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Abstract

We define and solve the distributed dynamic weighted matching problem. Namely, unlike

most previous work, we consider a scenario in which the network is asynchronous and dy-

namic, experiencing churn, failures, topology changes, and link weight changes. An algo-

rithm that solves the dynamic weighted matching problem should adapt to such changes

in the network and constantly output a matching. We develop a new algorithm that solves

this problem and guarantees a 2-approximation of the optimal solution. Moreover, we

show that following local changes, the algorithm converges back to a 2-approximation

after O(1) rounds.
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Chapter 1

Introduction

In the distributed weighted matching problem, nodes in a communication graph (V,E)

have to collectively find a subset M ⊆ E in which no two links share a common node

and the sum of the link weights is maximized. The matching problem naturally maps

to scheduling transmissions in multihop wireless networks under primary interference

constraints [21, 17, 15]. Primary interference constraints in such networks imply that

transmissions of adjacent nodes should be scheduled such that at any given time each

node communicates with at most a single neighbor. Since at any given time, some links

may be more important than others (e.g., due to packet queue length, priority, etc.), a

weight is attached to each link, and the goal of the scheduling algorithm is to maximize

the overall matching weight.

While distributed weighted matching has received a lot of attention lately [20, 7, 19,

18, 22, 29, 1, 28, 13, 16], most of the previous work has focused on solving the one-shot

problem in static, synchronous, fault-free networks. Unfortunately, these settings are not

a good fit for real world networks such as wireless networks, which are asynchronous,

dynamic, and fault-prone. First, synchronous algorithms rely on a clock synchroniza-

tion framework which is a very hard problem that is not necessarily local [10]. Second,

wireless networks change over time as nodes join, leave, or move around, and as com-

munication links appear and disappear. Moreover, link weights continuously change as

packets are accumulated or transmitted. Therefore, when utilized in dynamic networks

(e.g., for wireless transmission scheduling), these algorithms must be periodically re-run
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afresh. This is a suboptimal approach due to the inherent tradeoff it induces between the

staleness of the matching in use and communication and computation costs.

To remedy these shortcomings, we introduce in Chapter 3 the dynamic weighted

matching problem, which is appropriate for asynchronous, fault prone, dynamic networks.

Solution to this problem reacts immediately to changes and hence is never stale. For ex-

ample, when used for wireless scheduling, it allows nodes to transmit packets over links

that are part of the current matching while the algorithm converges, without consideration

of parts of the network that might have changed or where the solution might not have con-

verged to the final (stable) matching yet. In this context, we are interested in the matching

weights at all times, including when the algorithm is running. When the network changes

do cease, the matching should also eventually stabilize.

The only other asynchronous matching algorithm we are aware of is greedy maxi-

mal matching, originally presented as a centralized algorithm in [26], later distributed

by Hoepman [13], and adapted to be self stabilizing in [20] (see Chapter 2). Under this

greedy approach, an edge is added to the matching if it has maximum weight among all

its adjacent edges. This solution converges to a 2-approximation of the optimal. It works

well in a static network, when starting from an empty matching, but is not ideal in a dy-

namic setting. Specifically, it suffers from two undesirable properties: First, it can take

linear time to converge back to the approximation, even after a single change. Second,

this greedy approach can reduce a stable matching’s weight, even following a change that

increases the weight of links in the graph, and when no links in the matching are affected

by the change. An example of both drawbacks can be seen in Figure 1.1.

In Chapter 4, we develop an alternative approach that does not suffer from these lim-

itations; we present a novel distributed dynamic weighted matching algorithm, which

emits a matching throughout its operation and copes with any combination of network

changes. In our approach, links are added to the matching only if they increase its weight.

In Chapter 5, we informally argue that our algorithm stabilizes, quiesces, and provides a

2-approximation when changes cease; detailed formal proofs are deferred to the appen-

dices. Furthermore, we show that after stabilization, our algorithm handles new changes

locally, in the sense that it converges back to a 2-approximation in constant time fol-

lowing any single change – node addition or removal, or link addition, weight change,
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(a) (v1,v2) is locally heaviest following the change.

(b) (v1,v2) is added; (v3,v4) becomes locally heaviest.

(c) (v3,v4) is added; (v5,v10) becomes locally heaviest.

(d) (v5,v10) is added; finally back to 2-approximation.

Figure 1.1: An example of the drawbacks of using greedy maximal matching in a dynamic
setting. Dark lines and full circles denote links and nodes in the matching, respectively.
We see that: (i) convergence to the approximation takes linear time following a single
link change; and (ii) the matching weight decreases following a change that increases the
weight of a link and does not affect any of the links in the previous stable matching.

or removal. Moreover, when used in a static setting, our algorithm has the same linear

time and message complexity as the greedy maximal matching algorithm distributed by

Hoepman [13].

To summarize, the main contribution of this thesis is addressing the problem of maxi-

mum weight matching in an asynchronous, fault-prone, dynamic network. We define the

dynamic weighted matching problem, and develop a local and stable algorithm that solves

the problem.
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Chapter 2

Background

The problem of graph matching has been around for over a century. Up until the late 1950s

only solutions for the bipartite problem were known. Claude Berge [3] was the first to

come up with a solution for general graphs through a Lemma that came to be known as

Berges Augmenting Path Theorem. Nearly a decade later, Jack Edmonds’ [9] showed that

both maximum matching and maximum weighted matching can be solved in polynomial

time. Over the years, many papers improved on Edmonds result. The best known result

to date is due to Gabow [12] which solved the problem of maximum weighted matching

in O(|V | · |E|+ |V |2 · log(|V |)). Since algorithms for maximum weighted matching have

super linear running times, approximation algorithms for the problem have attracted more

and more attention. Preis [26] was the first that suggested a centralized solution for the

2-approximation weighted matching in O(|E|) running time. Drake et al. [8] built on the

work of Preis [26] and derived a simple algorithm that achieves the same result.

Several recent works concentrate on synchronized weighted matching algorithms in a

distributed environment. Wattenhofer et al. [29] presented the first distributed algorithms

for the approximated maximum weighted matching. For general graphs, they gave a ran-

domized solution that runs in O(log2(|V |)) time and yields a 5-approximation, with high

probability. Lotker et al. [19], improved on this result and designed a randomized (4 + ε)-

approximation distributed algorithm whose running time is O(log(|V |)) with high prob-

ability. In a later paper, Lotker et al. [18] further improved on this result and provided a

randomized algorithm with similar running time that converges to a (2+ε)-approximation
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of the maximum weighted matching. Panconesi et al. [25] devised a 6-approximation

algorithm which is the first deterministic algorithm for weighted matching with poly-

logarithmic running time. For the special case of bounded-degree and bounded-weight

graphs, Banerjee et al. [1] offered a distributed algorithm with an approximation factor of
2
3

while reducing the round complexity to O(log(1
ε
) + log∗(|V |). Although these works

provide performance guarantees, and in some cases have relatively low complexities, the

proposed algorithms are not a good fit even for one-shot matching in our setting. In par-

ticular, using these algorithms would require a synchronizer to be employed to close the

gap to asynchronous communication, resulting in message overhead penalties. Moreover,

such an approach is only applicable to fault-free networks.

To the best of our knowledge, only two asynchronous distributed algorithms have

been developed for the weighted matching problem. First, Hoepman [13] presented a

distributed, asynchronous, one-shot algorithm. The algorithm yields a 2-approximation

in O(|V |) running time. Our algorithm has identical performance in the static case while

also supporting dynamic changes. Second, Manne et al. [20] developed an asynchronous

self-stabilizing weighted matching algorithm that also computes a 2-approximation. Be-

ing self-stabilizing, it deals with dynamic topology changes. Unfortunately, its self stabi-

lization guarantees come at a very high message overhead cost – a node where the algo-

rithm has not yet converged may need to exchange messages in every round. Moreover,

following changes, the previous matching quickly destabilizes, precluding continuous use

of the old matching during convergence time. In contrast, our algorithm drops links from

the previous matching only when a conflicting link is added to the new matching, and

converges back to a 2-approximation within a constant number of rounds.

We also note centralized non-weighted matching algorithms that have been developed

for a dynamic setting. The following algorithms all maintain a matching under insertion or

deletion of edges. Ivkovic et al. [14] designed a solution that maintains a 2-approximation

for maximum matching with an amortized update time that is polynomial in n. Onak et

al. [24] improved on this result and designed a data structure that achieves a constant

approximation factor in amortized O(log2(|V |)) time. Most recently, Baswana et al. [2]

designed a randomized data structure that takes O(log(|V |)) expected amortized time for

each update. Last, the best known non-approximation solution is due to Sankowski [27]
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who shows that a maximum matching can be maintained with O(|V |1.495) computation

per update.
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Chapter 3

Model and Problem Definitions

3.1 Model

The network is comprised of a dynamic set of nodes, partially connected by dynamic,

time-varying, and undirected weighted communication links.

Nodes and links can be dynamically added to the network, and may fail or be removed

from the network. The sets of nodes and communication links at time t are denoted by

Vt and Et, respectively. A time-varying weight function wt : Et → R is defined over the

links in the network; weights in wt are assumed to be unique, as node identities can be

used to break ties. For a set of links S ⊆ E, the weight of S, denoted by wt(S) is the

sum of all link weights in S at time t. Two nodes connected by a communication link at

time t, are called neighbors at time t, and can send messages to each other. Two links

are incident at time t if they share a common node. Note that we sometimes omit t in the

notation when it is not important for the context.

Communication links are reliable (if they persist), FIFO, and asynchronous, i.e., there

is no bound on message delay. Each run progresses in steps, where in each step some

node is notified of an event (as detailed below) and is allowed to react. In a step, a node

may change its internal state and send messages to its current neighbors. We informally

refer to the time after the tth step in a run as “time t”.
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Events There are two types of events – external ones triggered by the environment, and

message send events triggered by nodes. The external events are: node start, node stop,

weight change, link removal, and link addition. Message send events lead to receive

notifications, whereas external events lead to 〈“nbrs-update”,Γ, w〉 notifications, Γ and w

being the notified node’s current neighbors and weights of links connecting the node to

its neighbors, respectively. The system starts at time 0 when an initial network (V0, E0)

is created and each node in V0 is started. Whenever a node v is started at any time in the

run, its first step is triggered by a 〈“nbrs-update”,Γ, w〉 notification.

Nodes are notified of events in FIFO order per link exactly once. (Only the receiving

node is notified of a “message send” event, and both end nodes, if exist, are notified of an

external event on the link.) Once a node fails or stops it does not take further steps, and

its neighbors are notified of the link removal, as noted above. When a link is removed, all

pending messages on the links are lost forever; if the same link is recreated, it is empty

when added.

For analysis purposes it will be useful to divide a run into non–overlapping subse-

quences in which all pending events are processed. Formally, we define a round as a

non–empty subsequence of a run starting at some time t, in which each node is notified

of at least all events that occurred before time t. For example, a round starting at time

0 completes once every node in V0 receives a “nbrs-update” notification. An additional

round completes once all messages sent in response to the “nbrs-update” notification are

received by their destinations, in addition to notifications of other events that occur in the

first round (if any).

3.2 Problem Definition

In an undirected weighted networkG = (V,E), a matchingM ⊂ E is a set of links s.t. no

two links in M are incident to one another. If a link e = (u, v) ∈ M then u is considered

to be the match of v, and vice versa. A matching that has maximum weight among all

matchings in G is called a Maximum Weighted Matching of G, and is denoted by Mopt.

