Ordered Sequential Consistency:
Composition and Correctness

Kfir Lev-Ari



Ordered Sequential Consistency:
Composition and Correctness

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Kfir Lev-Ari

Submitted to the Senate
of the Technion — Israel Institute of Technology
Tamuz 5777 Haifa July 2017



This research was carried out under the supervision of Prof. Idit Keidar, in the Andrew and

Erna Viterbi Faculty of Electrical Engineering, Technion.

The results in this thesis have been published as articles by the author and research
collaborators in conferences and journals during the course of the author’s doctoral research

period. The most up-to-date versions of which are found in this thesis.

The generous financial help of the Technion is gratefully acknowledged.



Acknowledgements

First, I would like to thank my advisor, Prof. Idit Keidar. Thank you for being highly
available (24/7), for tolerating my faults, and for the consistent guidance throughout the
inconsistent world of distributed systems. I am more than grateful for the opportunity
to work under your supervision. It was an awesome (Pazos-like) journey, in which I got
the chance to grasp (and accept) new concepts, to propose new ideas, to learn a lot from
others, and to lead the way when I was ready. To the anonymous reader, note that there is
a consensus that Idit is the best advisor one could have.

I would also like to thank Edward Bortnikov, Prof. Gregory Chockler, and Alexander
Shraer, for very productive collaborations, as well as for the great time we had together
on many different occasions, such as internships, conferences, work-related-and-not-related
meetings, avocados, and one crazy cab drive back from the airport. Whenever I've talked
with you, you guys were always willing to share thoughts based on your experience in order
to help me get things right, as well as to avoid obstacles that you stumble upon in your
journey (whether related or unrelated to my PhD), and I thank you for that. Eventually,
we’ve managed to compose great things together ©.

I thank the super-smart-crazy-these-guys-scare-me members of Idit’s research group:
Naama Kraus, Noam Shalev, Alexander (Sasha) Spiegelman, Dani Shaket, Hagar Porat,
Itay Tsabary, and Alon Berger, (as well as for past members who I had the pleasure to
meet), for their valuable comments, suggestions, water cooler talks, and (mainly) shared
complaints. Specially, I wish to thank Dani and Naama for introducing me to the group,
and I thank Sasha for our joint efforts while working on a cool yet unpublished paper. |
would like to thank other Technion PhD students who I had the pleasure to learn from and
speak with, such as Maya Arbel, and my office roommates Ofir Shwartz and Aran Bergman.
I had very interesting conversations with you all along the way. You guys really rock! (and
jazz)

Last but not least, I would like to thank my family. I thank my father and mother
for always being supportive, saying (prior to my bachelor degree) that I can go and learn
whatever I want, but they’ll help me financially only if it’ll be computer science, law, or
medicine ©. T thank all the grandparents of Adam, Liam, and Ethan, for helping us with
them while I'm working around the clock in order to meet (yet another) deadline. I thank
my wonderful and special wife Anat, for supporting me in every step of the way and for

believing in me.



List of Publications

Journal Paper

1. Kfir Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexander Shraer. Composing
ordered sequential consistency. Inf. Process. Lett., 123:47-50, 2017. doi: 10.1016/j.ipl.
2017.03.004. URL https://doi.org/10.1016/j.ipl.2017.03.004

Conference Papers

1. Kfir Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexander Shraer. Modular composi-
tion of coordination services. In 2016 USENIX Annual Technical Conference, USENIX
ATC 2016, Denver, CO, USA, June 22-24, 2016., pages 251-264, 2016. URL https://

www.usenix.org/conference/atc16/technical-sessions/presentation/lev-ari

2. Kfir Lev-Ari, Gregory Chockler, and Idit Keidar. A constructive approach for prov-
ing data structures’ linearizability. In Distributed Computing - 29th International
Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, pages 356—
370, 2015. doi: 10.1007/978-3-662-48653-5.24. URL https://doi.org/10.1007/
978-3-662-48653-5_24

3. Kfir Lev-Ari, Gregory Chockler, and Idit Keidar. On correctness of data structures
under reads-write concurrency. In Distributed Computing - 28th International Sympo-
stum, DISC 2014, Austin, TX, USA, October 12-15, 201/. Proceedings, pages 273287,
2014. doi: 10.1007/978-3-662-45174-8_19

4. Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh Khemani,
Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri, Jason Hunter, Roberto Peon, Larry
Kai, Alexander Shraer, Arif Merchant, and Kfir Lev-Ari. Slicer: Auto-sharding for
datacenter applications. In 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-/, 2016., pages 739-753,
2016. URL https://www.usenix.org/conference/osdil6/technical-sessions/

presentation/adya (Note: not included in the thesis)


https://doi.org/10.1016/j.ipl.2017.03.004
https://www.usenix.org/conference/atc16/technical-sessions/presentation/lev-ari
https://www.usenix.org/conference/atc16/technical-sessions/presentation/lev-ari
https://doi.org/10.1007/978-3-662-48653-5_24
https://doi.org/10.1007/978-3-662-48653-5_24
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/adya
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/adya

Contents

List of Publications

List of Figures

Abstract 1

Abbreviations and Notations 2

1 Introduction 3
1.1 Thesis Structure . . . . . . .. L 3
1.2 Brief Scientific Background . . . . .. ... ... ... ... .. ... 4

1.2.1 Model for Analyzing Concurrent Objects . . . . .. ... ... ... 4
1.2.2  Sequential Consistency . . . . . . . . . . ... 5
1.2.3 Linearizability . . . .. .. .. . .. .. 6
1.2.4 Coordination Services . . . . . . . . . ... 6

2 Paper: On Correctness of Data Structures under Reads-Write Concur-
rency 9
2.1 Imtroduction . . . . . . . . .. L 11
2.2 Model and Correctness Definitions . . . . . . . ... ... ... ... .... 14

2.2.1 Data Structures and Sequential Executions . . . . .. ... ... .. 14
2.2.2  Correctness Conditions for Concurrent Data Structures . . . . . .. 16
2.3 Base Conditions, Validity and Regularity . . . . ... ... ... ... ... 18
2.3.1 Base Conditions and Base Points . . . . . .. ... ... ... ... 18
2.3.2 Satisfying the Regularity Base Point Consistency . . . . . . . .. .. 20
2.3.3 Deriving Correctness from Base Points . . . . . . ... ... .. ... 21
2.4 Using Our Methodology . . . . . . . .. .. ... ... .. ... 22
2.5 Linearizability . . . . . . . .. Lo 28
2.5.1 Linearizability Base Point Consistency . . . . . . . . ... ... ... 28
2.6 Sequential Consistency . . . . . . . . ... L L L 30



3 Paper: A Constructive Approach for Proving Data Structures’

ability

3.1 Introduction . . . . . . . . . ..
3.2 Preliminaries . . . . ... ...
3.3 Base Point Analysis . . . . ... ... oL

3.4 Linearizability using Base Point Analysis . . . . ... ... .. ..
3.4.1 Update Operations . . . . . . . . ... ... ... ......
3.4.2 Read-Only Operations . . . . .. ... ... ... ......

3.5 Roadmap for Proving Linearizability . . . .. ... ... ... ...

3.5.1 Stage I: Base Conditions

3.5.2 Stage II: Linearizability of Update Operations . . . . . . . .

3.5.3 Stage III: Linearizability of Read-Only Operations

4 Paper: Modular composition of coordination services

4.1 Introduction

4.2 Background . . . . ...
4.2.1 Coordination Services . . . . . . .. .. ... ..
4.2.2 Cross Data Center Deployment . . . . . .. ... ... ...

4.3 Design for Composition . . . . . .. .. ..o
4.3.1 Modular Composition of Services . . . . . . ... ... ...
4.3.2 Modular Composition Properties . . . . .. .. .. .. ...

4.4 ZooNet . . . . . e
4.4.1 Server-Side Isolation . . . . . .. .. .. ...
4.4.2 The ZooNet Client . . . . . . . ... .. ... ... .....

4.5 Evaluation . . . . . . . ...
4.5.1 Environment and Configurations . . . . ... ... .. ...
4.5.2 Server-Side Isolation . . . . . . ... .. ... ... ... ..
4.5.3 The Cost of Consistency . . . . . .. ... ... ... ....
4.5.4 Comparing ZooNet with ZooKeeper . . .. ... ... ...

4.6 Related Work . . . . . . . oo

4.6.1
4.6.2 Composition Methods

Multi-Data Center Deployment

5 Paper: Composing ordered sequential consistency

5.1 Introduction

5.2 Model and Notation . . . ... ... ... .. ... ... ......
5.3 Ordered Sequential Consistency . . . . . . . . ... ... ... ...
5.4 OSC(A) Composability via Leading A-Operations . . ... .. ..

Lineariz-

32
33
35
37
39
39
42
44
44
45
46

48
49
o1
51
23
54
54
95
o7
o8
99
99
99
60
61
63
65
66
66



6 Discussion

6.1 On Correctness of Data Structures under Reads-Write Concurrency

6.2 A Constructive Approach for Proving Data Structures’ Linearizability

6.3 Modular Composition of Coordination Services . . . ... .. ... ... ..

6.4 Composing Ordered Sequential Consistency

Hebrew Abstract

77
78

80
81



List of Figures

1.1
1.2

1.3

1.4

1.5

1.6

1.7

2.1
2.2
2.3
24

Possible histories of a read-write register . . . . . . . .. ... ... 5

A history of a read-write register r belongs to r’s sequential specification if

each read operation in the history returns the last written value. . . . . . . 5

A sequentially consistent history A of two processes p; and po. 7 is a sequential
permutation that belongs to z’s sequential specification, in which the program
order is identical to the order in h. h is not linearizable because every
sequential permutation that follows the operations’ real time order contradicts

the sequential specificationof z.. . . . . . . . . ... ... ... 6

The history h of two processes p; and po is not sequentially consistent, since
there is no sequential permutation that belongs to the sequential specification
of z, in which the program order is identical to the order in h (the colored
arrows indicate the required sequential ordering). . . . . . . ... ... ... 6
A linearizable history of two processes p; and ps. 7 is a sequential permutation
that belongs to x sequential specification, in which the operations real time

order is identical to the orderin h. . . . . . . . . . . . ... ... ... 7

Example of two clients using a coordination service concurrently. Client 1
sets the shared variable z’s value to 5, and Client 2 reads . A majority of
acceptors is required for the update to take place, whereas reads are served

locally. . . . . . o 7

A possible history of a coordination service z. Client 2 “reads from the past”,
by not seeing the update of Client 1. This is possible since reads are served

locally. . . . . . o L 8

Two shared states satisfying the same base condition ®3 : lastPos = 1Av[l] = 7. 18
Possible locations of ro’s base points. . . . . . . . . ... ... .. ... ... 19
Possible locations of ro’s regularity base points. . . . . . . . . ... ... .. 19

The shared state s. It is the post-state after executing writeSafe or write-

Unsafe from s; (Figure 2.1) with initial value 80. . . . . . . ... ... ... 20



2.5

2.6

2.7

3.1

3.2

3.3

4.1

4.2
4.3

4.4

4.5

Shared states in a concurrent execution consisting of rcuRemove(ny) and

rcuReadLast (ro). . . . . . ...

Every local state of ro; and ros has a regularity base point, and still the
execution is not linearizable. If ro; and ros belong to the same process, then

the execution is not even sequentially consistent. . . . . . .. ... ... ..

Possible locations of ro’s linearizability base points. . . . . . . . . . ... ..

Two states of Lazy List (Algorithm 1): s; is a base point for contains(7)’s
return true step, as it satisfies the base condition ”there is a node that is
reachable from the head of the list, and its value is 7”. The shared state
59 is not a base point of this step, since there is no sequential execution of

contains(7) from sy in which this step is reached. . . . . .. ... ... ..

Operation remove(7) of Lazy List has two write steps. In the first, marked is
set to true. In the second, the next field of the node holding 3 is set to point
to the node holding 9. If a concurrent contains(7) operation sequentially
executes from state 81, it returns true. If we execute contams( 7) from i , l.e.,
after remove(7)’s first write, contains sees that 7 is marked, and therefore
returns false. If we execute contains from state sy, after remove(7)’s second
write, contains does not see B because it is no longer reachable from the
head of the list, and also returns false. The second write does not affect the

return step, since in both cases it returns false. . . . . . . .. ... ... ..

The structure of update operations. The steps before the critical sequence
ensure that the pre-state of the first update step is a base point for all of the

update and return steps. . . . . . ... L

Inconsistent composition of two coordination services holding objects = and
y: each object is consistent by itself, but there is no equivalent sequential

exXeCUbION. . . . . . . . . e e

24

28
29

38

39

41

92

Different alternatives for coordination service deployment across data centers. 53

Consistent modular composition of two coordination services holding objects
x and y (as in Figure 4.1): adding syncs prior to reads on new coordination

services ensures that there is an equivalent sequential execution. . . . . ..

Improved server-side isolation. Learner’s throughput as a function of the

percentage of reads. . . . . . . . ...

Saturated ZooNet throughput at two data centers with local operations only.

In this sanity check we see that the performance of Never-Sync is identical to

ZooNet’s performance when no syncs are needed. . . . . . . ... ... ...



4.6

4.7

4.8

Throughput of ZooNet, Never-Sync and Sync-All. Only DC2 clients perform
remote operations. . . . . ... Lo e
Throughput speedup (ZooNet/ZooKeeper). DC1 clients perform only local
operations. The percentage of read operations is identical for DCI1 clients
and DC2 clients. . . . . . . . ..
Throughput speedup (ZooNet/ZooKeeper). DC1 clients an DC2 clients have

the same local operations ratio as well as read operations percentage. . . . .

65



Abstract

We define ordered sequential consistency (OSC), a generic criterion for concurrent objects. We
show that OSC encompasses a range of criteria, from sequential consistency to linearizability,
and captures the typical behavior of real-world coordination services, such as ZooKeeper. A
straightforward composition of OSC objects is not necessarily OSC, e.g., a composition of
sequentially consistent objects is not sequentially consistent. We define a global property
we call leading ordered operations, and prove that it enables correct OSC composition.

A direct implication of our OSC composition global property is the ability to compose
coordination services. Such services, like ZooKeeper, etcd, Doozer, and Consul are increas-
ingly used by distributed applications for consistent, reliable, and high-speed coordination.
When applications execute in multiple geographic regions, coordination service deployments
trade-off between performance, (achieved by using independent services in separate regions),
and consistency. We present a system design for modular composition of services that
addresses this trade-off. We implement ZooNet, a prototype of this concept over ZooKeeper.
ZooNet allows users to compose multiple instances of the service in a consistent fashion,
facilitating applications that execute in multiple regions. In ZooNet, clients that access
only local data suffer no performance penalty compared to working with a standard single
ZooKeeper. Clients that use remote and local ZooKeepers show up to 7x performance
improvement compared to consistent solutions available today.

Linearizability, (which is a special case of OSC), is one of the most common correctness
criteria for shared objects. We present a comprehensive methodology for proving lineariz-
ability and related criteria of concurrent data structures. We exemplify our methodology by
using it to give a roadmap for proving linearizability of the popular Lazy List implementation
of the concurrent set abstraction. Correctness is based on our key theorem, which captures
sufficient conditions for linearizability. In contrast to prior work, our conditions are derived
directly from the properties of the data structure in sequential runs, without requiring the

linearization points to be explicitly identified.



