Local Dynamic Weighted Matching

Liat Atsmon Guz

Local Dynamic Weighted Matching

Research Thesis

Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Electrical Engineering

LIAT ATSMON GUZ

Submitted to the Senate of the Technion — Israel Institute of Technology
AV 5772 HAIFA JULY 2012

The Research Thesis Was Done Under the Supervision of Prof. Idit Keidar in the Faculty

of Electrical Engineering.

THE GENEROUS FINANCIAL HELP OF THE TECHNION IS GRATEFULLY
ACKNOWLEDGED.

Acknowledgments

I would like to thank the many people who made this work possible and made the experi-
ence truly remarkable.

I am deeply indebted to my adviser, Prof. Idit Keidar, for her continuous guidance and
unwavering confidence in where we were going. Working and thinking with you has been
humbling, and I thank you for always being available and keen to help when I needed it.

I would like to thank Prof. Yoram Moses, for his friendship and advice over the years.
I thank my fellow students at the Technion, who struggled and succeeded with me, en-
couraged and motivated me. Thank you Ayelet, Kirill and Daniel, and my friends in Idit’s
group— Dima, Ittai, Nathaniel, Alex and Oved. I want to thank the staff of the EE faculty
for their help and kindness, and I owe special thanks to Keren Seker-Gafni, who with
patience and care made all the administrative fuss painless.

I want to thank my family who supported me and pampered me endlessly during
stressful times; my two incredible parents who are an inspiration to me. I would also like
to thank the Guz family who were drawn into this with me and were ever positive and
encouraging.

With all my heart, I dedicate this work to my dear husband Zvika for never doubting

me or losing patience. [was no match for your quiet determination, and here I am.

Contents

Abstract

1 Introduction

2 Background

3 Model and Problem Definitions

3.1 Model .

3.2 Problem Definition

4 Dynamic Algorithm

4.1 Centralized Weighted Matching UsingGain

4.2 Distributed Algorithm Overview
4.3 Distributed Algorithm L oL

5 Algorithm Analysis

5.1 SimpleInvariants

5.2 AgreementLemmas.

5.3 Termination and Quiescenceo

5.4 Locality

6 Conclusions

10

12
12
15
19

22
23
24
28
38

48

List of Figures

1.1 An example of the drawbacks of using greedy maximal matching in a

dynamic setting 5
4.1 Example run of the centralized matching algorithm 13
4.2 Node coordination in the distributed implementation 16
4.3 Examples of scenarios for “recall-preference” 17

List of Algorithms

1 Centralized Weighted Matching UsingGain 14
2 Dynamic Weighted Matching Algorithm 18

Abstract

We define and solve the distributed dynamic weighted matching problem. Namely, unlike
most previous work, we consider a scenario in which the network is asynchronous and dy-
namic, experiencing churn, failures, topology changes, and link weight changes. An algo-
rithm that solves the dynamic weighted matching problem should adapt to such changes
in the network and constantly output a matching. We develop a new algorithm that solves
this problem and guarantees a 2-approximation of the optimal solution. Moreover, we
show that following local changes, the algorithm converges back to a 2-approximation

after O(1) rounds.

Chapter 1
Introduction

In the distributed weighted matching problem, nodes in a communication graph (V) E)
have to collectively find a subset M/ C FE in which no two links share a common node
and the sum of the link weights is maximized. The matching problem naturally maps
to scheduling transmissions in multihop wireless networks under primary interference
constraints [21, 17, 15]. Primary interference constraints in such networks imply that
transmissions of adjacent nodes should be scheduled such that at any given time each
node communicates with at most a single neighbor. Since at any given time, some links
may be more important than others (e.g., due to packet queue length, priority, etc.), a
weight is attached to each link, and the goal of the scheduling algorithm is to maximize

the overall matching weight.

While distributed weighted matching has received a lot of attention lately [20, 7, 19,
18, 22, 29, 1, 28, 13, 16], most of the previous work has focused on solving the one-shot
problem in static, synchronous, fault-free networks. Unfortunately, these settings are not
a good fit for real world networks such as wireless networks, which are asynchronous,
dynamic, and fault-prone. First, synchronous algorithms rely on a clock synchroniza-
tion framework which is a very hard problem that is not necessarily local [10]. Second,
wireless networks change over time as nodes join, leave, or move around, and as com-
munication links appear and disappear. Moreover, link weights continuously change as
packets are accumulated or transmitted. Therefore, when utilized in dynamic networks

(e.g., for wireless transmission scheduling), these algorithms must be periodically re-run

afresh. This is a suboptimal approach due to the inherent tradeoff it induces between the

staleness of the matching in use and communication and computation costs.

To remedy these shortcomings, we introduce in Chapter 3 the dynamic weighted
matching problem, which is appropriate for asynchronous, fault prone, dynamic networks.
Solution to this problem reacts immediately to changes and hence is never stale. For ex-
ample, when used for wireless scheduling, it allows nodes to transmit packets over links
that are part of the current matching while the algorithm converges, without consideration
of parts of the network that might have changed or where the solution might not have con-
verged to the final (stable) matching yet. In this context, we are interested in the matching
weights at all times, including when the algorithm is running. When the network changes

do cease, the matching should also eventually stabilize.

The only other asynchronous matching algorithm we are aware of is greedy maxi-
mal matching, originally presented as a centralized algorithm in [26], later distributed
by Hoepman [13], and adapted to be self stabilizing in [20] (see Chapter 2). Under this
greedy approach, an edge is added to the matching if it has maximum weight among all
its adjacent edges. This solution converges to a 2-approximation of the optimal. It works
well in a static network, when starting from an empty matching, but is not ideal in a dy-
namic setting. Specifically, it suffers from two undesirable properties: First, it can take
linear time to converge back to the approximation, even after a single change. Second,
this greedy approach can reduce a stable matching’s weight, even following a change that
increases the weight of links in the graph, and when no links in the matching are affected

by the change. An example of both drawbacks can be seen in Figure 1.1.

In Chapter 4, we develop an alternative approach that does not suffer from these lim-
itations; we present a novel distributed dynamic weighted matching algorithm, which
emits a matching throughout its operation and copes with any combination of network
changes. In our approach, links are added to the matching only if they increase its weight.
In Chapter 5, we informally argue that our algorithm stabilizes, quiesces, and provides a
2-approximation when changes cease; detailed formal proofs are deferred to the appen-
dices. Furthermore, we show that after stabilization, our algorithm handles new changes
locally, in the sense that it converges back to a 2-approximation in constant time fol-

lowing any single change — node addition or removal, or link addition, weight change,

-}912. 11 .10 o 9 o
2 vy 1Z

Vi V2 57 w(M)=31
1 10 9 8 7 wim)as
Vg V7O Vp Vgo Vwo

(a) (v1,v9) is locally heaviest following the change.

o 12 o 11 10 o 9 o
V. V. VO v, V.
1 2 3 4 5 W(M)=21
1 10 9 8 7 WiM=d5
Vp V7O Vg() Vyo VMO

(b) (v1,v2) is added; (v3,v4) becomes locally heaviest.

12 1 10 9

V1I V2 I V3I Vg I Vso W(M)=22
11 10 S 8 7 W(M,,)=45

Vp V7o V,p Vgo O

Vio

(c) (v3,v4) is added; (vs,v10) becomes locally heaviest.

o 12 ® 11 ® 10 o 9
Vi V2 Vs Vs Vs W(M)=29
1 10 9 8 7 W(M,,)=45
Vﬂo V7o Vgo Vyo Vio

(d) (vs,v10) is added; finally back to 2-approximation.

Figure 1.1: An example of the drawbacks of using greedy maximal matching in a dynamic
setting. Dark lines and full circles denote links and nodes in the matching, respectively.
We see that: (i) convergence to the approximation takes linear time following a single
link change; and (i1) the matching weight decreases following a change that increases the
weight of a link and does not affect any of the links in the previous stable matching.

or removal. Moreover, when used in a static setting, our algorithm has the same linear
time and message complexity as the greedy maximal matching algorithm distributed by
Hoepman [13].

To summarize, the main contribution of this thesis is addressing the problem of maxi-
mum weight matching in an asynchronous, fault-prone, dynamic network. We define the
dynamic weighted matching problem, and develop a local and stable algorithm that solves

the problem.

Chapter 2
Background

The problem of graph matching has been around for over a century. Up until the late 1950s
only solutions for the bipartite problem were known. Claude Berge [3] was the first to
come up with a solution for general graphs through a Lemma that came to be known as
Berges Augmenting Path Theorem. Nearly a decade later, Jack Edmonds’ [9] showed that
both maximum matching and maximum weighted matching can be solved in polynomial
time. Over the years, many papers improved on Edmonds result. The best known result
to date is due to Gabow [12] which solved the problem of maximum weighted matching
in O(|V|-|E|+|V|?-log(|V])). Since algorithms for maximum weighted matching have
super linear running times, approximation algorithms for the problem have attracted more
and more attention. Preis [26] was the first that suggested a centralized solution for the
2-approximation weighted matching in O(|E|) running time. Drake et al. [8] built on the

work of Preis [26] and derived a simple algorithm that achieves the same result.

Several recent works concentrate on synchronized weighted matching algorithms in a
distributed environment. Wattenhofer et al. [29] presented the first distributed algorithms
for the approximated maximum weighted matching. For general graphs, they gave a ran-
domized solution that runs in O(log*(|V])) time and yields a 5-approximation, with high
probability. Lotker et al. [19], improved on this result and designed a randomized (4 + ¢)-
approximation distributed algorithm whose running time is O(log(|V'|)) with high prob-
ability. In a later paper, Lotker et al. [18] further improved on this result and provided a

randomized algorithm with similar running time that converges to a (2+¢€)-approximation

of the maximum weighted matching. Panconesi et al. [25] devised a 6-approximation
algorithm which is the first deterministic algorithm for weighted matching with poly-
logarithmic running time. For the special case of bounded-degree and bounded-weight
graphs, Banerjee et al. [1] offered a distributed algorithm with an approximation factor of
2 while reducing the round complexity to O(log(+) + log*(|V']). Although these works
provide performance guarantees, and in some cases have relatively low complexities, the
proposed algorithms are not a good fit even for one-shot matching in our setting. In par-
ticular, using these algorithms would require a synchronizer to be employed to close the
gap to asynchronous communication, resulting in message overhead penalties. Moreover,

such an approach is only applicable to fault-free networks.

To the best of our knowledge, only two asynchronous distributed algorithms have
been developed for the weighted matching problem. First, Hoepman [13] presented a
distributed, asynchronous, one-shot algorithm. The algorithm yields a 2-approximation
in O(|V]) running time. Our algorithm has identical performance in the static case while
also supporting dynamic changes. Second, Manne et al. [20] developed an asynchronous
self-stabilizing weighted matching algorithm that also computes a 2-approximation. Be-
ing self-stabilizing, it deals with dynamic topology changes. Unfortunately, its self stabi-
lization guarantees come at a very high message overhead cost — a node where the algo-
rithm has not yet converged may need to exchange messages in every round. Moreover,
following changes, the previous matching quickly destabilizes, precluding continuous use
of the old matching during convergence time. In contrast, our algorithm drops links from
the previous matching only when a conflicting link is added to the new matching, and

converges back to a 2-approximation within a constant number of rounds.

We also note centralized non-weighted matching algorithms that have been developed
for a dynamic setting. The following algorithms all maintain a matching under insertion or
deletion of edges. Ivkovic et al. [14] designed a solution that maintains a 2-approximation
for maximum matching with an amortized update time that is polynomial in n. Onak et
al. [24] improved on this result and designed a data structure that achieves a constant
approximation factor in amortized O(log?(|V])) time. Most recently, Baswana et al. [2]
designed a randomized data structure that takes O(log(|V'])) expected amortized time for

each update. Last, the best known non-approximation solution is due to Sankowski [27]

who shows that a maximum matching can be maintained with O(|V|'4%°) computation

per update.

Chapter 3

Model and Problem Definitions

3.1 Model

The network is comprised of a dynamic set of nodes, partially connected by dynamic,

time-varying, and undirected weighted communication links.