In the classical distributed one-shot matching problem, the run starts at time 0, the

network does not change after this time, and when the run ends – each node outputs its
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match. A link (u, v) ∈M if both nodes u and v output each other as their match. We now

generalize it and define the problem of Dynamic Weighted Matching as follows:

Definition 1 (Dynamic Weighted Matching). (i) At any time t, every node u ∈ Vt outputs

either ⊥ or a neighbor v as its match. (ii) If there is a time t after which the network does

not change, i.e., ∀t′ > t (Vt′ , Et′ , wt′) = (Vt, Et, wt), then eventually, there is a time when

the output does not change and every node u outputs node v if and only if v outputs u.

Another desirable property of a converging algorithm is quiescence, namely that after

stabilization, the algorithm eventually stops sending messages. We say that the system is

quiescent if there are no notifications or messages in the queues.

In static networks, dynamic matching reduces to the regular matching problem. In

addition, at any point in a dynamic run (even before convergence), we can discuss the

current matching. We denote by m the output of node u, and we define the matching at

time t, Mt, as Mt = {(u, v) | mu = v and mv = u at time t}.
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Chapter 4

Dynamic Algorithm

As noted above, the popular approach of greedily selecting locally heaviest links for the

matching does not work well when we already have an existing matching at hand. Instead,

our approach is to select links that increase the weight of the current matching. To this

end, we introduce (in Section 4.1) the notion of the gain of a link w.r.t a matching M ,

and use it (first in a centralized way) to select links with positive gain. In Section 4.2 we

outline the elements we need for a distributed implementation of such an approach in a

dynamic network. Finally, in Section 4.3 we give a detailed description of our distributed

algorithm.

4.1 Centralized Weighted Matching Using Gain

In the following we denote by incident(e) the set of links that are incident to e.

Given a matching M , the set M ∪ {e} is a matching only if no link incident to e is in

M . Therefore, when a link is added to a matching M , all of its incident links need to be

removed from M ; the link’s net contribution to the matching is captured by the notion of

gain: gainM(e) , w(e)− w(M ∩ incident(e)).

We are specifically interested in links that have a positive gain, which we call aug-

menting links. Formally, a link e is augmenting w.r.t M if gainM(e) > 0. The following

lemma establishes that when no augmenting links exist, the matching at hand provides a

2-approximation.
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(a) Link (v1,v6) becomes augmenting.

(b) Link (v2,v7) becomes augmenting.

(c) The matching stabilizes.

Figure 4.1: Example run of the centralized matching algorithm.

Lemma 1. If no augmenting links exist w.r.t a matching M , then M is a 2-approximation

to Mopt.

Proof. Since there are no augmenting links, for each link e ∈ Mopt \M , w(e) ≤ (M ∩
incident(e)). Also, since M is a matching, each f ∈ M can be incident to at most

two links in Mopt. Therefore, w(Mopt \ M) ≤ 2 · w(M \ Mopt) and we can conclude

w(Mopt) ≥ 2 · w(M).

A centralized algorithm using gain is outlined in Algorithm 1. The algorithm non-

deterministically chooses which augmenting link to add in each iteration. It continues

to add links as long as there are augmenting ones. We could refine the algorithm, for

example, to add links in a greedy way by choosing locally maximal augmenting ones in

each iteration (i.e., augmenting links with a higher gain than all incident links to them).

In the example of Figure 1.1 above, there are no augmenting links following the change,

and therefore, Algorithm 1 would take no steps. Figure 4.1 shows an example run where

a network change does introduce augmenting links.
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Algorithm 1 Centralized Weighted Matching Using Gain

1: M ⊂ E, initially any matching

2: while an augmenting link exists do
3: a← some link (u, v) s.t. gain(u, v) > 0
4: M ←M\incident(a)
5: M ←M ∪ {a}

6: gain(u,v):
7: return w(u, v)− w( {incident(u, v) ∩M} )

It is easy to see that if Algorithm 1 is initiated with a valid matching M , M remains a

valid matching throughout the run. We show next that the algorithm terminates.

Claim 1. Algorithm 1 terminates for any network G = (V,E) and initial matching M .

Proof. In each iteration, the weight of M increases. Since the weight of Mopt is bounded,

the algorithm eventually terminates.

In Lemma 2, we use the notion of gain to bound the distance of a matching M from a

2-approximation. We define the set of augmenting links w.r.tM that are inMopt: A(M) ,

{a ∈Mopt | gainM(a) > 0}.

Lemma 2.

w(M) +
1

2

∑
a∈A(M)

gainM(a) ≥ 1

2
Mopt.

Proof. Each link inMopt can belong to one of three sets: (1)M∩Mopt, or (2)Mopt\(M∪
A(M)) (non-augmenting), or (3)A(M) (augmenting). From the definition of augmenting

we get that for every e in (2), w(e) < w(M ∩ incident(e)). From the definition of gain

we get that for e in (3), w(e) = w(M ∩ incident(e)) + gainM(e). Note that since M is

a matching, each link in M can be incident to at most two links in Mopt, and only if it is

not in Mopt already. This means that any link f in M \Mopt, can belong to at most two

w(M ∩ incident(e)) clauses. The next step is to sum these inequalities over all edges in

(2) and (3):

∑
e∈Mopt\M

w(e) ≤ 2 ·
∑

f∈M\Mopt

w(f) +
∑

a∈A(M)

gainM(a).
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Finally,

w(Mopt) =
∑

e∈Mopt∩M

w(e) +
∑

e∈Mopt\M

w(e) ≤

∑
e∈Mopt∩M

w(e) + 2 ·
∑

f∈M\Mopt

w(f) +
∑

a∈A(M)

gainM(a) ≤ 2 ·w(M) +
∑

a∈A(M)

gainM(a).

4.2 Distributed Algorithm Overview

In a distributed implementation, the match is handled by individual nodes. Each node has

a view of its neighbors Γ and a mapping w to the weights of the links connecting the node

to them that is updated via “nbrs-update” messages when network changes occur. We use

a subscript to mark a variable of a specific node where needed, e.g., Γu for the neighbors

of node u. Nodes need to recognize which of their adjacent links are augmenting, which

means that they need to know their neighbors’ match weights. This information is sent in

“match-weight” messages and kept in nbrs-mw.

Another challenge for the distributed algorithm is that links cannot be added atom-

ically to the matching. Nodes must coordinate through messages. Each node courts a

neighbor by sending a “preference” message to it; the target neighbor is saved in the vari-

able pm. A node stores in suitors the neighbors from which it receives a “preference”.

A node changes its match stored in m once it has both sent and received a “preference”

message to and from the same node. Once a match change occurs, a “match-drop” mes-

sage is sent to the node’s previous match, if exists, and a “match-weight” message is sent

to all other neighbors. An example of such a message exchange is given in Figure 4.2.

The node outputs its match through the variables m and pm; typically m, but when m is

unset it outputs pm.

Note that if u and v match, then before u can send another “preference” to v, the match

must be dropped. This happens after both nodes have responded to their corresponding

“preference” messages from the previous time they matched with “match weight”, and

hence, no “preference” messages can be pending at this point. Thus, we do not need to

worry about old “preference” messages getting confused with new ones. Similarly, we do

15



Figure 4.2: Node coordination in the distributed implementation. In this diagram, u and
v match, then v matches with some other node. That node later leaves the network, which
makes v update u and try to re-match with it.

not need to worry about other types of messages (e.g., “match drop”) being mixed across

matching attempts.

We use a greedy approach for choosing which nodes to court. Using m,w and nbrs-

mw, a node can tell which of the links next to it contributes the maximum gain to the

matching. This is called a maximal augmenting link, and the neighbor at the other end

of this link is called the maximal gain neighbor. If every node courts its maximum gain

neighbor, then all nodes on maximal augmenting links exchange “preference” messages.

One difficulty that arises, however, is that the network and the matching keep chang-

ing, and with them the maximal gain augmenting links. Moreover, since communica-

tion is asynchronous, nodes might temporarily see different maximal augmenting links

depending on the timing in which they receive “nbrs-update” and “match-weight” mes-

sages. One possible solution to this would be to keep sending “preference” messages.

The problem with this approach is that a “preference” message is an invitation to match.

However, a node only matches with the last node it sent a “preference” message to. This

makes previously sent “preference” messages outdated, which may cause nodes to give

up their current match for no gain. We therefore rule out this approach.

Instead, we overcome this difficulty by allowing each node to court at most one neigh-

bor at a time. When a node’s maximal gain neighbor changes, it first tries to recall its pre-

vious preference by sending a “recall-preference” to its pm. This can lead to two possible

scenarios depending on whether v is matched with u by the time the message is received
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Figure 4.3: Two scenarios for “recall-preference” messages. (a) Node u’s “recall-
preference” is responded by “recall-ack” (and u is deleted from suitorsv). (b) Node
u’s “recall-preference” is ignored by v since v is matched with u.

by v. If it is not, then v responds with a “recall-ack” and removes u from suitorsv. When

u receives the “recall-ack”, pm at u is cleared, and u is free to court another neighbor.

Otherwise, v is matched with u and simply ignores the “recall-preference”. In this case,

v has already sent a “match-weight” message to u, and when u receives it, it will match

with v. Figure 4.3 shows examples of both scenarios. Either way, after a node sends a

“recall-preference” message to its pm, it no longer changes its match to pm upon receiv-

ing a “preference” from pm, but does so only upon receiving a “match-weight” from its

pm.

Note that he algorithm can be initiated with any matching, including an empty one.
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Algorithm 2 Dynamic Weighted Matching Algorithm: code for node v

1: Γ ⊆ V , initially ∅
2: w : Γ ∪ {⊥} → R
3: suitors← ∅
4: nbrs-mw : Γ→∈ R ∪ {0,⊥},

initially ⊥ ∀u ∈ Γ
5: pm ∈ Γ, initially ⊥
6: pm-status ∈{Prefer, Recall}
7: m ∈ Γ, initially ⊥
8: nbrs-ack : Γ→ {True,False}, initially True

9: output:
10: if m 6= ⊥ output m
11: else output pm

12: // Initial match info was received from all neighbors
13: ready(): @u ∈ Γ s.t. nbrs-ack(u) =False

14: // Finds maximum-gain augmenting link
15: best-match():
16: if @u ∈ Γ s.t. gain(u) > 0 then
17: return ⊥
18: else return arg max

u∈Γ
gain(u)

19: gain(u):
20: if u = m return 0
21: return w(u)− (nbrs-mw(u) + w(m))

22: // Clears affected states and notifies neighbors
23: upon 〈“nbrs-update”,Γ′, w′〉
24: suitors← suitors \ (Γ \ Γ′)
25: if pm ∈ Γ \ Γ′ then pm← ⊥
26: if m 6= ⊥ then
27: // check whether my match dropped
28: if m ∈ Γ \ Γ′ then
29: m← ⊥
30: nbrs-ack(x)←False ∀x ∈ Γ′ ∩ Γ
31: if m = ⊥ or w(m) 6= w′(m) then
32: // update old neighbors of new weight
33: send 〈“match-weight”,m,w′(m)〉 to

Γ′ ∩ Γ \ {m′}
34: // update new neighbors of match weight
35: send 〈“match-weight”,m,w′(m)〉 to Γ′ \ Γ
36: nbrs-ack(x)←False ∀x ∈ Γ′ \ Γ
37: Γ← Γ′,w ← w′, m← m′