Abbreviations and Notations

RCU :  read-copy-update

RTO : real time order

CAS : compare-and-swap

RO : read-only

0OSC : ordered sequential consistency



Chapter 1

Introduction

The common design nowadays for backends of large-scale applications is built upon using
external services as building blocks. Due to the distributed nature of these applications,
(i.e., multiple servers that serve multiple clients concurrently), one of the most frequent and
important building blocks in use is one that is responsible for maintaining correct executions.
E.g., an online application that sells concert tickets uses a global lock service to guarantee
that no ticket is sold twice. We call these global services “coordination services”.

As the scale of applications increases and crosses the data-center boundaries, (e.g.,
serving clients all over the world via multiple data-centers), application designers face
performance challenges that arise from the physical distance between the backend servers,
(e.g., what is the best global lock servers’ deployment alternative w.r.t. the application
servers locations?). Addressing these challenges often requires knowledge of the building
blocks’ internals, and in the case of coordination services’ internals, answering this question
is far from being trivial.

The goal of this thesis is to simplify reasoning about concurrent algorithms’ correctness,

with a focus on coordination services and their performance on global scale deployment.

1.1 Thesis Structure

The presented thesis collates our published papers. The first two papers present our base-
point analysis approach for proving correctness of concurrent algorithms, and the last two
papers present our ordered sequential consistency (OSC) definition, and implications on
real-world services.

The first paper introduces the foundations of our base-point analysis approach for proving
correctness of concurrent data structures. In addition, we define regular data structures,
and state sufficient conditions for regularity, linearizability, and sequential consistency, (all

w.r.t. base points of read-only operations). Last, we prove the correctness of Lazy List



under reads-write concurrency.

In the second paper we generalize base-point analysis to any type of data structure and
provide a constructive road-map for proving data structures’ linearizability. We exemplify
our approach using the same Lazy List, this time addressing writes concurrency as well.

The third paper presents a design, an implementation, and an evaluation of a consistent
composition of ZooKeepers, which we call ZooNet. In ZooNet, clients that access only local
data suffer no performance penalty compared to working with a standard single ZooKeeper.
Clients that use several ZooKeeper instances, i.e., remote and local ZooKeepers, show up to
7.5x performance improvement compared to consistent solutions available today.

The fourth paper presents OSC, a criterion that generalizes linearizability and sequential
consistency. In addition, we define a global property called leading A operations, and prove

that OSC objects can be composed via leading As.

1.2 Brief Scientific Background

1.2.1 Model for Analyzing Concurrent Objects

We use a standard shared memory execution model [49], where a set ¢ of sequential processes
access shared objects from some set X. An object has a name label, a value, and a set
of operations used for manipulating and reading its value. An operation’s execution is
delimited by two events, invoke and response. For example, a read-write register r is an
object with an initial value 0, and two operations: (1) get(r)— 0 - returns r’s value; and (2)
set(r,5) - modifies r’s value.

A history h is a sequence of operation invoke and response events. An invoke event of
operation op is denoted i,p, and the matching response event is denoted r,,. For two events
e1,e2 € h, we denote ey <j es if e; precedes eg in h, and e; <j, eg if e; = e9 or €1 <y, es.

For two operations op and op’ in h, op precedes op', denoted op <y, op', if Top <p Pop,
and op <y, op’ if op = op’ or op <, op’. Two operations are concurrent if neither precedes
the other.

For a history h, complete(h) is the sequence obtained by removing all operations with
no response events from h. A history is sequential if it begins with an invoke event and
consists of an alternating sequence of invoke and response events, s.t. each invoke is followed
by the matching response. See Figure 1.1 for history examples.

For p € ¢, the process subhistory h|p of a history h is the subsequence of h consisting
of events of process p. The object subhistory h, for an object x € X is similarly defined.
A history h is well-formed if for each process p € ¢, h|p is sequential. For the rest of our
discussion, we assume that all histories are well-formed. The order of operations in hlp is

called the process order of p.



A possible sequential history:

get(r)—-0 set(r,5) get(r)-5

h= o LS RTINS S SO S

Another possible history (not sequential):
get(n-0 get(r)-0
set(r,5)

Figure 1.1: Possible histories of a read-write register r.

We refer to an operation that changes the object’s value as an update operation. In
order to simplify the discussion of initialization, we assume that every history begins with
a dummy (initializing) update operation. A sequential specification of an object x is a set
of allowed sequential histories in which all events are associated with x. For example, the
sequential specification of a read-write object is the set of sequential histories in which each
read operation returns the value written by the last update operation that precedes it or

the initial value if no such operation exists, as depicted in Figure 1.2

Allowed sequential history:

get(r)-0 set(r5) get(r)-5

Unallowed sequential history:

get(r)-0 set(r5) get(r-6

Figure 1.2: A history of a read-write register r belongs to r’s sequential specification if
each read operation in the history returns the last written value.

A sequential permutation 7 of an history h is a sequential history such that (1) all objects

in 7 start with the same initial value as in h; and (2) 7 consists of the same operations as h.

1.2.2 Sequential Consistency

A history h is sequentially consistent [53] if there exists a history A’ that can be created
by adding zero or more response events to h, and there is a sequential permutation 7 of

complete(h'), such that:

1. for every object x € 7, 7w, belongs to the sequential specification of x.

/

2. for two operations o and o', if 3p € ¢ : 0 <y, o' then 0 <7 o'. I.e., every pair of

operations that belong to the same process, appear in the same order in h and in 7.

A sequentially consistent history example is depicted in Figure 1.3, a non-sequential



consistent history in Figure 1.4.

p1: get(x) -0 get(x)—5

Initially

x=0 p2: Set(X,S) /

7T get(x)-0  set(x,5) get(x)-5

Figure 1.3: A sequentially consistent history h of two processes p; and ps. 7 is a sequential
permutation that belongs to z’s sequential specification, in which the program order is
identical to the order in h. h is not linearizable because every sequential permutation that
follows the operations’ real time order contradicts the sequential specification of x.

An object x is sequentially consistent if for every history h of z, h is sequentially
consistent.
1.2.3 Linearizability

A history h is linearizable [49] if there exists a history A’ that can be created by adding zero
or more response events to h, and there is a sequential permutation 7 of complete(h'), such

that:

1. for every object x € m, m, belongs to the sequential specification of x.

2. for two operations o and o, if 0 <} o’ then 0 <, 0. Le., every pair of operations that

are not interleaved in h, appear in the same order in h and in .

set(x,5) —& get(x)—-3

" p1:
Initially
x=0 p2: set(x,3) —p get(x)-5

7 set(x5)  set(x3) get(x)-3

P set(x,3) set(x,5) get(x)—5

Figure 1.4: The history h of two processes p; and po is not sequentially consistent, since
there is no sequential permutation that belongs to the sequential specification of x, in which
the program order is identical to the order in A (the colored arrows indicate the required
sequential ordering).

See Figure 1.5 for an example of linearizable history, and Figure 1.3 for a history that is
not linearizable. An object z is linearizable, also called atomic, if for every history h of z, h

is linearizable.

1.2.4 Coordination Services

Coordination services are used for maintaining shared state in a consistent and fault-tolerant

manner. Fault tolerance is achieved using replication, which is usually done by running a



p1: get(x)-0 get(x)-5

) ri
p2:  set(x,5) : |
\

\

\

v
7T get(x)-0  set(x,5) get(x)-5

Initially
x=0

Figure 1.5: A linearizable history of two processes p; and py. 7 is a sequential permutation
that belongs to x sequential specification, in which the operations real time order is identical
to the order in h.
quorum-based state-machine replication protocol such as Paxos [55] or its variants [51, 68].
In Paxos, the history of state updates is managed by a set of servers called acceptors,
s.t. every update is voted on by a quorum (majority) of acceptors (as depicted in Figure 1.6).
One acceptor serves as leader and manages the voting process. In addition to acceptors,
Paxos has learners, which are light-weight services that do not participate in voting and get
notified of updates after the quorum accepts them.
Updates order:

1. X =0 (initially)
2. X=5

get(X) - 0

Client 2

Client 1

Figure 1.6: Example of two clients using a coordination service concurrently. Client 1 sets
the shared variable x’s value to 5, and Client 2 reads x. A majority of acceptors is required
for the update to take place, whereas reads are served locally.

Coordination services are typically built on top of an underlying key-value store and
offer read and update (read-modify-write) operations. The updates are linearizable, i.e., all
acceptors and learners see the same sequence of updates and this order conforms to the
real-time order of the updates. The read operations are sequentially consistent. A client can
thus read a stale value that has already been overwritten by another client (as showen in
Figure 1.7). These weaker semantics are chosen in order to allow every learner or acceptor

to serve reads locally.



o Client 1: Set(X,5)
Initially —

X=0 " Glient 2: get(xX) -0

Figure 1.7: A possible history of a coordination service z. Client 2 “reads from the past”,
by not seeing the update of Client 1. This is possible since reads are served locally.



Chapter 2

Paper: On Correctness of Data
Structures under Reads-Write

Concurrency

Kfir Lev-Ari, Gregory V. Chockler, Idit Keidar: “On Correctness of Data Structures under
Reads-Write Concurrency”. Distributed Computing: 28th International Symposium DISC
2014, Austin, TX, USA, October 12-15, 2014, Proceedings. ed. / Fabian Kuhn. Vol. 8784 1.
ed. Springer-Verlag Berlin Heidelberg, 2014. p. 273-287.

In this paper, we create a base-point analysis approach for proving correctness of concur-
rent data structures, define reqular data structures, and prove the correctness of Lazy List

under this type of concurrency.



On Correctness of Data Structures under Reads-Write

Concurrency *

Kfir Lev-Ari', Gregory Chockler?, and Idit Keidar!

LViterbi Department of Electrical Engineering, Technion, Haifa, Israel

2(CS Department, Royal Holloway University of London, Egham, UK

Abstract

We study the correctness of shared data structures under reads-write concurrency.
A popular approach to ensuring correctness of read-only operations in the presence of
concurrent update, is read-set validation, which checks that all read variables have not
changed since they were first read. In practice, this approach is often too conservative,
which adversely affects performance. In this paper, we introduce a new framework for
reasoning about correctness of data structures under reads-write concurrency, which
replaces validation of the entire read-set with more general criteria. Namely, instead
of verifying that all read shared variables still hold the values read from them, we
verify abstract conditions over the shared variables, which we call base conditions.
We show that reading values that satisfy some base condition at every point in time
implies correctness of read-only operations executing in parallel with updates. Somewhat
surprisingly, the resulting correctness guarantee is not equivalent to linearizability, rather,
it can express a range of conditions. Here we focus on two new criteria: wvalidity and
regularity. Roughly speaking, the former requires that a read-only operation never
reaches a state unreachable in a sequential execution; the latter generalizes Lamport’s
notion of regularity for arbitrary data structures, and is weaker than linearizability. We
further extend our framework to capture also linearizability and sequential consistency.
We illustrate how our framework can be applied for reasoning about correctness of a

variety of implementations of data structures such as linked lists.

*This work was partially supported by the Intel Collaborative Research Institute for Computational
Intelligence (ICRI-CI), by the Israeli Ministry of Science, by a Royal Society International Exchanges Grant,
and by the Randy L. and Melvin R. Berlin Fellowship in the Cyber Security Research Program.

10



2.1 Introduction

Motivation Concurrency is an essential aspect of computing nowadays. As part of the
paradigm shift towards concurrency, we face a vast amount of legacy sequential code that
needs to be parallelized. A key challenge for parallelization is verifying the correctness
of the new or transformed code. There is a fundamental tradeoff between generality and
performance in state-of-the-art approaches to correct parallelization. General purpose
methodologies, such as transactional memory [48, 74] and coarse-grained locking, which do
not take into account the inner workings of a specific data structure, are out-performed by
hand-tailored fine-grained solutions [66]. Yet the latter are notoriously difficult to develop

and verify. In this work, we take a step towards mitigating this tradeoff.

It has been observed by many that correctly implementing concurrent modifications of
a data structure is extremely hard, and moreover, contention among writers can severely
hamper performance [71]. It is therefore not surprising that many approaches do not
allow write-write concurrency; these include the read-copy-update (RCU) approach [64],
flat-combining [47], coarse-grained readers-writer locking [38], and pessimistic software
lock-elision [23]. It has been shown that such methodologies can perform better than ones
that allow write-write concurrency, both when there are very few updates relative to queries
[64] and when writes contend heavily [47]. We focus here on solutions that allow only

read-read and read-write concurrency.

A popular approach to ensuring correctness of read-only operations in the presence of
concurrent updates, is read-set validation, which checks before the operation returns that no
shared variables have changed since they were first read by the operation. In practice, this
approach is often too conservative, which adversely affects performance. For example, when
traversing a linked list, it suffices to require that the last read node is connected to the rest
of the list; there is no need to verify the values of other traversed nodes, since the operation
no longer depends on them. In this paper, we introduce a new framework for reasoning
about correctness of concurrent data structures, which replaces validation of the entire
read-set with more general conditions: instead of verifying that all read shared variables
still hold the values read from them, we verify abstract conditions over the variables. These

are captured by our new notion of base conditions.

Roughly speaking, a base condition of a read-only operation at time t, is a predicate over
shared variables, (typically ones read by the operation), that captures the local state the
operation has reached at time t. Base conditions are defined over sequential code. Intuitively,
they represent invariants that the read-only operation relies upon in sequential executions.
We show that the operation’s correctness in a concurrent execution depends on whether

these invariants are preserved by update operations executed concurrently with the read-only

11



one. We capture this formally by requiring each state in every read-only operation to have a
base point of some base condition, that is, a point in the execution where the base condition
holds. In the linked list example — it does not hurt to see old values in one section of the
list and new ones in another section, as long as we read every next pointer consistently with
the element it points to. Indeed, this is the intuition behind the famous hand-over-hand
locking (lock-coupling) approach [28, 70].

Our framework yields a methodology for verifiable reads-write concurrency. In essence,
it suffices for programmers to identify base conditions for their sequential data structure’s
read-only operations. Then, they can transform their sequential code using means such as
readers-writer locks or RCU, to ensure that read-only operations have base points when run
concurrently with updates.

It is worth noting that there is a degree of freedom in defining base conditions. If
coarsely defined, they can capture the validity of the entire read-set, yielding coarse-grained
synchronization as in snapshot isolation and transactional memories. Yet using more precise
observations based on the data structure’s inner workings can lead to fine-grained base
conditions and to better concurrency. Our formalism thus applies to solutions ranging from
validation of the entire read-set [40], through multi-versioned concurrency control [30], which
has read-only operations read a consistent snapshot of their entire read-set, to fine-grained

solutions that hold a small number of locks, like hand-over-hand locking.

Overview of Contributions This paper makes several contributions that arise from
our observation regarding the key role of base conditions. We observe that obtaining base
points of base conditions guarantees a property we call validity, which specifies that a
concurrent execution does not reach local states that are not reachable in sequential ones.
Intuitively, this property is needed in order to avoid situations like division by zero during
the execution of the operation. To avoid returning old values, we restrict the locations of the
base points that can potentially have effect on the return value of a read-only operation ro
to coincide with the return event of an update operation which either immediately precedes,
or is executed concurrently with ro. Somewhat surprisingly, this does not suffice for the
commonly-used correctness criterion of linearizability (atomicity) [49] or even sequential
consistency [53]. Rather, it guarantees a correctness notion weaker than linearizability,
similar to Lamport’s regularity semantics for registers, which we extend here for general
objects for the first time.