Nodes and links can be dynamically added to the network, and may fail or be removed
from the network. The sets of nodes and communication links at time ¢ are denoted by
V, and E}, respectively. A time-varying weight function w, : F; — R is defined over the
links in the network; weights in w; are assumed to be unique, as node identities can be
used to break ties. For a set of links S C FE, the weight of S, denoted by w;(.S) is the
sum of all link weights in .S at time ¢. Two nodes connected by a communication link at
time ¢, are called neighbors at time ¢, and can send messages to each other. Two links
are incident at time ¢ if they share a common node. Note that we sometimes omit ¢ in the

notation when it is not important for the context.

Communication links are reliable (if they persist), FIFO, and asynchronous, i.e., there
is no bound on message delay. Each run progresses in steps, where in each step some
node is notified of an event (as detailed below) and is allowed to react. In a step, a node
may change its internal state and send messages to its current neighbors. We informally

refer to the time after the t" step in a run as “time ¢”.

Events There are two types of events — external ones triggered by the environment, and
message send events triggered by nodes. The external events are: node start, node stop,
weight change, link removal, and link addition. Message send events lead to receive
notifications, whereas external events lead to (“nbrs-update”, I', w) notifications, I" and w
being the notified node’s current neighbors and weights of links connecting the node to
its neighbors, respectively. The system starts at time 0 when an initial network (V4, Ey)
is created and each node in Vj is started. Whenever a node v is started at any time in the
run, its first step is triggered by a (“nbrs-update”, I, w) notification.

Nodes are notified of events in FIFO order per link exactly once. (Only the receiving
node is notified of a “message send” event, and both end nodes, if exist, are notified of an
external event on the link.) Once a node fails or stops it does not take further steps, and
its neighbors are notified of the link removal, as noted above. When a link is removed, all
pending messages on the links are lost forever; if the same link is recreated, it is empty
when added.

For analysis purposes it will be useful to divide a run into non—overlapping subse-
quences in which all pending events are processed. Formally, we define a round as a
non—empty subsequence of a run starting at some time ¢, in which each node is notified
of at least all events that occurred before time ¢. For example, a round starting at time
0 completes once every node in 1} receives a “nbrs-update” notification. An additional
round completes once all messages sent in response to the “nbrs-update” notification are
received by their destinations, in addition to notifications of other events that occur in the

first round (if any).

3.2 Problem Definition

In an undirected weighted network G = (V, F), a matching M C E'is a set of links s.t. no
two links in M are incident to one another. If a link e = (u,v) € M then u is considered
to be the match of v, and vice versa. A matching that has maximum weight among all
matchings in G is called a Maximum Weighted Matching of G, and is denoted by M,,,;.
In the classical distributed one-shot matching problem, the run starts at time 0, the

network does not change after this time, and when the run ends — each node outputs its

10

match. A link (u,v) € M if both nodes u and v output each other as their match. We now

generalize it and define the problem of Dynamic Weighted Matching as follows:

Definition 1 (Dynamic Weighted Matching). (i) At any time t, every node u € V; outputs
either L or a neighbor v as its match. (ii) If there is a time t after which the network does
not change, i.e., Yt' > t (Vir, By, wy) = (Vi, Ey, wy), then eventually, there is a time when

the output does not change and every node u outputs node v if and only if v outputs u.

Another desirable property of a converging algorithm is guiescence, namely that after
stabilization, the algorithm eventually stops sending messages. We say that the system is
quiescent if there are no notifications or messages in the queues.

In static networks, dynamic matching reduces to the regular matching problem. In
addition, at any point in a dynamic run (even before convergence), we can discuss the
current matching. We denote by m the output of node u, and we define the matching at

time ¢, M,, as M; = {(u,v) | m, = v and m,, = u at time t}.

11

Chapter 4
Dynamic Algorithm

As noted above, the popular approach of greedily selecting locally heaviest links for the
matching does not work well when we already have an existing matching at hand. Instead,
our approach is to select links that increase the weight of the current matching. To this
end, we introduce (in Section 4.1) the notion of the gain of a link w.r.t a matching M,
and use it (first in a centralized way) to select links with positive gain. In Section 4.2 we
outline the elements we need for a distributed implementation of such an approach in a
dynamic network. Finally, in Section 4.3 we give a detailed description of our distributed

algorithm.

4.1 Centralized Weighted Matching Using Gain

In the following we denote by incident(e) the set of links that are incident to e.

Given a matching M, the set M U {e} is a matching only if no link incident to e is in
M. Therefore, when a link is added to a matching M, all of its incident links need to be
removed from M the link’s net contribution to the matching is captured by the notion of
gain: gainy(e) = w(e) — w(M Nincident(e)).

We are specifically interested in links that have a positive gain, which we call aug-
menting links. Formally, a link e is augmenting w.r.t M if gainy(e) > 0. The following
lemma establishes that when no augmenting links exist, the matching at hand provides a

2-approximation.

12

. 12 . 1 . 10 ' 9
Vi V2 V3 Vs Vs W(M)=29
H->13 10 9 8 7 W(M,,)=45
op!
Vﬁo V7o Vgo Vgo Vio

(a) Link (v1,v6) becomes augmenting.

12 11 10 9
V. V. O V. . v, . v,
1 2 £ 4 5 W(M)=30
13 10 9 8 7 W(M,,)=47
Vs V7o Vgo V9o Vio

(b) Link (v2,07) becomes augmenting.

12 11 l 10 l 9
Vi V2 Vs Vg Vs W(M)=40
13 10 9 8 7 W(M,,)=47
vz Vgo Vo & Vio

(c) The matching stabilizes.

Figure 4.1: Example run of the centralized matching algorithm.

Lemma 1. If no augmenting links exist w.r.t a matching M, then M is a 2-approximation

to Mopt-

Proof. Since there are no augmenting links, for each link e € M, \ M, w(e) < (M N
incident(e)). Also, since M is a matching, each f € M can be incident to at most
two links in M,,;. Therefore, w(My, \ M) < 2 - w(M \ M,,) and we can conclude
w(Mop) > 2 - w(M). O

A centralized algorithm using gain is outlined in Algorithm 1. The algorithm non-
deterministically chooses which augmenting link to add in each iteration. It continues
to add links as long as there are augmenting ones. We could refine the algorithm, for
example, to add links in a greedy way by choosing locally maximal augmenting ones in
each iteration (i.e., augmenting links with a higher gain than all incident links to them).
In the example of Figure 1.1 above, there are no augmenting links following the change,
and therefore, Algorithm 1 would take no steps. Figure 4.1 shows an example run where

a network change does introduce augmenting links.

13

Algorithm 1 Centralized Weighted Matching Using Gain

1. M C FE, initially any matching

2. while an augmenting link exists do

3 a < some link (u,v) s.t. gain(u,v) >0
4 M <« M\incident(a)

55 M+ MU{a}

6: gain(u,v):
7. return w(u,v) — w({incident(u,v) N M})

It is easy to see that if Algorithm 1 is initiated with a valid matching M, M remains a

valid matching throughout the run. We show next that the algorithm terminates.
Claim 1. Algorithm 1 terminates for any network G = (V, E') and initial matching M.

Proof. In each iteration, the weight of M increases. Since the weight of M, is bounded,

the algorithm eventually terminates. 0

In Lemma 2, we use the notion of gain to bound the distance of a matching M from a
2-approximation. We define the set of augmenting links w.r.t M that are in M,,;: A(M) =

{a € My | gainy(a) > 0}.

Lemma 2.

Proof. Each link in M,,,; can belong to one of three sets: (1) M N M, or (2) Moy \ (MU
A(M)) (non-augmenting), or (3) A(M) (augmenting). From the definition of augmenting
we get that for every e in (2), w(e) < w(M N incident(e)). From the definition of gain
we get that for e in (3), w(e) = w(M Nincident(e)) + gainys(e). Note that since M is
a matching, each link in A can be incident to at most two links in M, and only if it is
not in M, already. This means that any link f in M \ M,,, can belong to at most two

w(M Nincident(e)) clauses. The next step is to sum these inequalities over all edges in
(2) and (3):

Z w(e) < 2- Z w(f) + Z gainy(a).
)

e€Mopt\M FEM\Mopt a€A(M

14

Finally,
wMep) = Y wle)+ Y wle) <

eEMopth EE]VIgpt\M
Z w(e) +2- Z w(f)+ Z gainy(a) < 2-w(M)+ Z gainy(a).
e€EMoptNM FEM\Mopt a€A(M) a€A(M)

]

4.2 Distributed Algorithm Overview

In a distributed implementation, the match is handled by individual nodes. Each node has
a view of its neighbors " and a mapping w to the weights of the links connecting the node
to them that is updated via “nbrs-update” messages when network changes occur. We use
a subscript to mark a variable of a specific node where needed, e.g., I, for the neighbors
of node u. Nodes need to recognize which of their adjacent links are augmenting, which
means that they need to know their neighbors’ match weights. This information is sent in
“match-weight” messages and kept in nbrs-mw.

Another challenge for the distributed algorithm is that links cannot be added atom-
ically to the matching. Nodes must coordinate through messages. Each node courts a
neighbor by sending a “preference” message to it; the target neighbor is saved in the vari-
able pm. A node stores in suitors the neighbors from which it receives a “preference”.
A node changes its match stored in m once it has both sent and received a “preference”
message to and from the same node. Once a match change occurs, a “match-drop” mes-
sage is sent to the node’s previous match, if exists, and a “match-weight” message is sent
to all other neighbors. An example of such a message exchange is given in Figure 4.2.
The node outputs its match through the variables m and pm; typically m, but when m is
unset it outputs pm.

Note that if « and v match, then before u can send another “preference” to v, the match
must be dropped. This happens after both nodes have responded to their corresponding
“preference” messages from the previous time they matched with “match weight”, and
hence, no “preference” messages can be pending at this point. Thus, we do not need to

worry about old “preference” messages getting confused with new ones. Similarly, we do

15

match
changed
2 2 . .
v — il el » “preference
pr A <mw,u,2> <nu>/ :

<mw> :
. . oshuz g N, | R » “match-weight”
/ :
v, i<md> <md>
/ % m , ”
N : voOND RS 'match-dro,
RN <mw, 1,0> 4 P
\ \
<pr> ’ <mw,y,2> <nu>

Y “nbrs-update”

Figure 4.2: Node coordination in the distributed implementation. In this diagram, u and
v match, then v matches with some other node. That node later leaves the network, which
makes v update v and try to re-match with it.

not need to worry about other types of messages (e.g., “match drop”) being mixed across

matching attempts.

We use a greedy approach for choosing which nodes to court. Using m,w and nbrs-
mw, a node can tell which of the links next to it contributes the maximum gain to the
matching. This is called a maximal augmenting link, and the neighbor at the other end
of this link is called the maximal gain neighbor. 1f every node courts its maximum gain

neighbor, then all nodes on maximal augmenting links exchange “preference” messages.

One difficulty that arises, however, is that the network and the matching keep chang-
ing, and with them the maximal gain augmenting links. Moreover, since communica-
tion is asynchronous, nodes might temporarily see different maximal augmenting links
depending on the timing in which they receive “nbrs-update” and “match-weight” mes-
sages. One possible solution to this would be to keep sending “preference” messages.
The problem with this approach is that a “preference” message is an invitation to match.
However, a node only matches with the last node it sent a “preference” message to. This
makes previously sent “preference” messages outdated, which may cause nodes to give

up their current match for no gain. We therefore rule out this approach.

Instead, we overcome this difficulty by allowing each node to court at most one neigh-
bor at a time. When a node’s maximal gain neighbor changes, it first tries to recall its pre-
vious preference by sending a “recall-preference” to its pm. This can lead to two possible

scenarios depending on whether v is matched with u by the time the message is received

16

14 -) 14 = — “preference”
' - -] <mw>
<pr> Y <tp>/ \ mw,u,2>7 | Z 2T » “match-weight”

- - I
\
\ ‘/ \ <ra>

\.