38: check-pm()

39: upon receive 〈“preference”〉 from u
40: if m = u return
41: suitors← suitors ∪ {u}
42: if pmv = u and pm-status 6=Recall then
43: update-match()

44: upon receive 〈“recall-preference”〉 from u
45: if u = m then return
46: suitors← suitors \ {u}
47: send 〈“recall-ack”〉 to u

48: upon receive 〈“recall-ack”〉 from u
49: pm← ⊥
50: check-pm()

51: upon receive 〈“match-weight”,mn,mw〉
from u

52: nbrs-mw(u)← mw
53: if mn = ⊥ then
54: send 〈“nbr-ack”〉 to u
55: if mn = v then
56: if m 6= u then
57: // pm must be u in this scenario
58: update-match()
59: // pm can be cleared: match is acknowledged
60: pm← ⊥
61: check-pm()

62: upon receive 〈“nbr-ack”〉 from u
63: nbr-ack(u)←True
64: check-pm()

65: upon receive 〈“match-drop”,mw〉 from u
66: if u 6= m return
67: nbrs-mw(u)← mw
68: send 〈“match-weight”,⊥, 0〉 to Γ
69: nbrs-ack(x)←False ∀x ∈ Γ
70: m← ⊥

71: // Tries to make pm be best-match()
72: check-pm():
73: if (not ready()) or pm = best-match() return
74: // Can only have one pending preference
75: if pm = ⊥ then
76: pm← best-match()
77: pm-status←Prefer
78: send 〈“preference”〉 to pm
79: if pm ∈ suitors then
80: update-match()
81: // At most one recall, when nodes aren’t matched
82: else if pm 6= m and pm-status =Prefer
83: pm-status =Recall
84: send 〈“recall-preference”〉 to pm

85: update-match():
86: if m 6= ⊥ then
87: send 〈“match-drop”,w(pm)〉 to m
88: send 〈“match-weight”, pm,w(pm)〉 to Γ \ {m}
89: m← pm
90: suitors← suitors \ {pm}
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4.3 Distributed Algorithm

The pseudo code of our algorithm can be found in Algorithm 2. The algorithm is driven

by event handlers and a node only takes steps when it receives an event notification.

The code consists of event handlers – one for each message and five helper functions.

We describe the functions bottom up. The implementation of gain() computes the gain

based on the node’s local information. The best-match() function returns the maximal gain

neighbor, if an augmenting link exists, or otherwise ⊥. A node is ready(), if it received

match weight information from each of its neighbors.

The update-match() function is called when a node matches with a neighbor. It up-

dates the state and sends notifications about the match change to the neighbors: “match-

drop” to the previous match (if one exists), and “match-weight” to all other neighbors.

The variable m changes to reflect the new match, and pm is deleted from suitors since

we allow matching only once per “preference” message. Note that pm remains m which

means that the node cannot send a “preference” yet to a new neighbor. The node waits

for a “match-weight” from m confirming the node matched back before releasing pm and

thus enabling a new match. This ensures that there is a time at which both are matched to

each other. (i.e., assuming that u and v match, there is always a time were both mu = v

and mv = u.)

The check-pm() function tries to make pm be best-match(), in order to later match with

it. As discussed in Section 4.2, each node has at most one “preference” out at any time.

We therefore consider two cases: if pm = ⊥ (lines 75 – 80), then any previously sent

“preference” messages were cleared, and so pm can become best-match(). A “preference”

message is sent to the new pm. If a “preference” message from pm was already received

(lines 79 – 80), the node can go ahead and change its match to pm. In case pm 6= ⊥
(lines 82 – 84), the node first tries to get pm to become ⊥, which is done via a “recall-

preference” message. We send a “recall-preference” at most once per pm and only if v

and pm are not matched yet.

Next, we describe the notification handlers.

The “nbrs-update” handler does a couple of things. First, if pm, m or suitors hold

a node that is no longer a neighbor, it clears their value. Second, if the match weight of
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the node changed either because m was cleared or because the link weight of the match

changed, it sends a “match-weight” to the remaining neighbors. Third, regardless of

whether the node’s match has changed or not, a “match-weight” message is sent to all

new neighbors since they have no knowledge of the node’s match weight. Last, since

best-match() might have changed, check-pm is called.

All received “preference” messages are recorded in suitors, as they are sent only once.

If no “recall-preference” was sent and v receives a “preference” from pm, v changes its

match to pm. However, if v had sent a “recall-preference” to pm, then a “preference”

from pm is not enough for v to match with pm.

If a node receives a “recall-preference” message from u 6= m, then it removes u from

suitors and responds with a “recall-ack”, which will clear pmu and allow u to send a

“preference” to another node. If a “recall-preference” is received from u = m, then it is

not relevant, since the node had already sent a “match-weight” indicating u as its match,.

A node can only receive a “recall-ack” message from its pm, as it can only send one

“recall-preference” and only to pm. Upon receipt of this message, pm is cleared, and

check-pm is called to send a new “preference” message if needed.

A node sends a “match-weight” message for two purposes: to notify neighbors of

the change to its match weight, and to inform its new match that it has matched with

it. The matched node waits for such a notification before clearing pm. This is done in

order to guarantee a time when the pair of matched nodes both output each other as their

match before they can move on. Upon receiving such a message v first updates nbrs-

mw. Then, if v is indicated as the new match and mv is not yet the message sender, then

update-match() is called. (This would be the case if v sent a “recall-preference” to pm,

and then waits to see whether it will receive a “recall-ack” or a “match-weight”.) Either

way check-pm() is called since pm might have been cleared or best-match() might have

changed.

A match between nodes can either be broken by one of the nodes or independently

broken by both. When it is broken by one node, the “match-drop” is needed to let the

other node know to clear its match state. Since this causes a match weight change, a

“match-weight” message is also sent to all neighbors. In addition, check-pm() is called

since best-match() could have changed. If the match is broken independently by both
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nodes, m already changed from u and the message is redundant by the time it is received

and is simply ignored.
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Chapter 5

Algorithm Analysis

In this chapter we show that Algorithm 2 is correct, quiescent, converges to a 2-approximation,

and satisfies a locality property. All our results apply after a global stabilization time

(GST), which is a time after which no more network changes occur. Formally, ∀t ≥ GST

no “nbrs-update” is received.

We begin with a few basic lemmas in Section 5.1. Then, in Section 5.2, we prove that

when no notifications are pending between two nodes, a node u outputs v as its match if

and only if v outputs u as its match. In Section 5.3 we build the case for the algorithm

becoming eventually quiescent. We conclude Section 5.3 by proving the following results:

Theorem 1. (Quiescence)

If GST exists, then ∃t > GST such that Algorithm 2 is quiescent from time t onwards.

Theorem 2. (Dynamic Weighted Matching Correctness) If GST exists, then ∃t > GST

such that the output of Algorithm 2 does not change from time t onwards and every node

u outputs node v if and only if v outputs u.

Theorem 3. (Approximation) If GST exists, then ∃t > GST such thatw(Mt) ≥ 1
2
w(Mt,opt)

from t onwards.

We conclude the chapter in Section 5.4 where we show the locality property of the

algorithm:

Theorem 4. (Locality) If Algorithm 2 is quiescent at time t, and then one of the following
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events occurs: node start, node stop, weight change, link removal, or link addition, then

after O(1) rounds, ∃t′ s.t. w(Mt′) ≥ 1
2
w(Mt′,opt).

In the proofs, we use the following notations. We denote a local variable of node

u with subscript u, for example, mu is u’s current value of the variable m (its selected

match). We use the notation Qu to discuss “nbrs-update” notifications not yet received

by node u, and the notation Qu,v to discuss notifications sent from u but not yet received

by node v. We use the following abbreviations for some of the messages: v̂ describes a

〈“nbrs-update”,Γ,*〉 notification s.t. v ∈ Γu \ Γ where u is the target of the notification.

(i.e., u receives a notification that v is no longer its neighbor), and mw=v and mw6=v

describe a 〈“match-weight”,m,*〉 message s.t. m = v and m 6= v, respectively.

Also, for simplicity, when u or v are ⊥, the values wu(v) and w(u, v) are interpreted

as equal to zero.

5.1 Simple Invariants

We observe that when a node has no potentially weight-changing notifications in its

queues, its weight state variables must be up-to-date:

Observation 1. (Correct view)

1. At time t, if @“nbrs-update”∈ Qu, then ∀v ∈ Γu, wu(v) = wt(u, v).

2. If @mw ∈ Qv,u and @“match-drop”∈ Qv,u at time t, then nbrs-mwu(v) = wt(mv).

We say in such cases that a node u has a correct view.

The following five simple invariants link the different messages that can be in transit to

the corresponding node states. They follow immediately from the structure of the protocol

and the fact that messages from different matching attempts do not get “mixed up” as

subsequent attempts are separated by either a “match-drop” or a “recall-ack” exchange

before any attempt to re-match.

Invariant 1. If ∃“preference”∈ Qu,v then pmu = v, u /∈ suitorsv and @mw=u ∈ Qv,u.

Invariant 2. If ∃mw=v ∈ Qu,v then pmv = u and either mv = u or mu = v.
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Invariant 3. If ∃“recall-preference”∈ Qu,v then either mv = u or mu 6= v, pmu = v,

and pm-statusu=Recall.

Invariant 4. If ∃“recall-ack”∈ Qu,v then v /∈ suitorsu pmv = u, pm-statusv = Recall,

mu 6= v and mv 6= u.

Invariant 5. If ∃“match-drop”∈ Qu,v then @mw=u inQv,u and eithermu 6= v ormv 6= u.

Invariant 6. Exactly one of the following claims is true at any given time t:

1. nbrs-acku(v) =True

2. ∃mw=⊥ ∈ Qu,v

3. ∃“nbr-ack”∈ Qv,u

5.2 Agreement Lemmas

This section shows that when mu becomes v and the link (u, v) does not drop from the

network, then eventually mv becomes u.

The next claim shows that while pm = m, m cannot change. It only considers a

certain sub-case that is useful to Invariant 7.

Claim 2. If mv = u and pmu = mu = v at time t, and pmu does not change in step t+ 1,

then mu does not change in step t+ 1.

Proof. The variable mu changes in Lines 29, 70, 89. Line 29 is executed together with

Line 25, which means that pmv becomes ⊥ at step t + 1 in contradiction to the Claim’s

assumptions. Line 70 is not possible since both mu = v and mv = u, which from

Invariant 5 means no “match-drop” can exist. Last, Line 89 means that update-match() is

called. The function update-match() is called from Lines 43, 58, and 80. Line 43 cannot

be executed since mu = v and the check in Line 40 fails. Line 58 is not executed since

pmu = mu, and finally, Line 80 is not possible since pmu 6= ⊥.

The next two claims show the intuitive property that if u ∈ suitorsv then pmu = v:

Claim 3. If ∃mw=u ∈ Qv,u them u /∈ suitorsv
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Proof. When v sends a mw=u message to u, it also deletes u from suitorsv in Line 90.

From Invariant 1, while a mw=u is pending in Qv,u, no “preference” can exist in Qu,v. It

follows that u cannot be re-added to suitorsv while ∃mw=u ∈ Qv,u.

Claim 4. If at time t, pmu 6= v and (u, v) ∈ Et, then u /∈ suitorsv

Note, that if link (u, v) is removed from the network, then a v̂ and û is sent to u and v,

respectively. When u and v receive such a message then suitors, pm, and m are cleared

in Lines 24- 29. It is as if the communication between them did not happen.