In Section 2.2, we present a formal model for shared memory data structure implementa-
tions and executions, and define correctness criteria. Section 2.3 presents our methodology
for achieving regularity and validity: We formally define the notion of a base condition, as

well as base points, which link the sequentially-defined base conditions to concurrent execu-

12



tions. We assert that base point consistency implies validity, and that the more restricted
base point condition, which we call regularity base point consistency, implies regularity. We
proceed to exemplify our methodology for a standard linked list implementation, in Section
2.4. In Section 2.5 we turn to extend the result for linearizability. We introduce a criterion
called linearizability base point consistency - a direct generalisation of regularity base point
consistency that restricts the base points of non-overlapping read-only operation to respect

their real-time order.

Comparison with Other Approaches The regularity correctness condition was intro-
duced by Lamport [54] for registers. To the best of our knowledge, the regularity of a data
structure as we present in this paper is a new extension of the definition.

Using our methodology, proving correctness relies on defining a base condition for every
state in a given sequential implementation. One easy way to do so is to define base conditions
that capture the entire read-set, i.e., specify that there is a point in the execution where
all shared variables the operation has read hold the values that were first read from them.
But often, such a definition of base conditions is too strict, and spuriously excludes correct
concurrent executions. Our definition generalizes it and thus allows for more parallelism in
implementations.

Opacity [43] defines a sufficient condition for validity and linearizability, but not a
necessary one. It requires that every transaction see a consistent snapshot of all values it
reads, i.e., that all these values belong to the same sequentially reachable state. We relax
the restriction on shared states busing base conditions.

Snapshot isolation [29] guarantees that no operation ever sees updates of concurrent
operations. This restriction is a special case of the possible base points that our base point
consistency criterion defines, and thus also implies our condition for the entire read-set.

In this paper we focus on correctness conditions that can be used for deriving a correct
data structure that allows reads-write concurrency from a sequential implementation. The
implementation itself may rely on known techniques such as locking, RCU [64], pessimistic
lock-elision [23], or any combinations of those, such as RCU combined with fine-grained
locking [24]. There are several techniques, such as flat-combining [47] and read-write
locking [38], that can naturally expand such an implementation to support also write-write
concurrency by adding synchronization among update operations.

Algorithm designers usually prove linearizability of by identifying a serialization point
for every operation, showing the existence of a specific partial ordering of operations [35], or
using rely-guarantee reasoning [79]. Our approach simplifies reasoning — all the designer
needs to do now is identify a base condition for every state in the existing sequential

implementation, and show that it holds under concurrency. This is often easier than finding

13



and proving serialization points, as we exemplify. In essence, we break up the task of
proving data structure correctness into a generic part, which we prove once and for all, and
a shorter, algorithm-specific part. Given our results, one does not need to prove correctness
explicitly (e.g., using linearization points or rely-guarantee reasoning, which typically result
in complex proofs). Rather, it suffices to prove the much simpler conditions that read-only
operations have base points and linearizability follows from our theorems. Another approach
that simplifies verifiable parallelization is to re-write the data structure using primitives
that guarantee linearizability such as LLX and SCX [33]. Whereas the latter focuses on
non-blocking concurrent data structure implementations using their primitive, our work is
focused on reads-write concurrency, and does not restrict the implementation; in particular,

we target lock-based implementations as well as non-blocking ones.

2.2 Model and Correctness Definitions

We consider a shared memory model where each process performs a sequence of operations
on shared data structures. The data structures are implemented using a set X = {x1, zo, ...}
of shared variables. The shared variables support atomic read and write operations (i.e., are
atomic registers), and are used to implement more complex data structures. The values in

the z;’s are taken from some domain V.

2.2.1 Data Structures and Sequential Executions

A data structure implementation (algorithm) is defined as follows:

o A set of states, S, were a shared state s € S is a mapping s : X — V), assigning values

to all shared variables. A set Sy C S defines initial states.

e A set of operations representing methods and their parameters. For example, find(7)

is an operation. Each operation op is a state machine defined by:

— A set of local states L,,, which are usually given as a set of mappings [ of values
to local variables. For example, for a local state [, [(y) refers to the value of the
local variable y in I. L,, contains a special initial local state L& L.

— A deterministic transition function 7,,(Lop X S) — Steps x Ly, x S where
step€ Steps is an atomic transition label, which can be invoke, a < read(z;),
write(x;,v), or return(v):

* An invoke changes the initial local state L into another local state, and does
not change the shared state.
« A write(z;,v) changes the local state and changes the value of shared variable

z; € X tow.

14



x A a < read(z;) reads the value of one variable x; € X from the shared state
and changes the local state accordingly (i.e., stores the value of x; in a local

variable a).

« A return(v) ends the operation by changing the local state to L and returning

v to the calling process. It does not change the shared state.

Note that there are no atomic read-modify-write steps. Invoke and return steps
interact with the application while read and write steps interact with the shared

memory.

We assume that every operation has an isolated state machine, which begins executing

from local state L.

For a transition 7(l, s) = (step,l’, s’), | determines the step. If step is an invoke, return,
or write step, then [’ is uniquely defined by [. If step is a read step, then I’ is defined by [
and s, specifically, read(z;) is determined by s(z;). Since only write steps can change the
content of shared variables, s = s’ for invoke, return, and read steps.

For the purpose of our discussion, we assume the entire shared memory is statically
allocated. This means that every read step is defined for every shared state in S. One
can simulate dynamic allocation in this model by writing to new variables that were not
previously used. Memory can be freed by writing a special value, e.g., “invalid”, to it.

A state consists of a local state [ and a shared state s. By a slight abuse of terminology,
in the following, we will often omit either shared or local component of the state if its
content is immaterial to the discussion.

A sequential execution of an operation from a shared state s; € S is a sequence of

transitions of the form:

1. l1 lo Uy 1
, invoke, , stepi, , stepa, ..., , returng, ,
S S Si+1 Sj S
where 7(ln, S$n) = (st€pm, lm+1, Snt1). The first step is invoke, ensuing steps are read or

write steps, and the last step is a return step.

A sequential execution of a data structure is a (finite or infinite) sequence p:

L L
n= 3 Olv ) 027 [ERE)
S1 59

where s; € Sy and every SL , O in p is a sequential execution of some operation. If u
J

I s
is finite, it can end after an operation or during an operation. In the latter case, we say
that the last operation is pending in u. Note that in a sequential execution there can be at

most one pending operation.

15



A read-only operation is an operation that does not perform write steps in any execution.
All other operations are update operations.

A state is sequentially reachable if it is reachable in some sequential execution of a data
structure. By definition, every initial state is sequentially reachable. The post-state of
an invocation of operation o in execution p is the shared state of the data structure after
o’s return step in u; the pre-state is the shared state before o’s invoke step. Recall that
read-only operations do not change the shared state and execution of update operations is
serial. Therefore, every pre-state and post-state of an update operation in p is sequentially
reachable. A state st’ is sequentially reachable from a state st if there exists a sequential
execution fragment that starts at st and ends at st’.

In order to simplify the discussion of initialization, we assume that every execution begins

with a dummy (initializing) update operation that does not overlap any other operation.

2.2.2 Correctness Conditions for Concurrent Data Structures

A concurrent execution fragment of a data structure is a sequence of interleaved states and
steps of different operations, where state consists of a set of local states {l;,...,l;} and a
shared state si, where every [; is a local state of a pending operation. A concurrent execution
of a data structure is a concurrent execution fragment of a data structure that starts from
an initial shared state. Note that a sequential execution is a special case of concurrent
execution.

For example, the following is a concurrent execution fragment that starts from a shared
state s; and invokes two operations: O4 and Op. The first operation takes a write step,
and then Op takes a read step. We subscript every step and local state with the operation

it pertains to.

0 {li,a}

l l l [ l
, im)okeA(), , writeA(xi,fu), { Q,A}7 i?’L’UOkGB(), { 2,A, l,B}’ a readB(a:i), { 2,A; 2,B}.
S Si Si+1 Si+1 Si+1

In the remainder of this paper we assume that for all concurrent executions u of the
date structure, and any two update operations uo; and woo invoked in u, uo; and uog are
not executed concurrently to each other (i.e., either wo; is invoked after uwog returns, or vice
versa).

For an execution o of data structure ds, the history of o, denoted H,, is the subsequence
of o consisting of the invoke and return steps in o (with their respective return values). For
a history H,, complete(H, ) is the subsequence obtained by removing pending operations,
i.e., operations with no return step, from H,. A history is sequential if it begins with an

invoke step and consists of an alternating sequence of invoke and return steps.

16



A data structure’s correctness in sequential executions is defined using a sequential
specification, which is a set of its allowed sequential histories.

Given a correct sequential data structure, we need to address two aspects when defining
its correctness in concurrent executions. As observed in the definition of opacity [43] for
memory transactions, it is not enough to ensure serialization of completed operations, we
must also prevent operations from reaching undefined states along the way. The first aspect
relates to the data structure’s external behavior, as reflected in method invocations and

responses (i.e., histories):

Linearizability A history H, is linearizable [49] if there exists H/ that can be created
by adding zero or more return steps to H,, and there is a sequential permutation 7 of
complete(H!), such that: (1) 7 belongs to the sequential specification of ds; and (2) every
pair of operations that are not interleaved in o, appear in the same order in ¢ and in 7. A
data structure ds is linearizable, also called atomic, if for every execution o of ds, H, is

linearizable.

Regularity We next extend Lamport’s regular register definition [54] for data structures
(we do not discuss regularity for executions with concurrent update operations, which can
be defined similarly to [72]). A data structure ds is regular if for every execution o of ds,
and every read-only operation ro € H,, if we omit all other read-only operations from H,,

then the resulting history is linearizable.

Sequential Consistency A history H, is sequentially consistent [53] if there exists H.,
that can be created by adding zero or more return steps to H,, and there is a sequential
permutation 7 of complete(H. ), such that: (1) 7 belongs to the sequential specification of
ds; and (2) every pair of operations that belong to the same process, appear in the same
order in ¢ and in 7. A data structure ds is sequentially consistent, if for every execution o

of ds, H, is sequentially consistent.

Validity The second correctness aspect is ruling out bad cases like division by zero or
access to uninitialized data. It is formally captured by the following notion of validity: A
data structure is valid if every local state reached in an execution of one of its operations is
sequentially reachable. We note that, like opacity, validity is a conservative criterion, which
rules out bad behavior without any specific data structure knowledge. A data structure
that does not satisfy our notion of validity may still be correct in a weaker sense, e.g., if
allowed to abort an operation, which encountered a sequentially unreachable state. We do

not address such an alternative notions of correctness in our discussion.

17



2.3 Base Conditions, Validity and Regularity

2.3.1 Base Conditions and Base Points

Intuitively, a base condition establishes some link between the local state an operation
reaches and the shared variables the operation has read before reaching this state. It is

given as a predicate ® over shared variable assignments. Formally:

Definition 2.3.1 (Base Condition). Let [ be a local state of an operation op. A predicate
® over shared variables is a base condition for [ if every sequential execution of op starting

from a shared state s such that ®(s) = true, reaches I.

For completeness, we define a base condition for step; in an execution yu to be a base
condition of the local state that precedes step; in pu.

Consider a data structure consisting of an array of elements v and a variable lastPos,
whose last element is read by the function readLast. An example of an execution fragment
of readLast that starts from state s; (depicted in Figure 2.1) and the corresponding base
conditions appear in Algorithm 1. The readLast operation needs the value it reads from
v[tmp] to be consistent with the value of last Pos that it reads into tmp because if last Pos

is newer than v[tmp], then v[tmp] may contain garbage.

[ 1 [35 [ 7 T 99 [ .. 1 [ 1 [ 2 [T 7 115 ]

lastPos v([0] v[1] v[2] lastPos v([0] v[1] v[2]
(a) s1 (b) s2

Figure 2.1: Two shared states satisfying the same base condition ®3 : lastPos = 1 Av[l] =
7.

local state base condition Function readLast()

L {} Dy : true tmp < read(lastPos)

lo: {tmp =1} D, : lastPos =1 res < read(v[tmp])

ls: {tmp=1,res="7} @3 :lastPos =1 Av[l] =7 return(res)

Algorithm 1: The local states and base conditions of readLast when executed from
s1. The shared variable lastPos is the index of the last updated value in array v. See
Algorithm 3 for corresponding update operations.

The predicate @3 : lastPos = 1 Av[l] = 7 is a base condition of [3 because l3 is reachable
from any shared state in which lastPos = 1 and v[1] = 7 (e.g., s2 in Figure 2.1), by executing
lines 1-2. The base conditions for every possible local state of readLast are detailed in
Algorithm 2.

We now turn to define base points of base conditions, which link a local state with base

condition ® to a shared state s where ®(s) holds.

Definition 2.3.2 (Base Point). Let p be a concurrent execution, ro be a read-only oper-

ation executed in u, and ®; be a base condition of the local state and step at index t in

18



Shared variables: lastPos, Vi € N : v[i]

base condition step
Dy : true tmp < read(lastPos)
O, : lastPos = tmp res < read(v[tmp])

O3 : lastPos = tmp A\ v[tmp] = res return(res)

Algorithm 2: ReadLast operation. The shared variable lastPos is the index of the last
updated value in array v. See Algorithm 3 for the corresponding update operation.

1. An execution fragment of ro in p has a base point for point ¢t with ®;, if there exists a

sequentially reachable post-state s in p, called a base point of t, such that ®;(s) holds.

Note that together with Definition 2.3.1, the existence of a base point s implies that ¢ is
reachable from s in all sequential runs starting from s.

We say that a data structure ds satisfies base point consistency if every point ¢ in every
execution of every read-only operation ro of ds has a base point with some base condition
of t.

The possible base points of read-only operation ro are illustrated in Figure 2.2. To
capture real-time order requirements we further restrict base point locations.

J’(— UO—}&UO—) l<— uo— J’(— u0—>¢<— U0_>L<— u0—>¢<— UO_J'

ro

Figure 2.2: Possible locations of r0’s base points.

Definition 2.3.3 (Regularity Base Point). A base point s of a point ¢ of 7o in a concurrent
execution u is a regularity base point if s is the post-state of either an update operation
executed concurrently with ro in p or of the last update operation that ended before ro’s

invoke step in pu.

The possible regularity base points of a read-only operation are illustrated in Figure 2.3.
We say that a data structure ds satisfies regularity base point consistency if every return
step ¢ in every execution of every read-only operation ro of ds has a regularity base point
with a base condition of ¢. Note that the base point location is only restricted for the return

step, since the return value is determined by its state.

ro

Figure 2.3: Possible locations of ro’s regularity base points.

In Algorithm 3 we see two versions of an update operation: writeSafe guarantees the
existence of a base point for every local state of readLast (Algorithm 1), and write Unsafe
does not. As shown in Section 2.3.2, writeUnsafe can cause a concurrent readLast operation
interleaved between its two write steps to see values of last Pos and v[lastPos] that do not

satisfy readLast’s return step’s base condition, and to return an uninitialized value.