~ i1
S <mw,y,2> I

~ 1
= r

——p “nbrs-update”

<mw,v,3>\ _-

<rp> “recall-
P >

preference”
BDe S & Oéwé@b
(b)

Figure 4.3: Two scenarios for “recall-preference” messages. (a) Node u’s “recall-
preference” is responded by “recall-ack” (and w is deleted from suitors,). (b) Node
u’s “recall-preference” is ignored by v since v is matched with w.

by v. If it is not, then v responds with a “recall-ack” and removes u from suitors,. When
u receives the “recall-ack™, pm at u is cleared, and w is free to court another neighbor.
Otherwise, v is matched with « and simply ignores the “recall-preference”. In this case,
v has already sent a “match-weight” message to u, and when u receives it, it will match
with v. Figure 4.3 shows examples of both scenarios. Either way, after a node sends a
“recall-preference” message to its pm, it no longer changes its match to pm upon receiv-
ing a “preference” from pm, but does so only upon receiving a “match-weight” from its
pm.

Note that he algorithm can be initiated with any matching, including an empty one.

17

Algorithm 2 Dynamic Weighted Matching Algorithm: code for node v

1: T C V, initially 0

2

3:

4:

® W

10:
11:

12:
13:

w:TU{L} >R
suitors < ()
nbrs-mw : ' =€ RU{0, L},
initially | Vu € T’
pm € I, initially L
pm-status €{Prefer, Recall}
m e T, initially L
nbrs-ack : T' — {True,False}, initially True

output:
if m # L output m
else output pm

// Initial match info was received from all neighbors

ready(): Pu € I s.t. nbrs-ack(u) =False

. // Finds maximum-gain augmenting link
: best-match():

if u € T s.t. gain(u) > 0 then

return L
else return arg max gain(u)
uel’
: gain(u):

if w = m return 0
return w(u) — (nbrs-mw(u) + w(m))

: // Clears affected states and notifies neighbors
. upon (“nbrs-update” T’ , w')

31:

34:
35:
36:
37:
38:

suitors < suitors \ (T'\T")
if pm € T'\ T” then pm + L
if m # L then
// check whether my match dropped
if m € T'\ T” then
m<+ L
nbrs-ack(x) «<False Vx € IV NT
if m = L or w(m) # w'(m) then
// update old neighbors of new weight
send (“match-weight”, m,w'(m)) to
'nr\{m'}
// update new neighbors of match weight
send (“match-weight”, m,w'(m)) to TV \ T
nbrs-ack(x) <False Vo € IV \ T’
IFeTw+uw,m<m
check-pm()

: upon receive (“preference”) from u

if m = u return

suitors <— suitors U {u}

if pm,, = v and pm-status #Recall then
update-match()

44:
45:
46:
47:

71

upon receive (“recall-preference”) from u
if u = m then return
suitors < suitors \ {u}

send (“recall-ack”) to u

: upon receive (“recall-ack”) from u
pm <+ L
check-pm()

. upon receive (“match-weight”, mn, mw)
from v
nbrs-mw(u) < mw
if mn = 1 then
send (“nbr-ack”) to u
if mn = v then
if m # u then
// pm must be u in this scenario
update-match()
// pm can be cleared: match is acknowledged
pm — L
check-pm()

. upon receive { “nbr-ack”) from u
nbr-ack(u) <True
check-pm()

. upon receive { “match-drop”,mw) from u
if u # m return

nbrs-mw(u) <+ mw

send (“match-weight”, 1,0) to T’
nbrs-ack(x) <False Vo € T

m < L

. // Tries to make pm be best-match()
check-pm():
if (not ready()) or pm = best-match() return
// Can only have one pending preference
if pm = L then
pm < best-match()
pm-status <Prefer
send (“preference”) to pm
if pm € suitors then
update-match()
// At most one recall, when nodes aren’t matched
else if pm # m and pm-status =Prefer
pm-status =Recall
send (“recall-preference”) to pm

update-match():
if m # | then
send (“match-drop”,w(pm)) to m
send (“match-weight”, pm,w(pm)) to T\ {m}
m < pm
suitors < suitors \ {pm}

4.3 Distributed Algorithm

The pseudo code of our algorithm can be found in Algorithm 2. The algorithm is driven

by event handlers and a node only takes steps when it receives an event notification.

The code consists of event handlers — one for each message and five helper functions.
We describe the functions bottom up. The implementation of gain() computes the gain
based on the node’s local information. The best-match() function returns the maximal gain
neighbor, if an augmenting link exists, or otherwise L. A node is ready(), if it received

match weight information from each of its neighbors.

The update-match() function is called when a node matches with a neighbor. It up-
dates the state and sends notifications about the match change to the neighbors: “match-
drop” to the previous match (if one exists), and “match-weight” to all other neighbors.
The variable m changes to reflect the new match, and pm is deleted from suitors since
we allow matching only once per “preference” message. Note that pm remains m which
means that the node cannot send a “preference” yet to a new neighbor. The node waits
for a “match-weight” from m confirming the node matched back before releasing pm and
thus enabling a new match. This ensures that there is a time at which both are matched to
each other. (i.e., assuming that u and v match, there is always a time were both m, = v
and m, = u.)

The check-pm() function tries to make pm be best-match(), in order to later match with
it. As discussed in Section 4.2, each node has at most one “preference” out at any time.
We therefore consider two cases: if pm = L (lines 75 — 80), then any previously sent
“preference” messages were cleared, and so pm can become best-match(). A “preference”
message is sent to the new pm. If a “preference” message from pm was already received
(lines 79 — 80), the node can go ahead and change its match to pm. In case pm # L
(lines 82 — 84), the node first tries to get pm to become L, which is done via a “recall-
preference” message. We send a “recall-preference” at most once per pm and only if v

and pm are not matched yet.
Next, we describe the notification handlers.

The “nbrs-update” handler does a couple of things. First, if pm, m or suitors hold

a node that is no longer a neighbor, it clears their value. Second, if the match weight of

19

the node changed either because m was cleared or because the link weight of the match
changed, it sends a “match-weight” to the remaining neighbors. Third, regardless of
whether the node’s match has changed or not, a “match-weight” message is sent to all
new neighbors since they have no knowledge of the node’s match weight. Last, since

best-match() might have changed, check-pm is called.

All received “preference” messages are recorded in suitors, as they are sent only once.
If no “recall-preference” was sent and v receives a “preference” from pm, v changes its
match to pm. However, if v had sent a “recall-preference” to pm, then a “preference”

from pm is not enough for v to match with pm.

If a node receives a “recall-preference” message from u # m, then it removes u from
suitors and responds with a “recall-ack”, which will clear pm,, and allow u to send a
“preference” to another node. If a “recall-preference” is received from u = m, then it is

not relevant, since the node had already sent a “match-weight” indicating u as its match,.

A node can only receive a “recall-ack” message from its pm, as it can only send one
“recall-preference” and only to pm. Upon receipt of this message, pm is cleared, and

check-pm is called to send a new “‘preference” message if needed.

A node sends a “match-weight” message for two purposes: to notify neighbors of
the change to its match weight, and to inform its new match that it has matched with
it. The matched node waits for such a notification before clearing pm. This is done in
order to guarantee a time when the pair of matched nodes both output each other as their
match before they can move on. Upon receiving such a message v first updates nbrs-
mw. Then, if v is indicated as the new match and m,, is not yet the message sender, then
update-match() is called. (This would be the case if v sent a “recall-preference” to pm,
and then waits to see whether it will receive a “recall-ack” or a “match-weight”.) Either
way check-pm() is called since pm might have been cleared or best-match() might have
changed.

A match between nodes can either be broken by one of the nodes or independently
broken by both. When it is broken by one node, the “match-drop” is needed to let the
other node know to clear its match state. Since this causes a match weight change, a
“match-weight” message is also sent to all neighbors. In addition, check-pm() is called

since best-match() could have changed. If the match is broken independently by both

20

nodes, m already changed from « and the message is redundant by the time it is received

and is simply ignored.

21

Chapter 5
Algorithm Analysis

In this chapter we show that Algorithm 2 is correct, quiescent, converges to a 2-approximation,
and satisfies a locality property. All our results apply after a global stabilization time
(GST), which is a time after which no more network changes occur. Formally, V¢ > GST
no “nbrs-update” is received.

We begin with a few basic lemmas in Section 5.1. Then, in Section 5.2, we prove that
when no notifications are pending between two nodes, a node u outputs v as its match if
and only if v outputs u as its match. In Section 5.3 we build the case for the algorithm

becoming eventually quiescent. We conclude Section 5.3 by proving the following results:

Theorem 1. (Quiescence)

If GST exists, then 3t > G ST such that Algorithm 2 is quiescent from time t onwards.

Theorem 2. (Dynamic Weighted Matching Correctness) If GST exists, then 3t > GST
such that the output of Algorithm 2 does not change from time t onwards and every node

u outputs node v if and only if v outputs u.

Theorem 3. (Approximation) If GST exists, then 3t > GST such that w(M;) > Sw(M; o)

from t onwards.

We conclude the chapter in Section 5.4 where we show the locality property of the

algorithm:

Theorem 4. (Locality) If Algorithm 2 is quiescent at time t, and then one of the following

22

events occurs: node start, node stop, weight change, link removal, or link addition, then

after O(1) rounds, 3t' s.t. w(My) > 2w (My o).

In the proofs, we use the following notations. We denote a local variable of node
u with subscript u, for example, m,, is u’s current value of the variable m (its selected
match). We use the notation (), to discuss “nbrs-update” notifications not yet received
by node u, and the notation (@, ,, to discuss notifications sent from u but not yet received
by node v. We use the following abbreviations for some of the messages: © describes a
(“nbrs-update”,I",*) notification s.t. v € I, \ I where u is the target of the notification.
(i.e., u receives a notification that v is no longer its neighbor), and mw—, and mw,
describe a (“match-weight”,m,*) message s.t. m = v and m # v, respectively.

Also, for simplicity, when u or v are L, the values w, (v) and w(u, v) are interpreted

as equal to zero.

5.1 Simple Invariants

We observe that when a node has no potentially weight-changing notifications in its

queues, its weight state variables must be up-to-date:
Observation 1. (Correct view)
1. At time t, if “nbrs-update” € Q,, then Vv € Ty, w,(v) = wy(u,v).
2. If bmw € Q. and P“match-drop” € Q,,., at time t, then nbrs-mw, (v) = w;(m,).

We say in such cases that a node u has a correct view.

The following five simple invariants link the different messages that can be in transit to
the corresponding node states. They follow immediately from the structure of the protocol
and the fact that messages from different matching attempts do not get “mixed up” as
subsequent attempts are separated by either a “match-drop” or a “recall-ack” exchange

before any attempt to re-match.
Invariant 1. If 3“preference”c (), then pm, = v, u ¢ suitors, and Fmw_, € Qo

Invariant 2. If 3mw—, € Q. then pm, = w and either m,, = u or m,, = v.

23

Invariant 3. If 3“recall-preference”c (), then either m, = u or m, # v, pm, = v,

and pm-status,=Recall.

Invariant 4. If 3“recall-ack” € Q.,, then v ¢ suitors, pm, = u, pm-status, = Recall,

m,, # v and m, % u.
Invariant S. If 3“match-drop”c Q. , then Fmw_, in Qu.u and either m,, # v or m,, # u.
Invariant 6. Exactly one of the following claims is true at any given time t:

1. nbrs-ack,(v) =True

2. Imw=; € Quy

3. Inbr-ack”e Q,

5.2 Agreement Lemmas

This section shows that when m, becomes v and the link (u,v) does not drop from the
network, then eventually m, becomes u.
The next claim shows that while pm = m, m cannot change. It only considers a

certain sub-case that is useful to Invariant 7.

Claim 2. If m, = u and pm, = m,, = v at time t, and pm,, does not change in step t + 1,

then m,, does not change in step t + 1.