Proof. Let’s assume by contradiction that pmu 6= v but u ∈ suitorsv. A node is inserted

to suitorsv only in Line 41 when v receives a “preference” message from u. We denote

this time as t0. Since there is a “preference”∈ Qu,v at t0, then from Invariant 1, it follows

that pmu = v at t0. Let t1 > t0 be the time pmu changes from v – the lines that could

potentially change pmu are 25, 49, 60 and 76. Line 25 is not possible since (u, v) ∈ Et.
Line 49 is not possible from Invariant 4, since u ∈ suitorsv. Line 60 is not possible from

Claim 3, since @mw=u ∈ Qv,u while u ∈ suitorsv. Finally, Line 76 is not possible since

pmu must be ⊥ in order for it to run.

Invariant 7 specifies all the different variable and queue states that nodes u and v can

be in when mu = v, and how the nodes move between them.

Invariant 7. (Match-state invariant) If at time t, (u, v) ∈ Et and mu = v, then:

A. if pmu = v then:

1. mv 6= u, pmv = u, and ∃mw=v ∈ Qu,v or

2. mv = pmv = u, ∃mw=v ∈ Qu,v, and ∃mw=u ∈ Qv,u or

3. mv = u, pmv 6= u, and ∃mw=u ∈ Qv,u or

4. mv 6= u and ∃mw=u followed by a “match-drop” in Qv,u.

B. if pmu 6= v, then:

1. mv = pmv = u and ∃mw=v ∈ Qu,v or

2. mv = u and pmv 6= u or
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3. mv 6= u and ∃“match-drop” in Qv,u.

Proof. We prove the invariant by induction on the number of received notifications at

either u or v. Base: let t0 be the time mu changes to v. The variable m changes to a

non ⊥ value only in Line 89 which means that update-matchu() is executed. As a result,

mu = pmu = v and ∃mw=v ∈ Qu,v. From Invariant 2, since ∃mw=v ∈ Qu,v, then

pmv = u. If mv 6= u, Case A(1) is true and the invariant holds. If mv = u, then we

need to show that either Case A(2) or Case B(1) are true. Let’s consider which line led

to update-matchu() being executed. If it was Line 58 then u received a mw=u from v.

It follows that Lines 55 – 60 are executed which means that pmu becomes ⊥ and Case

B(1) is true. Otherwise, we need to show that ∃mw=u ∈ Qv,u at t0. Let t1 < t0 be the

last time mv changed to u. Then, v sent a mw=u to u at t1. We considered earlier the

case where this mw=u was received at t0. Now, we assume by contradiction that it was

received at some time t2 < t0. (Note that t1 < t2 since the message was only sent at t1).

When the mw=u is received, it follows from Invariant 2 that pmu = v which guarantees

that Lines 55 – 60 are executed. As a result, a mw=v is sent to v. Since mv = u both at

t1 and at t0, and we assumed that the last time mv becomes u is at t1, it follows that mv

cannot change between t1 and t0. When the mw=v sent at t2 is received, pmv becomes ⊥
and since gain(mv) = 0, it cannot become u while mv = u. This means pmv 6= u at t0.

However, from Invariant 2, when u sends the mw=v at t0, pmv must be u and therefore

we reached a contradiction.

Step: we assume that the invariant is true at t− 1 ≥ t0, and prove that it is still true at

t by considering any subsequent notification that can affect each case.

Case A(1) : either mv changes to u, pmv changes, or mw=v is received by v. From

Invariant 2, pmv cannot change while ∃mw=v. The variable mv can become u only

in Line 89. Line 89 is executed with Line 88, which means that v sends a mw=u

to u, and Case A(2) becomes true. If mw=v is received, since pmv = u, Lines 55

– 60 are executed. This means that v sends a mw=u to u, mv becomes u and pmv

becomes ⊥, which make Case A(3) become true.

Case A(2) : either mv or pmv change or one of the “match-weight” messages are re-

ceived. From Invariant 2, pmv cannot change until mw=v is received, and from
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Claim 2, mv cannot change until pmv changes. If mw=u is received then pmu be-

comes ⊥ in Line 60 and Case B(1) becomes true. Last, if mw=v is received, then

pmv becomes ⊥ after Line 60 executes, and then Case A(3) becomes true.

Case A(3) : either mv changes, pmv becomes u, or the notification is received. The

variable pmv cannot become u, since this happens only in Line 76, but Line 76

does not execute because gain(mv) = 0, which means that mv 6= best-match().

If the mw=u is received then pmu becomes ⊥ in Line 60, which means that Case

B(2) becomes true. This leaves the possibility ofmv changing. The variablemv can

change in Lines 29, 70, 89. Line 29 is not possible since (u, v) ∈ Et. Line 70 is not

possible since from Invariant 5 no “match-drop” can exist in Qu,v while ∃mw=u ∈
Qv,u. Last, if Line 89 is executed, then in Line 87 a “match-drop” is sent to u and

Case A(4) is true.

Case A(4) : eithermv becomes u, or themw=u is received. Due to the FIFO assumption,

the “match-drop” notification cannot be received. For mv to become u, update-

matchv() needs to be called. This can happen in Lines 43, 58, and 80. Line 43:

not possible since it would mean that there is “preference” from u at time t which

from Invariant 1 is not possible when ∃mw=u ∈ Qv,u. Line 58: From Invariant 5

no mw=v can exist while ∃“match-drop”∈ Qv,u. Line 80: not possible since from

Claim 3, u /∈ suitorsv when ∃mw=u ∈ Qv,u. This leaves mw=u being received

which would make Case B(3) become true.

Case B(1) : either mv changes, pmv changes, or mw=v is received. From Invariant 2,

pmv cannot change while the mw=v is pending. Subsequently, from Claim 2, mv

cannot change. If mw=v is received then pmv becomes ⊥ in Line 60 and Case B(2)

becomes true.

Case B(2) : either mv changes or pmv becomes u. The function gain() always returns 0

for m, which means that best-matchv() never returns mv. Since pmv can become

u only in Line 76 where best-matchv() is assigned to it, it is not possible that u

is assigned to it while mv = u. The variable mv can change in Lines 29, 70, 89.

Line 29 is not possible since (u, v) ∈ Et. Line 70 is not possible since both mu = v
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and mv = u which from Invariant 5 means no “match-drop” can exist. If Line 89 is

executed then in Line 87 a “match-drop” is sent to u and Case B(3) becomes true.

Case B(3) : either mv becomes u, or the “match-drop” is received. For mv to become

u, update-matchv() needs to be called. This can happen in Lines 43, 58, and

80. Both Lines 43 and Line 58 are not possible from Invariants 1 and 2 since

pmu 6= v. Line 80 is not possible from Claim 4 which states that u /∈ suitorsv

when pmu 6= v. If the “match-drop” is received by u, then mu becomes ⊥ in

Line 70 and the invariant vacuously holds.

Corollary 1. If at time t, mu becomes v and mv 6= u and for the next round no “nbrs-

update” are sent to u or v then exists t′ after at most 1 s.t. mu = v and mv = u.

Corollary 2. If mu = v, and both Qu,v and Qv,u are empty, then mv = u.

5.3 Termination and Quiescence

We show that the algorithm terminates by proving that after GST the algorithm only

adds augmenting links to the matching. In general, there is a very limited number of

scenarios that might cause a non-augmenting link to be added to the matching. These

arise because a link is not added to the matching atomically. It takes a step by each of the

endpoints to add the link. Once the first endpoint makes the first step, the other endpoint

will always follow through with its own step. One scenario where non-augmenting links

are added, is if between those steps a network change occurs which makes the link become

non augmenting. The second scenario occurs when a node mistakes a link for positive

gain when it has an incorrect match weight for some neighbor. This is due to pending

“match-weight” messages. This scenario is quite rare since both endpoints of the link

need to make the same mistake – they both need to send “preference” messages in order

to match. On top of this, most occurrences of this scenario do not lead to link additions

thanks to “recall-preference” messages. Nodes only match in such a case if they exchange

“preference” messages and at least one of them does not send a “recall-preference”. Next,

we claim this formally.
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We denote by mw> a 〈“match-weight”,m → m 6= u,mw〉 ∈ Qv,u message sent by

v to u s.t. mw > nbrs-mwu(v). i.e., a “match-weight” message that notifies of a weight

increase of the current match (as opposed to a new match).

Observation 2. Amw> notification is sent by node v only when node v receives a 〈“nbrs-

update”,Γ′v,w
′
v〉 s.t. w′v(mv) > wv(mv)

We are interested in the case where a non-augmenting link is chosen because best-

match() is outdated relative to the variable pm. The next claim outlines when these two

values are equal.

Claim 5. If for some node u at time t, mu 6= v and pm-status =Prefer, then pmu = best-

matchu().

Proof. The variable pm is either set to ⊥ or to best-match(). The function check-pm() is

called whenever pm is set to ⊥ and whenever best-match() might change. In check-pm(),

if pmu = ⊥ then best-matchu() is assigned to it (Line 76). Otherwise, if mu 6= pmu then

pm-status receives Recall in Line 83.

Next, we want to show that if v ∈ suitorsu, then v is committed to u and cannot send

another neighbor a “preference” message. We prove a slightly weaker claim, where we

assume mu 6= v and mv 6= u.

Claim 6. If mv 6= u, mu 6= v, and v ∈ suitorsu, then pmv = u.

Proof. If v ∈ suitorsu at some time t then ∃t′ ≤ t s.t. u received a “preference” message

from v. From Invariant 1, at t′, pmv = u. Let us consider all the cases in which pmv can

change - Lines 25, 49, 60, and 76. Line 25: node v receives a û, then node u also receives

a v̂ and v is deleted from suitorsu. Line 49 is not possible since v ∈ suitorsu and if a

“recall-ack” exists in Qu,v it is a contradiction to Invariant 4. Line 60 is not possible since

both mv 6= u and mu 6= v, and if a mw=v exists it would contradict Invariant 2. Finally,

Line 76 is not possible since pmv 6= ⊥.

Next, we show that if a node u initiates a match with node v, and u does not know v’s

up-to-date weight, then there must be a pending mw> notification.
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Claim 7. If at time t, mu becomes v while mv 6= u and nbrs-mwu(v) < w(v,mv), then

∃mw> ∈ Qv,u.

Proof. First, from Invariant 5 there can be no “match-drop” message since mu 6= v and

mv 6= u. Hence, by Observation 1, because nbrs-mwu(v) 6= w(v,mv), there must be

a 〈“match-weight”,mo → mn 6= u,mw〉 ∈ Qv,u. It remains to show that in the no-

tification, mw > nbrs-mwu(v) and mo = mn, meaning that the match of v did not

change, and the weight of that match has increased. Observe that, if mu becomes v,

update-match() is called. This can potentially happen in Lines 43, 58, or 80. However,

since mv 6= u and mu 6= v at t, then from Invariant 2 there can be no pending mw=u to

receive and Line 58 is not possible. On both lines 43 and 80, v ∈ suitorsu. Let t′ be

the time u last received a “preference” from v, then nbrs-mwu is updated on the match

weight of v at the time in which v sent the “preference” message to u. From Claim 6 since

v ∈ suitorsu between t′ and t, then pmv = u at this interval. A node sends a “prefer-

ence” only when pm changes so it is not possible that v matched with another node since

sending the “preference” to u. This means that the increase in the weight of v’s match

occurred for an existing match, and ∃mw> ∈ Qv,u.

