

4x. The peak difference is around EPTCS of 4KB, where the actual miss-rate becomes very 

small, implying high sensitivity to miss-rate differences, as described in Figure 5-2. 

  

  

  

Figure 5-5: Actual vs. analytical performance with different cache sizes - blackscholes 



 

84 

5.3.2. Bodytrack 

Figure 5-6 shows the miss-rate as a function of EPTCS, for each cache size separately. 

The graphs are mostly not overlapping, indicating that for this benchmark the miss-rate is 

sensitive to the total cache size, not only to EPTCS. 

 

Figure 5-6: Miss-rate from simulation – bodytrack 

Figure 5-7 shows the actual miss-rate data-points and the fitted closed form of miss-rate 

model formula (5-2), with α and β that determine this closed form. It shows that while the 

general shape is somewhat similar, the differences are significant – up to 5% around 

EPTCS of 25KB on the horizontal axis. Moreover, due to the sensitivity to total cache size, 

the data-points of the actual miss-rate are not monotonously decreasing – similar EPTCS 

for different total cache size result significantly difference miss-rate. 

 



 

85 

 

Figure 5-7: Miss-rate model fitting – bodytrack 

Figure 5-8 shows the comparison of the actual performance and the performance that is 

predicted by the analytical model. For larger cache sizes the graphs are quite close, 

indicating that the analytical model provides good performance prediction. These 

performance values correspond to EPTCS of 140KB and more, where the difference 

between the actual and fitted miss-rates is relatively small. With the smaller caches, the 

differences are larger, with the largest being at ~22 threads with 512KB cache, which 

corresponds to EPTCS of ~23KB, which is the region where the difference between the 

actual and fitted miss-rates is the largest, with some data-point being very small, i.e., the 

area of large sensitivity of the performance to the miss rate. 

  



 

86 

  

  

  

Figure 5-8: Actual vs. analytical performance with different cache sizes - bodytrack 

5.3.3. Canneal 

Figure 5-9 shows the miss-rate as a function of EPTCS, for each cache size separately. 

The graphs are mostly not overlapping, indicating that for this benchmark the miss-rate is 

sensitive to the total cache size, not only to EPTCS. Moreover, the miss-rate alternates 

between higher and lower values as EPTCS increases, with the variation being bigger with 

smaller caches. This is the result of canneal having inherent negative marginal 

performance increase with the increase in the number of worker threads as described in 

section 4.3.3. Specifically, Figure 5-11 shows the average number of running threads n as 

a function of the number of worker-threads. Every graph has a region of increase and a 

region of decrease of n as the number of worker-threads increases. This means that values 



 

87 

of n that are close10 correspond to distant number of worker threads. Since the EPTCS is a 

function of n, this implies that close values of EPTCS correspond to distant number of 

worker-threads. Figure 4-9 shows that the canneal benchmark has a serial phase and a 

parallel phase where in the parallel phase all worker-threads are running. Therefore, all 

running threads compete for the cache and therefore the cache performance depends on the 

number of worker-threads rather than the average number of running threads. 

 

Figure 5-9: Miss-rate from simulation – canneal 

  

                                                 

10 “Close” rather than “identical” values because n is discrete. 



 

88 

 

Figure 5-10: Miss-rate from simulation – canneal (zoom) 

 

Figure 5-11: Average #running threads vs. #Worker-threads – canneal 

Figure 5-12 shows the actual miss-rate data-points and the fitted closed form of miss-

rate model formula (5-2), with α and β that determine this closed form. It shows that while 

the general shape is somewhat similar, the differences are quite large. This is inevitable 

because the simulation data-point themselves vary a lot around the same EPTCS, as was 

explained.  



 

89 

 

Figure 5-12: Miss-rate model fitting – canneal 

Figure 5-13 shows the comparison of the actual performance and the performance that 

is predicted by the analytical model. The actual performance varies significantly with the 

average number of running threads because of the large variation in the miss-rate for close 

values of the average number of running threads n. 

  



 

90 

  

  

  

Figure 5-13: Actual vs. analytical performance with different cache sizes - canneal 

5.3.4. dedup 

Figure 5-14 shows the miss-rate as a function of EPTCS, for each cache size separately. 

The overlapping of the graphs indicates that for this benchmark the miss-rate is not 

sensitive to the total cache size, only to EPTCS. 



 

91 

 

Figure 5-14: Miss-rate from simulation – dedup 

Figure 5-15 shows the actual miss-rate data-points and the fitted closed form of miss-

rate model formula (5-2), with α and β that determine this closed form. The fitted curve is 

quite close to the actual data-point – a difference of up to ~0.2% around 250KB on the 

horizontal axis. 

 

Figure 5-15: Miss-rate model fitting – dedup 



 

92 

Figure 5-16 shows the comparison of the actual performance and the performance that 

is predicted by the analytical model. The performance curves are very close, because the 

fitted miss-rate curve is very close to the actual miss-rate data-points. 