19



Function writeSafe(val) Function writeUnsafe(val)

i <+ read(lastPos) i + read(lastPos)
write(v]i + 1], val) write(lastPos,i + 1)
write(lastPos,i+ 1) write(v[i + 1], val)

Algorithm 3: Unlike writeUnsafe, writeSafe ensures a regularity base point for every
local state of readLast; it guarantees that any concurrent readLast operation sees values
of lastPos and v[tmp] that occur in the same sequentially reachable post-state. It also
has a single visible mutation point (as defined in Section 2.5), and hence linearizability is
established.

2.3.2 Satisfying the Regularity Base Point Consistency

Let us examine the possible concurrent executions an invocation ro of readLast (Algorithm
1) and an invocation uo of writeSafe (Algorithm 3) with parameter 80 starting from s;
(Figure 2.1). There are four possible interleavings of write steps of uo and read steps of ro
starting from s; shown in Algorithm 4. In each of them, ro returns 7, and s; is the base
point of its last local state.
M1t p2 3t Mgt
read,o(lastPos)  readyo(lastPos)  ready,(lastPos) ready,(last Pos)
ready,(last Pos) ready,(lastPos) writeqy,(v[2], 80) writey,(v[2], 80)
writey,(v[2], 80) writey,(v[2], 80) read,o(lastPos)  read,o(lastPos)

writeyo(lastPos, 2) read,,(v[1]) writeyo(lastPos,2) read,,(v[1])
readyo(v[1]) returng,(7) readyo(v[1]) returng(7)
returngo(7) writeyo(lastPos,2) return,,(7) writeye(lastPos,2)

Algorithm 4: Four interleaved executions of invocation ro of readLast and

invocation wo of writeSafe that start from s;.

[ 2 [35 [ 7 [ 80 [ .. |
lastPos v[0] v[1] v[2]

Figure 2.4: The shared state s]. It is the post-state after executing writeSafe or writeUnsafe
from s; (Figure 2.1) with initial value 80.

Now let us examine a concurrent execution consisting of readLast and write Unsafe
(Algorithm 3), in which readLast reads a value from lastPos right after writeUnsafe writes
to it. In Algorithm 5 we see such an execution that starts from s;. The last local state of ro is
Iy = {tmp = 2,res = 99}. Neither s; and s} (Figure 2.4) satisfies ®% : last Pos = 2Av[2] = 99,
meaning that [ does not have a base point with ®%.

Below we show that this is not an artifact of our choice of a base condition — we prove

that for every base condition ®§ of I5, both ®%(s1) and P4(s)) are false.

Lemma 2.3.4. A data structure that has both writeUnsafe and readLast is not reqularity

base point consistent.

20



readgeq(lastPos)
writegeq(lastPos,2)
read,o(lastPos)
readyo(v[2])
returng,(99)
writeseq(v[2], 80)

Algorithm 5: A possible concurrent execution consisting of readLast and writeUnsafe,
starting from s;.

Proof. Given the execution of Algorithm 5 that starts from the shared state s; and
ends in shared state s}, we assume by contradiction that there is such a base condition of
5 = {tmp = 2,res = 99} that is satisfied by s; or s|. By the definition of base condition, if
we execute readLast sequentially from a shared state that satisfies I4’s base condition, we
reach 5. But if we execute readLast from s; we reach I3 : {tmp = 1,res = 7} and if we

execute from s} we reach I5 : {tmp = 2,res = 80}. A contradiction. W

2.3.3 Deriving Correctness from Base Points

We start by proving that the base point consistency implies validity.

Theorem 2.1 (Validity). If a data structure ds satisfies base point consistency, then ds is

valid.

Proof. In order to prove that ds is valid, we need to prove that for every execution u
of ds, for any operation op € p of ds, every local state is sequentially reachable. If p is a
sequential execution then the claim holds. If op is an update operation, since every update
operation is executed sequentially starting from a sequentially reachable post-state, then
every local state of op is sequentially reachable. Now we prove for op that is a read-only
operation in concurrent execution p. Given that the data structure satisfies the base point
consistency, every local state [ of every read-only operation in u has a base point spgse. In
order to show that [ is sequentially reachable, we build a sequential execution p’ that starts
from the same initial state as p and consists of the same update operations that appear in
w until spese- Then we add a sequential execution of op. Since spqse is @ base point of [, [ is
reached in y’ and therefore is sequentially reachable. H

We now prove that the regularity base point consistency implies regularity.

Lemma 2.3.5. Let u be a concurrent execution of a data structure ds. Let ro be a read-
only operation of ds executed in u, which returns v. If ds satisfies reqularity base point
consistency then there exists a sequentially reachable shared state s in pu such that: (1) s is
the post-state of some update operation that is either concurrent with ro or is the last before

ro is invoked; and (2) when executing ro from s, its return value is equal to v.

21



Proof. Let [ be the local state that precedes ro’s return step. Since 7 is deterministic, its
return value v is fully determined by [, and every execution of ro that reaches [ returns v.
Given that ds satisfies regularity base point consistency, [, which is the last local state of ro,
has a regularity base point for some base condition ® of [. Let s denote a base point of [ for
® in p. By the definition of a regularity base point, the shared state s is the post-state of
some update operation that is either concurrent with ro or is the last before ro is invoked,
and ®(s) is true. By the definition of base condition ®, we get that [ is reached in ro’s
sequential execution from s, that is, when ro is sequentially executed from s, its return

value is v. B

Theorem 2.2 (Regularity). If a data structure ds satisfies reqularity base point consistency,

then ds is regular.

Proof. In order to prove that ds is regular, we need to show that for every concurrent
execution p of ds with history H),, for any read-only operation ro € H, if we omit all other
read-only operations from H,,, the resulting history H,° is linearizable. Recall that update
operations are executed sequentially.

If i includes only update operations then p vacuously satisfies the condition. Otherwise,
let ro be a read-only operation in u. If ro is pending in u, we build a sequential history by
removing ro’s invocation from H/°, which is allowed by the definition of linearizability.

Consider now a read-only operation ro that returns in p. Since every return step of ro
has a regularity base point in g, by Lemma 2.3.5, we get that there is a shared state s in
from which ro’s sequential execution returns the same value as in u, and s is the post-state
of some update operation that is either concurrent with ro or is the last before ro is invoked.

We build a sequential execution pgg, from the sequence of update operations in p with ro

)
seq

added at point s. Then p7o is a sequential execution of ds, which belongs to the sequential

specification. Every pair of operations that are not interleaved in p appear in the same

T0

order in pgg,. Therefore, H/ is linearizable. B

2.4 Using Our Methodology

We now demonstrate the simplicity of using our methodology. Based on Theorems 2.1 and
2.2 above, the proof for correctness of a data structure (such as a linked list) becomes almost
trivial. We look at three linked list implementations — one assuming managed memory,
(i.e., automatic garbage collection, Algorithm 6), one using read-copy-update methodology
(Algorithm 7), and one using hand-over-hand locking (Algorithm 8).

For Algorithm 6, we first prove that the listed predicates are indeed base conditions,

and next we prove that it satisfies the base point consistency and the regularity base point

22



consistency. By doing so, and based on Theorems 2.1 and 2.2, we get that the algorithm
satisfy both validity and regularity.

Consider a linked list node stored in local variable n (we assume the entire node is stored
in n, including the value and next pointer). Here, head = n denotes that there is a set of
shared variables {head,nq,...,n;} such that head.next = ny A ny.next =ns A ... A\ ng = n,
i.e., that there exists some path from the shared variable head to n. Note that n is the only
element in this predicate that is associated with a specific read value. We next prove that

this defines base conditions for Algorithm 6.

Lemma 2.4.1. In Algorithm 6, ®; defined therein is a base condition of the i step of
readLast.

Proof. For ®; the claim is vacuously true. For @, let [ be a local state where readLast is
about to perform the second read step in readLast’s code, meaning that [(next) #L. Note
that in this local state both local variables n and next hold the same value. Let s be a
shared state in which head = I(n). Every sequential execution from s iterates over the list
until it reaches [(n), hence the same local state where n = [(n) and next = I(n) is reached.

For ®3, Let I be a local state where readLast has exited the while loop, hence I(n).next =L.
Let s be a shared state such that head = I(n). Since I(n) is reachable from head and
l(n).next =1, every sequential execution starting from s exits the while loop and reaches a

local state where n = I(n) and next =L. B

Lemma 2.4.2. In Algorithm 6, if a node n is read during concurrent execution i of
readLast, then there is a shared state s in p such that n is reachable from head in s and

readLast is pending.

Proof. If n is read in operation readLast from a shared state s, then s exists concurrently
with readLast. The operation readLast starts by reading head, and it reaches n.

Thus, n must be linked to some node n’ at some point during readLast. If n was
connected (or added) to the list while n’ was still reachable from the head, then there exists
a state where n is reachable from the head and we are done. Otherwise, assume n is added
as the next node of n’ at some point after n’ is already detached from the list. Nodes are
only added via insertLast, which is not executed concurrently with any remowve operation.
This means nodes cannot be added to detached elements of the list. A contradiction. W

The following lemma, combined with Theorem 2.2 above, guarantees that Algorithm 6

satisfies regularity.

Lemma 2.4.3. FEvery local state of readLast in Algorithm 6 has a reqularity base point.

Proof. We show regularity base points for predicates ®;, proven to be base points in

Lemma 2.4.1.

23



Function remove(n)
p< L
next < read(head.next) Base conditions: Function readLast()
while next # n n L
p < next Py:true  pext read(head.next)
next < read(p.next) while next # 1
write(p.next, n.next) . n <— next
@9 : head = n next < read(n.next)
Function insertLast(n) ®s : head = n  return(n)
last < readLast()
write(last.next, n)

Algorithm 6: A linked list implementation in a memory-managed environment. For
simplicity, we do not deal with boundary cases: we assume that a node can be found in
the list prior to its deletion, and that there is a dummy head node.

N N N n, n, Nt N4 n N
ﬂnext next -—pinext T» _ylnext e B~ I next o next
key key key key key key key key
ro ro ro

(a) rcuRemove(ny)'s pre-  (b) The shared state during (c¢) rcuRemove(ny)’s post-
state. ni’s removal. state.

Figure 2.5: Shared states in a concurrent execution consisting of rcuRemove(ny) and
rcuReadLast (ro).

The claim is vacuously true for ®;. We now prove for ®; and ®3 : head = n. By Lemma
2.4.2 we get that there is a shared state s where head = n and readLast is pending. Note
that n’s next field is included in s as part of n’s value. Since both update operations -
remove and insertLast - have a single write step, every shared state is a post-state of an
update operation. Specifically this means that s is a sequentially reachable post-state, and

because readLast is pending, s is one of the possible regularity base points of readLast. B

RCU Read-copy-update [64] is a synchronization strategy that aims to reduce read
operations’ synchronization overhead as much as possible, while risking a high synchronization
overhead for update operations. The idea is that only update operations require locks, and
the writes mutate the data structure in a way that ensures that concurrent readers always
see a consistent view. Additionally, writers do not free data while it is used by readers. Note
that RCU does not allow write-write concurrency.

RCU is commonly used via primitives that resemble readers-writer locks [25]: rcuReadLock
and rcuReadUnLock. There are other primitives that encapsulate list traversal, but we do
not use them in our example since we wish to illustrate the general approach. Instead, we use
primitives that are commonly used for creating RCU-protected non-list data structures (such
as arrays and trees): rcuWrite(p, v) (originally called rcuAssignPointer), and rcuRead(p)
(originally called rcuDereference) [63].

In Algorithm 7, rculWrite is a write step that changes the next pointer of n’s predecessor,

24



Function rcuRemove(n)
p< L
next < read(head.next) Base conditions: Function rcuReadLast()
while next # n reuReadLock()
p < next n+«—_1
next < read(p.next) @y :true  next < rcuRead(head.next)
rcuWrite(p.next,n.next) while next #1
rcu WaitForReaders() n < next
write(n, invalid) ®y : head = n next < rcuRead(n.next)
rcuReadUnlock()
Function insertLast(n) ®3: head = n  return(n)
last < readLast()
write(last.next, n)

Algorithm 7: An RCU linked list implementation. For simplicity, we do not deal with
boundary cases: we assume that a node can be found in the list prior to its deletion, and
that there is a dummy head node.

and it occurs between the shared states (a) and (b) in Figure 2.5. The invalidation of n
takes place once all read-only operations that use n no longer hold a reference to it, as
guaranteed by rcuWaitForReaders(). The latter happens between the shared states of
(b) and (c). The rcuReadLast operation holds at most a single reference to list node at a
given time, and our base condition links head to it. We see in Figure 2.5 that invalid nodes
are unreachable from head in sequentially reachable post-states. Thus, the base condition
head = n implies that ro never holds a pointer to an invalid node.

The correctness of the base conditions annotated in Algorithm 7 follows the same
reasoning as Lemma 2.4.1, and hence we omit it here. We now prove that Algorithm 7
satisfies regularity base point consistency, and therefore by Theorems 2.1 and 2.2, Algorithm

7 satisfies validity and regularity.

Lemma 2.4.4. In Algorithm 7, if a node n is read during concurrent execution i of
rcuReadlLast, then there is a state where the shared state is s in u such that n is reachable

from head in s and ro is pending.

Proof. If nisread in operation rcuReadLast from a shared state s, then s exists concurrently
with rcuReadLast. The operation rcuReadLast starts by reading head, and it reaches n.
Thus, n must be linked to some node n’ at some point during rcuReadLast. If n was
connected (or added) to the list while n’ was still reachable from the head, then there exists
a state where n is reachable from the head and we are done. Otherwise, assume n is added
as the next node of n’ at some point after n’ is already detached from the list. Nodes are
only added via insertLast, which is not executed concurrently with any rcuRemove operation.

This means nodes cannot be added to detached elements of the list. A contradiction. W
Lemma 2.4.5. FEvery local state of rcuReadLast in Algorithm 7 has a regularity base point.

25



Proof. We show regularity base points for predicates ®;, proven to be base points in
Lemma 2.4.1. The claim is vacuously true for @;.

We now prove for ®3 and ®3 : head = n. Every read step is encapsulated by rcuRead,
and is surrounded by rcuReadLock and rcuReadUnlock. These calls guarantee that as long
as the reader holds a reference to the value it read using rcuRead, the value cannot be
changed by the write step of rcuRemowve that removes a node from the list. In addition,
rcuRemove waits for all readers to forget a node before invalidating it, and invalidates it
only after the node is not reachable. Therefore, it is guaranteed that every node that is
read is valid. In addition, Lemma 2.4.4 guarantees that there is a shared state s where
head = n and rcuReadLast is pending. Note that n’s next field is included in s as part of
n’s value. Since the invalidation is not visible to the readers, the post-state of rcuRemowve
and the shared state after rcu WaitForReaders() are indistinguishable to the readers. The
operation insertLast has one write step have a single write step and therefore it is always
found between two sequentially reachable shared states.

In conclusion, every shared state is a post-state of an update operation from every reader
perspective. Specifically this means that s is a sequentially reachable post-state, and because

rcuReadLast is pending, s is one of the possible regularity base points of rcuReadLast. B

hand-over-hand locking In hand-over-hand locking, a data structure is traversed by
holding a lock to the next node in the traversal before unlocking the previous one.