The next Lemma shows that except for the case of network changes that directly drop

links, whenever a link is dropped, a new link is added in its place.

Lemma 3. Let (u, x) be removed from the matching at time t s.t. mu changes at time t,

and no “nbrs-update” is received by u at time t. Then, mu becomes v 6= ⊥, and within at

most one round, mv = u.

Proof. First, it is not possible that mu changed to ⊥. The variable m is assigned ⊥
only in line 29 or 70. Line 29 cannot be executed at time t since no “nbrs-update” was

received at time t. It is not possible that Line 70 executes since there is no “match-drop”

by Invariant 5. The second part follows immediately from Corollary 1.

Lemma 4 shows that under certain conditions only augmenting links are added (i.e.,

the weight of an added link exceeds those of the edges it supplants). Remember that a

link is added to the matching in two steps - both endpoints need to change their match.

Whenever there are no network changes, either none of these steps occur or both of them
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do. We consider an augmenting link with respect to the matching at the time the first step

occurred. Let node u output v as its match at time t, then we define the match weight of

node u as wt(u, v) when v also outputs u as its match, or zero otherwise.

Lemma 4. (Augmenting-additions) Consider an edge (u, v) that is added to the matching,

where mu becomes v at time t1, and mv becomes u at time t2 > t1. Let w1 and w2 denote

u and v’s match weights until times t1 and t2, respectively. If no “nbrs-update” is received

by either u or v between t1 and t2 and @mw> ∈ Qv,u at t1, then w(u, v) > w1 +w2 at t2.

Proof. Since t1 < t2, mu changes first. The variable m only changes in update-match(),

and update-match() is called from 3 places in the code: Lines 43, 58, and 80. Line 58 is

not possible since from Invariant 2 there cannot be a pending mw=u while mv 6= u and

mu 6= v. Therefore, update-match() is called from either Line 43 or Line 80, which means

that pm-status=Prefer and v ∈ suitorsu. From Claim 5, pmu = best-matchu(). Since

best-match()=v6= ⊥ only if gainu(v) > 0, then wu(v) > nbrs-mwu(v) + wu(x). Since

there are no “nbrs-update” messages received by u or v between t1 and t2, we can replace

wu(v) and wu(x) by wt2(u, v) and w1. From Observation 2, there is no mw> between

t1 and t2, and from Claim 7, nbrs-mwu(v) ≥ w2. Together, this gives us w(u, v) >

w1 + w2.

For the following lemma, we define the match weight of node u at time t as wt(u,mu)

if (u,mu) ∈ Mt, or zero otherwise. Lemma 5 shows that the weight of the added link

exceeds those of the edges it supplants:

Lemma 5. Consider an edge (u, v) that is added to the matching at least one round

after GST , where mu becomes v at time t1 and mv becomes u at time t2 > t1. Let

w1 and w2 denote u and v’s match weights until times t1 and t2, respectively. Then,

w(u, v) > w1 + w2.

Proof. From GST onwards no more “nbrs-update” message are received, but for one

round following GST there can still be mw> messages as a result of “nbrs-update” mes-

sages received just prior to GST. After this round all conditions exist for Lemma 4, and it

follows that w(u, v) > w1 + w2.

Everything is set now to prove that the algorithm terminates:
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Lemma 6. (Termination) If GST exists, then ∃t > GST such that Mt does not change

from t onwards.

Proof. From Lemma 5, a round after GST only augmenting links are added to the match-

ing. From Lemma 3 no link is removed without a link being added so the weight of M

can only increase. Finally, since W (M) is bounded by W (Mopt), ∃t s.t. Mt does not

change from t onwards.

We have shown that the matching eventually stops changing. In the remainder of this

section we concentrate on showing that when it does, no augmenting links exist and that

the algorithm becomes quiescent shortly after the matching stops changing.

The next two claims show progress when a node is at a certain state. The first claim

shows progress when nodes send “preference” messages to each other and do not recall

them:

Claim 8. If at time t pmu = v, pm-statusu=Prefer and pmv = u, pm-statusv=Prefer,

and mu 6= v, then the following statements are all true:

• ∃“preference”∈ Qv,u.

• @“recall-preference”∈ Qv,u.

• @“recall-ack”∈ Qu,v.

Proof. First, since pm-statusv=Prefer and mu 6= v then the second and third statements

are straightforward from Invariants 3 and 4. We concentrate on proving that ∃“preference”∈
Qv,u. We denote by t1 and t2 the latest time prior to t at which pmu becomes v and pmv

becomes u, respectively. When pmv changes to u, a “preference” message is sent to u.

We further denote by t3 the time at which this “preference” is received by u. Note that at

t1 (t2), pm-statusu=Prefer (pm-statusv=Prefer). Both pm-status variables are Prefer at

time t as well. It is not possible that in between either variable changes to Recall, since

it can only change back to Prefer if the respective pm changes and that does not happen

again before t. Similarly, mu 6= v both at time t1 and at time t. It cannot become v

between t1 and t since in order to become mu 6= v again, pmu must first change to ⊥, in

contradiction to t1 being the latest time prior to t that pmu becomes v. It suffices to show
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that t3 > t and therefore at t, ∃“preference”∈ Qv,u. Assume by way of contradiction that

t3 ≤ t and consider the relation between t3 and t1. If t ≥ t3 > t1, then at t3 Line 43 would

subsequently cause mu to become v in contradiction to mu not changing between t1 and

t. If t3 ≤ t1, then at t3 v ∈ suitorsu. If at t1 v is still in suitorsu then Line 80 would

subsequently cause mu to become v in contradiction to mu not changing between t1 and

t. Hence, both t3 ≤ t1 and v /∈ suitorsu at time t1. This means that somewhere between

t3 and t1, v is removed from suitorsu. We show next that this is not possible by consid-

ering all the lines in which a node is removed from suitors. Line 24: node u receives a v̂

notification, then symmetrically v receives a û. This means that in Line 25, pmv becomes

⊥ in contradiction to t1 being the latest time prior to t in which pmu becomes v. Line 46:

not possible since between time t3 and t1, pm-statusv=Prefer and mu 6= v so according

to Invariant 3, @“recall-preference”∈ Qv,u. Line 90: then mu becomes v in contradiction

to mu not changing between t1 and t. We exhausted all cases in which t3 ≤ t, which

means that at t, the “preference” message must still be at Qv,u.

The second claim shows progress when a node sends a “recall-preference” message:

Claim 9. If at time t, pmu = v and pm-statusu=Recall, and mv 6= u, then either

∃“recall-preference”∈ Qu,v or ∃“recall-ack”∈ Qv,u.

Proof. Let t1 < t be the latest time prior to t that pm-statusu changes to Recall. The

change can only occur in Line 83. Line 83 always executes together with Line 84, which

means that a “recall-preference” message is sent to v at t1. Notice that pmu = v both at t1

and at t. It cannot change in between since pmu would need to be assigned v again before

t, and when pm is assigned a node, pm-status is Prefer. This means that pm-statusu

would need to change again before t in contradiction to t1 being the last time. If at t the

“recall-preference” has still not been received, the claim holds. Otherwise let t2 < t be

the time the “recall-preference” is received by v. It is not possible that at t2, mu = v since

for mu to become 6= v again at time t, pmu must become ⊥ and as mentioned before that

is a contradiction to our assumption. Therefore, when v receives the “recall-preference”,

mv 6= u and v sends a “recall-ack” to u. The “recall-ack” must still be in Qv,u at time t,

since otherwise when u receives the “recall-ack”, pmu becomes ⊥ which again would be

a contradiction.

33



The next invariant shows that when there are no messages in the queues, the values in

nbrs-ack map are all true. This guarantees that ready() must return true.

The next claim shows that the value of best-match() eventually determines the value

of pm.

Claim 10. If at time t > GST , no “match-weight”, “match-drop”, or “nbr-ack” no-

tifications exist in any queue and best-matchu() = v, then either pmu = v or pm-

statusu=Recall.

Proof. Let t1 < t be the last time that check-pmu() is run prior to t. Since check-pmu()

is run after every received “nbrs-update”,“match-weight”, and “match-drop” notification,

and at t none of these notifications exist in the queues, then no “nbrs-update”,“match-

weight” and “match-drop” notification can exist in u’s queues between t1 and t. It follows

that u has a correct view from t1, which means that best-matchu() did not change since

t1. Therefore, at t1, best-matchu() = v. Also, since no “match-weight” or “nbr-ack”

notifications exists in u’s queues since t1, and no “nbrs-update” exists after GST , then

readyu() is true at t1. When check-pmu() is run, either pmu = best-matchu(), or pmu =

⊥, or pmu 6= ⊥ and pmu 6= best-matchu(). If pmu = best-matchu() then the function

immediately exits. If pmu = ⊥ then best-matchu() is assigned to it which means v is

assigned to it. Otherwise, pmu 6= ⊥ and pmu 6= best-matchu(). If pmu 6= mu, then

the check in Line 82 is true and pm-statusu becomes Recall. Since no “match-weight”

or “match-drop” notifications exist, it follows from Invariant 7 that pmu 6= mu, and we

conclude that at t1, pmu = v or pm-statusu=Recall. Since each change made to pmu and

pm-statusu is either at check-pmu() or subsequently calls check-pmu(), then pmu and

pm-statusu do not change again prior to t.

The next Lemma is key to proving that the algorithm converges to the desired approx-

imation and becomes quiescent. We show that the matching can stop changing only if no

augmenting link exists.

Lemma 7. If there is an augmenting link at time t > GST then after at most six rounds

∃t′ s.t. Mt′ 6= Mt.

Proof. Assume by way of contradiction that an augmenting link exists but M does not

change after six rounds. Note that “match-weight” and “match-drop” messages are sent
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only in response to “nbrs-update” and to changes in the matching. After GST no “nbrs-

update” messages are received, which means that at most a round after the last change in

M or in the network (whichever is later) prior to t, no “match-weight” or “match-drop”

messages exist in the queues. A round after, no “nbr-ack” messages are in the queues. Let

t1 > t be a time s.t. no “match-weight”, “match-drop” and “nbrs-ack” messages exist in

the queues. For the purpose of counting rounds, t1 is at most two rounds after t. Let (u, v)

be the augmenting link with maximum gain w.r.t Mt1 . Then, since at t1 the view of all the

nodes is correct, then from Observation 1, best-matchu() = v and best-matchv() = u.

We show that either u or v (or both) change their match within at most seven rounds from

t.

We prove the lemma by considering all possible values of pmu and pmv at t1.

Case 1 pmu = ⊥ or pmv = ⊥. Not possible from Claim 10.

Case 2 pmu = v and pmv = u.

We show that u and v match. Since no “match-weight” or “match-drop” exist at

t1, then from Invariant 7 it is not possible that mu = v and mv 6= u or vice versa.

In that case, nodes u and v sent preference messages to each other but they did

not match yet. We further separate to sub-cases based on the value of the variable

pm-status in each of them.

Case 2.A pm-statusu=Prefer and pm-statusv=Prefer.

From Claim 8, since pmu = v, pmv = u, and mu 6= v, there must exists

a “preference” in both Qu,v and Qv,u. Also from Claim 8 there can be no

“recall-preference” or “recall-ack” messages in Qu,v and Qv,u. This means

that when each receives the “preference” message from the other, Line 43 is

executed and they match. Note that in this case, the stall is just waiting for

the “preference” message to arrive to both sides which can take at most one

round. It follows that at most three rounds after t, M changes.