Proof. The variable m,, changes in Lines 29, 70, 89. Line 29 is executed together with
Line 25, which means that pm, becomes L at step ¢ + 1 in contradiction to the Claim’s
assumptions. Line 70 is not possible since both m, = v and m, = u, which from
Invariant 5 means no “match-drop” can exist. Last, Line 89 means that update-match() is
called. The function update-match() is called from Lines 43, 58, and 80. Line 43 cannot
be executed since m, = v and the check in Line 40 fails. Line 58 is not executed since

pm,, = m,,, and finally, Line 80 is not possible since pm,, # L. [
The next two claims show the intuitive property that if v € suitors, then pm, = v:

Claim 3. If Imw_, € Q, ., them u ¢ suitors,

24

Proof. When v sends a mw_,, message to u, it also deletes u from suitors, in Line 90.
From Invariant 1, while a mw-, is pending in @), ,,, no “preference” can exist in (), ,. It

follows that u cannot be re-added to suitors, while Imw—, € Q. OJ
Claim 4. If at time t, pm, # v and (u,v) € Ey, then u & suitors,

Note, that if link (u, v) is removed from the network, then a v and is sent to u and v,
respectively. When v and v receive such a message then suitors, pm, and m are cleared

in Lines 24- 29. It is as if the communication between them did not happen.

Proof. Let’s assume by contradiction that pm, # v but u € suitors,. A node is inserted
to suitors, only in Line 41 when v receives a “preference” message from u. We denote
this time as t,. Since there is a “preference”’c (), at ¢y, then from Invariant 1, it follows
that pm, = v at ty. Let t; > ¢, be the time pm,, changes from v — the lines that could
potentially change pm,, are 25, 49, 60 and 76. Line 25 is not possible since (u,v) € F;.
Line 49 is not possible from Invariant 4, since v € suitors,. Line 60 is not possible from
Claim 3, since dmw_, € Qv While u € suitors,. Finally, Line 76 is not possible since

pm,, must be | in order for it to run. O

Invariant 7 specifies all the different variable and queue states that nodes « and v can

be in when m,, = v, and how the nodes move between them.
Invariant 7. (Match-state invariant) If at time t, (u,v) € E; and m,, = v, then:
A. if pm, = v then:

1. my, # u, pm, = u, and Imw—, € Q. , or

2. my = pmy, = U, IMW=y € Qu ., and IMw—,, € Q,,, or
3. my = u, pmy, # u, and Imw—, € Q,,, or

4. m, # u and Imw—, followed by a “match-drop” in), ..

B. if pm, # v, then:

1. m, = pm, = wand Imw—, € Q,, or

2. m, = uand pm, # u or

25

3. my, # uand 3“match-drop” in QQy .

Proof. We prove the invariant by induction on the number of received notifications at
either v or v. Base: let ¢y be the time m, changes to v. The variable m changes to a
non | value only in Line 89 which means that update-match,() is executed. As a result,
m, = pm, = v and Imw-, € Q,,. From Invariant 2, since Imw-, € @,,, then
pm, = u. If m, # u, Case A(l) is true and the invariant holds. If m, = u, then we
need to show that either Case A(2) or Case B(1) are true. Let’s consider which line led
to update-match, () being executed. If it was Line 58 then u received a mw_,, from v.
It follows that Lines 55 — 60 are executed which means that pm, becomes 1 and Case
B(1) is true. Otherwise, we need to show that Imw—, € Q,, att,. Lett; <, be the
last time m,, changed to u. Then, v sent a mw—, to u at t;. We considered earlier the
case where this mw—_, was received at t,. Now, we assume by contradiction that it was
received at some time t, < ty. (Note that ¢; < t5 since the message was only sent at ¢1).
When the mw_, is received, it follows from Invariant 2 that pm, = v which guarantees
that Lines 55 — 60 are executed. As a result, a mw—, is sent to v. Since m, = u both at
t1 and at ty, and we assumed that the last time m, becomes w is at ¢y, it follows that m,,
cannot change between ¢; and ty,. When the mw_, sent at ¢, is received, pm, becomes L
and since gain(m,) = 0, it cannot become u while m, = u. This means pm, # u at t,.
However, from Invariant 2, when u sends the mw—, at ty, pm, must be u and therefore
we reached a contradiction.

Step: we assume that the invariant is true at t — 1 > ¢, and prove that it is still true at

t by considering any subsequent notification that can affect each case.

Case A(1) : either m, changes to u, pm, changes, or mw—, is received by v. From
Invariant 2, pm,, cannot change while 3mw_,.. The variable m, can become u only
in Line 89. Line 89 is executed with Line 88, which means that v sends a mw-—,
to u, and Case A(2) becomes true. If mw_, is received, since pm, = u, Lines 55
— 60 are executed. This means that v sends a mw—, to u, m, becomes u and pm,,

becomes L, which make Case A(3) become true.

Case A(2) : either m, or pm, change or one of the “match-weight” messages are re-

ceived. From Invariant 2, pm, cannot change until mw_, is received, and from

26

Claim 2, m,, cannot change until pm,, changes. If mw_, is received then pm,, be-
comes L in Line 60 and Case B(1) becomes true. Last, if mw_, is received, then

pm, becomes 1 after Line 60 executes, and then Case A(3) becomes true.

Case A(3) : either m, changes, pm, becomes u, or the notification is received. The
variable pm, cannot become u, since this happens only in Line 76, but Line 76
does not execute because gain(m,) = 0, which means that m, # best-match().
If the mw_, is received then pm,, becomes 1 in Line 60, which means that Case
B(2) becomes true. This leaves the possibility of m, changing. The variable m,, can
change in Lines 29, 70, 89. Line 29 is not possible since (u,v) € F;. Line 70 is not
possible since from Invariant 5 no “match-drop” can exist in), , while Imw—,, €
Quu- Last, if Line 89 is executed, then in Line 87 a “match-drop” is sent to v and
Case A(4) is true.

Case A(4) : either m, becomes u, or the mw_, is received. Due to the FIFO assumption,
the “match-drop” notification cannot be received. For m, to become u, update-
match, () needs to be called. This can happen in Lines 43, 58, and 80. Line 43:
not possible since it would mean that there is “preference” from w at time ¢ which
from Invariant 1 is not possible when Imw—, € @Q,,. Line 58: From Invariant 5
no mw~—, can exist while 3“match-drop”’e @, ,. Line 80: not possible since from
Claim 3, u ¢ suitors, when Imw_, € @Q,,. This leaves mw_,, being received

which would make Case B(3) become true.

Case B(1) : either m, changes, pm, changes, or mw—, is received. From Invariant 2,
pm, cannot change while the mw_, is pending. Subsequently, from Claim 2, m,,
cannot change. If mw_, is received then pm,, becomes L in Line 60 and Case B(2)

becomes true.

Case B(2) : either m, changes or pm, becomes u. The function gain() always returns 0
for m, which means that best-match, () never returns m,. Since pm, can become
w only in Line 76 where best-match,() is assigned to it, it is not possible that u
is assigned to it while m, = u. The variable m, can change in Lines 29, 70, 89.

Line 29 is not possible since (u, v) € E;. Line 70 is not possible since both m,, = v

27

and m,, = u which from Invariant 5 means no “match-drop” can exist. If Line 89 is

executed then in Line 87 a “match-drop” is sent to « and Case B(3) becomes true.

Case B(3) : either m, becomes u, or the “match-drop” is received. For m, to become
u, update-match,() needs to be called. This can happen in Lines 43, 58, and
80. Both Lines 43 and Line 58 are not possible from Invariants 1 and 2 since
pm,, # v. Line 80 is not possible from Claim 4 which states that u ¢ suitors,
when pm, # v. If the “match-drop” is received by u, then m, becomes L in

Line 70 and the invariant vacuously holds.
O

Corollary 1. If at time t, m, becomes v and m, # u and for the next round no “nbrs-

update” are sent to u or v then exists t' after at most 1 s.t. m,, = v and m, = .

Corollary 2. If m, = v, and both Q),,, and Q),,,, are empty, then m,, = u.

5.3 Termination and Quiescence

We show that the algorithm terminates by proving that after G.ST' the algorithm only
adds augmenting links to the matching. In general, there is a very limited number of
scenarios that might cause a non-augmenting link to be added to the matching. These
arise because a link is not added to the matching atomically. It takes a step by each of the
endpoints to add the link. Once the first endpoint makes the first step, the other endpoint
will always follow through with its own step. One scenario where non-augmenting links
are added, is if between those steps a network change occurs which makes the link become
non augmenting. The second scenario occurs when a node mistakes a link for positive
gain when it has an incorrect match weight for some neighbor. This is due to pending
“match-weight” messages. This scenario is quite rare since both endpoints of the link
need to make the same mistake — they both need to send “preference” messages in order
to match. On top of this, most occurrences of this scenario do not lead to link additions
thanks to “recall-preference” messages. Nodes only match in such a case if they exchange
“preference” messages and at least one of them does not send a “recall-preference”. Next,

we claim this formally.

28

We denote by mw- a (“match-weight”, m — m # u, mw) € @Q,, message sent by
v to u s.t. mw > nbrs-mw,(v). i.e., a “match-weight” message that notifies of a weight

increase of the current match (as opposed to a new match).

Observation 2. A mw- notification is sent by node v only when node v receives a { “nbrs-

update” 1" ,w!) s.t. w) (m,) > w,(m,)

We are interested in the case where a non-augmenting link is chosen because best-
match() is outdated relative to the variable pm. The next claim outlines when these two

values are equal.

Claim 5. If for some node u at time t, m,, # v and pm-status =Prefer, then pm,, = best-

match,().

Proof. The variable pm is either set to L or to best-match(). The function check-pm() is
called whenever pm is set to L and whenever best-match() might change. In check-pm(),
if pm, = L then best-match,() is assigned to it (Line 76). Otherwise, if m,, # pm,, then

pm-status receives Recall in Line 83. 0

Next, we want to show that if v € suitors,, then v is committed to « and cannot send
another neighbor a “preference” message. We prove a slightly weaker claim, where we

assume m,, # v and m,, # u.
Claim 6. If m, # u, m, # v, and v € suitors,, then pm, = u.

Proof. If v € suitors, at some time ¢ then 3¢’ < ¢ s.t. u received a “preference” message
from v. From Invariant 1, at ¢/, pm, = u. Let us consider all the cases in which pm, can
change - Lines 25, 49, 60, and 76. Line 25: node v receives a u, then node v also receives
a v and v is deleted from suitors,. Line 49 is not possible since v € suitors, and if a
“recall-ack” exists in @), , it is a contradiction to Invariant 4. Line 60 is not possible since
both m,, # w and m,, # v, and if a mw_, exists it would contradict Invariant 2. Finally,

Line 76 is not possible since pm,, # L. O]

Next, we show that if a node « initiates a match with node v, and « does not know v’s

up-to-date weight, then there must be a pending mw- notification.

29

Claim 7. If at time t, m,, becomes v while m,, # w and nbrs-mw,(v) < w(v,m,), then

dnws € Qy .

Proof. First, from Invariant 5 there can be no “match-drop” message since m, # v and
m, # u. Hence, by Observation 1, because nbrs-mw,(v) # w(v,m,), there must be
a (“match-weight”, mo — mn # u,mw) € @Q,,. It remains to show that in the no-
tification, mw > nbrs-mw,(v) and mo = mn, meaning that the match of v did not
change, and the weight of that match has increased. Observe that, if m, becomes v,
update-match() is called. This can potentially happen in Lines 43, 58, or 80. However,
since m,, # w and m, # v at t, then from Invariant 2 there can be no pending mw_—, to
receive and Line 58 is not possible. On both lines 43 and 80, v € suitors,. Let t’ be
the time w last received a “preference” from v, then nbrs-mw, is updated on the match
weight of v at the time in which v sent the “preference” message to u. From Claim 6 since
v € suitors, between t' and t, then pm, = wu at this interval. A node sends a “prefer-
ence” only when pm changes so it is not possible that v matched with another node since
sending the “preference” to w. This means that the increase in the weight of v’s match

occurred for an existing match, and Imw- € @, . [

The next Lemma shows that except for the case of network changes that directly drop

links, whenever a link is dropped, a new link is added in its place.

Lemma 3. Let (u,x) be removed from the matching at time t s.t. m,, changes at time t,
and no “nbrs-update” is received by u at time t. Then, m,, becomes v # 1, and within at

most one round, m, = u.

Proof. First, it is not possible that m, changed to L. The variable m is assigned L
only in line 29 or 70. Line 29 cannot be executed at time ¢ since no “nbrs-update” was
received at time ¢. It is not possible that Line 70 executes since there is no “match-drop”

by Invariant 5. The second part follows immediately from Corollary 1. [l

Lemma 4 shows that under certain conditions only augmenting links are added (i.e.,
the weight of an added link exceeds those of the edges it supplants). Remember that a
link is added to the matching in two steps - both endpoints need to change their match.