In Algorithm 8 we give a linked list implementation using hand-over-hand locking. The
locks used therein are readers-writer locks [62], where write locks are exclusive and multiple
threads can obtain read locks concurrently. We define a lock for every shared variable x; € X,
and extend the model with lock(z;) and unlock({zi,,xi,,...}) steps. The correctness of the
base conditions annotated in Algorithm 8 follows the same reasoning as Lemma 2.4.1, and
hence we omit it here. The reachable post-states in Figure 2.5 are (a) and (c). State (b)
does not occur in this implementation since ro cannot access n concurrently with an update
operation that holds n’s lock. In the following lemma we prove that Algorithm 8 satisfies

regularity base point consistency.

Lemma 2.4.6. In Algorithm 8, if a node n is read during concurrent execution i of
hohReadLast, then there is a state where the shared state is s in p such that n is reachable

from head in s and ro is pending.

Proof. Ifnisread in operation hohReadLast from a shared state s, then s exists concurrently
with hohReadLast. The operation hohReadLast starts by reading head, and it reaches n.
Thus, n must be linked to some node n’ at some point during hohReadLast. If n was

connected (or added) to the list while n’ was still reachable from the head, then there exists

26



Function hohRemove(n)
p<— L
lock(head.next)
next < read(head.next) Base conditions: Function hohReadLast()
while next # n n< L
p < next lock(head.next)
lock(p.next) ®, : true  next < read(head.next)
unlock(p) while next #_1
next < read(p.next) n < next
write(p.next, n.next) i lock(n.next)
lock(n) ®y - head = n next < read(n.next)
invalidate(n) unlock(n)
unlock(n, p) . unlock(next)
®3: head = n  return(n)
Function insertLast(n)
last < readLast()
write(last.next, n)

Algorithm 8: A linked list implementation using hand-over-hand locking. For simplicity,
we do not deal with boundary cases: we assume that a node can be found in the list prior
to its deletion, and that there is a dummy head node.

a state where n is reachable from the head and we are done. Otherwise, assume n is added as
the next node of n’ at some point after n’ is already detached from the list. Nodes are only
added via insertLast, which is not executed concurrently with any hohRemove operation.

This means nodes cannot be added to detached elements of the list. A contradiction. B

Lemma 2.4.7. Every local state of hohReadLast in Algorithm 8 has a reqularity base point.

Proof. We show regularity base points for predicates ®;, proven to be base points in
Lemma 2.4.1. The claim is vacuously true for ®;.

We now prove for ®5 and @3 : head = n. In hohReadLast, the reader reads a node only
after locking it. Thus, the invalidation of that node is not visible to the readers due to the
locking that hohRemove performs before any write step, meaning that the post-state of
hohRemove and the shared state after the first write step of hohRemove are indistinguishable
to the readers. Therefore, the reader only sees valid nodes. In addition, Lemma 2.4.6
guarantees that there is a shared state s where head = n and hohReadLast is pending. Note
that n’s next field is included in s as part of n’s value.

The operation insertLast has one write step have a single write step and therefore it is
always found between two sequentially reachable shared states.

In conclusion, every shared state is a post-state of an update operation from every reader
perspective. Specifically this means that s is a sequentially reachable post-state, and because

hohReadLast is pending, s is one of the possible regularity base points of hohReadLast. B

27



2.5 Linearizability

We first show that regularity base point consistency is insufficient for linearizability. In
Figure 2.6 we show an example of a concurrent execution where two read-only operations oy
and rog are executed sequentially, and both have regularity base points. The first operation,
ro1, reads the shared variable first name and returns Joe, and roy reads the shared variable
surname and returns Doe. An update operation uo updates the data structure concurrently,
using two write steps. The return step of ro; is based on the post-state of uo, whereas
rog’s return step is based on the pre-state of wo. There is no sequential execution of the

operations where ro; returns Joe and ros returns Doe.

Shared variables: | ______________ e e Shared variables:
firstname=Ron ©~ "~ :::;‘::\\\ "7 779 first name = John
surname = Doe write(first name, John) il uo \\‘ write(surname, Smith) surname = Smith
“—ror—— —ro—
return first name: return surname:
return(John) return(Doe)

Figure 2.6: Every local state of ro; and 702 has a regularity base point, and still the
execution is not linearizable. If ro; and ros belong to the same process, then the execution
is not even sequentially consistent.

Thus, an additional condition is required for linearizability. We suggest linearizability

base point consistency - a condition that adds a restriction to the possible locations of the

regularity base points, and is suffice for linearizability.

2.5.1 Linearizability Base Point Consistency

Recall that in order to satisfy linearizability, a data structure needs to guarantee that for
every concurrent execution p there is an equivalent sequential execution fiseq such that the
order between non-interleaved operations in p is preserved in fiseq. One way to ensure this is
to determine that the order between the base points has to follow the order of non-interleaved

read-only operations.

Definition 2.5.1 (Linearizability Base Point). A base point s of a point ¢ of ro in a con-
current execution p is a linearizability base point if s is the post-state of either an update
operation executed concurrently with ro in u or of the last update operation that ended

before ro’s invoke step in pu.

The possible linearizability base points of a read-only operation are illustrated in Figure
2.7. We say that a data structure ds satisfies linearizability base point consistency if every
return step t in every execution of every read-only operation ro of ds has a linearizability

base point with a base condition of ¢.

28



«—Uuo— %UO—)L%UO—J%UO—J%UO—) «—Uo—

ro

Figure 2.7: Possible locations of ro’s linearizability base points.

Notice that base point consistency, regularity base point consistency and linearizability
base point consistency, are a sequence in which each condition is a subset of the previous one
in terms of possible base point locations. This construction of criteria for data structures
correctness follow the construction of Lamport for safe, regular and atomic registers [54].
The connection between regular and linearizable data structures, (as defined by regularity
and linearizability base point consistency), reflects the one between regular and atomic

registers. Notice that safe data structure can be defined in the same sense.

Theorem 2.3 (Linearizability). If a data structure ds satisfies linearizability base point

consistency, then ds is linearizable.

Proof. Given a concurrent execution p of ds, we create a total ordering o of operations in

w as follows:
e The order of the update operations in o is the same as their order in pu.

e Let ro be a read-only operation in u which returns v. Since ds satisfies linearizability
base point consistency, by Lemma 2.3.5, there exists a sequentially reachable state s,
which is a post-state of an update operation uo such that wo is either concurrent with
ro, or returns before ro is invoked, and the return value of ro is v if it is executed
sequentially from s. We therefore, insert immediately the return step of wo, and (2)
completes before any wo’ which follows uo in o is invoked. If two read-only operations
roy and roo share the same post-state s, and ro; returns before ros is invoked in p,
then 701 is placed before ros in 0. Otherwise, the order between them is arbitrary
provided they are inserted sequentially one after the other, and none of them is inserted

after wo’ is invoked.

Since by Lemma 2.3.5, the return value of each 7o is the same as the one that will be
returned in a sequential execution of ro if it is invoked after the write operation immediately
preceding ro in o, o is a valid sequential execution of ds.

It remains to show that o preserves the relative order of each pair of non-overlapping
operations in u. First, it is easy to see that the order of each pair of operations op; and opo
such that either both op; and opo are updates, or exactly one of them is an update, and the
the other one is read-only is the same in both i and o.

Let ro; and ros be two complete read-only operations in y such that ro; returns before
rog is invoked in p; and r01’s base point sy is distinct from r02’s base point sy such that sy

and sy are post-states of update operations uo; and uoy respectively.

29



Assume by way of contradiction that ros precedes ro; in o. By construction of o, uos,
(resp., uo1), is the last update operation preceding ros (resp., ro1). Also, by construction,
uo2 must precede uoj in u, and their respective post-states s and s; are base points of 702
and ro; respectively. However, since so is reached earlier than s, by linearizability base
point consistency, ros must precede ro; in u, which is a contradiction.

We conclude that o is a valid sequential execution of ds, which preserves the order of all
non-overlapping operations in . Therefore, the history H of ¢ belongs to the sequential
specification of ds, and preserves the order of all non-overlapping operations in u. Hence, H

is a linearization of . W

2.6 Sequential Consistency

Some systems use the correctness criterion of sequential consistency [53], which relaxes
linearizability by not requiring real time order (RTO) between operations of different
processes.

Note that sequential consistency and regularity are incomparable: Regularity does not
impose RTO on read-only operations even if they belong to the same process, while in
sequential consistency, the RTO of read-only operations of the same process is preserved.
On the other hand, regularity enforces the RTO between an update operation and every
other operation, while sequential consistency allows re-ordering of operations executed by
different processes.

We say that a data structure ds satisfies sequentially base point consistency if it satisfies
the base point consistency, and for every concurrent execution g in which a read-only
operation roj of ds precedes a read-only operation ros of ds and both belong to the same
process, the return step of ro; has a base point in u that precedes or equals to rog’s return
step’s base point in pu.

We now prove that the sequentially base point consistency condition ensures sequential

consistency.

Lemma 2.6.1. Let 1 be a concurrent execution such that: (1) p starts from a sequentially
reachable post-state s; and (2) every return step of every read-only operation in p has a base
point ; and (3) for every read-only operation roy that precedes a read-only operation ros of
the same process, the return step of roy has a base point in u that precedes or equals to ros’s
return step’s base point in L.

Then there is a sequential execution [iseq such that: (1) pseq and p contain the same
operations; and (2) for every process, all its operations appear in the same order in fiseq and

mn .

30



Proof. We build a sequential execution jiseq in the following way: (1) pgseq starts from
the same shared state s as p. It is given that s is sequentially reachable. (2) All update
operations in p appear in the same order in fi5q. (3) Every read-only operation ro in p is
executed in fi5q from a post-state that is a base point of the return step of ro. It is given
that for operations of the same process, different base points appear in the execution in
the same order as the operations do. Therefore if there are multiple possibilities for a base
point, the operation is executed from the base point according to the that order. Read-only
operations of the same process that have the same base point are executed from it at the
same order in fiseq as in p. (4) The order of read-only operations that do not belong to the
same process and are executed from the same base point is arbitrary.

Since only update operations can change the shared state and their sequential order
is the same in both executions, every update operation is executed in fise, from the same
shared state as in pu. By the definitions of base point and base condition we get that every
read-only operation in piseq returns the same value in piseq as in p — 7o is executed from a
shared state that is a base point of its return step, and the last local state determines ro’s

return value. B

Theorem 2.4 (Sequential consistency). If a data structure ds satisfies sequentially base

point consistency, then ds is sequentially consistent.

Proof. Let p be a concurrent execution of ds. By Lemma 2.6.1 we get that there is a

sequential execution fiseq, such that H,

liseq 18 @ permutation of complete(H,,) that belongs to

the sequential specification of ds and keeps the RTO of operations that belong to the same

process in pu. Thus ds is sequentially consistent.

Acknowledgements

We thank Naama Kraus, Dahlia Malkhi, Yoram Moses, Dani Shaket, Noam Shalev, and

Sasha Spiegelman for helpful comments and suggestions.

31



Chapter 3

Paper: A Constructive Approach
for Proving Data Structures’

Linearizability

Kfir Lev-Ari, Gregory V. Chockler, Idit Keidar: “A Constructive Approach for Proving
Data Structures’ Linearizability”. Distributed Computing 29th International Symposium,
DISC 2015 Tokyo, Japan, October 7-9, 2015 Proceedings. ed. / Yoram Moses. Vol. 9363
Springer-Verlag, 2015. p. 356-370.

In this paper we generalize base-point analysis to any type of data structure and provide

a constructive road-map for proving correctness of data structures (exemplify via Lazy List).

32



A Constructive Approach

for Proving Data Structures’ Linearizability *

Kfir Lev-Ari!, Gregory Chockler?, and Idit Keidar!

1Viterbi Department of Electrical Engineering, Technion, Haifa, Israel

2(CS Department, Royal Holloway University of London, Egham, UK

Abstract

We present a comprehensive methodology for proving correctness of concurrent
data structures. We exemplify our methodology by using it to give a roadmap for
proving linearizability of the popular Lazy List implementation of the concurrent set
abstraction. Correctness is based on our key theorem, which captures sufficient conditions
for linearizability. In contrast to prior work, our conditions are derived directly from the
properties of the data structure in sequential runs, without requiring the linearization

points to be explicitly identified.

3.1 Introduction

While writing an efficient concurrent data structure is challenging, proving its correctness
properties is usually even more challenging. Our goal is to simplify the task of proving
correctness. We present a methodology that offers algorithm designers a constructive way
to analyze their data structures, using the same principles that were used to design them in
the first place. It is a generic appproach for proving handcrafted concurrent data structures’
correctness, which can be used for presenting intuitive proofs.

The methodology we present here generalizes our previous work on reads-write concur-
rency [56], and deals also with concurrency among write operations as well as with any

number of update steps per operation (rather than a single update step per operation as in

*This work was partially supported by the Israeli Science Foundation (ISF), the Intel Collaborative
Research Institute for Computational Intelligence (ICRI-CI), by a Royal Society International Exchanges
Grant [E130802, and by the Randy L. and Melvin R. Berlin Fellowship in the Cyber Security Research
Program.

33



[56]). To do so, we define the new notions of base point preserving steps, commutative steps,
and critical sequence. We demonstrate the methodology by proving linearizability of Lazy
List [46], as opposed to toy examples in [56].

Our analysis consists of three stages. In the first stage we identify conditions, called
base conditions [56], which are derived entirely by analysis of sequential behavior, i.e., we
analyze the algorithm as if it is designed to implement the data structure correctly only in
sequential executions. These conditions link states of the data structure with outcomes of
operations running on the data structure from these states. More precisely, base conditions
tell us what needs to be satisfied by a state of the data structure in order for a sequential
execution to reach a specific point in an operation from that state. For example, Lazy List’s
contains(31) operation returns true if 31 appears in the list. A possible base condition for
returning true is “there is an element that is reachable from the head of the list and its
value is 31”7. Every state of Lazy List that satisfies this base condition causes contains(31)
to return true.

In the second stage of our analysis we prove the linearization of update operations,
(i.e., operations that might modify shared memory). We state two conditions on update
operations that together suffice for linearizability. The first is commutativity of steps taken
by concurrent updates. The idea here is that if two operations’ writes to shared memory
are interleaved, then these operations must be independent. Such behavior is enforced by
standard synchronization approaches, e.g., two-phase locking. The second condition requires
that some state reached during the execution of the update operation satisfy base conditions
of all the update operation’s writes. For example, the update steps of an add(7) operation in
Lazy List depend on the predecessor and successor of 7 in the list. Indeed, Lazy List’s add(7)
operation writes to shared memory only after locking these nodes, which prevent concurrent
operations from changing the two nodes that satisfy the base conditions of add(7)’s steps.

In the third stage we consider the relationship between update operations and read-only
operations. We first require each update operation to have at most one point in which it
changes the state of the data structure in a way that “affects” read-only operations. We
capture the meaning of “affecting” read-only operations using base conditions. Intuitively,
if an update operation has a point in which it changes something that causes the state to
satisfy a base condition of a read-only operation, then we know that this point defines the
outcome of the read-only operation. For example, Lazy List’s remove(3) operation first
marks the node holding 3, and then detaches it from its predecessor. Since contains treats
marked nodes as deleted, the second update step does not affect contains.