Case 2.B pm-statusu=Prefer, and pm-statusv=Recall.

Since mu 6= v at t1 then from Claim 9, either ∃“recall-preference” in Qv,u or

∃“recall-ack” in Qu,v. If ∃“recall-preference” in Qv,u then let t2 > t1 be the

35



time the “recall-preference” is received. At t2 either mu = v or mu 6= v. If

mu = v then from Invariant 7, mv becomes u one round later, and u and v

match. If mu 6= v, then u responds to v with a “recall-ack” message. From

Invariant 4, while a “recall-ack”∈ Qu,v, mu 6= v and mv 6= u. When v

receives the “recall-ack”, it clears pmv but on the subsequent call to check-

pmv(), since best-matchv = u, pmv becomes u and pm-statusv =Prefer.

Since pmu = v and pm-statusu=Prefer, we can now follow Case 2.A which

shows that u and v match. Note that in this case, at worst, we pay two extra

rounds (one round to receive the “recall-preference” and one round to receive

the “recall-ack”) plus the round Case 2.A takes. It follows that at most five

rounds after t, M changes.

The case that pm-statusu =Recall and pm-statusv =Prefer is symmetric to

Case 2.B.

Case 2.C pm-statusu=Recall and pm-statusv=Recall.

From Claim 9, either ∃“recall-preference”∈ Qu,v, or ∃“recall-ack”∈ Qv,u.

Note that in case a “recall-preference” exists, it is not possible for mu to be-

come v before the “recall–preference” is received. This is because pmu = v

and no “match-weight” exists at time t1, which means that update-match() can

only be called by Line 43 but would not since pm-statusu=Recall. There-

fore, if ∃“recall-preference”∈ Qv,u then once it is received, u responds with

a “recall-ack” to v. When v receives the “recall-ack”, it clears pmv. On the

subsequent call to check-pmv(), since best-matchv = u, pmv becomes u and

pm-statusv=Prefer. Now we are at either Case 2.A or Case 2.B depending

on the value of pm-statusv at the time. Note that in this case, at worst, we

pay two extra rounds (one round to receive the “recall-preference” and one

round to receive the “recall-ack”) plus the rounds Case 2.A or Case 2.B take.

It follows that at most seven rounds after t, M changes.

Case 3 either pmu = x 6= v or pmv = y 6= u.

In this case it is possible that u or v match with x or y respectively instead of match-

ing with each other. Without loss of generality, pmu = x 6= v. From Claim 10,
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since best-matchu() = v, it follows that pm-status=Recall. Furthermore, from

Invariant 7 it is not possible that mu = x and mx 6= u or vice versa, or that

pmu = mu = v and mx = u. (“match-weight” or “match-drop” exist at t1.) Since

mx 6= u at t1 then from Claim 9, ∃“recall-preference” in Qu,x or ∃“recall-ack”

in Qx,u. If ∃“recall-preference” in Qu,x, then let t2 > t1 be the time the “recall-

preference” is received. At t2 either mx = u or mx 6= u. If mx = u then from

Invariant 7, mu becomes x one round later, and u and x match. If mx 6= u, then

x responds to u with a “recall-ack” message. From Invariant 4, while a “recall-

ack”∈ Qx,u, mu 6= x and mx 6= u. When u receives the “recall-ack” from x, it

clears pmu and on the subsequent call to check-pmu(), since best-matchu = v,

pmu becomes v and pm-statusu=Prefer. If pmv = u, we can now follow Case 2.A

or Case 2.B depending on pm-statusv. If pmv = y 6= u, then the communication

between v and y is similar to u and x. Either v and y match, or pmv becomes u

and pm-statusv =Prefer. In the latter option we can apply Case 2.A. Note that

in this case, at worst, we pay two extra rounds (one round to receive the “recall-

preference” and one round to receive the “recall-ack”) plus the rounds Case 2.A or

Case 2.B take. It follows that at most seven rounds after t, M changes.

Finally, Lemma 8 shows that when no links are added to the matching, Algorithm 2

becomes quiescent within a bounded number of rounds:

Lemma 8. If ∃t > GST after which M does not change, then after at most O(1) rounds

the algorithm is quiescent and for all u ∈ V , pmu = ⊥.

Proof. We need to prove that after O(1) rounds all the message queues are empty and

for all u ∈ V , pmu = ⊥. The matching does not change after t, which from Lemma 7

means that at t no augmenting links exist. Remember that it takes at most one round for

a sent message to be received. Let t1 be one round after t, then all “match-weight” and

“match-drop” message are received. Since no “nbrs-update” notifications are sent after

GST and the matching does not change, after t1 no “match-weight” or “match-drop” exist

in the queues. From Observation 1, the view of every node is correct and since there are
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no augmenting links, then from t1 onwards ∀u best-matchu() = ⊥. Since best-matchu()

is ⊥ at t1 and check-pmu() is called whenever best-matchu() changes, then also at t1,

either pmu = ⊥, or pmu = v 6= ⊥ and pm-statusu =Recall. Since pmu already reacted

to best-matchu() = ⊥ then from t1 onwards, no “preference” or “recall-preference”

messages are sent. Let t2 be one round after t1, then all previous “preference” and “recall-

preference” messages are received, and no more “recall-ack” messages are sent after t2.

This means that after three rounds no more messages are in the queues. As mentioned

earlier, from t1 onwards, for each u ∈ V either pmu = ⊥, or pmu = v 6= ⊥ and pm-

statusu =Recall. Since a round after t2 no more messages exist in the queues, then from

Claim 9, for every u ∈ V it follows that pmu = ⊥.

Theorem 1 (restated). (Quiescence) If GST exists, then ∃t > GST such that Algo-

rithm 2 is quiescent from time t onwards.

Proof. Immediate from Lemma 6 and Lemma 8.

Theorem 2 (restated). (Dynamic Weighted Matching Correctness) If GST exists, then

∃t > GST such that the output of Algorithm 2 does not change from time t onwards and

every node u outputs node v if and only if v outputs u.

Proof. Immediate from Theorem 1 and Corollary 2.

Theorem 3 (restated). (Approximation) If GST exists, then ∃t > GST such that

w(Mt) ≥ 1
2
w(Mt,opt) from t onwards.

Proof. Follows from Lemma 1 in Section 4.1 and Lemma 7 above.

5.4 Locality

We divide network events into four categories – weight increase, weight decrease, node

addition, and node deletion. We show Theorem 4 by proving a separate lemma for each

category. The same approach is employed in each
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We have already shown that shortly after GST there is a time after which the weight

of M can only increase. We next show how to refine this for some network changes and

show that it quickly increases to a 2-approximation.

Lemma 2 is used to bound the matching weight’s distance from the approximation

following the change. Then, we consider the nature of the change and show that the algo-

rithm adds at least that missing weight within a constant number of rounds. Since Mopt

does not change, then from Lemma 2, this is sufficient forM to become a 2-approximation

of Mopt.

In the changes we are looking at, the nodes neighboring the change have a correct

view of the network. We use this to prove some properties:

Claim 11. If node u has a correct view when it sends a “preference” message to node v

at time t then

1. gainMt(u, v) > 0

2. @(u, x) ∈ Et s.t. gainMt(u, x) > gainMt(u, v)

Proof. Node u sends a “preference” message to the node best-matchu() returns. The

function best-match() calculates the maximum gain neighbor from u’s nbrs-mwu and

wu variables. From Observation 1, since node u has a correct view, wu(v) = wt(u, v)

and nbrs-mwu(v) = wt(mv). The latter gives us part 2, and part 1 is immediate from

line 16.

The first change we consider is an increase in weight of some link in the network. The

addition of a new link also falls under this category, as we can consider the addition as a

weight increase from weight 0.

Reminder: A(M) is the set of augmenting links w.r.t M that are in Mopt: A(M) , {a ∈
Mopt | gainM(a) > 0}.

Lemma 9. (Weight increase) If Algorithm 2 is quiescent at time t, and then the weight

of any one link e = (u, v) is increased, then after O(1) rounds, ∃t′ s.t. w(Mt′) ≥
1
2
w(Mt′,opt).
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Proof. Since no link other than e changed and w(e) has increased, the only possible

augmenting link at time t is e. The algorithm is quiescent at time t, which means that all

the nodes are idle (∀x ∈ V pmx = best-matchx() = ⊥). As a result of the change “nbrs-

update” notifications are sent to u and v. Scenario 1: e is not augmenting and therefore

from Lemma 1, Mt is still a 2-approximation of Mopt. We show next that the matching

does not change. The algorithm was quiescent prior to the change which guarantees

that when node u and v receive the “nbrs-update” their view is correct and therefore from

Lemma 11 neither will send a “preference”. If (u, v) ∈Mt both u and v subsequently send

a “match-weight” to their neighbors. When any neighbor receives the “match-weight”, its

view is correct and therefore will not send a “preference” message. After two rounds the

algorithm becomes quiescent again. Scenario 2, e is augmenting. When node u receives

the “nbrs-update”, its view is correct and best-matchu() = v. As a result, and since

pmu = ⊥ when check-pmu() is run, a “preference” message is sent to v. The same logic

applies to node v, and u and v exchange “preference” messages. When both u and v

receive the “preference” messages from each other. mu = v and mv = u. This takes at

most one round (the only message it takes a round to receive is the “preference”). Next,

we show that the addition of e to the matching is enough for Mt′ to be a 1
2
-approximation

of Mt′,opt. At t, A(Mt) can only include e which means from Lemma 2 that w(Mt) ≥
1
2
w(Mt,opt) + 1

2
w(e). Since there are no changes between t and t′, Mopt does not change,

and when e is added to Mt′ , w(Mt′) ≥ 1
2
w(Mt′,opt).

The second change we consider is a decrease in the weight of a link in the network.

A deletion of a link also falls under this category - it is similar to a weight decrease to

0. Note that if the changed link is not in M , there can be no augmenting links after the

change as the measured augmentation weight is with respect to links in M .

Lemma 10. (Weight decrease) If Algorithm 2 is quiescent at time t, and then the weight

of one link e = (u, v) is decreased, then after O(1) rounds, ∃t′ s.t. w(Mt′) ≥ 1
2
w(Mt′,opt).

Proof. The change triggers “nbrs-update” notifications to be sent to u and v. If no link

became augmenting as a result of the change, Mt is still a 2-approximation of Mopt.

The algorithm was quiescent prior to the change which guarantees that when node u and
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v receive the “nbrs-update” their view is correct and therefore from Lemma 11 neither

will send a “preference”. If (u, v) ∈ Mt both u and v subsequently send a “match-

weight” to their neighbors. When any of their neighbors receives the “match-weight”,

its view is correct and therefore will not send a “preference” message. After two rounds

the algorithm becomes quiescent again. Otherwise, there is some augmenting link. Note

that all augmenting links must be adjacent to e since the algorithm was quiescent before

t and only e changed. Without loss of generality, let the maximum gain augmenting link

be incident to u and we denote it by (u, x). We show next that (u, x) is added to the

matching after a constant number of rounds, and that adding (u, x) suffices for us to be

at the approximation. When node u receives the “nbrs-update”, its view is correct, and

after sending “match-weight” to all its neighbors it also sends a “preference” to x which

is its maximum gain neighbor. Node x is idle until it receives a message. After at most

one round it receives the “match-weight” from u and possibly a “match-weight” from

v if x is a neighbor of v as well. If node x receives the message from u first or (v, x)

is not augmenting, it sends a “preference” message to node u. If node x receives the

message from v first and (x, v) is augmenting, then x sends the “preference” to v. When

x receives the “match-weight” from u, it will send a “recall-preference” to v. If x is not

v’s maximum gain neighbor, v will respond with a “recall-ack” and once x receives it,

x will send a “preference” to u. Otherwise, since v receives the “preference” from x

before the “recall-preference”, it will match to x, subsequently send a “match-weight”,

and ignore the “recall-preference” message from x. When x receives the “match-weight”

from v, it will match to v but since w(u, x) > w(u, v), it will send a “preference” to u.