Whenever there are no network changes, either none of these steps occur or both of them

30

do. We consider an augmenting link with respect to the matching at the time the first step
occurred. Let node u output v as its match at time ¢, then we define the match weight of

node u as wy(u, v) when v also outputs u as its match, or zero otherwise.

Lemma 4. (Augmenting-additions) Consider an edge (u, v) that is added to the matching,
where m,, becomes v at time t1, and m,, becomes u at time t5 > t1. Let wy and wy denote
u and v’s match weights until times t1 and 15, respectively. If no “nbrs-update” is received

by either u or v between t, and t, and Fmw- € Qo at ty, then w(u,v) > wl+w2 at ts.

Proof. Since t; < t9, m, changes first. The variable m only changes in update-match(),
and update-match() is called from 3 places in the code: Lines 43, 58, and 80. Line 58 is
not possible since from Invariant 2 there cannot be a pending mw—, while m, # u and
m,, # v. Therefore, update-match() is called from either Line 43 or Line 80, which means
that pm-status=Prefer and v € suitors,. From Claim 5, pm, = best-match,(). Since
best-match()=v# L only if gain,(v) > 0, then w,(v) > nbrs-mw,(v) + w,(x). Since
there are no “nbrs-update” messages received by u or v between ¢, and ¢», we can replace
wy(v) and w, () by wy, (u,v) and w;. From Observation 2, there is no mw-. between
t; and ty, and from Claim 7, nbrs-mw,(v) > ws. Together, this gives us w(u,v) >

wl + w?2. O]

For the following lemma, we define the match weight of node u at time ¢ as w;(u, m,,)
if (u,m,) € M, or zero otherwise. Lemma 5 shows that the weight of the added link

exceeds those of the edges it supplants:

Lemma 5. Consider an edge (u,v) that is added to the matching at least one round
after GST, where m, becomes v at time t; and m, becomes u at time to > ti. Let
wy and wsy denote v and v’s match weights until times t, and ty, respectively. Then,

w(u,v) > wl + w2.

Proof. From GST onwards no more “nbrs-update” message are received, but for one
round following GST there can still be mw~ messages as a result of “nbrs-update” mes-
sages received just prior to GST. After this round all conditions exist for Lemma 4, and it

follows that w(u,v) > wl + w2. O

Everything is set now to prove that the algorithm terminates:

31

Lemma 6. (Termination) If GST exists, then 3t > GST such that M; does not change

from t onwards.

Proof. From Lemma 5, a round after GST only augmenting links are added to the match-
ing. From Lemma 3 no link is removed without a link being added so the weight of M
can only increase. Finally, since W (M) is bounded by W (M,,;), 3t s.t. M, does not

change from ¢ onwards. [

We have shown that the matching eventually stops changing. In the remainder of this
section we concentrate on showing that when it does, no augmenting links exist and that
the algorithm becomes quiescent shortly after the matching stops changing.

The next two claims show progress when a node is at a certain state. The first claim
shows progress when nodes send “preference” messages to each other and do not recall

them:

Claim 8. If at time t pm, = v, pm-status,=Prefer and pm, = u, pm-status,=Prefer,

and m,, # v, then the following statements are all true:
o J“preference”c Q.
° ﬂ“recall—preference”e Quvu-
o Arecall-ack”€ Q..

Proof. First, since pm-status,=Prefer and m, # v then the second and third statements
are straightforward from Invariants 3 and 4. We concentrate on proving that 3“preference” e
(Qv,n- We denote by ¢ and t, the latest time prior to ¢ at which pm,, becomes v and pm,
becomes u, respectively. When pm,, changes to u, a “preference” message is sent to .
We further denote by 3 the time at which this “preference” is received by u. Note that at
ty (t2), pm-status,=Prefer (pm-status,=Prefer). Both pm-status variables are Prefer at
time ¢ as well. It is not possible that in between either variable changes to Recall, since
it can only change back to Prefer if the respective pm changes and that does not happen
again before ¢. Similarly, m, # v both at time #; and at time . It cannot become v
between ¢; and ¢ since in order to become m, # v again, pm, must first change to L, in

contradiction to ¢; being the latest time prior to ¢ that pm,, becomes v. It suffices to show

32

that £5 > ¢ and therefore at ¢, 3“preference”c (), . Assume by way of contradiction that
ts < t and consider the relation between ¢3 and ¢;. If t > t3 > t1, then at ¢35 Line 43 would
subsequently cause m,, to become v in contradiction to m,, not changing between ¢; and
t. If t3 < t;, then at t3 v € suitors,. If at ¢; v is still in suitors, then Line 80 would
subsequently cause m,, to become v in contradiction to m,, not changing between ¢; and
t. Hence, both t3 < t; and v ¢ suitors, at time t;. This means that somewhere between
t3 and ¢4, v is removed from suitors,. We show next that this is not possible by consid-
ering all the lines in which a node is removed from suitors. Line 24: node u receives a ©
notification, then symmetrically v receives a @. This means that in Line 25, pm,, becomes
L in contradiction to ¢; being the latest time prior to ¢ in which pm,, becomes v. Line 46:
not possible since between time t3 and ¢, pm-status,=Prefer and m,, # v so according
to Invariant 3, ﬂ“recall—preferenoe”e Qv Line 90: then m,, becomes v in contradiction
to m, not changing between ¢; and t. We exhausted all cases in which ¢3 < ¢, which

means that at ¢, the “preference” message must still be at (), ,,. 0
The second claim shows progress when a node sends a “recall-preference” message:

Claim 9. If at time t, pm, = v and pm-status,=Recall, and m, # u, then either

I“recall-preference”c ()., , or 3 recall-ack” € Q.

Proof. Let t; < t be the latest time prior to ¢ that pm-status, changes to Recall. The
change can only occur in Line 83. Line 83 always executes together with Line 84, which
means that a “recall-preference” message is sent to v at ¢;. Notice that pm,, = v both at ¢,
and at ¢. It cannot change in between since pm,, would need to be assigned v again before
t, and when pm is assigned a node, pm-status is Prefer. This means that pm-status,
would need to change again before ¢ in contradiction to ¢; being the last time. If at ¢ the
“recall-preference” has still not been received, the claim holds. Otherwise let 5 < ¢ be
the time the “recall-preference” is received by v. It is not possible that at ¢, m, = v since
for m, to become # v again at time ¢, pm,, must become | and as mentioned before that
is a contradiction to our assumption. Therefore, when v receives the “recall-preference”,
m, # w and v sends a “recall-ack” to w. The “recall-ack” must still be in (), ,, at time ¢,
since otherwise when u receives the “recall-ack”, pm,, becomes | which again would be

a contradiction. O]

33

The next invariant shows that when there are no messages in the queues, the values in
nbrs-ack map are all true. This guarantees that ready() must return true.
The next claim shows that the value of best-match() eventually determines the value

of pm.

Claim 10. If at time t > GST, no “match-weight”, “match-drop”, or “nbr-ack” no-
tifications exist in any queue and best-match,() = v, then either pm, = v or pm-
status,=Recall.

Proof. Lett; < t be the last time that check-pm,,() is run prior to t. Since check-pm,,()

29 ¢

is run after every received “nbrs-update”, “match-weight”, and “match-drop” notification,
and at ¢ none of these notifications exist in the queues, then no “nbrs-update”,“match-
weight” and “match-drop” notification can exist in u’s queues between ¢, and ¢. It follows
that u has a correct view from ¢;, which means that best-match,,() did not change since
ti. Therefore, at ty, best-match,() = v. Also, since no “match-weight” or “nbr-ack”
notifications exists in u’s queues since ¢;, and no “nbrs-update” exists after GST', then
ready,() is true at t;. When check-pm,,() is run, either pm,, = best-match,(), or pm, =
1, or pm, # L and pm,, # best-match,(). If pm, = best-match,() then the function
immediately exits. If pm, = L then best-match,() is assigned to it which means v is
assigned to it. Otherwise, pm, # L and pm, # best-match,(). If pm, # m,, then
the check in Line 82 is true and pm-status, becomes Recall. Since no “match-weight”
or “match-drop” notifications exist, it follows from Invariant 7 that pm, # m,, and we
conclude that at t;, pm,, = v or pm-status,=Recall. Since each change made to pm,, and
pm-status, is either at check-pm,,() or subsequently calls check-pm,,(), then pm, and

pm-status, do not change again prior to ¢. [

The next Lemma is key to proving that the algorithm converges to the desired approx-
imation and becomes quiescent. We show that the matching can stop changing only if no

augmenting link exists.

Lemma 7. If there is an augmenting link at time t > GST then after at most six rounds

It s.t. Mt/ 7£ Mt.

Proof. Assume by way of contradiction that an augmenting link exists but M does not

change after six rounds. Note that “match-weight” and “match-drop” messages are sent

34

only in response to “nbrs-update” and to changes in the matching. After GST no “nbrs-
update” messages are received, which means that at most a round after the last change in
M or in the network (whichever is later) prior to ¢, no “match-weight” or “match-drop”
messages exist in the queues. A round after, no “nbr-ack” messages are in the queues. Let
t; > t be a time s.t. no “match-weight”, “match-drop” and “nbrs-ack” messages exist in
the queues. For the purpose of counting rounds, ¢, is at most two rounds after ¢. Let (u, v)
be the augmenting link with maximum gain w.r.t M, . Then, since at ¢; the view of all the
nodes is correct, then from Observation 1, best-match, () = v and best-match,() = u.
We show that either u or v (or both) change their match within at most seven rounds from
t.

We prove the lemma by considering all possible values of pm, and pm,, at ¢;.

Casel pm, = L or pm, = L. Not possible from Claim 10.

Case 2 pm, = v and pm, = u.
We show that v and v match. Since no “match-weight” or “match-drop” exist at
t1, then from Invariant 7 it is not possible that m, = v and m,, # u or vice versa.
In that case, nodes u and v sent preference messages to each other but they did
not match yet. We further separate to sub-cases based on the value of the variable

pm-status in each of them.

Case 2.A pm-status,=Prefer and pm-status,=Prefer.
From Claim 8, since pm, = v, pm, = u, and m, # v, there must exists
a “preference” in both (), , and (), ,. Also from Claim 8 there can be no
“recall-preference” or “recall-ack” messages in (),, and (),,. This means
that when each receives the “preference” message from the other, Line 43 is
executed and they match. Note that in this case, the stall is just waiting for
the “preference” message to arrive to both sides which can take at most one

round. It follows that at most three rounds after ¢, M changes.

Case 2.B pm-status,=Prefer, and pm-status,=Recall.
Since m,, # v at t; then from Claim 9, either 3*recall-preference” in (), ,, or

F“recall-ack” in),,,,. If 3“recall-preference” in (), , then let £, > ¢, be the

35

time the “recall-preference” is received. At t, either m, = v or m, # v. If
m,, = v then from Invariant 7, m, becomes u one round later, and u and v
match. If m, # v, then u responds to v with a “recall-ack” message. From
Invariant 4, while a “recall-ack”e @), ., m, # v and m, # u. When v
receives the “recall-ack”™, it clears pm, but on the subsequent call to check-
pmy(), since best-match, = u, pm, becomes u and pm-status, =Prefer.
Since pm,, = v and pm-status,=Prefer, we can now follow Case 2.A which
shows that © and v match. Note that in this case, at worst, we pay two extra
rounds (one round to receive the “recall-preference” and one round to receive
the “recall-ack”) plus the round Case 2.A takes. It follows that at most five

rounds after ¢, M changes.

The case that pm-status, =Recall and pm-status, =Prefer is symmetric to
Case 2.B.