  

  

  

Figure 5-16: Actual vs. analytical performance with different cache sizes - dedup 

5.3.5. facesim 

Figure 5-17 shows the miss-rate as a function of EPTCS, for each cache size separately. 

The graphs are mostly not overlapping, indicating that for this benchmark the miss-rate is 

sensitive to the total cache size, not only to EPTCS. 

 



 

93 

 

Figure 5-17: Miss-rate from simulation – facesim 

Figure 5-18 shows the actual miss-rate data-points and the fitted closed form of miss-

rate model formula (5-2), with α and β that determine this closed form. The fitted curve is 

quite close to the actual data-point – a difference of up to ~0.7% in the lowest region of the 

horizontal axis and no more than ~0.2% otherwise. 

 

Figure 5-18: Miss-rate model fitting – facesim 

Figure 5-19 shows the comparison of the actual performance and the performance that 

is predicted by the analytical model. The performance curves are very close, because the 



 

94 

fitted miss-rate curve is very close to the actual miss-rate data-points, except at the highest 

region of the horizontal axis, which corresponds to the lowest region of the horizontal axis 

of Figure 5-18, where the difference between the actual and fitted miss-rate is the greatest. 

  

  

  

Figure 5-19: Actual vs. analytical performance with different cache sizes - facesim 

5.3.6. ferret 

Figure 5-20 shows the miss-rate as a function of EPTCS, for each cache size separately. 

The graphs are mostly overlapping where applicable (i.e., where there is overlapping on 

the horizontal axis) and otherwise contiguous, indicating that for this benchmark the miss-

rate is not sensitive to the total cache size, only to the EPTCS. 



 

95 

 

Figure 5-20: Miss-rate from simulation – ferret 

Figure 5-21 shows the actual miss-rate data-points and the fitted closed form of miss-

rate model formula (5-2), with α and β that determine this closed form. The fitted curve is 

quite close to the actual data-point. The rightmost data-point is visibly distant from the 

fitted curve but this distance is only 0.2%. 

 

Figure 5-21: Miss-rate model fitting – ferret 



 

96 

Figure 5-22 shows the comparison of the actual performance and the performance that 

is predicted by the analytical model. The performance curves are very close, because the 

fitted miss-rate curve is very close to the actual miss-rate data-points. 

  

  

  

Figure 5-22: Actual vs. analytical performance with different cache sizes - ferret 

5.3.7. fluidanimate 

Figure 5-23 shows the miss-rate as a function of EPTCS, for each cache size separately. 

The overlapping of the graphs indicates that for this benchmark the miss-rate is not 

sensitive to the total cache size, only to EPTCS. 



 

97 

 

Figure 5-23: Miss-rate from simulation – fluidanimate 

Figure 5-24 shows the actual miss-rate data-points and the fitted closed form of miss-

rate model formula (5-2), with α and β that determine this closed form. The fitted curve is 

very close to the data-points. The largest difference of ~2.5% is in the region of 5KB on 

the horizontal axis. 

 

Figure 5-24: Miss-rate model fitting – fluidanimate 

Figure 5-25 shows the comparison of the actual performance and the performance that 

is predicted by the analytical model. Although the fitted curve is very close to most of the 



 

98 

actual data-points, in the regions with the largest difference there is a large difference 

between the actual and predicted performance, up to 2x. Where the predicted performance 

shows a valley, the actual performance has a valley, but a deeper one. This may be 

explained by the performance sensitivity to miss-rate variation. As can be seen, the largest 

difference is around EPTCS of ~5KB. Indeed this is where there is a data-point with very 

low miss-rate, i.e., high sensitivity and a relatively big difference between the actual and 

fitted miss-rates. 

  

  

  

Figure 5-25: Actual vs. analytical performance with different cache sizes - fluidanimate 

5.3.8. raytrace 

Figure 5-26 shows the miss-rate as a function of EPTCS, for each cache size separately. 

The graphs are overlapping except in the lower region of the horizontal axis. This indicates 

that for this benchmark the miss-rate is sensitive to the total cache size, not only to EPTCS. 



 

99 

 

Figure 5-26: Miss-rate from simulation – raytrace 

Figure 5-27 shows the actual miss-rate data-points and the fitted closed form of miss-

rate model formula (5-2), with α and β that determine this closed form. It shows that while 

the general shape is somewhat similar, the differences are relatively large in the region of 

10-20KB of the horizontal axis – up to 0.7%. 

 

Figure 5-27: Miss-rate model fitting – raytrace 

Figure 5-28 shows the comparison of the actual performance and the performance that 

is predicted by the analytical model. The predicted performance is very close to the actual 



 

100 

performance, except in the region of the largest difference between actual and fitted miss-

rate, where it still relatively close -- up to ~1.3x. 