In either case, x is delayed by only two rounds. One round in which its “preference”

and “recall-preference” are received by v, and another round in which v responds with

either a “match-weight” or a “recall-ack”. Regardless of the specific scenario, let t′ be

the earliest time that both u and x receive each other’s “preference” message, then at time

t′, (u, x) ∈ Mt′ . From Lemma 2, at t, w(Mt) ≥ w(Mt,opt) + 1
2

∑
a∈A(Mt)

gainMt(a).

Let’s consider A(Mt) at time t. Since all augmenting links are adjacent to e and Mopt is

a matching, A(Mt) can only include two links. Link (u, x) has at least as much gain as

either link in A(Mt), which means that w(u, x) ≥ 1
2

∑
a∈A(Mt)

gainMt(a).

The next change we consider is a deletion of some node u. When a node is deleted
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all its incident links are also deleted. Since at most one of these links can be in M , this

change is almost identical to a weight-decrease of link (u,mu). The only difference is

that all of u’s neighbors receive a “nbrs-update” for the change.

Corollary 3. (Node deletion) If Algorithm 2 is quiescent at time t, and then one node u is

deleted from Vt, then after O(1) rounds, ∃t′ s.t. w(Mt′) ≥ 1
2
w(Mt′,opt).

The last change to consider is a node addition. Here it is vital that the new node does

not send “preference” messages until it has a correct view, and this is why we need the

ready() function in the protocol.

Lemma 11. (Node addition) If Algorithm 2 is quiescent at time t, and one node u is added

to Vt, then after O(1) rounds, ∃t′ s.t. w(Mt′) ≥ 1
2
w(Mt′,opt).

Proof. The change triggers “nbrs-update” notifications to be sent to u and its neighbors.

Each of u’s neighbors subsequently sends a “match-weight” to u. Since the algorithm

was quiescent prior to the change, the only possible augmenting links after the change

are the links incident to u. If (u, v) ∈ Et is augmenting, then v sends a “preference”

message to u. The view of u’s neighbors is correct once they receive the “nbrs-update”.

From Lemma 11, none of them send any “preference” on a non-augmenting link. Node u

will have a correct view once it receives all the “match-weight” messages from its neigh-

bors. It will not send any “preference” message before that (Line 54). Therefore, from

Lemma 1, if no augmenting links exist then w(Mt) >
1
2
w(Mopt) and the algorithm be-

comes quiescent again once the “match-weight” messages are received. Otherwise, at

least one augmenting link exists. Node u sends a “preference” message to its maximum

gain neighbor (denoted by v). Let t′ be the earliest time in which both u and v receive

the “preference” messages from each other. Then at t′, (u, v) is added to the match-

ing. Since all the potential augmenting links are incident to u, A(Mt) can only include

one link (denoted by a). From Lemma 2, w(Mt) ≥ 1
2
w(Mt,opt) + 1

2
w(a). The view of

node u is correct when it sends the “preference”, which from Lemma 11 guarantees that

gainMt(u, x) ≥ gainMt1
(a). The matching Mopt does not change from t onwards and

therefore at t′, w(Mt′) ≥ 1
2
w(Mt′,opt).
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Finally, we show that the matching weight increases monotonically from t′ onwards.

From Lemma 4, only augmenting links can be added, and from Lemma 3, a link is re-

moved only if an adjacent link is added. This means that with every added link the match-

ing weight increases, but since links are not added atomically, i.e., when (u, v) is added

mu and mv change at different times, it is possible that in between the weight of the

matching temporarily decreases. We show next that under the assumptions of the Local-

ity Theorem, the weight of the matching does not temporarily decrease.

First, we note that a link can change its augmenting status only as a result of a network

change event or if an incident link is added or removed from the matching:

Observation 3. (augmenting-status)

1. If link (u, v) becomes augmenting at time t and no new “nbrs-update” was intro-

duced, then an incident link was removed from Mt at t.

2. If link (u, v) becomes not augmenting at time t and no new “nbrs-update” was

introduced, then an incident link was added to Mt at t.

We show that under the locality property’s assumptions and after the first link is added

(following the network change), a link can only be augmenting if one of its end nodes is

unmatched:

Lemma 12. Assume Algorithm 2 is quiescent at time t0, and then one of the following

events occurs: node start, node stop, weight change, link removal, or link addition. Let t′

denote the time the first link is added after t0, then (u, v) is augmenting at t′′ > t′ only if

@x, y s.t. (u, x) ∈Mt′′ and (v, y) ∈Mt′′

Proof. Following Observation 3, since the only “nbrs-update” were introduced at t0, a

link changes its augmenting status after t0 only when an incident link is removed or added

to the matching. Furthermore, from Lemma 3, a link is removed only if an adjacent link

is added. Therefore, the augmenting status of links only changes when links are added to

the matching. We prove the lemma by induction on the added links to the matching.

Base: we show that the lemma holds after the first link (which we denote by (u, v)) is

added. We denote by u′ and v′ the values of mu and mv at time t0. Since the
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algorithm was quiescent at t0, no augmenting link exists before the network change

and we can consider only links that become augmenting after the change.

Weight increase: following the change only one link can become augmenting which

means it must be (u, v). After (u, v) is added, u′ and v′ lose their match, and

links incident to u′ and v′ can become augmenting (which correlates with

the lemma). Links incident to (u, v) were not augmenting previously and

have even less cause to become augmenting now since w(u, v) > w(u, u′) +

w(v, v′). All other links were not augmenting before and their augmenting

status does not change since there were no changes to their incident links.

Weight decrease: only links incident to the changed link can become augmenting

and subsequently added to the matching. This means that either the weight

of (u, u′) or (v, v′) decreased. Without lost of generality, we assume that

the weight of (u, u′) decreased. After (u, v) is added, links next to u′ can

remain augmenting, since u′ now lost its match. Links next to v′ can become

augmenting since v′ lost its match. As for u, it is shown by Lemma 10 that u

matches with its maximum gain neighbor. This means that ∀x ∈ Γu w(u, v) >

w(u, x), which guarantees that after (u, v) is added, @x ∈ Γu s.t. (u, x) is

augmenting. A link next to v, unless it is next to u′, was not augmenting

before, and will not become augmenting now since w(u, v) > w(v, v′). All

other links were not augmenting before and their augmenting status does not

change since there were no changes to their incident links.

Node deletion: either u′ or v′ was deleted, and without loss of generality we as-

sume that u′ is deleted. Node u lost its match, and any number of u’s links

might become augmenting. As shown by Lemma 3, u matches with its max-

imum gain neighbor, which means that ∀x ∈ Γu w(u, v) > w(u, x), and

therefore after (u, v) is added, @x ∈ Γu s.t. (u, x) is augmenting. As for links

next to v, they were not augmenting before, and since w(u, v) > w(v, v′) they

will not become augmenting now. Links next to v′ might become augment-

ing since v′ lost its match. All other links were not augmenting before and

their augmenting status does not change since there were no changes to their
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incident links.

Node addition: either u or v is added, and without loss of generality we assume

that u is added. Then, any number of u’s links might become augmenting.

As shown by Lemma 11, u matches with its maximum gain neighbor, which

means that ∀x ∈ Γu w(u, v) > w(u, x), and therefore after (u, v) is added,

@x ∈ Γu s.t. (u, x) is augmenting. As for links next to v, they weren’t aug-

menting before, and since w(u, v) > w(v, v′) they will not become augment-

ing now. Links next to v′ might become augmenting since v′ lost its match.

All other links were not augmenting before and their augmenting status does

not change since there were no changes to their incident links.

Step: we assume by way of contradiction that a link is added at t, and subsequently, a

link (u, v) is augmenting even though ∃x, y s.t. (u, x) ∈Mt and (v, y) ∈Mt. Since

link (u, v) is augmenting, (1) w(u, v) > w(u, x) + w(v, y).

Case 1: link (u, v) was not augmenting at t − 1. Since there are no more “nbrs-

update” messages introduced, the only way (u, v) can become augmenting at t is if

u or v lose their match which means they cannot both be matched at t.

Case 2: link (u, v) was augmenting at t − 1. Then, since the lemma holds at t − 1

it must be that either (u, x) or (v, y) were added at t. Without loss of generality,

we assume that (u, x) was added at t. Since there are no network changes after t0,

and each node receives its “nbrs-update” message before making any other steps,

we can both omit that time when we consider the weight of a link and interchange

w(u, v) for wu(v) for every node. Node (u, x) was added at t, which means that

pmu = x at t and we denote by t1 the time pmu becomes x. Then, at t1, u prefers

x over v which means that (2) w(u, x) > w(u, v) − nbrs-mwv(u). It must be that

nbrs-mwv(u) > w(v, y), or otherwise (2) and (1) contradict each other. Let y′ be

the the match of v at time t1 which correlates to nbrs-mwv(u). Either y = y′ and

w(v, y) changed which we consider later, or y 6= y′, and v changed its match. Since

w(v, y) < w(v, y′) and only augmenting links are added, it must be that v lost its

match before matching with y. Before v matches with y, pmv must first change to

y and we denote by t2 the time that pmv becomes y. When a node loses its match,
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ready() is false until the node receives a “nbr-ack” from each of its neighbors. At

t1, node u did not know yet that v lost its match, which means that pmv can only

change after t1 (t2 > t1). At t2, (3) w(v, y) > w(u, v)− nbrs-mwv(u), and since v

received all notifications from u up until t1 and at t1, pmu = x, it must be that (4)

nbrs-mwv(u) ≤ w(u, x). From (3) and (4) we get (5) w(v, y) > w(u, v)−w(u, x)

which contradicts (1). Finally, we consider the case that y = y′ and yet nbrs-

mwu(v) at t1 is bigger than w(v, y) at t. This would be possible only if exists a

〈“match-weight”,m → m 6= u,mw〉 ∈ Qv,u s.t. mw < nbrs-mwu(v). (i.e., a

“match-weight” message that notifies of a weight decrease of the current match of

v. ). However, this kind of message is only sent after a network change of weight

decrease and it is the first message u receives after t0. This is before any message

that makes (u, x) augmenting and it cannot still exist at t1.

In the final step we show that the matching weight strictly increases when a link with

an unmatched node is added:

Claim 12. Consider an edge (u, v) that is added to the matching, where mu becomes v at

time t1, and mv becomes u at time t2 > t1. Let w1 and w2 denote u and v’s match weights

at time t1, respectively. If no “nbrs-update” is received by either u or v between t1 and

t2 and @mw> ∈ Qv,u at t1, and w1 = 0 or w2 = 0 at t1, then w(M)t1 ≥ w(M)t1−1 and

w(M)t2 ≥ w(M)t2−1.