Case 2.C pm-status,=Recall and pm-status,=Recall.
From Claim 9, either 3“recall-preference”c (@), ,, or I“recall-ack”c (@), ,.
Note that in case a “recall-preference” exists, it is not possible for m,, to be-
come v before the “recall-preference” is received. This is because pm, = v
and no “match-weight” exists at time ¢, which means that update-match() can
only be called by Line 43 but would not since pm-status,=Recall. There-
fore, if 3“recall-preference”’c (), ,, then once it is received, u responds with
a “recall-ack” to v. When v receives the “recall-ack”, it clears pm,. On the
subsequent call to check-pm,(), since best-match,, = u, pm, becomes u and
pm-status,=Prefer. Now we are at either Case 2.A or Case 2.B depending
on the value of pm-status, at the time. Note that in this case, at worst, we
pay two extra rounds (one round to receive the “recall-preference” and one
round to receive the “recall-ack™) plus the rounds Case 2.A or Case 2.B take.

It follows that at most seven rounds after £, M changes.
Case 3 either pm, = x # v or pm,, = y # u.

In this case it is possible that » or v match with x or y respectively instead of match-

ing with each other. Without loss of generality, pm, = x # v. From Claim 10,

36

since best-match,() = v, it follows that pm-status=Recall. Furthermore, from
Invariant 7 it is not possible that m, = x and m, # wu or vice versa, or that
pm, = m, = v and m, = u. (“match-weight” or “match-drop” exist at ¢;.) Since
my # w at t; then from Claim 9, 3“recall-preference” in (), , or 3“recall-ack”
in Q);,. If 3“recall-preference” in @), ., then let t; > t; be the time the “recall-
preference” is received. At t, either m, = u or m, # u. If m, = wu then from
Invariant 7, m, becomes x one round later, and » and = match. If m, # u, then
x responds to u with a “recall-ack” message. From Invariant 4, while a “recall-
ack”e QQzu, my # v and m, # u. When u receives the “recall-ack” from z, it
clears pm, and on the subsequent call to check-pm,(), since best-match, = v,
pm,, becomes v and pm-status,=Prefer. If pm, = u, we can now follow Case 2.A
or Case 2.B depending on pm-status,. If pm, = y # u, then the communication
between v and y is similar to v and x. Either v and y match, or pm, becomes u
and pm-status, =Prefer. In the latter option we can apply Case 2.A. Note that
in this case, at worst, we pay two extra rounds (one round to receive the “recall-
preference” and one round to receive the “recall-ack™) plus the rounds Case 2.A or

Case 2.B take. It follows that at most seven rounds after ¢, M/ changes.

]

Finally, Lemma 8 shows that when no links are added to the matching, Algorithm 2

becomes quiescent within a bounded number of rounds:

Lemma 8. If 3t > GST after which M does not change, then after at most O(1) rounds

the algorithm is quiescent and for allu € V, pm,, = L.

Proof. We need to prove that after O(1) rounds all the message queues are empty and
for all w € V, pm, = L. The matching does not change after ¢, which from Lemma 7
means that at ¢ no augmenting links exist. Remember that it takes at most one round for
a sent message to be received. Let ¢; be one round after ¢, then all “match-weight” and
“match-drop” message are received. Since no “nbrs-update” notifications are sent after
GST and the matching does not change, after ¢; no “match-weight” or “match-drop” exist

in the queues. From Observation 1, the view of every node is correct and since there are

37

no augmenting links, then from ¢, onwards Vu best-match, () = L. Since best-match,,()
is L at t; and check-pm,() is called whenever best-match,, () changes, then also at t;,
either pm, = 1, or pm,, = v # L and pm-status, =Recall. Since pm,, already reacted
to best-match,() = L then from ¢; onwards, no “preference” or “recall-preference”
messages are sent. Let ¢5 be one round after ¢, then all previous “preference” and “recall-
preference” messages are received, and no more “recall-ack” messages are sent after .
This means that after three rounds no more messages are in the queues. As mentioned
earlier, from t; onwards, for each u € V either pm, = L, or pm, = v # L and pm-
status, =Recall. Since a round after ¢, no more messages exist in the queues, then from

Claim 9, for every u € V it follows that pm,, = L. O

Theorem 1 (restated). (Quiescence) If GST exists, then ¢t > GST such that Algo-

rithm 2 is quiescent from time ¢ onwards.

Proof. Immediate from Lemma 6 and Lemma 8. 0

Theorem 2 (restated). (Dynamic Weighted Matching Correctness) If GST exists, then
3t > G ST such that the output of Algorithm 2 does not change from time ¢ onwards and

every node u outputs node v if and only if v outputs u.

Proof. Immediate from Theorem 1 and Corollary 2. [

Theorem 3 (restated). (Approximation) If GST exists, then 3¢ > GST such that

w(My) > %w(Mt,opt) from ¢ onwards.

Proof. Follows from Lemma 1 in Section 4.1 and Lemma 7 above. [

5.4 Locality

We divide network events into four categories — weight increase, weight decrease, node
addition, and node deletion. We show Theorem 4 by proving a separate lemma for each

category. The same approach is employed in each

38

We have already shown that shortly after GS7T there is a time after which the weight
of M can only increase. We next show how to refine this for some network changes and
show that it quickly increases to a 2-approximation.

Lemma 2 is used to bound the matching weight’s distance from the approximation
following the change. Then, we consider the nature of the change and show that the algo-
rithm adds at least that missing weight within a constant number of rounds. Since M,
does not change, then from Lemma 2, this is sufficient for M to become a 2-approximation
of M.

In the changes we are looking at, the nodes neighboring the change have a correct

view of the network. We use this to prove some properties:

Claim 11. If node u has a correct view when it sends a “preference” message to node v

at time t then
1. gainyg, (u,v) >0
2. Hu,x) € E, s.t. gainyg, (u,) > gaingg, (u,v)

Proof. Node u sends a “preference” message to the node best-match,, () returns. The
function best-match() calculates the maximum gain neighbor from u’s nbrs-mw, and
w,, variables. From Observation 1, since node u has a correct view, w,(v) = w;(u,v)
and nbrs-mw,(v) = wy(m,). The latter gives us part 2, and part 1 is immediate from

line 16. L

The first change we consider is an increase in weight of some link in the network. The
addition of a new link also falls under this category, as we can consider the addition as a
weight increase from weight 0.

Reminder: A(M) is the set of augmenting links w.r.t M that are in M,,;: A(M) £ {a €
Moyt | gainy(a) > 0}.

Lemma 9. (Weight increase) If Algorithm 2 is quiescent at time t, and then the weight
of any one link e = (u,v) is increased, then after O(1) rounds, ' s.t. w(My) >

%w(Mt’,opt)-

39

Proof. Since no link other than e changed and w(e) has increased, the only possible
augmenting link at time ¢ is e. The algorithm is quiescent at time ¢, which means that all
the nodes are idle (Vx € V pm, = best-match,() = L). As a result of the change “nbrs-
update” notifications are sent to u and v. Scenario 1: e is not augmenting and therefore
from Lemma 1, M, is still a 2-approximation of M,,;. We show next that the matching
does not change. The algorithm was quiescent prior to the change which guarantees
that when node u and v receive the “nbrs-update” their view is correct and therefore from
Lemma 11 neither will send a “preference”. If (u, v) € M, both u and v subsequently send
a “match-weight” to their neighbors. When any neighbor receives the “match-weight”, its
view is correct and therefore will not send a “preference” message. After two rounds the
algorithm becomes quiescent again. Scenario 2, e is augmenting. When node u receives
the “nbrs-update”, its view is correct and best-match,() = v. As a result, and since
pm,, = L when check-pm,() is run, a “preference” message is sent to v. The same logic
applies to node v, and v and v exchange “preference” messages. When both u and v
receive the “preference” messages from each other. m, = v and m, = w. This takes at
most one round (the only message it takes a round to receive is the “preference”). Next,
we show that the addition of e to the matching is enough for My to be a %—approximation
of My opi. Att, A(M,;) can only include e which means from Lemma 2 that w(M;) >
%w(Mt,opt) + %w(e). Since there are no changes between ¢ and t', M,,,; does not change,
and when e is added to My, w(My) > 2w(My opt).

]

The second change we consider is a decrease in the weight of a link in the network.
A deletion of a link also falls under this category - it is similar to a weight decrease to
0. Note that if the changed link is not in M, there can be no augmenting links after the

change as the measured augmentation weight is with respect to links in M.

Lemma 10. (Weight decrease) If Algorithm 2 is quiescent at time t, and then the weight
of one link e = (u,v) is decreased, then after O(1) rounds, ' s.t. w(My) > %w(Mtl,opt).

Proof. The change triggers “nbrs-update” notifications to be sent to u and v. If no link
became augmenting as a result of the change, M, is still a 2-approximation of M.

The algorithm was quiescent prior to the change which guarantees that when node « and

40

v receive the “nbrs-update” their view is correct and therefore from Lemma 11 neither
will send a “preference”. If (u,v) € M, both u and v subsequently send a “match-
weight” to their neighbors. When any of their neighbors receives the “match-weight”,
its view is correct and therefore will not send a “preference” message. After two rounds
the algorithm becomes quiescent again. Otherwise, there is some augmenting link. Note
that all augmenting links must be adjacent to e since the algorithm was quiescent before
t and only e changed. Without loss of generality, let the maximum gain augmenting link
be incident to u and we denote it by (u,z). We show next that (u,z) is added to the
matching after a constant number of rounds, and that adding (u, x) suffices for us to be
at the approximation. When node u receives the “nbrs-update”, its view is correct, and
after sending “match-weight” to all its neighbors it also sends a “preference” to x which
is its maximum gain neighbor. Node x is idle until it receives a message. After at most
one round it receives the “match-weight” from u and possibly a “match-weight” from
v if z is a neighbor of v as well. If node x receives the message from w first or (v, x)
is not augmenting, it sends a “preference” message to node u. If node = receives the
message from v first and (z, v) is augmenting, then x sends the “preference” to v. When
x receives the “match-weight” from w, it will send a “recall-preference” to v. If = is not
v’s maximum gain neighbor, v will respond with a “recall-ack” and once x receives it,
x will send a “preference” to u. Otherwise, since v receives the “preference” from x
before the “recall-preference”, it will match to x, subsequently send a “match-weight”,
and ignore the “recall-preference” message from . When x receives the “match-weight”
from v, it will match to v but since w(u,x) > w(u,v), it will send a “preference” to w.
In either case, x is delayed by only two rounds. One round in which its “preference”
and “recall-preference” are received by v, and another round in which v responds with
either a “match-weight” or a “recall-ack”. Regardless of the specific scenario, let ¢’ be
the earliest time that both u and x receive each other’s “preference” message, then at time
t', (u,x) € Myp. From Lemma 2, at ¢, w(M;) > w(Myop) + %ZCLGA(M) gainyg, (a).
Let’s consider A(M;) at time ¢. Since all augmenting links are adjacent to e and M, is
a matching, A(M,) can only include two links. Link (u,) has at least as much gain as

either link in A(M;), which means that w(u, z) > 3 > ac Ay 90N (). O

The next change we consider is a deletion of some node u. When a node is deleted

41

all its incident links are also deleted. Since at most one of these links can be in M, this
change is almost identical to a weight-decrease of link (u,m,). The only difference is

that all of u’s neighbors receive a “nbrs-update” for the change.

Corollary 3. (Node deletion) If Algorithm 2 is quiescent at time t, and then one node u is
deleted from V;, then after O(1) rounds, 3t s.t. w(My) > %w(Mt/,Opt).

The last change to consider is a node addition. Here it is vital that the new node does
not send “preference” messages until it has a correct view, and this is why we need the

ready() function in the protocol.

Lemma 11. (Node addition) If Algorithm 2 is quiescent at time t, and one node u is added
to V,, then after O(1) rounds, 3t' s.t. w(My) > %w(Mtgopt).