  

  

  

Figure 5-28: Actual vs. analytical performance with different cache sizes - raytrace 

5.3.9. streamcluster 

Figure 5-29 shows the miss-rate as a function of EPTCS, for each cache size separately. 

The overlapping of the graphs indicates that for this benchmark the miss-rate is not 

sensitive to the total cache size, only to EPTCS. 



 

101 

 

Figure 5-29: Miss-rate from simulation – streamcluster 

Figure 5-30 shows the actual miss-rate data-points and the fitted closed form of miss-

rate model formula (5-2), with α and β that determine this closed form. The fitted curve is 

very close to the data-points. The largest difference of ~5% is in the region of 4KB on the 

horizontal axis. 

 

Figure 5-30: Miss-rate model fitting – streamcluster 

Figure 5-31 shows the comparison of the actual performance and the performance that 

is predicted by the analytical model. For cache sizes of 4MB and up, the entire data-set fits 



 

102 

in the cache so the miss-rate is zero. The corresponding portion of the fitted miss-rate is 

effectively zero11 and therefore the actual and analytical performance curves overlap. For 

cache sizes of 2MB and below, although the analytical performance curve shows the same 

general trend as the actual performance curve, the actual performance is as high as 2x of 

the analytical performance with cache of 1MB and 200 threads, i.e., at EPTCS of ~5KB. 

As shown in Figure 5-30, this is where the actual miss-rate becomes very small (~0.8%), 

i.e., the performance sensitivity to the miss-rate becomes large, and the fitted miss-rate is 

significantly larger (~3.3%).  

  

  

  

Figure 5-31: Actual vs. analytical performance with different cache sizes - streamcluster 

                                                 

11 The fitted miss-rate can never have a value of exactly 0 because of the way formula (5-2) is defined but 

can be very small, which is the case here. 



 

103 

5.3.10. swaptions 

Figure 5-32 shows the miss-rate as a function of EPTCS, for each cache size separately. 

The graphs are mostly not overlapping, indicating that for this benchmark the miss-rate is 

sensitive to the total cache size, not only to EPTCS. 

 

Figure 5-32: Miss-rate from simulation – swaptions 

Figure 5-33 shows the actual miss-rate data-points and the fitted closed form of miss-

rate model formula (5-2), with α and β that determine this closed form. It shows that while 

the general shape is somewhat similar, the differences are quite large, in particular since 

there are multiple data points with the same EPTCS but significantly different miss-rate, 

e.g., in EPTCS of 33KB there are data points with miss-rate difference of 10%. 

 



 

104 

 

Figure 5-33: Miss-rate model fitting – swaptions 

Figure 5-34 shows the comparison of the actual performance and the performance that 

is predicted by the analytical model in the left column and the respective actual 

performance vs. the number of worker threads in the right column. Although the predicted 

performance is monotonously increasing, the actual performance has a valley for all cache 

sizes. Note that this benchmark is embarrassingly parallel but the worker threads contend 

on the dynamic memory allocation heap (see section 4.3.10). 

  



 

105 

  

  

  

Figure 5-34: Actual vs. analytical performance with different cache sizes - swaptions 

5.3.11. vips 

Figure 5-35 shows the miss-rate as a function of EPTCS, for each cache size separately. 

The overlapping of the graphs indicates that for this benchmark the miss-rate is not 

sensitive to the total cache size, only to EPTCS. 



 

106 

 

Figure 5-35: Miss-rate from simulation – vips 

Figure 5-36 shows all the actual miss-rate data-points, for all cache sizes and all thread 

counts as measured by the simulation. It also shows the graph of the fitted closed form of 

miss-rate model formula (5-2), with α and β that determine this closed form. The actual 

miss-rate is small (<1.8%) across all data-points and therefore the difference between 

actual and fitted miss-rate is small. The difference is relatively large with higher EPTCS 

but this corresponds to lower numbers of running threads. As indicated in section 5.2 the 

performance sensitivity to miss-rate is proportional to the number of running threads and 

therefore the effect of the miss-rate difference with smaller number of running threads 

should be small. 



 

107 

 

Figure 5-36: Miss-rate model fitting – vips 

Figure 5-37 shows the comparison of the actual performance and the performance that 

is predicted by the analytical model. Since the difference between the fitted and actual 

miss-rate is small, the actual and predicted performance are very close. 

  



 

108 

  

  

  

Figure 5-37: Actual vs. analytical performance with different cache sizes - vips 

5.3.12. x264 

Figure 5-38 shows the miss-rate as a function of EPTCS, for each cache size separately. 

The overlapping of the graphs indicates that for this benchmark the miss-rate is not 

sensitive to the total cache size, only to EPTCS. 