Proof. We separate to the two cases.

w1 = 0: since mu has no match, then no weight is lost at t1 and w(M)t1 = w(M)t1−1. It

follows from Lemma 4 that w(M)t2 ≥ w(M)t2−1, since w(u, v) > w1 + w2.

w2 = 0: since pmv = u at t1, then (u, v) is added to M at t1. It follows from Lemma 4

that w(M)t1 ≥ w(M)t1−1 since w(u, v) > w1 + w2. When mv becomes u at t2, no

weight is lost since w2 = 0 and w(M)t2 = w(M)t2−1.
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Corollary 4. Assume Algorithm 2 is quiescent at time t, and then one of the following

events occurs: node start, node stop, weight change, link removal, or link addition. If

t′ is the time that the first link is added following the change, then from t′ onwards the

matching weight never decreases.

Theorem 4 (restated). (Locality) If Algorithm 2 is quiescent at time t, and then one of

the following events occurs – node start, node stop, weight change, link removal, or link

addition, then after O(1) rounds, ∃t′ s.t. w(Mt′) ≥ 1
2
w(Mt′,opt).

Proof. Immediate from Lemmas 9, 10, 11, Corollary 3, and Corollary 4.
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Chapter 6

Conclusions

In this thesis we studied the dynamic weighted matching problem. Namely, we consid-

ered the weighted matching problem in an asynchronous, fault prone, and dynamic net-

work, where the topology and link weights may change. We developed a distributed

algorithm that can cope with these conditions and is resistant to any combination of

network changes. We showed that the algorithm stabilizes, quiesces, and provides a 2-

approximation when changes cease. Moreover, we proved that following a single change,

the algorithm converges back to the approximation in O(1) time, thereby not suffering

from the drawbacks of other distributed matching algorithms in a dynamic environment.

Lastly, in the static case, the algorithm converges to a 2-approximation in O(|V |) time

and O(|E|) message complexity similar to [13].

Our focus on the model and algorithm is motivated by applications to wireless net-

works which have many of the characteristics described above. In particular, due to the

Local Pooling conditions [4], in many such networks, the 2-approximation algorithm will

actually achieve 100% throughput. Yet, in many realistic cases, the interference con-

straints are more complex than primary interference constraints that imply that the set

of active links should be a matching in the network graph [6, 30]. For example, under

secondary interference constraints, each pair of simultaneously active links must be sep-

arated by at least two hops (these constraints are usually used to model IEEE 802.11

networks [6]). In general, an interference graph is used to model the various interfer-

ence constraints, and a specific transmission schedule corresponds to an independent set
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in the interference graph. When taking into account the physical layer characteristics, the

schedule and the power allocations should adhere to the Signal to Interference and Noise

Ratio (SINR) constraints [23, 11, 5].

In all those cases, there is a need for distributed algorithms for an asynchronous and

dynamic environment (e.g., when nodes leave, join, or even change their location, not only

link weights change but also there is a significant effect on the SINR). However, most of

the previous work has focused either on the throughput and stability region implications or

on efficient distributed implementations. It has usually been assumed that the environment

is synchronous and static. A potential direction for future work is to build on the results

of this thesis and develop distributed approximation algorithms for general interference

constraints as well as for the SINR model that will be tailored for asynchronous and

dynamic environments.
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 תודות

  
  

ברצוני להודות לכל האנשים אשר ליוו אותי בשנותי בטכניון והפכו את החוויה לבלתי 

  נשכחת. 

תודה לפרופ' עדית קידר, שבראיה חיובית מופלאה לא ויתרה עלי או על העבודה הזו 

ואני חבה לך תודה אדירה למרות כל המהמורות שנקלענו אליהן בדרך. זכיתי במנחה מיוחדת 

  .על ההנחיה וההשקעה בי

למדתי רבות מהעבודה יחד. תודה  -תודה לפרופ' יורם מוזס על הידידות וההכוונה 

חיבקתם,  -לכל חברי בטכניון, על התמיכה ברגעים הקשים וההשתתפות ברגעי ההצלחה 

ולכם איתי. הצחקתם, העשרתם ועוררתם בי השראה. אם הייתי יכולה הייתי לוקחת את כ

  תודה לאנשי צוות הפקולטה על האדיבות, העזרה, והסבלנות תמיד.

תודה לאבי שהשריש בי את האהבה ללימודים, לאימי, אחותי ואחי על התמיכה 

 וההתעניינות. תודה למשפחת גוז היקרה, למודי הנסיון, על ההבנה וההקשבה.

הסוחף אותי להאמין שאין אני מקדישה את התזה לאהובי צביקה, הסלע האיתן שלי, 

  דבר שאיני יכולה לו.

  



 

 

 

 

 

 

 

 

 

 



I 

 

    תקציר  

  

  

קבוצה של קשתות כך שאף זוג קשתות אינו חולק -הינו תתשידוך בתורת הגרפים, 

הינו בשידוך הינו שידוך עבורו סכום משקלי הקשתות  שידוך במשקל מכסימליצומת משותף. 

מכסימלי המבוזרת, נדרשים במשקל בבעית השידוך מכסימלי מבין כל השידוכים האפשריים. 

  שידוך במשקל מכסימלי. למצוא לשתף פעולה על מנת בגרף הצמתים 

בהן ות אלחוטיות תבעית תזמון תשדורות ברשבעית השידוך מתמפה בצורה טבעית ל

אילוצי התנגשות מדרגה , ואשר עובדות תחת )multi-hopאין חיבור ישיר מנקודה לנקודה (

אילוצי ההתנגשות מדרגה ברשתות אלה,  ).primary interference constraintsראשונה (

יעשה כך שבכל רגע נתון צומת שתזמון השידור של שני צמתים סמוכים ראשונה מחייבים 

יכולות להיות שבכל רגע נתון קשתות מסוימות צומת בודד. כיוון עם לכל היותר מתקשר 

יותר מקשתות מאחרות (לדוגמא עקב אורך תורים, עדיפויות, וכו') מקובל לייחס  חשובות

  משקל לקשתות השונות, ומטרת אלגוריתם התזמון הינה למכסם את משקל השידוך הכולל. 

מספקים רוב האלגוריתמים הקיימים למציאת שידוך במשקל מכסימלי בסביבה מבוזרת 

הנחות , סינכרונית, וללא תקלות. נטולת שינוייםמערכת מניחים ו) one-shot(פעמי -חדפתרון 

יות, שהינן דינמיות, אסינכרוניות, ומועדות לתקלות. טאילו אינן מתאימות לרשתות אלחו

לית. שנית, אסנכרון במערכות אלחוטיות הינו בעיה סבוכה, שאינה בהכרח לוקראשית, 

וקווי מתים מתווספים, עוזבים או משנים מקום, צ –רשתות אלחוטיות משתנות לאורך זמן

יתר על כן, משקלן של קשתות משתנה ללא הרף עקב הצטברות תקשורת מופיעים ונעלמים. 

(משמע ללא ייצוב עצמי) ושידור חבילות תקשורת. שימוש באלגוריתם שאינו מסתגל לשינוים 

תרון לשינויים התכופים. מחייב הרצות חוזרות של האלגוריתם מדי פעם בכדי להתאים את הפ

אזן בין התקורה שבהרצות חוזרות ונשנות של גישה זו הינה בעייתית עכב ההכרח ל

קרי: ( .רשתהנוכחי בלמצב אופטימלי בהם התזמון אינו שפרקי הזמן בין אורך תמים ליהאלגור

  פשרה בין מחיר החישוב למחיר השידור.) 

בכדי להתגבר על חסרונות אלה ועל מנת לספק פתרון התואם לתנאי הסביבה ברשתות 

במשקל מכסימלי שידוך בעית ה -אלחוטיות, אנו מגדירים בעבודת מחקר זו בעיה חדשה
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בעיה זו עוסקת בשידוך במשקל מכסימלי תחת הנחות סביבה מבוזרת,  .ברשתות דינמיות

פתרון לבעיה זו נדרש להגיב מיידית לשינויים ברשת אסינכורנית, דינמית, ומועדת לתקלות. 

תבסס על פתרון ממצב הרשת הנוכחי. תזמון שידור ברשת אלחוטית אשר לולכן לעולם תואם 

אפשר משלוח הודעות על קשתות שהינן חלק מהשידוך הנוכחי כבר במהלך שלב מ ,שכזה

ההתכנסות של האלגוריתם, מבלי להיות מושפע מחלקי הרשת בהם התרחשו שינויים או 

בהם האלגוריתם עדיין לא התכנס למצב יציב. בהקשר זה, אנו מעוניינים מחלקי הרשת 

הרשת . כאשר תייצבגוריתם עדיין לא הבמשקל השידוך לאורך זמן, כולל זמנים בהם האל

  מתייצבת ולא מתרחשים בה שינויים נוספים, נדרש כי השידוך יתייצב אף הוא.  

 greedyקרא נהאלגוריתם האסינכרוני היחיד לבעית השידוך במשקל מכסימלי 

maximal matching ,זה לפתרון האופטימלי. במהלך ריצת אלגוריתם 2מספק קירוב  והוא ,

 אלגוריתםה סימלי מבין כל הקשתות הסמוכות לה.כמהינו קשת נוספת לשידוך אם משקלה 

סובל משתי הוא , אבל יוכאשר לא קיים שידוך התחלת ,שאינן משתנותת ועובד היטב ברש

. ראשית, זמן ההתכנסות חזרה לסביבה דינמית ומרכזיות אשר פוגמות בהתאמתמגרעות 

לאחר שינוי יכול להיות לינארי בגודל הרשת, אפילו במקרים של שינוי  2בקירוב לשידוך 

משקל השידוך לאחר שינוי יכול לקטון, אפילו במקרים קיצוניים בהם התרחש שנית, בודד. 

של צומת בגרף, או במקרים שבהם אף צומת בשידוך הקיים  ושינוי בודד שהגדיל את משקל

  ה. נלא השת

מהמגרעות האמורות.  תסובלאינה אשר  תחלופיגישת בעבודת מחקר זו אנו מציעים 

קביל בצורה רציפה  שידוךמספק אשר  מכסימלילשידוך במשקל אנו מציגים אלגוריתם דינמי 

קשתות נוספות לשידוך רק אם הן מגדילות את משקל  ,לאורך כל פעולתו. באלגוריתם המוצע

חדל משליחת האלגוריתם מתייצב,  ,לאחר הפסקת השינויים ברשתהשידוך. אנו מוכיחים ש

התייצבותו, האלגוריתם מטפל בשינויים חדשים  . יתר על כן, לאחר2 , ומספק קירובהודעות

בזמן קבוע. אנו מראים שלאחר שינוי  2כלומר הוא מתכנס חזרה לקירוב  ,ליתאלוקבצורה 

האלגוריתם מתכנס חזרה אל  –הוספת צומת, הסרת צומת, הוספת קשת או הסרת קשת –יחיד

בנוסף לפתרון המגרעות האמורות במקרה הדינמי, ביצועי  .O(1)הקירוב בסיבוכיות זמן 

  . greedy maximal matching-האלגוריתם זהים לביצועי בסביבה סטטית המוצע האלגוריתם 

לסיכום, תרומתה העיקרית של עבודת מחקר זו היא הטיפול בבעית השידוך במשקל 
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בעית השידוך לי ברשתות אסינכרוניות, דינמיות, ומועדות לתקלות. אנו מגדירים את מכסימ

 2אשר מספק קירוב  ,ויציבלי אאלגוריתם לוק ציגים, ומבמשקל מכסימלי ברשתות דינמיות

  לבעיה.  
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