Proof. The change triggers “nbrs-update” notifications to be sent to u and its neighbors.
Each of u’s neighbors subsequently sends a “match-weight” to u. Since the algorithm
was quiescent prior to the change, the only possible augmenting links after the change
are the links incident to u. If (u,v) € E; is augmenting, then v sends a “preference”
message to u. The view of u’s neighbors is correct once they receive the “nbrs-update”.
From Lemma 11, none of them send any “preference” on a non-augmenting link. Node «
will have a correct view once it receives all the “match-weight” messages from its neigh-
bors. It will not send any “preference” message before that (Line 54). Therefore, from
Lemma 1, if no augmenting links exist then w(}M;) > sw(M,,) and the algorithm be-
comes quiescent again once the “match-weight” messages are received. Otherwise, at
least one augmenting link exists. Node u sends a “preference” message to its maximum
gain neighbor (denoted by v). Let ¢’ be the earliest time in which both u and v receive
the “preference” messages from each other. Then at ¢/, (u,v) is added to the match-
ing. Since all the potential augmenting links are incident to u, A(M;) can only include
one link (denoted by a). From Lemma 2, w(M,;) > sw(M o) + sw(a). The view of
node u is correct when it sends the “preference”, which from Lemma 11 guarantees that
gainyg, (u,r) > gainyy, (a). The matching M,,; does not change from ¢ onwards and
therefore at ¢/, w(My) > w(My o).

]

42

Finally, we show that the matching weight increases monotonically from ¢’ onwards.
From Lemma 4, only augmenting links can be added, and from Lemma 3, a link is re-
moved only if an adjacent link is added. This means that with every added link the match-
ing weight increases, but since links are not added atomically, i.e., when (u, v) is added
m, and m, change at different times, it is possible that in between the weight of the
matching temporarily decreases. We show next that under the assumptions of the Local-
ity Theorem, the weight of the matching does not temporarily decrease.

First, we note that a link can change its augmenting status only as a result of a network

change event or if an incident link is added or removed from the matching:
Observation 3. (augmenting-status)

1. If link (u,v) becomes augmenting at time t and no new “nbrs-update” was intro-

duced, then an incident link was removed from M; at t.

2. If link (u,v) becomes not augmenting at time t and no new “nbrs-update” was

introduced, then an incident link was added to M, at t.

We show that under the locality property’s assumptions and after the first link is added
(following the network change), a link can only be augmenting if one of its end nodes is

unmatched:

Lemma 12. Assume Algorithm 2 is quiescent at time ty, and then one of the following
events occurs: node start, node stop, weight change, link removal, or link addition. Let '
denote the time the first link is added after t,, then (u,v) is augmenting at t" > t' only if
B,y s.t. (u,x) € My and (v,5y) € My

Proof. Following Observation 3, since the only “nbrs-update” were introduced at ¢y, a
link changes its augmenting status after ¢, only when an incident link is removed or added
to the matching. Furthermore, from Lemma 3, a link is removed only if an adjacent link
is added. Therefore, the augmenting status of links only changes when links are added to

the matching. We prove the lemma by induction on the added links to the matching.

Base: we show that the lemma holds after the first link (which we denote by (u,v)) is

added. We denote by u' and v’ the values of m, and m, at time t5. Since the

43

algorithm was quiescent at ¢y, no augmenting link exists before the network change

and we can consider only links that become augmenting after the change.

Weight increase: following the change only one link can become augmenting which
means it must be (u, v). After (u,v) is added, u' and v’ lose their match, and
links incident to u' and v’ can become augmenting (which correlates with
the lemma). Links incident to (u,v) were not augmenting previously and
have even less cause to become augmenting now since w(u,v) > w(u,u’) +
w(v,v’). All other links were not augmenting before and their augmenting

status does not change since there were no changes to their incident links.

Weight decrease: only links incident to the changed link can become augmenting
and subsequently added to the matching. This means that either the weight
of (u,u’) or (v,v’) decreased. Without lost of generality, we assume that
the weight of (u,u’) decreased. After (u,v) is added, links next to u’ can
remain augmenting, since v’ now lost its match. Links next to v’ can become
augmenting since v’ lost its match. As for u, it is shown by Lemma 10 that u
matches with its maximum gain neighbor. This means that Vz € T', w(u, v) >
w(u,), which guarantees that after (u,v) is added, Az € ', s.t. (u,z) is
augmenting. A link next to v, unless it is next to u/, was not augmenting
before, and will not become augmenting now since w(u,v) > w(v,v’). All
other links were not augmenting before and their augmenting status does not

change since there were no changes to their incident links.

Node deletion: either ' or v was deleted, and without loss of generality we as-
sume that v’ is deleted. Node u lost its match, and any number of u’s links
might become augmenting. As shown by Lemma 3, u matches with its max-
imum gain neighbor, which means that Vo € T', w(u,v) > w(u,z), and
therefore after (u,v) is added, fx € ', s.t. (u,) is augmenting. As for links
next to v, they were not augmenting before, and since w(u, v) > w(v,v') they
will not become augmenting now. Links next to v" might become augment-
ing since v’ lost its match. All other links were not augmenting before and

their augmenting status does not change since there were no changes to their

44

incident links.

Node addition: either u or v is added, and without loss of generality we assume
that u is added. Then, any number of u’s links might become augmenting.
As shown by Lemma 11, v matches with its maximum gain neighbor, which
means that Vo € 'y, w(u,v) > w(u,), and therefore after (u,v) is added,
Pr € Ty s.t. (u,) is augmenting. As for links next to v, they weren’t aug-
menting before, and since w(u,v) > w(v,v") they will not become augment-
ing now. Links next to v" might become augmenting since v’ lost its match.
All other links were not augmenting before and their augmenting status does

not change since there were no changes to their incident links.

Step: we assume by way of contradiction that a link is added at ¢, and subsequently, a
link (u, v) is augmenting even though 3z, y s.t. (u,) € M, and (v,y) € M,. Since

link (u,v) is augmenting, (1) w(u,v) > w(u, z) + w(v,y).

Case 1: link (u,v) was not augmenting at ¢ — 1. Since there are no more “nbrs-
update” messages introduced, the only way (u, v) can become augmenting at ¢ is if

u or v lose their match which means they cannot both be matched at ¢.

Case 2: link (u,v) was augmenting at ¢ — 1. Then, since the lemma holds at ¢ — 1
it must be that either (u,x) or (v,y) were added at t. Without loss of generality,
we assume that (u, z) was added at ¢. Since there are no network changes after ¢,
and each node receives its “nbrs-update” message before making any other steps,
we can both omit that time when we consider the weight of a link and interchange
w(u,v) for w,(v) for every node. Node (u,x) was added at ¢, which means that
pm,, = x att and we denote by ¢; the time pm,, becomes z. Then, at ¢;, u prefers
x over v which means that (2) w(u, z) > w(u,v) — nbrs-mw,(u). It must be that
nbrs-mw,(u) > w(v,y), or otherwise (2) and (1) contradict each other. Let ' be
the the match of v at time ¢; which correlates to nbrs-mw,(u). Either y = y' and
w(v, y) changed which we consider later, or y # v/, and v changed its match. Since
w(v,y) < w(v,y’) and only augmenting links are added, it must be that v lost its
match before matching with y. Before v matches with y, pm,, must first change to

y and we denote by %, the time that pm, becomes y. When a node loses its match,

45

ready() is false until the node receives a “nbr-ack” from each of its neighbors. At
t1, node u did not know yet that v lost its match, which means that pm, can only
change after ¢; (t5 > t1). Atts, 3) w(v,y) > w(u,v) — nbrs-mw,(u), and since v
received all notifications from u up until ¢; and at ¢, pm, = x, it must be that (4)
nbrs-mw,(u) < w(u,x). From (3) and (4) we get (5) w(v,y) > w(u,v) — w(u,)
which contradicts (1). Finally, we consider the case that y = ¢’ and yet nbrs-
muw,(v) at ¢ is bigger than w(v,y) at t. This would be possible only if exists a
(“match-weight”,m — m # u,mw) € Q,, s.t. mw < nbrs-mw,(v). (ie., a
“match-weight” message that notifies of a weight decrease of the current match of
v.). However, this kind of message is only sent after a network change of weight
decrease and it is the first message u receives after ¢y. This is before any message

that makes (u, x) augmenting and it cannot still exist at ¢;.

]

In the final step we show that the matching weight strictly increases when a link with

an unmatched node is added:

Claim 12. Consider an edge (u,v) that is added to the matching, where m,, becomes v at

time t1, and m,, becomes u at time to > t1. Let wy and ws denote u and v’s match weights

at time ty, respectively. If no “nbrs-update” is received by either u or v between t, and

ty and Pmws € Q,, at t1, and wy = 0 or wy = 0 at ty, then w(M);, > w(M);,_, and
w<M)t2 > w<M)t2*1'

Proof. We separate to the two cases.

wy = 0: since m,, has no match, then no weight is lost at ¢; and w(M)y, = w(M), 1. It

follows from Lemma 4 that w(M);, > w(M),—1, since w(u,v) > w;y + ws.

wy = 0: since pm, = w at t1, then (u, v) is added to M at ¢;. It follows from Lemma 4

that w(M)y, > w(M), -1 since w(u,v) > wy + wy. When m, becomes u at t9, no

weight is lost since wy = 0 and w(M)y, = w(M)sy—1.

46

Corollary 4. Assume Algorithm 2 is quiescent at time t, and then one of the following
events occurs: node start, node stop, weight change, link removal, or link addition. If
t' is the time that the first link is added following the change, then from t' onwards the

matching weight never decreases.

Theorem 4 (restated). (Locality) If Algorithm 2 is quiescent at time ¢, and then one of
the following events occurs — node start, node stop, weight change, link removal, or link
addition, then after O(1) rounds, 3¢’ s.t. w(M;) > %w(Mt/,opt).

Proof. Immediate from Lemmas 9, 10, 11, Corollary 3, and Corollary 4. O]

47

Chapter 6
Conclusions

In this thesis we studied the dynamic weighted matching problem. Namely, we consid-
ered the weighted matching problem in an asynchronous, fault prone, and dynamic net-
work, where the topology and link weights may change. We developed a distributed
algorithm that can cope with these conditions and is resistant to any combination of
network changes. We showed that the algorithm stabilizes, quiesces, and provides a 2-
approximation when changes cease. Moreover, we proved that following a single change,
the algorithm converges back to the approximation in O(1) time, thereby not suffering
from the drawbacks of other distributed matching algorithms in a dynamic environment.
Lastly, in the static case, the algorithm converges to a 2-approximation in O(|V|) time

and O(|E|) message complexity similar to [13].

Our focus on the model and algorithm is motivated by applications to wireless net-
works which have many of the characteristics described above. In particular, due to the
Local Pooling conditions [4], in many such networks, the 2-approximation algorithm will
actually achieve 100% throughput. Yet, in many realistic cases, the interference con-
straints are more complex than primary interference constraints that imply that the set
of active links should be a matching in the network graph [6, 30]. For example, under
secondary interference constraints, each pair of simultaneously active links must be sep-
arated by at least two hops (these constraints are usually used to model IEEE 802.11
networks [6]). In general, an interference graph is used to model the various interfer-

ence constraints, and a specific transmission schedule corresponds to an independent set

48

in the interference graph. When taking into account the physical layer characteristics, the
schedule and the power allocations should adhere to the Signal to Interference and Noise
Ratio (SINR) constraints [23, 11, 5].

In all those cases, there is a need for distributed algorithms for an asynchronous and
dynamic environment (e.g., when nodes leave, join, or even change their location, not only
link weights change but also there is a significant effect on the SINR). However, most of
the previous work has focused either on the throughput and stability region implications or
on efficient distributed implementations. It has usually been assumed that the environment
is synchronous and static. A potential direction for future work is to build on the results
of this thesis and develop distributed approximation algorithms for general interference
constraints as well as for the SINR model that will be tailored for asynchronous and

dynamic environments.

49

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[71]

[8]

S. Banerjee, A. Chowdhury, and S. Ghosh. Distributed approximation for maximum
weight matching on bounded degree bounded integer weight graphs. Inf. Process.

Lett., 109:790-794, June 2009.

S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximal matching in O(log n)

update time. In FOCS, pages 383-392, 2011.

C. Berge. Two theorems in graph theory. Proceedings of the National Academy of
Sciences of the United States of America, 43(9):842-844, 1957.

B. Birand, M. Chudnovsky, B. Ries, P. Seymour, G. Zussman, and Y. Zwols. Ana-
lyzing the performance of greedy maximal scheduling via local pooling and graph

theory. IEEE/ACM Trans. Netw., 20(1):163 —176, Feb. 2012.