 

109 

 

Figure 5-38: Miss-rate from simulation – x264 

Figure 5-39 shows all the actual miss-rate data-points, for all cache sizes and all thread 

counts as measured by the simulation. It also shows the graph of the fitted closed form of 

miss-rate model formula (5-2), with α and β that determine this closed form. The actual 

miss-rate is small (<1.4%) across all data-points and therefore the difference between 

actual and fitted miss-rate is small. The difference is relatively large with higher EPTCS 

but this corresponds to lower numbers of running threads. As indicated in section 5.2 the 

performance sensitivity to miss-rate is proportional to the number of running threads and 

therefore the effect of the miss-rate difference with smaller number of running threads 

should be small. 



 

110 

 

Figure 5-39: Miss-rate model fitting – x264 

Figure 5-40 shows the comparison of the actual performance and the performance that 

is predicted by the analytical model. Since the difference between the fitted and actual 

miss-rate is small, the actual and predicted performance are very close. 

  



 

111 

  

  

  

Figure 5-40: Actual vs. analytical performance with different cache sizes – x264 

5.4. Conclusions 

We study the applicability of the cache performance (miss-rate) analytical model 

depicted in formula (5-2) that was proposed in the literature. We measure the actual cache 

performance on the diverse workloads of the Parsec benchmark suite and different cache 

sizes, from which we extract the workload-dependent parameters of the analytical model 

using curve-fitting. With these parameters we get a closed-form of the cache performance 

analytical model, which we then compare to the actual cache performance. 

Similarly, we derive a closed-form of the analytical performance model that is depicted 

in formula (2-5) by placing the closed-form analytical cache performance model in it. We 

compare the performance predicted by the analytical model to the actual performance. 



 

112 

We make the following conclusions from our cache analytical modeling study: 

1. Formula (5-2) is a good first order analytical model for cache performance under 

parallel workloads 

2. The sensitivity of the analytical performance model of formula (2-5) to the miss-

rate makes Formula (5-2) inadequate for analytical performance prediction. 

  



 

113 

Chapter 6.  

Summary 

In this research we developed a simulator for a simple many-core architecture model 

and used it to study some aspects of the behavior of the Parsec benchmark suite on that 

architecture model – the parallelism scalability and shared-cache behavior. 

Our simulator can simulate hundreds and thousands of cores and run any Linux program 

without re-compilation. This implies that it does not require special development toolset 

(compiler, linker, libraries), no source code modifications and can simulate programs 

written in any language (by simulating the execution environment program such as the 

JVM for Java programs). The simulator maintains the effect of inter-thread communication 

so that the timing effect on the program is preserved. In particular, when a thread blocks 

waiting for some other computation to complete, this is correctly simulated, hence the 

simulation captures the algorithmic parallelism effects on the performance. The simulator 

takes the architecture parameters (such as number of cores, number of thread contexts, 

cache size, memory hierarchy access latencies etc.) as invocation parameters, facilitating 

the study of each parameter’s effect on the workload.  

We studied the parallelism degree limitations, what we call parallelism scalability, of 

the benchmarks in the Parsec benchmarks suite. This characterizes a program inherent 

parallelism limitation by running it on a perfectly parallel architecture (one with no 

parallelism limiting factors, i.e., no shared resource) with perfect memory hierarchy (1 

cycle latency for all memory accesses). On such architecture, any deviation from perfect 

scaling of the performance with the architecture is necessarily due to an algorithm in the 

program, e.g. a serial portion that is a performance bottleneck. We find that most 

benchmarks achieve peak performance with 128 threads or less, with one as low as 4 

threads and another as low as 8 threads. This implies that these benchmarks are not suitable 

for exploring architectures with higher degree of parallelism. 

Another aspect of the Parsec benchmark suite that we studied is shared-cache 

performance (miss-rate). Specifically, we compared it against an analytical model that is 



 

114 

proposed in the literature. We find that for most benchmarks the actual cache performance 

is compatible with the analytical model, but for some it is not. In particular, the model 

assumes that the cache performance depends only on the quotient of the cache size and the 

number of threads rather than on each individually. Simulation results show that this is not 

always the case. There are benchmarks that even when the cache performance depends 

only on the quotient, it still deviates significantly from the analytical model. Finally, even 

benchmarks whose cache performance depends only on the quotient and is compatible with 

the analytical model, when put into the analytical performance model there is a big 

difference from the actual performance, because the performance is increasingly sensitive 

to differences in miss-rate as the miss-rate decreases. Thus, in small miss-rates, small 

differences between the actual and analytical miss-rate translates to big differences 

between actual and analytical performance. 

  



 

115 

Appendix: simulation environment 

Hardware platform: HP Proliant DL785 G5, with 8 AMD Opteron™ Processor 8356 

Quad-Core (total of 32 cores), 128GB RAM 

Operating System: Linux Ubuntu 12.04 Server, 64-bit 

Pin binary instrumentation framework: version 2.12 

Parsec benchmark suite: version 2.1, with the following patches: 

1. Syntax error in open() 

2. Deadlock in ferret 

3. Missing barrier in streamcluster 

Compiled with GCC version 4.6.3 in gcc-hooks configuration mode  

Simulator Pintool: compiled with GCC version 4.6.3 

  



 

116 

  



 

117 

References 

[1] G.M. Amdahl, “Validity of the Single-Processor Approach to Achieving Large-Scale 

Computing Capabilities,” Proc. Am. Federation of Information Processing Societies 

Conf., AFIPS Press, 1967, pp. 483-485. 