In addition, we require that each read-only operation has a state in the course of its
execution that satisfies its base condition. In order to show that such a state exists, we need

to examine how the steps that we have identified in the update operations affect the base

34



conditions of the read-only operations. For example, in Lazy List, contains(9) relies on the
fact that if a node holding 9 is reachable from the head of the list, then there was some
concurrent state in which a node holding 9 was part of the list. We need to make sure that
the update operations support this assumption.

The remainder of this paper is organized as follows: Section 3.2 provides formal prelimi-
naries. We formally present and illustrate the analysis approach in Section 3.3. We state
and prove our main theorem in Section 3.4. Then, we demonstrate how base point analysis

can be used as a roadmap for proving linearizability of Lazy List in Section 3.5.

3.2 Preliminaries

We extend here the model and notions we defined in [56]. Generally speaking, we consider a
standard shared memory model [26] with one refinement, which is differentiating between
local and shared state, as needed for our discussion.

Each process performs a sequence of operations on shared data structures implemented
using a set X = {xj,x9,...} of shared variables. The shared variables support atomic
operations, such as read, write, CAS, etc. A data structure implementation (algorithm) is

defined as follows:

o A set S of shared states, some of which are initial, where s € S is a mapping assigning

a value to each shared variable.

e A set of operations representing methods and their parameters (e.g., add(7) is an
operation). Each operation op is a state machine defined by: A set of local states
Lop, which are given as mappings [ of values to local variables; and a deterministic
transition function 7,,(Lyp X S) — Steps x Lo, x S where Steps are transition labels,

such as invoke, return(v), a < read(x; ), write(z;,v), CAS(x;,Void,Vnew ), €tC.

Invoke and return steps interact with the application, while read and write steps
interact with the shared memory and are defined for every shared state. In addition, the
implementation may use synchronization primitives (locks, barriers), which constrain the
scheduling of ensuing steps, i.e., they restrict the possible executions, as we shortly define.

For a transition 7(l, s) = (step,l’,s'), | determines the step. If step is an invoke or return,
then !’ is uniquely defined by I. Otherwise, I’ is defined by [ and potentially s. For invoke,
return, read and synchronization steps, s = s’. If any of the variables is assigned a different
value in s than in s’, then the step is called an update step.

A state consists of a local state [ and a shared state s. We omit either the shared or

the local component of the state if its content is immaterial to the discussion. A sequential

35



execution of an operation from a shared state s; € S is a sequence of transitions of the form:

. Iy l2 Ik 1

, invoke, , stepi, , stepa, ..., , returng, ,

Si Si Si+1 S5 j

where L is the operation’s initial local sate and 7(l,, sn) = (stepm, lm+1, Snt1). The first
step is invoke and the last step is a return step.

A sequential execution of a data structure is a (finite or infinite) sequence u:

1 4

in p is a sequential execution of some operation. If y

where s1 € Sg and every jﬁ, 0;, .
51 sj ;

is finite, it can end after an operﬁ)n or during an operation. In the latter case, we say
that the last operation is pending in u. Note that in a sequential execution there can be at
most one pending operation.

A concurrent execution fragment of a data structure is a sequence of interleaved states
and steps of different operations, where each state consists of a set of local states {;,...,[;}
and a shared state s, where every [; is a local state of a pending operation, which is
an operation that has not returned yet. A concurrent execution of a data structure is a
concurrent execution fragment that starts from an initial shared state and an empty set
of local states. In order to simplify the discussion of initialization, we assume that every
execution begins with a dummy (initializing) update operation that does not overlap any
other operation. A state s’ is reachable from a state s if there exists an execution fragment
that starts at s and ends at s’. A state is reachable if it is reachable from an initial state.

An operation for which there exists an execution in which it perform update steps is

called update operation. Otherwise, it is called a read-only operation.

A data structure’s correctness in sequential executions is defined using a sequential
specification, which is a set of its allowed sequential executions. A linearization of execution

1 is a sequential execution p;, such that:
e Every operation that is not invoked in p is not invoked in .

e Every operation that returns in p returns also in p; and with the same return value.

1 belongs to the data structure’s sequential specification.

The order between non-interleaved operations in p and y; is identical.

A data structure is linearizable [49] if each of its executions has a linearization.

36



3.3 Base Point Analysis

In this section we present key definitions for analyzing and proving correctness using what
we call base point analysis. We illustrate the notions we define using Lazy List [46], whose
pseudo code appears in Algorithm 1.

> Dye(s,n1,no,e): (Head = n1) A (n1.next = ny) A —my.marked N —ng.marked
A (ni.val < e) A (e < ng.val)

1 Function contains(e) 27 Function locate(e)

2 ¢ < read(Head) 28 while true

3 while read(c.val) < e 29 ny < read(Head)

4 ¢ < read(c.next) 30 ny  read(n;.next)

5 > ®,:(Head = c) A (c.val >e) 31 while read(ng.val) <e
A (An:(Head = n) A 32 g
(e < nwal < cval)) 33 n2 ¢ read(ng.next)

if read(c.marked)vread(c.val) #e 3% lock(n1)

6
7 > ®.NA(c.marked Vc.val # e) 35 !OCk(nQ)
: return false 36 if read(n;.marked) = false N
: else 37 read(ny.marked) = false N
10 > &. N (=c.markedNc.val = e) 38 read(n.next) = nj
11 return true 39 return {n1,nz)
40 else
41 unlock(ny, ng)
12 Function add(e) 42 Function remove(e)
13 (n1,n2) < locate(e) 43 (n1,m2) < locate(e)
14 > Poe(s,n1,m9,€) 44 > Doe(s,n1,m9,€)
15 if read(ng.val) # e 45 if reéd(hg.val) =e
16 > Dioe(s,n1,n2,e) A (ng.val # e) 46 > Die(s,n1,n2,e) A (ne.val = e)
17 wr%te(ng, new Node(e, n3)) a7 Write(ﬁz.mark‘ed, true_)
18 write(ni.next, n3) 48 write(ny.next, ny.next)
19 unlock(n,) 49 unlock(nq)
20 unlock(ny) 50 unlock(ns)
21 return true 51 return true
22 else 52 else
23 > Dioc(s, n1,m2,¢) A (ngval =e) > ®e(s,n1,n2,€) A (n2.val # e)
24 unlock(n;) 54 unlorcki(nl)’ - _
25 unlock(nsz) 55 unlock(ns)
26 return false 56 return false

Algorithm 1: Lazy List. Base conditions are listed as comments, using ®;,. defined above
the functions.

We start by defining base conditions [56]. A base condition establishes a connection
between the local state that an operation reaches and the shared variables the operation has
read before reaching this state. It is given as a predicate ® over shared variable assignments.

Formally:

Definition 3.3.1 (Base Condition). Let [ be a local state of an operation op. A predicate

® over shared variables is a base condition for [ if every sequential execution of op starting

37



from a shared state s such that ®(s) is true, reaches I.

For completeness, we define a base condition for step; in an execution p to be a base
condition of the local state that precedes step; in u. For example, consider an execution
of Lazy List’s contains(31) operation that returns true. A possible base condition for that
return step is ¢ : “there is an unmarked node in which key = 31, and that node is reachable
from the head of the list”. Every sequential execution of contains(31) from a shared state
that satisfied ¢ reaches the same return true step. Base conditions for all of Lazy List’s
update and return steps are annotated in Algorithm 1, and are discussed in detail in Section
3.5.1 below.

For a given base condition, the notion of base point [56] links the local state that has

base condition ® to a shared state s where ®(s) holds.

Definition 3.3.2 (Base Point). Let op be an operation in an execution u, and let ®; be a
base condition for the local state at point ¢ in . An execution prefix of op in p has a base
point for point t with ®,, if there exists a shared state s in u, called a base point of t, such

that ®;(s) holds.

Note that together with Definition 3.3.1, the existence of a base point s for point ¢ implies
that the step or local state at point ¢ in operation op is reachable from s in a sequential run
of op starting from s. In Figure 3.1 we depict two states of Lazy List: s; is a base point for

a return true step of contains(7), whereas sy is not.

S1 Marked = false Marked = false Marked = false
—| Val=3, Next = Val=7, Next = Val=9, Next =
52 Marked = false Marked = true Marked = false
——| Val=3, Next = Val=7, Next = Val=9, Next =-|

Figure 3.1: Two states of Lazy List (Algorithm 1): s; is a base point for contains(7)’s
return true step, as it satisfies the base condition ”there is a node that is reachable from
the head of the list, and its value is 77. The shared state sy is not a base point of this step,
since there is no sequential execution of contains(7) from sy in which this step is reached.

Let sp and s1 be two shared states, and let sg, st, s1 be an execution fragment. We call
so the pre-state of step st, and s; the post-state of st.
We now define base point preserving steps, which are steps under which base conditions

are invariant.

Definition 3.3.3 (Base Point Preserving Step). A step st is base point preserving with
respect to an operation op if for any update or return step b of op, for any concurrently
reachable pre-state of st, st’s pre-state is a base point of b if and only if st’s post-state is a

base point of b.

38



An example of a base point preserving step is illustrated in Figure 3.2. In this example,
the second write step in Lazy List’s remove operation is base point preserving for contains.
Intuitively, since contains treats marked nodes as removed, the same return step is reached
regardless whether the marked node is detached from the list or reachable from the head of

the list.

remove(7) : c
51 Marked = false Marked = false Marked = false
——| Val=3, Next = Val=7, Next = Val=9, Next =+——
write(Marked, true)
s ©
21 Marked = false Marked = true Marked = false
>| Val=3, Next = Val=7, Next = Val=9, Next =-| >
write(Next, C)
C
52 Marked = false Marked = true Marked = false
——| Val=3, Next = Val=7, Next = Val=9, Next = +——

/

Figure 3.2: Operation remove(7) of Lazy List has two write steps. In the first, marked
is set to true. In the second, the next field of the node holding 3 is set to point to the
node holding 9. If a concurrent contains(7) operation sequentially executes from state sq, it
returns true. If we execute contains(7) from s}, i.e., after remove(7)’s first write, contains
sees that 7 is marked, and therefore returns false. If we execute contains from state sq, after
remove(7)’s second write, contains does not see B because it is no longer reachable from
the head of the list, and also returns false. The second write does not affect the return step,
since in both cases it returns false.

3.4 Linearizability using Base Point Analysis

We use the notions introduced in Section 3.3 to define sufficient conditions for linearizability.
In Section 3.4.1 we define conditions for update operations, and in Section 3.4.2 we define
an additional condition on read-only operations, and show that together, our conditions

imply linearizability.

3.4.1 Update Operations

We begin by defining the commutativity of steps.

Definition 3.4.1 (Commutative Steps). Consider an execution p of a data structure ds
that includes the fragment a, s1,b, so. We say that steps a and b commute if a, s1,b, 52 in p

can be replaced with b, s, a, s2, so that the resulting sequence p’ is a valid execution of ds.

We now observe that if two update steps commute, then their resulting shared state is

identical for any ordering of these steps along with interleaved read steps.

39



Observation 3.4.2. Let sp,a, s1,b, 52 be an execution fragment of two update steps a and
b that commute, then sy is the final shared state in any execution fragment that starts from

so and consists of a, b and any number of read steps (for any possible ordering of steps).

We are not interested in commutativity of all steps, but rather of “critical” steps that

modify shared memory or determine return values. This is captured by the following notion:

Definition 3.4.3 (Critical Sequence). The critical sequence of an update operation op in
execution y is the subsequence of op’s steps from its first to its last update step; if op takes

no update steps in u, then the critical sequence consists solely of its last read.

For example, if in Lazy List op1 = add(2) and ops = add(47) concurrently add items in
disjoint parts of the list, then all steps in op;’s critical sequence commute with all those in
opo’s critical sequence. The same is not true for list traversal steps taken before the critical
sequence, since ops may or may not traverse a node holding 2, depending on the interleaving
of op; and opsy’s steps. In general, Lazy List uses locks to ensure that the critical steps of
two operations overlap only if these operations’ respective steps commute. This is our first
condition for linearizability of update operations.

Our second requirement from update operations is that each critical sequence begin its
execution from a base point of all the operation’s update and return steps. Together, we

have:

Definition 3.4.4 (Linearizable Update Operations). A data structure ds has linearizable

update operations if for every execution pu, for every update operation uo; € u:

1. Yuo;j € p,1 # j, if the critical sequence of uo; interleaves with the critical sequence
of uo; in p, then all of uo;’s steps in its critical sequence commute with all of the
steps in uo;’s critical sequence, and all the update steps of uo; and uo; are base point

preserving for uo; and wo; respectively.

2. The pre-state of uo;’s critical sequence is a base point for all of uo;’s update and return
steps, and moreover, if uo; is complete in p, then this state is not a base point for any

other possible update step of uo;.

To satisfy these conditions, before its critical sequence, an update operation takes actions
to guarantee that the pre-state of its first update will be a base point for the operation’s
update and return steps, as depicted in Figure 3.3. For example, any algorithm that follows
the two-phase locking protocol [31] satisfies these conditions: operations perform concurrent
modifications only if they gain disjoint locks, which means that their steps commute. And
in addition, once all locks are obtained by an operation, the shared state is a base point for

all of its ensuing steps, i.e., for its critical sequence.

40



critical sequence

T e 3

—- 1 —

%, P % "”z;é, ""?;x@ ”’f/,s %,

%% Base % ”
Point

Figure 3.3: The structure of update operations. The steps before the critical sequence
ensure that the pre-state of the first update step is a base point for all of the update and
return steps.

We now show that every execution that has linearizable update operations and no

read-only operations is linearizable.

Lemma 3.4.5. Let p be an execution consisting of update operations of some data structure
that has linearizable update operations. Let i’ be a sequential execution of all the operations
in w starting from the same initial state as p such that if some operation opy’s critical
sequence ends before the critical sequence of another operation ops begins in u, then opy

precedes opy in p'. Then p' is a linearization of .

Proof. By construction, p' includes only invoke steps from p, and every two operations
that are not interleaved in p occur in the same order in p and g/. It remains to show that
every operation has the same return step in p and p'.

Denote by 1 the prefix of 4/ consisting of ¢ operations, and by u; the subsequence of p
consisting of the steps of the same i operations. Denote by op; the i*" operation in 1.

We prove by induction on 7 that y} is a linearization of p; and both executions end in the
same final state. As noted above, for linearizability, it suffices to show that all operations
that return in both u) and p; return the same value.

The first operation in both p and p’ is a dummy initialization, which returns before all
other operations are invoked. Hence, u; = ), and their final states are identical.

Assume now that p} is a linearization of p; and their final states are the same. The
critical sequence of op;y1 in p;4+1 overlaps the critical sequences of the last zero or more
operations in u;. We need to show that (1) the execution of op;y; that overlaps these steps
in pi4+1 yields the same return value and the same final state as a sequential execution of
opi+1 from the final state of p;; and (2) the return values of the operations that op;11 is
interleaved with in ;41 are unaffected by the addition of op;+1’s steps.