D. Chafekar, V. Kumar, M. Marathe, S. Parthasarathy, and A. Srinivasan. Capacity
of wireless networks under SINR interference constraints. Wirel. Netw., 17:1605—

1624, Oct. 2011.

P. Chaporkar, K. Kar, X. Luo, and S. Sarkar. Throughput and fairness guaran-
tees through maximal scheduling in wireless networks. IEEE Trans. Inform. Th.,

54(2):572-594, Feb. 2008.

A. Czygrinow and M. Hannckowiak. Distributed algorithms for weighted problems
in sparse graphs. J. of Discrete Algorithms, 4:588-607, Dec. 2006.

D. E. Drake and S. Hougardy. A simple approximation algorithm for the weighted
matching problem. Inf. Process. Lett., 85:211-213, 2003.

50

[9] J. Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449-467, 1965.

[10] R. Fan and N. Lynch. Gradient clock synchronization. In Proc. ACM PODC’ 04,
2004.

[11] A. Fanghinel, T. Kesselheim, H. Récke, and B. Vicking. Oblivious interference
scheduling. In Proc. ACM PODC’09, 2009.

[12] H. N. Gabow. Data structures for weighted matching and nearest common ancestors
with linking. In Proceedings of the first annual ACM-SIAM symposium on Discrete
algorithms, SODA ’90, pages 434-443, 1990.

[13] J.-H. Hoepman. Simple distributed weighted matchings. In cs.DC/0410047, 2004.

[14] Z.Ivkovic and E. L. Lloyd. Fully dynamic maintenance of vertex cover. In Proceed-
ings of the 19th International Workshop on Graph-Theoretic Concepts in Computer
Science, WG *93, pages 99—-111. Springer-Verlag, 1994.

[15] C.Joo. A local greedy scheduling scheme with provable performance guarantee. In

Proc. ACM MobiHoc’08, 2008.

[16] C. Koufogiannakis and N. Young. Distributed algorithms for covering, packing and
maximum weighted matching. Distrib. Comput., 24:45-63, 2011.

[17] X. Lin and N. B. Shroff. The impact of imperfect scheduling on cross-layer rate
control in wireless networks. IEEE/ACM Trans. Netw., 14(2):302-315, Apr. 2006.

[18] Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved distributed approximate match-
ing. In Proc. ACM SPAA’ 08, 2008.

[19] Z. Lotker, B. Patt-Shamir, and A. Rosen. Distributed approximate matching. In
Proc. ACM PODC’07, 2007.

[20] F. Manne and M. Mjelde. A self-stabilizing weighted matching algorithm. In Proc.
S§S°07. Springer-Verlag, 2007.

[21] E.Modiano, D. Shah, and G. Zussman. Maximizing throughput in wireless networks

via gossiping. In Proc. ACM SIGMETRICS’06, June 2006.

51

[22] T. Nieberg. Local, distributed weighted matching on general and wireless topolo-
gies. In Proc. ACM DIALM-POMC’08, 2008.

[23] Y. P. O. Goussevskaia and R. Wattenhofer. Efficiency of wireless networks: Approx-
imation algorithms for the physical interference model. Foundations and Trends in

Networking, 4:303-420, 2010.

[24] K. Onakand and R. Rubinfeld. Dynamic approximate vertex cover and maximum
matching. In O. Goldreich, editor, Property Testing, volume 6390 of LNCS, pages
341-345. Springer, 2011.

[25] A. Panconesi and M. Sozio. Fast primal-dual distributed algorithms for scheduling
and matching problems. Distributed Computing, 22:269-283, 2010.

[26] R. Preis. Linear time 1/2 -approximation algorithm for maximum weighted match-

ing in general graphs. In Proc. STACS’99. Springer-Verlag, 1999.

[27] P. Sankowski. Faster dynamic matchings and vertex connectivity. In Proceedings of
the eighteenth annual ACM-SIAM symposium on Discrete algorithms, SODA 07,
pages 118-126, 2007.

[28] V.Turau and B. Hauck. A new analysis of a self-stabilizing maximum weight match-
ing algorithm with approximation ratio 2. Theor. Comput. Sci., 412(40):5527 — 5540,
2011.

[29] M. Wattenhofer and R. Wattenhofer. Distributed weighted matching. In R. Guer-
raoui, editor, Distributed Computing, volume 3274 of Lecture Notes in Computer

Science, pages 335-348. Springer Berlin / Heidelberg, 2004.

[30] X. Wu, R. Srikant, and J. R. Perkins. Queue-length stability of maximal greedy
schedules in wireless networks. IEEE Trans. Mobile Comput., 6(6):595-605, June
2007.

52

YDRIDDN BRI TITIWD IR 1IN0

NPRIT NMNWwNa

TR INIY NROY

YHRIDDN BRRIA TITIWD IR 1IND

NPRIT NNwNa

PR DY 120

IRINT NPT NIWSIT SW ophn 170 aws

SHAWN N0TI02 2WTA? V0NN

TIA PRRY NN

DRAWOT 221100 7197 — 710057 VI0D WA

2012 5 oo 2"ywn X

.Onwn NOTIAY AUIPO2 VTR MUY TI0DIND NN WY P

SMRPNWaR 727710 DD 19°AN7 DY NP120Y 77N NN

NN

N%27 717 DR 1957 171002 NI CNIR 17 WK DDWIRT 937 MY 1¥02
oW

T 7290 DY IR DY 77071 KD RO N2 ORN2AW TR DTV D190 TN
TYIR 7N T2 73207 IR NTAPA 373N 00T L7072 30K NYIRIW MannT 93 mand
2 AYPWRM TN Y

AT LI OT2AYAR M0 CNTAY - M MTTR BY oNn 27 ':19% 70
,ONP2O0 - ANPXaT SYAT2 MSNNWAT 2WRS 2°VAI2 12°007 DY L,1010ua s1an 9ob
SIOR D912 DR DAY NMR 9120 N0 OR IR 2 anTTWY anawya L, anpies
1NN NNI920Y 7TV, MTRT OV 0719977 NNX OWIRY 370

72N DY TR MR MRY ,D0TINYR 2087 DR OS2 WUWRw C2aR? 70
JAWRT 73277 5V L,10030 TR ,77R°7 DA DNDWwRY 3710 .MIMIvnT

TRY PART? "NIR AMI0T 00 10OKRT Y900, S2IIRY TN DR AWOTRR IR

A9 7912 1R 137

K"EPn

PRI R MINWP T AR 70 MINWP YW AXI12p-NN T 717,099 NOIN2
7 PNTW2 MNWRT pWR 0100 1AV NTW 17 290000 Hpwna 7w amwn Ny
DOWIT1 ,NIN2AT 2920007 Ppwna TITWIT NPV LD IWIRT QOTWN 2 17210 YHn0on
J9°00n PpWwna TITOW RIXAY NIn DY a7 AnwS 9732 0NNy

2 NPVITPR MNWI2 MMNMTWH PRt DOYa% N°Yan 3782 79nnn N7WI Dyl
TANT MWANT XK AN MT2W WK L (multi-hop) ATIPIY TR W M2 PR
TANTA MWANTT XK L,TPR MINWN2 L(primary interference constraints) FIWRN
NAYX TIN1 VAT 902w T AWYS 20210 2NN I HW MTWI NATIY 29207 INwR)
NP NMI712° NRM0n MINWR PN VAT 02w PO .72 NI OY Nvh 937 wpnn
or™h D2ipn (191 ,NMDTY 20N TR 2PV RANTY) NIARA MNWRR ONY MAwn
22100 TITWA Dpwn DR Q0ONY 7107 PATN 2NOIR N0MY MW MNwRh Hpwn

D°PO0M NIN2N 17127202 571001 Ppwna PTW NROXNT 27 R0 27N 19RT 210
M .N2pn K991 ,1°11701°0 ,2°1°W 0101 N27vn 21°3mY (one-shot) “nys-7m 13709
DHPNY NITYIM L NPIIDIPOR L,NPAST AW LNTVINIR NINWID NIRNA PR 1R
LI PORID MO072 APRW L7120 PV 1T DPVINOR M2IYna PN0I10 ,NWRN
MPY ,0PN DOIWA R 2°ANY ,0°001N7 2O —INT TNRY DENWR DPDINYR MNwA
MN2VXT 2PY A7 K22 710w MNWR Hw 12pwn L10 9V a0 .0onovY oYU NWwpn
(XY 21 XYY yRwn) 01w 2aN0N 1KY QNN WINW NIWRN M2 TN
0919077 2°IPWH N9 DR QORNAY 9792 OV TN aNINIRT YW MNn NIXT 2000
Dw NIwN MONm MEITAW PN P2 PR? 779737 20V DONYa 10 T we)
2TP) .NWI2 MO 28T SROUDIR 1R TIATNT B2 AT 0PN TR P27 DMK
(NTWR Rk W IR P12 7D

NINWA2 772°2077 °RIN? aRINT PN PHOY NI K3 798 MI1on Y 123037 702

OP02) PPN PTRT AY2 -AWIN Y2 W PN NTIAYA 20T AR DTN

,NIM27 772°20 NINIT DAN O9R°007 Ppwna NTWR NPOW W YR LR»T Mo
NWI2 2OMIWH D70 037 WA T 7°YaR PN .MSPNY NIV L,NIT ,N°I010K
11900 HY 002NN WR NVITIR WO NTW PATN MO DY A¥RY aRIn vk oM
25w T971n2 020 IR NTWAN PRN ITY MINWR DY MY MYwn WORD 10w
IR DMWY WRINT Q02 DWIT OPRAN YOI N1 Shan ,anaeRa YW Mo1onan
DOIPNWA NUR LT WPTR .20%° 2¥nY 01007 KD PUTY anCORA On2 nwan ophnn
NWIT WK 281N K? POTY QNIRRT 072 2037 D910 37 TNIRD 7w Dpwna
RYT AR 2X°N° PNTOWA 02 WATI L0001 2OIW 72 2WRINA K21 N2XNN

greedy RXIP1 92001 Ppwna MTWI NOVAY TN O1NO0ORT QNI
ST ONDINMOR DX T90na OHR00IRG NONDY 2 217°p PHon XY ,maximal matching
DNOAPRT .77 M2NADT NINWRT 92 1271 9n°00n 1 aPPwna O WL Noou nwp
NWH 9210 K17 22X L,°NPNANT PITW 2P RY WK LNUNWA JPRY MIWI2 2000 7AW
7T NIDIONTT AT LNPWRI AT 720207 INARNT2 MIAND WR NPTOIN NIV
NIPW W 2PN 1DR L,NWIT 2732 IRDY N0 100 W NRY? 2 217°pa U
WNINT 002 2% QPR 129K 1100 2120 1w nRY ITWR Ypwn ,NIw L7712
PP W2 DNMIX AR DAY 0P R L0732 1A DY 1pwna DR DTATY 772 W
SN R

DMNART MYINATA NP2I10 1R WK DDDN DWOR 2OYURA 1K T Pnn NTava
DYXT 77X D02 NTOW PO0R WK N°007 PRwna TWR NI1T DNMIOR 2OREA IR
DPWn DX NPT 37 OR PO ITWD M0 MNWR LYEINT 2N NAYRA N 9 TIRY
Nobwn 970,280 AR L,NWN2 2w NPODT NRYY 2O UR LITWN
DOWIN 1WA 7OUN QNIRRT IMAXSNT KT L399V 0 .2 217%R PHOMY NI
NPW NRLW ORI AR IR 712 2 217P0 770 01907 RIT M LOND XA
DR 79177 01201 QNIRRT —NWR D107 IR NWP NDONT ,NAIX N0 ,NMIX NDDIT —70°
INOD NI TIPA2 MITMART NIWIART PINDY Qo2 .O(1) AT NP0 21PN
.greedy maximal matching-77 DN 139K *¥1¥°2% 0°777 NPVVD 7127202 YY1 DN IR

OPWna MW N°Ya2 1907 RO W PR DAY YW DRy niman ,015°09

II

TR 2°Y3 DR DT AR .MPPNY MITYIAY LN1PN1T L,NPINOP0R MNWN2 9n%00n
2 277°P DN WK LN OORPI? QNOAIR DONRNAY LI1RT NI 90050 Hpuna

vab

III

v