[2] C. Bienia, “Benchmarking Modern Multiprocessors”, Ph.D. Thesis. Princeton 

University, January 2011. 

[3] C. Bienia and K. Li, “PARSEC 2.0: A New Benchmark Suite for Chip-

Multiprocessors”, In Proceedings of the 5th Annual Workshop on Modeling, 

Benchmarking and Simulation, June 2009. 

[4] Z. Guz et al, "Threads vs. Caches: modeling the behavior of parallel workloads", In 

ICCD, October 2010. 

[5] Flynn, Michael J., and Albert Podvin. "Shared resource multiprocessing." Computer 

5.2 (1972): 20-28. 

[6] Magnusson, Peter S., et al. "Simics: A full system simulation platform." Computer 

35.2 (2002): 50-58. 

[7] Bedichek, Robert. "SimNow: Fast platform simulation purely in software." Hot 

Chips. Vol. 16. 2004. 

[8] Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH Computer 

Architecture News 39.2 (2011): 1-7. 

[9] Manavski, Svetlin A., and Giorgio Valle. "CUDA compatible GPU cards as efficient 

hardware accelerators for Smith-Waterman sequence alignment." BMC 

bioinformatics 9.Suppl 2 (2008): S10. 

[10] Tarditi, David, Sidd Puri, and Jose Oglesby. "Accelerator: using data parallelism to 

program GPUs for general-purpose uses." ACM SIGARCH Computer Architecture 

News. Vol. 34. No. 5. ACM, 2006. 

[11] Keramidas, Georgios, Nikolaos Strikos, and Stefanos Kaxiras. "Multicore Cache 

Simulations Using Heterogeneous Computing on General Purpose and Graphics 



 

118 

Processors." Digital System Design (DSD), 2011 14th Euromicro Conference on. 

IEEE, 2011. 

[12] J. E. Miller et al, “Graphite: A distributed parallel simulator for multicores”, HPCA-

16, January 2010. 

[13] Luk, Chi-Keung, et al. "Pin: building customized program analysis tools with 

dynamic instrumentation." ACM SIGPLAN Notices. Vol. 40. No. 6. ACM, 2005. 

[14] Stallings, William. Operating systems: internals and design principles. Prentice Hall, 

2008. 

[15] Adve, Sarita V., and Kourosh Gharachorloo. "Shared memory consistency models: 

A tutorial." computer 29.12 (1996): 66-76. 

[16] Gustafson, John L. "Reevaluating Amdahl's law." Communications of the ACM 31.5 

(1988): 532-533. 

[17] Lewis, Bil, and Daniel J. Berg. Multithreaded programming with Pthreads. Vol. 

2550. Sun Microsystems Press, 1998. 

[18] Dagum, Leonardo, and Ramesh Menon. "OpenMP: an industry standard API for 

shared-memory programming." Computational Science & Engineering, IEEE 5.1 

(1998): 46-55. 

[19] B. L. Jacob, P. M. Chen, S. R. Silverman, and T. N. Mudge, “An analytical model 

for designing memory hierarchies” IEEE Transactions on Computers, vol. 45, no 10, 

October 1996 

[20] Chow, C. K. "Determination of cache's capacity and its matching storage hierarchy." 

Computers, IEEE Transactions on 100.2 (1976): 157-164. 

[21] Madsen, Kaj, Hans Bruun, and Ole Tingleff. "Methods for non-linear least squares 

problems." (1999). 

[22] Joachim Wuttke: lmfit - a C/C++ routine for Levenberg-Marquardt minimization 

with wrapper for least-squares curve fitting, based on work by B. S. Garbow, K. E. 

Hillstrom, J. J. Moré, and S. Moshier. Version 3.3, retrieved on March 9th, 2013 from 

http://joachimwuttke.de/lmfit/. 

http://joachimwuttke.de/lmfit/


 

 

ההשפעה ההדדית בין תוכנות 

לרכיבי הארכיטקטורה במעבדים 

 בעלי מקביליות גבוהה

 

 חיבור על מחקר

 

 לשם מילוי חלקי של הדרישות לקבלת התואר

 בהנדסת חשמל  מגיסטר למדעים

 

 

 

 עובד יצחק

 

 

 

 מכון טכנולוגי לישראל –הוגש לסנט הטכניון 

 0213 יוני חיפה גתשע" תמוז



 

 

 



 

 

 תודות

 ,עדית קידר פרופסורו אבינועם קולודני פרופסור, אורי ויזר פרופסורהמחקר נעשה בהנחיית 

 .בפקולטה להנדסת חשמל

  