(1) By definition 3.4.4, the pre-state p of op;y1’s critical sequence in ji;41 is a base point
for op;11’s update and return steps. Note that p occurs in ;41 before any update step of
opi+1, and thus it also occurs in p;. Thus, the same p occurs also in p;. All the update
steps after p in p1;11 belong to operations that have interleaved critical sequences with op;1
in pi4+1, and therefore by definition 3.4.4 their update steps are base point preserving for
opi+1. These are the update steps that occur after p in u;, and so the final state of p; is a

base point for the update and return steps that op;y1 takes in ;1.

41



By the induction hypothesis, the last states of y; and p are identical, and we conclude
that op;y1 has the same update and return steps in j;41 and pj ;.

In addition, the final states of y;11 and p;,; occur at the end of execution fragments
that consist of the same update steps, s.t. if two update steps have different orders in ;41
and in p;, ; then they are commute. By Observation 3.4.2 we conclude that the last states
of pi1 and g are identical.

(2) If an update step of op;11 occurs in p; 41 before operation op;’s return step, then
op;i+1 has an interleaved critical sequence with op;. This means that all of op;;1’s update
steps are base point preserving for op;. Thus, the same base points are reached before op;’s
critical sequences in j; and in p;11. By definition 3.4.4, op; takes the same update and

return steps in p; and piyr. B

3.4.2 Read-Only Operations

We state two conditions that together ensure linearizability of read-only operations. First,
each read-only operation ro should have a base point for its return step, which can be either
a post-state of some step of operation that is concurrent to ro, or the pre-state of ro’s
invoke step. Second, update operations should have at most one step that is not base point
preserving for read-only operations.

In Theorem 3.1 we present a sufficient condition for linearizability. Intuitively, we want
the linearizable update operations to satisfy two conditions: (1) the read-only operations
should see the update operations as a sequence of single steps that mutate the shared state.
To express this relation we use the base point preserving property; and (2) the update
operations should guarantee the correctness of the returned values of the read-only operation,

as expressed by the return steps’ base conditions.

Theorem 3.1. Let ds be a data structure that has linearizable update operations. If ds

satisfies the following conditions, it is linearizable:

1. Every update operation of ds has at most one step that is not base point preserving

with respect to all read-only operations.

2. For every execution u, for every complete read-only operation ro € i, there exists in
1 a shared state s between the pre-state of ro’s invoke step and the pre-state of ro’s

return step (both inclusive) that is a base-point for ro’s return step.

Proof. For a given execution u~, let u be an execution that is identical to u~ with the
addition that all pending operations in p~ are allowed to complete. Note that u also has
linearizable update operations. We now show that p has a linearization, and therefore p~

has a linearization.

42



We build a sequential execution fise4 as follows:
1. piseq starts from the same shared state as p.

2. We sequentially execute all the update operations that takes steps of their critical
sequence in p in the order of their steps that are not base point preserving for read-only
operations, (or the last read step in case all steps are base point preserving). We
denote this sequence of steps by {ord;}. The update operation that performs ord; in

1 is denoted uo;.

3. Each read-only operation ro of u is executed in pse, after an update operation uo;
such that the post-state of ord; in u is a base point for ro, and is either concurrent
to ro or the latest step in {ord;} that precedes ro’s invoke step. Such a step exists
since (1) by our assumption, ro has a base point between its invoke step’s pre-state
and its return step’s pre-state; and (2) every step that is not in {ord;} is base point

preserving for ro.

4. The order in pseq between non-interleaved read-only operations that share the same
base point follows their order in . The order between interleaved read-only operations

that are executed in ji44 from the same base point is arbitrary.

Now, by Lemma 3.4.5, the sequence of update operations in fis¢4 is a linearization of the
sequence of update operations in p.

Therefore we only need to prove that the order between the read-only operations and
other operations that are not interleaved in p is identical in pgq and p, and that each
read-only operation has the same return step in both executions.

We observe that:

1. In p and pgeq the steps of {ord;} appear in the same order, and in both executions
each read-only operation is either executed after the same ord; in both, or is executed

concurrently to ord; in p and immediately after uo; in fiseq.

2. Each shared state satisfies the same base conditions since the update steps that appear

in a different order in p and ji5y commute.

Therefore each post-state of ord; remains a base point in ps., for the same read-only
operations that it was in u, and thus each read-only operation reaches the same return step
as in p.

Assume towards contradiction that two read-only operations ro; and ros have a different
order in g and fiseq, and w.l.o.g. ro; precedes ros in p, and ros precedes ro1 in fiseq.

Let wo; be the update operation that precedes roj in jisq, and uoz be the update

operation that precedes 702 in fisq. w02 # uo1, otherwise ro; and ros had the same base

43



point and their execution order was identical to their order in u. Since 1o precedes ro; in
seq, We conclude that ords occurs before ordy in pi. ord; takes place in p as last as one step
before uo1’s return step. Therefore ords must appear somewhere before roq’s return step.
But ro; precedes ros in p, meaning that ords is not the latest steps of ord that precedes

roo’s invoke step, in contradiction. W

3.5 Roadmap for Proving Linearizability

We now prove that Lazy List (Algorithm 1) satisfies the requirements of Theorem 3.1,
implying that it is linearizable. We demonstrate the three stages of our roadmap for proving

linearizability using base point analysis.

3.5.1 Stage I: Base Conditions

We begin by identifying base conditions for the operations’ update and return steps. The
base conditions are annotated in comments in Algorithm 1. To do so, we examine the

possible sequential executions of each operation.

Add & Remove Let Head = n denote that there is a set of shared variables {Head, x1, ..., x1}
such that Head.next = x1 A x1.next = x9 A ... Nz, = n, i.e., that there exists some path
from the shared variable Head to n. Let ®;,.(s,n1,n2,€) be the predicate indicating that in
the shared state s, the place of the key e in the list is immediately after the node ny, and at
or just before the node no:

Dioc(s,n1,n9,€) : Head = n1 Anpnext = ny A-ni.marked A —ns.marked A

ni.val < e AN e < ns.wal.

Observation 3.5.1. ®;,.(s,n1,n2,¢e) is a base condition for the local state of add(e)

(remove(e)) after line 14 (resp., 44).

Now, ®,.(s,m1,n2,€) Ang.val # e is a base condition for add’s write and return true
steps and remowves’s return false step. And a base condition for add’s return false step

and remove’s write and return true steps is ®c(s, n1,n2,€) Ang.val = e.

Contains First, we define the following predicate:

®.: Head = cA cwval > e AN(Bn : Head = n Ne < n.wal < coal) .
In a shared state satisfying ®., ¢ is the node with the smallest value greater than or
equal to e in the list. The base condition for contains’s return true step is ®. A c.val = e,

and the base condition for return false is the predicate ®. A (c.marked V c.val # e).

44



These predicates are base conditions since every sequential execution from a shared state
satisfying them reaches the same return step, i.e., if ¢ is the node in the list with the smallest
value that is greater than or equal to e and is reachable from the head of the list, then after

traversing the list and reaching it, the return step is determined according to its value.

3.5.2 Stage II: Linearizability of Update Operations

We next prove that Lazy List has linearizable update operations. Using Definition 3.4.4, it
suffices to show the following: (1) each update operation has a base point for its update and
return steps, (2) each critical sequence commutes with interleaved critical sequences, and (3)

the update steps are base point preserving for operations with interleaved critical sequences.

Base Points for Update and Return Steps

Proof Sketch First we claim that in every execution of an add (remove) operation, line

14 (44, respectively), is a base point for all the operation’s update and return steps.

Claim 1.  Consider the shared state s immediately after line 14 (44) of an execution of

add(e) (remove(e)). Then ®(s,ni,ng,e€) is true.

Claim 1 can be proven by induction on the steps of an execution. Intuitively, the idea
is to show by induction that the list is sorted, and that in each add (remove) operation,
locate locks the two nodes and verifies that they are unmarked, and so no other operation
can change them and they remain reachable from the head of the list and connected to each
other. Formal proofs of this claim were given in [67, 78].

Based on Claim 1 and the observation that after line 14 (44) of an execution of add(e)
(remove(e)) the value of ny.val persists until ny is unlocked, we conclude that the shared
state after locate returns is a base point for update operations’ update and return steps.
Since the locked nodes cannot be modified by concurrent operations, the pre-state of the
first update step is also a base point for the same steps. In case the update operation has

no update steps, the same holds for the last read step.

Commutative and Base Point Preserving Steps

Proof Sketch We now show that the steps of update operations that have interleaved
updates are commutative, and that the update steps are base point preserving. Specifically,
we examine the steps between the first update step and the last one (or just the last read

step in case of an update operation that does no have update steps).

45



In order to add a key to the list, an update operation locks the predecessor and successor
of the new node. For removing a node from the list, the update operation locks the node and
it predecessor. This means that every update operation locks the nodes that it changes and
the nodes that it relies upon before it verifies its steps’ base point. Thus, update operations
have concurrent critical sequence only if they access different nodes. Therefore their steps

commute, and are base point preserving for one another.

3.5.3 Stage III: Linearizability of Read-Only Operations

The final stage in our proof is to show the conditions stated in Theorem 3.1 hold for each

read-only operation.

Single Non-Preserving Step per Update Operation First we show that every update
operation of Lazy List has at most one step that is not base point preserving for all read-only

operations.

Proof Sketch We only need to consider update steps, since every other step in add and
remove does not modify the shared memory, and therefore does not affect any base condition
of contains. There are two update steps in an operation. In add, the first update step
allocates a new (unreachable) node. Nodes that are not reachable from the head of the list
do not affect any base condition. Therefore, only the second step, the one that changes the
list, is not base point preserving for contains.

In remove, the first update step marks the removed node, and the second makes the
node unreachable from the head of the list. Since marked nodes are treated in every base
condition of contains as if they are already detached from the list, the second update step
does not change the truth value of the base condition of contains. More precisely, if we
compare the second update step’s pre-state to its post-state, they both satisfy the same

base conditions of contains’s return steps.

Concurrent Base Points Last, we show that in every execution of contains, the return
step of contains has a base point, and that base point occurs between the pre-state of

contains’s invoke step and the pre-state of contains’s return step.

Proof Sketch When add inserts a new value to the list, it locks the predecessor node n
and the successor m, and verifies that n and m are not marked and that n.next = m.
Since n or m cannot be removed as long as they are locked, and since nodes are removed
only when their predecessor is also locked, new nodes are not added to detached parts of the
list. This means that every node encountered during a traversal of the list was reachable

from the head at some point.

46



In addition, if add inserts a value e, it satisfies n.val < e < m.val, since n and m are
locked, and no value other than e is inserted between them before e is added (this can be
proven by induction on executions).

The execution of contains(e) reaches line 6 only after it traverses the list from its head
and reaches the first node ¢ whose value v satisfies e < v. Thus, there is some concurrent
shared state s that occurs after the invocation of contains(e) in which ¢ is unmarked and

reachable from the head of the list. State s is a base-point of contains(e)’s return step.

Acknowledgements

We thank Naama Kraus, Noam Rinetzky and the anonymous reviewers for helpful comments

and suggestions.

47



Chapter 4

Paper: Modular composition of

coordination services

Kfir Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexander Shraer : “Modular composition
of coordination services”. In Proceedings of the 2016 USENIX Conference on Usenix Annual
Technical Conference (USENIX ATC ’16). USENIX Association, Berkeley, CA, USA,
251-264.

In this paper we design, implement, and evaluate ZooKeepers’ consistent composition.

48



Modular Composition of Coordination Services

Kfir Lev-Ari', Edward Bortnikov?, Idit Keidar®?, and Alexander Shraer?

LViterbi Department of Electrical Engineering, Technion, Haifa, Israel
2Yahoo Research, Haifa, Israel

3 Google, Mountain View, CA, USA

Abstract

Coordination services like ZooKeeper, etcd, Doozer, and Consul are increasingly used
by distributed applications for consistent, reliable, and high-speed coordination. When
applications execute in multiple geographic regions, coordination service deployments trade-
off between performance, (achieved by using independent services in separate regions), and
consistency.

We present a system design for modular composition of services that addresses this
trade-off. We implement ZooNet, a prototype of this concept over ZooKeeper. ZooNet
allows users to compose multiple instances of the service in a consistent fashion, facilitating
applications that execute in multiple regions. In ZooNet, clients that access only local
data suffer no performance penalty compared to working with a standard single ZooKeeper.
Clients that use remote and local ZooKeepers show up to 7.5x performance improvement

compared to consistent solutions available today.

4.1 Introduction

Many applications nowadays rely on coordination services such as ZooKeeper [50], etcd
[11], Chubby [34], Doozer [6], and Consul [4]. A coordination service facilitates maintaining
shared state in a consistent and fault-tolerant manner. Such services are commonly used
for inter-process coordination (e.g., global locks and leader election), service discovery,
configuration and metadata storage, and more.

When applications span multiple data centers, one is faced with a choice between

sacrificing performance, as occurs in a cross data center deployment, and forgoing consistency

49



by running coordination services independently in the different data centers. For many
applications, the need for consistency outweighs its cost. For example, Akamai [75] and
Facebook [76] use strongly-consistent globally distributed coordination services (Facebook’s
Zeus is an enhanced version of ZooKeeper) for storing configuration files; dependencies
among configuration files mandate that multiple users reading such files get consistent
versions in order for the system to operate properly. Other examples include global service
discovery [3], storage of access-control lists [9] and more.

In this work we leverage the observation that, nevertheless, such workloads tend to be
highly partitionable. For example, configuration files of user or email accounts for users
in Asia will rarely be accessed outside Asia. Yet currently, systems that wish to ensure
consistency in the rare cases of remote access, (like [75, 76]), globally serialize all updates,
requiring multiple cross data center messages.

To understand the challenge in providing consistency with less coordination, consider
the architecture and semantics of an individual coordination service. Each coordination
service is typically replicated for high-availability, and clients submit requests to one of
the replicas. Usually, update requests are serialized via a quorum-based protocol such as
Paxos [55], Zab [51] or Raft [68]. Reads are served locally by any of the replicas and hence
can be somewhat stale but nevertheless represent a valid snapshot. This design entails the
typical semantics of coordination services [4, 11, 50] — atomic (linearizable [49]) updates
and sequentially-consistent [53] reads. Although such weaker read semantics enable fast
local reads, this property makes coordination services non-composable: correct coordination
services may fail to provide consistency when combined. In other words, a workload accessing
multiple consistent coordination services may not be consistent, as we illustrate in Section 4.2.
This shifts the burden of providing consistency back to the application, beating the purpose
of using coordination services in the first place.

In Section 4.3 we present a system design for modular composition of coordination
services, which addresses this challenge. We propose deploying a single coordination service
instance in each data center, which is shared among many applications. Each application
partitions its data among one or more coordination service instances to maximize operation
locality. Distinct coordination service instances, either within a data center or geo-distributed,
are then composed in a manner that guarantees global consistency. Consistency is achieved
on the client side by judiciously adding synchronization requests. The overhead incurred
by a client due to such requests depends on the frequency with which that client issues
read requests to different coordination services. In particular, clients that use a single
coordination service do not pay any price.