 

 

 



 

I 

 תקציר

ההתנהגות של תוכניות מקביליות  פיוןילאאנו משתמשים במודל פשוט של ארכיטקטורת מעבד מרובה ליבות 

תחת ארכיטקטורות עם מספר גדול של ליבות )מאות עד אלפים בודדים(. בפרט אנו מאפיינים את התנהגות 

 ההיבטים הבאים: ובפרט את שני Parsecתוכניות הבדיקה המגוונות לארכיטקטורות מקביליות של חבילת 

 .מידת היכולת של התוכנית לנצל מספר הולך וגדל של מעבדים 

 ( השפעת מספר הולך וגדל של מעבדים על ביצועי זיכרון מטמון משותףmiss-rate והשוואה עם )

 מודל אנליטי שהוצע בספרות.

ת. הסימולטור לצורך איפיון התנהגות התוכניות פיתחנו סימולטור המממש את מודל המעבד מרובה הליבו

 Linuxולכן מסוגל להריץ כל תוכנית שניתן להריץ על מכונת  Linuxתחת  binary instrumentationמבוסס 

 executableשאינן  Java. למשל תוכניות executable)כלומר התוכנית לא חייבת להיות בצורה של קובץ 

 (.executable, שהוא עצמו JVM-ירוצו ע"י סימולציה של ה

 רכיטקטורהמודל הא

, PE – Processing Element. המודל מורכב ממערך של יחידות עיבוד )1איור המודל מתואר ב

( במודל זיכרון משותף עם היררכיית זיכרון של שלוש רמות: ALUאו  Coreשבהקשרים שונים נקרא לפעמים 

 shared(, זיכרון מטמון משותף לכל יחדות העיבוד )private cache, L1זיכרון מטמון פרטי ליחידת עיבוד )

cache, L2.וזיכרון חיצוני ) 

PE

L1

PE

L1

PE

L1

PE

L1

PE

L1

PE

L1

PE

L1

PE

L1

PE

L1

PE

L1

LLC

Main Memory

Multi/Many-core CPU

 

 : מודל הארכיטקטורה1איור 



 

II 

הוא מודל פשוט של שיהוי קבוע: לכל הוראת מעבד יש שיהוי קבוע לחלק החישובי ושיהוי  התיזמוןמודל 

ף לגישה לזיכרון, אם יש כזו, שהיא בעצמה בעלת שיהוי קבוע התלוי ברמת היררכיית הזיכרון שבה נמצא נוס

במקום יחידות זמן רגילות, מה שמאפשר לחסוך את  מחזור שעוןהנתון. יחידת הזמן שאנו משתמשים בה היא 

 הצורך בתדר העבודה כפרמטר של המודל, מבלי לאבד מהכלליות.

מובנית בפרמטרי  L1)ההשהיה של זיכרון המטמון הפרטי  1טבלה יטקטורה מפורטים בפרמטרי מודל הארכ

 מתואר בהמשך(. –התוכנית 

 תיאור פרמטר

PEN מספר יחידות העיבוד 

$S  המשותף( גודל זיכרון המטמוןL2) 

maxN  המרביהמספר ( של חוטיםthreads )≥ PEN 

exeCPI  ההשהיה הממוצעת לחלק החישובי של הוראת מעבד 

$t  המשותף( ההשהיה של גישה לזיכרון המטמוןL2) 

mt ההשהיה של גישה לזיכרון החיצוני 

 : פרמטרי מודל הארכיטקטורה1טבלה 

 .0טבלה פרמטרי מודל התוכנית מפורטים ב

 תיאור פרמטר

n ( מספר החוטיםthreads) 

mr  החלק היחסי של הוראות מעבד הניגשות לנתונים בזיכרון מתוך סך כל

 [m0 ≤ r 1 ≥ההוראות שהמעבד מבצע ]

,n)$(ShitP  המשותף( ביצועי זיכרון המטמוןL2 בהינתן שגודלו )S$  והוא משמשn 

 חוטים

 : פרמטרי מודל התוכנית2טבלה 

 (Instructions-per-cycle – IPC) מדד הביצועים שבו אנו משתמשים הוא מספר הוראות המעבד למחזור

 עם מספר חוטים ולא זמן ביצוע כולל כדי שניתן יהיה להשוות ביצועים של ריצות שונות של אותה תוכנית

(threads ) שונה, מכיוון שמספר החוטים עשוי לגרום לתוכנית להשתמש בגודל בעיה שונה )ואנו יודעים

אכן עושות זאת(. מנגד, מדד זה איננו שימושי עבור תוכניות שמבצעות פעולות  Parsec שהתוכניות בחבילת

 .הבעיה לפתרוןמן לאו דווקא מוביל מהר יותר ספקולטיביות מכיוון שאז מספר גדול יותר של פעולות ליחידת ז

 :1)) וסחהנדל אנליטי של הביצועים ניתן ע"י בהינתן פרמטרי הארכיטקטורה והתוכנית, מו

(1) 𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞(𝐒$, 𝐧)[𝐈𝐏𝐂] =  
𝐧

𝐂𝐏𝐈𝐞𝐱𝐞+𝐫𝐦∙{𝐏𝐡𝐢𝐭(𝐒$,𝐧)∙𝐭$+[𝟏−𝐏𝐡𝐢𝐭(𝐒$,𝐧)]∙𝐭𝐦}
 



 

III 

( לא מושפעים ממספר יחידות העיבוד, ההשפעה היחידה של L1שביצועי זיכרון המטמון הפרטי ) ןמכיוו

זיכרון המטמון הפרטי על הביצועים במודל המתואר היא הקטנת החלק היחסי של הוראות מעבד הניגשות 

לנתונים בזיכרון מתוך סך כל ההוראות שהמעבד מבצע מנקודת המבט של זיכרון המטמון המשותף. לכן, השפעה 

 .mrע"י התאמה של הפרמטר  זו יכולה להתבטא במודל

 הסימולטור

לצורך איפיון התנהגות של תוכניות אמיתיות תחת המודל המתואר פיתחנו סימולטור המממש את המודל, 

על החישוב  זמוןיהתכך שההשפעה של  זמוניםיהתעם תוספת משמעותית: התוכנית מבוצעת בהתאם למודל 

והמתנה בין חוטים. המודל האנליטי לא מביא בחשבון תופעות אלו.  סנכרוןנשמרת. בפרט הסימולציה משמרת 

כמו כן, פרמטרי המודל הם ממוצעים, כלומר המודל לא מביא בחשבון שינויים בהתנהגות התוכנית בזמן 

 ובמרחב.

, כלומר מקבלת את זרם ההוראות trace-driven simulationזמון ממומשת בטכניקה של יהת סימולציית

זמון. סימולציה בטכניקה זו בד"כ לא משמרת השפעה של יהחוטים ואז מבצעת סימולציה של מודל התשל כל 

זמון. יהת סימולצייתזמונים על החישוב כי החישוב כבר התבצע בזמן איסוף זרמי ההוראות שקודם לשלב יהת

ן איסוף זרמי זמונים על החישוב ע"י מנגנון משוב בייהסימולטור שלנו משמר את ההשפעה של מודל הת

 זמונים. משוב זה מושג ע"י כך שהסימולציה מבוצעת בלולאה בת שני שלבים:יההוראות לבין סימולציית הת

 .זמונים של ההוראות שנאספו עד כהיסימולציית ת .1

חוטית )כמו למשל -איסוף זרמי ההוראות כל עוד ההוראה הבאה אינה כזאת המהווה תקשורת בין .0

Compare-And-Swap – CAS )זמוןיולכן החישוב אינו מושפע מהת. 

זמון החוט י(, משמע שלפי מודל הת1זמונים )שלב יהת סימולצייתכאשר אחד הזרמים בוצע עד תומו ע"י 

זמונים יהת סימולצייתחוטית. בשלב זה -המתאים הגיע ראשון מבין כל החוטים להוראה המהווה תקשורת בין

רים לא סומלצו עד תומם( ועוברים לאסוף זרם הוראות חדש נעצרת )בהגדרה זרמי ההוראות של החוטים האח

(. זה נעשה ע"י כך שנותנים לחוט זה לרוץ וע"י כך לבצע את ההוראות הבאות )בפרט 0מהחוט המתאים )שלב 

חוטית. בשלב זה איסוף זרם -חוטית( עד להוראה הבאה המהווה תקשורת בין-הראשונה מהווה תקשורת בין

זמונים וחוזר חלילה. בדרך זו כל ההוראות המהוות יחזרה לשלב סימולציית הת ההוראות נעצר ועוברים

חוטית מבוצעות בסדר המוכתב ע"י מודל התיזמונים ולכן ההשפעה של מודל התיזמונים על -תקשורת בין

 החישוב )הביצוע הפונקציונלי( נשמרת.

  



 

IV 

 (Parallelism scalability) מדרגיות מקביליות

אנו מעוניינים לאפיין את היכולת של תוכניות נתונות לנצל ארכיטקטורות בעלות דרגות מקביליות הולכות 

בדרגת המקביליות של  העלייהבביצועים יחסית למידת  העלייהוגדלות. איפיון זה מתבטא במידת 

 .של התוכנית מדרגיות מקביליותהארכיטקטורה. אנו מכנים תכונה זו 

של תוכניות בדיקה מקביליות  המובנית מדרגיות המקביליותלטור שלנו לאפיין את אנו משתמשים בסימו

(benchmarks :הנמצאות בשימוש נפוץ )Parsec benchmark suiteהכוונה  המובנית מדרגיות המקביליות. ב

שעליה היא מתבצעת, העלולה בעצמה  המסוימתשל התוכנית במנותק מהארכיטקטורה  מדרגיות המקביליותל

. לצורך כך אנו משתמשים במודל ארכיטקטוני ללא מגבלות מיקבול: מספר יחידות מדרגיות המקביליותוע בפגל

ר שעון אחד וללא השהיה מינימלית של מחזו --ומערכת זיכרון אידאלית בתוכנית כמספר החוטים לפחות עיבוד 

 מגבלות רוחב פס.

עקומות הביצועים  , בהתאמה.הוגרוע הטוב מדרגיות מקביליותהם דוגמאות לתוכניות עם  3איור ו 0איור 

( מראות את הביצועים שהיו מושגים עם כל החוטים היו פעילים Theoretical maxרטיים )המקסימליים התיאו

רוב עקומת הביצועים המקסימליים  ferretלמשך כל זמן הריצה, כלומר חוט אף פעם לא נאלץ לחכות. עבור 

 דת.מתגמ הייתההתיאורטיים נמצאת מחוץ לטווח המוצג של הציר האנכי. אחרת עקומת הביצועים בפועל 

מתוך הגרפים של כמות החוטים הפעילים לאורך ריצת התוכנית. עבור  ניתן מדרגיות המקביליותההסבר ל

fluidanimate ( פעילים רוב הזמן. לעומת זאת עבור 1201ניתן לראות כי כל החוטים )ferret  ניתן לראות

  .10 חוטים, מספר החוטים הפעילים בו זמנית אף פעם לא עולה על 052שלמרות שיש 



 

V 

 

 

 הטוב מדרגיות מקביליות: 2איור 

 

 

 הגרוע מדרגיות מקביליות: 3איור 

 משותף חקירת מודל אנליטי לביצועי זיכרון מטמון

  :2)מתואר בנוסחה )ה (miss-rate)זיכרון מטמון משותף אנליטי לביצועי  מודלמוצע  [4]-ב

(2) 𝐏𝐦𝐢𝐬𝐬(𝐒$, 𝐧) = (
𝑺$

𝒏∙𝜷
+  𝟏)

−(𝜶−𝟏)

 

 התלויים בתוכנית. β-ו αמודל זה מכיל פרמטרים 

-השונות שבתוכניות הבדיקה של ( Pmiss)הביצועים בפועל  תאנו משתמשים בסימולטור שלנו למדיד

Parsec benchmark suite  זיכרון מטמון משותף בגדלים שוניםעם ($S( וכמויות חוטים שונות )n באמצעות .)

 ת( אנו מוצאים אcurve-fittingלהתאמת עקומות ) Levenberg-Marquardtנתונים אלו ושימוש בשיטת 

 .אימים לכל תוכניתהמת β-ו αערכי 

הם דוגמאות לתוכניות בעלות ביצועי זיכרון מטמון עם התאמה טובה וגרועה למודל האנליטי,  5איור ו 1איור 

 בהתאמה. 



 

VI 

 

 : התאמה טובה למודל האנליטי4איור 

 

 : התאמה גרועה למודל האנליטי5איור 

כך שנוסחה זו מהווה  2))יש התאמה טובה יחסית לנוסחה  Parsec benchmark suite-לרוב התוכניות שב

ותה במודל האנליטי של ביצועי אולם, כאשר משלבים א. לביצועי זיכרון המטמון מודל מסדר ראשון טוב

למרות התאמה מתקבלות סטיות גדולות בין הביצועים עבור חלק מתוכניות הבדיקה  ,1)התוכנית שבנוסחה )

-רגישה יותר לשינויים בביצועי זיכרון המטמון ככל שה 1). דבר זה נובע מכך שנוסחה )2)נוסחה )טובה של 

miss-rate .קטן יותר 

יליות של רוב תוכניות הבדיקה אינה משתנה עם זיכרון מטמון אולם יש כמה שמדרגיות המקב יותמדרג

למשל מכך שזיכרון המטמון לנבוע ה במדרגיות המקביליות יכולירידה המקביליות גדלה וכמה שבהם היא קטנה. 

עם הגידול הוא משאב משותף שהחוטים מתחרים עליו ותחרות זו יכולה לגרום לכך שתוספת הביצועים השולית 

. עליה (תתקבל במספר קטן יותר של חוטים זניחה )כלומר נקודת שיא הביצועיםבמספר החוטים תיעשה 

עם מערכת זיכרון לא מושלמת יחסית למדרגיות המקביליות עם מערכת זיכרון מושלמת במדרגיות המקביליות 

ן בין הגישות של חוט בודד מגדיל את הזמ במקרה הראשוןיכולה לנבוע למשל מכך שהשיהוי הגדול יותר 

למשאב משותף )כמו זיכרון המטמון( ובכך להפחית את התחרות עליו מה שמאפשר לו לשרת טוב יותר את 

 החוטים שמספיקים להשתמש בו בזמן זה.