In Section 4.4 we present ZooNet, a prototype implementation of our modular composition

for ZooKeeper. ZooNet implements a client-side library that enables composing multiple

50



ZooKeeper ensembles, (i.e., service instances), in a consistent fashion, facilitating data
sharing across geographical regions. Each application using the library may compose
ZooKeeper ensembles according to its own requirements, independently of other applications.
Even though our algorithm requires only client-side changes, we tackle an additional issue,
specific to ZooKeeper — we modify ZooKeeper to provide better isolation among clients.
While not strictly essential for composition, this boosts performance of both stand-alone
and composed ZooKeeper ensembles by up to 10x. This modification has been contributed
back to ZooKeeper [15] and is planned to be released in ZooKeeper 3.6.

In Section 4.5 we evaluate ZooNet. Our experiments show that under high load and
high spatial or temporal locality, ZooNet achieves the same performance as an inconsistent
deployment of independent ZooKeepers (modified for better isolation). This means that our
support for consistency comes at a low performance overhead. In addition, ZooNet shows
up to 7.5x performance improvement compared to a consistent ZooKeeper deployment (the
“recommended” way to deploy ZooKeeper across data centers [13]).

We discuss related work in Section 4.6.

In summary, this paper makes the following contributions:
e A system design for composition of coordination services that maintains their semantics.
e A significant improvement to ZooKeeper’s server-side isolation and concurrency.

e ZooNet — a client-side library to compose multiple ZooKeepers.

4.2 Background

We discuss the service and semantics offered by coordination services in Section 4.2.1,
and then proceed to discuss possible ways to deploy them in a geo-distributed setting in

Section 4.2.2.

4.2.1 Coordination Services

Coordination services are used for maintaining shared state in a consistent and fault-tolerant
manner. Fault tolerance is achieved using replication, which is usually done by running a
quorum-based state-machine replication protocol such as Paxos [55] or its variants [51, 68].

In Paxos, the history of state updates is managed by a set of servers called acceptors,
s.t. every update is voted on by a quorum (majority) of acceptors. One acceptor serves as
leader and manages the voting process. In addition to acceptors, Paxos has learners (called
observers in ZooKeeper and prozies in Consul), which are light-weight services that do not

participate in voting and get notified of updates after the quorum accepts them. In the

o1



context of this paper, acceptors are also (voting) learners, i.e., they learn the outcomes of

votes.

Coordination services are typically built on top of an underlying key-value store and
offer read and update (read-modify-write) operations. The updates are linearizable, i.e., all
acceptors and learners see the same sequence of updates and this order conforms to the
real-time order of the updates. The read operations are sequentially consistent, which is a
weaker notion similar to linearizability in that an equivalent sequential execution must exist,
but it must only preserve the program order of each individual client and not the global
real-time order. A client can thus read a stale value that has already been overwritten
by another client. These weaker semantics are chosen in order to allow a single learner or
acceptor to serve reads locally. This motivates using learners in remote data centers — they

offer fast local reads without paying the cost of cross data center voting.

As an aside, we note that some coordination service implementations offer their clients an
asynchronous API. This is a client-side abstraction that improves performance by masking
network delays. At the server-side, each client’s requests are handled sequentially, and
so the interaction is well-formed, corresponding to the standard correctness definitions of

linearizability and sequential consistency.

Unfortunately, these semantics of linearizable updates and sequentially consistent reads
are not composable, i.e., a composition of such services does not satisfy the same semantics.
This means that the clients cannot predict the composed system’s behavior. As an example,
consider two clients that perform operations concurrently as we depict in Figure 4.1. Client 1
updates object  managed by coordination service s;, and then reads an old version of
object y, which is managed by service so. Client 2 updates y and then reads an old version
of z. While the semantics are preserved at both s; and s (recall that reads don’t have to
return the latest value), the resulting execution violates the service semantics since there is
no equivalent sequential execution: the update of y by client 2 must be serialized after the
read of y by client 1 (otherwise the read should have returned 3 and not 0), but then the
read of z by client 2 appears after the update of x by client 1 and therefore should have

returned 5.

Initally Process ! set(x5)  get(y)=>0
xy=0 Process2 Set(y3) get(x)>0

Figure 4.1: Inconsistent composition of two coordination services holding objects x and y:
each object is consistent by itself, but there is no equivalent sequential execution.

52



Alternative Performance Correctness Availability during partitions
Updates | Reads Updates | Reads
Single Service Very slow | Fast Yes In majority | Everywhere
Learners Slow | Fast Yes In acceptors | Everywhere
Multiple Services Fast | Fast No Local | Everywhere
Modular Composition Fast | Fast Yes Local | Local

Table 4.1: Comparison of different alternatives for coordination service deployments across
data centers. The first three alternatives are depicted in Figure 4.2. Our design alternative,
modular composition, is detailed in Section 4.3.

DC3 Clients
DC3 C2 Acceptors

/ ~ Learner 05
DC2 7, Acceptors —.DCi [0 [ S = \D'\

DC2Clients  DC1 Cllents DC2 Clients DC1 Clients
(a) Single Service — Coordination service ac- (b) Learners — Coordination service acceptors
ceptors are deployed in all data centers, no are deployed in one data center and learners
single point of failure. in all other data centers.
DA?Z ) Learner1 L Acceptorst DC1
coeptorse e Learner2 ‘o
e T
o~ ] .
DC2 Clients DCH1 Cllents

(c) Multiple Services — A single coordination service is deployed
in each data center and a learner is deployed in every other data
center.

Figure 4.2: Different alternatives for coordination service deployment across data centers.
4.2.2 Cross Data Center Deployment

When coordination is required across multiple data centers over WAN, system architects
currently have three main deployment alternatives. In this section we discuss these alterna-
tives with respect to their performance, consistency, and availability in case of partitions. A

summary of our comparison is given in Table 4.1.

Alternative 1 — Single Coordination Service A coordination service can be deployed
over multiple geographical regions by placing its acceptors in different locations (as done,
e.g., in Facebook’s Zeus [76] or Akamai’s ACMS [75]), as we depict in Figure 4.2a. Using a
single coordination service for all operations guarantees consistency.

This setting achieves the best availability since no single failure of a data center takes
down all acceptors. But in order to provide availability following a loss or disconnection of
any single data center, more than two locations are needed, which is not common.

With this approach, voting on each update is done across WAN, which hampers latency

93



and wastes WAN bandwidth, (usually an expensive and contended resource). In addition,
performance is sensitive to placement of the leader and acceptors, which is frequently far

from optimal [73]. On the other hand, reads can be served locally in each partition.

Alternative 2 — Learners A second option is to deploy all of the acceptors in one data
center and learners in others, as we depict in Figure 4.2b. In fact, this architecture was one
of the main motivations for offering learners (observers) in ZooKeeper [13]. As opposed
to acceptors, a learner does not participate in the voting process and it only receives the
updates from the leader once they are committed. Thus, cross data center consistency is
preserved without running costly voting over WAN. Often, alternatives 1 and 2 are combined,
such as in Spanner [37], Megastore [27] and Zeus [76].

The update throughput in this deployment is limited by the throughput of one coor-
dination service, and the update latency in remote data centers is greatly affected by the
distance between the learners and the leader. In addition, in this approach we have a single
point of failure, i.e., if the acceptors’ data center fails or a network partition occurs, remote

learners are only able to serve read requests.

Alternative 3 — Multiple Coordination Services In the third approach data is
partitioned among several independent coordination services, usually one per data center
or region, each potentially accompanied by learners in remote locations, as depicted in
Figure 4.2c. In this case, each coordination service processes only updates for its own data
partition and if applications in different regions need to access unrelated items they can
do so independently and in parallel, which leads to high throughput. Moreover, if one
cluster fails all other locations are unaffected. Due to these benefits, multiple production
systems [3, 17, 21] follow this general pattern. The disadvantage of this design is that it does

not guarantee the coordination service’s consistency semantics, as explained in Section 4.2.1.

4.3 Design for Composition

In Section 4.3.1 we describe our design approach and our client-side algorithm for modular
composition of coordination services while maintaining consistency. In Section 4.3.2 we
discuss the properties of our design, namely correctness (a formal proof is given in an online

Technical Report [59]), performance, and availability.

4.3.1 Modular Composition of Services

Our design is based on multiple coordination services (as depicted in Figure 4.2¢), to which

we add client-side logic that enforces consistency.

54



Our solution achieves consistency by injecting sync requests, which are non-mutating
update operations. If the coordination service itself does not natively support such operations,
they can be implemented using an update request addressed to a dummy object.

The client-side logic is implemented as a layer in the coordination service client library,
which receives the sequential stream of client requests before they are sent to the coordination
service. It is a state machine that selectively injects sync requests prior to some of the reads.
Intuitively, this is done to bound the staleness of ensuing reads. In Algorithm 1, we give a
pseudo-code for this layer at a client accessing multiple coordination services, each of which
has a unique identifier.

An injected sync and ensuing read may be composed into a single operation, which we
call synced read. A synced read can be implemented by buffering the local read request,
sending a sync (or non-mutating update) to the server, and serving the read immediately
upon receipt of a commit for the sync request. Some coordination services natively support
such synced reads, e.g., Consul calls them consistent reads [5]. If all reads are synced the
execution is linearizable. Our algorithm only makes some of the reads synced to achieve
coordination service’s semantics with minimal synchronization overhead.

Since each coordination service orders requests independently, concurrent processing
of a client’s updates at two coordination services may inverse their order. To avoid such
re-ordering (as required, e.g., by ZooKeeper’s FIFO program order guarantee), we refrain
from asynchronously issuing updates to a new coordination service before responses to
earlier requests arrive. Rather, we buffer requests whenever we identify a new coordination
service target for as long as there are pending requests to other coordination services. This
approach also guarantees that coordination service failures do not introduce gaps in the

execution sequence of asynchronous requests.

4.3.2 Modular Composition Properties

We now discuss the properties of our modular composition design.

Correctness

The main problem in composing coordination services is that reads might read “from the
past”, causing clients to see updates of different coordination services in a different order,
as depicted in Figure 4.1. Our algorithm adds sync operations in order to make ensuing
reads “read from the present”, i.e., read at least from the sync point. We do this every time
a client’s read request accesses a different coordination service than the previous request.
Subsequent reads from the same coordination service are naturally ordered after the first,

and so no additional syncs are needed.

95



[y

lastService < nil // Last service this client accessed
numOutstanding <0 // #oulstanding requests to lastService

N

onUpdate(targetService, req)
if targetService # lastService then
// Wait until all requests to previous service complete
wait until numOutstanding = 0
lastService < targetService
numOutstanding++
send req to targetService

10: onRead(targetService, req)
11:  if targetService # lastService then

12: // Wait until all requests to previous service complete
13: wait until numOutstanding = 0

14: lastService < targetService

15: numOutstanding++

16: // Send sync before read

17: send sync to targetService

18: numOutstanding+-+
19:  send req to targetService

20: onResponse(req)
21:  numOutstanding——
Algorithm 1: Modular composition, client-side logic.

In Figure 4.3 we depict the same operations as in Figure 4.1 with sync operations added
according to our algorithm. As before, client 1 updates object z residing in service sy
and then reads y from service s3. Right before the read, the algorithm interjects a sync
to sg. Similarly, client 2 updates y on so, followed by a sync and a read from s;. Since
s guarantees update linearizability and client 1’s sync starts after client 2’s update of y
completes, reads made by client 1 after the sync will retrieve the new state, in this case 3.
Client 2’s sync, on the other hand, is concurrent with client 1’s update of x, and therefore
may be ordered either before or after the update. In this case, we know that it is ordered
before the update, since client 2’s read returns 0. In other words, there exists an equivalent
sequential execution that consists of client 2’s requests followed by client 1’s requests, and
this execution preserves linearizability of updates (and syncs) and sequential consistency
of read requests, as required by the coordination service’s semantics. See [59] for a formal

discussion.

ity Client 1~ SetxS) syncly) . get(y)-3
Xy=0 Client2 Set(y,3) sync(x) get(x)-0

Figure 4.3: Consistent modular composition of two coordination services holding objects
x and y (as in Figure 4.1): adding syncs prior to reads on new coordination services ensures
that there is an equivalent sequential execution.

o6



Performance

By running multiple independent coordination services, the modular composition can
potentially process requests at a rate as high as the sum of the individual throughputs.
However, sync requests take up part of this bandwidth, so the net throughput gain depends
on the frequency with which syncs are sent.

The number of syncs corresponds to the temporal locality of the workload, since sync is
added only when the accessed coordination service changes.

Read latency is low (accessing a local acceptor or learner) when the read does not

necessitate a sync, and is otherwise equal to the latency of an update.

Availability

Following failures or partitions, each local coordination service (where a quorum of acceptors
remains available and connected) can readily process update and read requests submitted
by local clients. However, this may not be the case for remote client requests: If a learner in
data center A loses connectivity with its coordination service in data center B, sync requests
submitted to the learner by clients in A will fail and these clients will be unable to access
the coordination service.

Some coordination services support state that corresponds to active client sessions,
e.g., an ephemeral node in ZooKeeper is automatically deleted once its creator’s session
terminates. Currently, we do not support composition semantics for such session-based
state: clients initiate a separate session with each service instance they use, and if their
session with one ZooKeeper ensemble expires (e.g., due to a network partition) they may
still access data from other ZooKeepers. Later, if the session is re-instated they may fail to
see their previous session-based state, violating consistency. A possible extension addressing
this problem could be to maintain a single virtual session for each client, corresponding to
the composed service, and to invalidate it together with all the client’s sessions if one of its

sessions terminates.

4.4 ZooNet

We implement ZooNet, a modular composition of ZooKeepers. Though in principle, modular
composition requires only client-side support, we identified a design issue in ZooKeeper that
makes remote learner (observer) deployments slow due to poor isolation among clients. Since
remote learners are instrumental to our solution, we address this issue in the ZooKeeper

server, as detailed in Section 4.4.1. We then discuss our client-side code in Section 4.4.2.

o7



4.4.1 Server-Side Isolation

The original ZooKeeper implementation stalls reads when there are concurrent updates
by other clients. Generally speaking, reads wait until an update is served even when the
semantics do not require it. In Section 4.4.1 we describe this problem in more detail
and in Section 4.4.1 we present our solution, which we have made available as a patch to

ZooKeeper [15] and has been recently committed to ZooKeeper’s main repository.

ZooKeeper’s Commit Processor

ZooKeeper servers consist of several components that process requests in a pipeline. When
an update request arrives to a ZooKeeper server from a client, the server forwards the update
to the leader and places the request in a local queue until it hears from the leader that voting
on the update is complete (i.e., the leader has committed the request). Only at that point
can the update be applied to the local server state. A component called commit processor
is responsible for matching incoming client requests with commit responses received from
the leader, while maintaining the order of operations submitted by each client.

In the original implementation of the commit processor, (up to ZooKeeper version
3.5.1-alpha), clients are not isolated from each other: once some update request reaches the
head of the request stream, all pending requests by all clients connected to this server stall
until a commit message for the head request arrives from the leader. This means that there
is a period, whose duration depends on the round-trip latency between the server and the
leader plus the latency of quorum voting, during which all requests are stalled. While the
commit processor must maintain the order of operations submitted by each client, enforcing
order among updates of different clients is the task of the leader. Hence, blocking requests
of other clients in this situation, only because they were unlucky enough to connect via the
same server, is redundant.

In a geo-distributed deployment, this approach severely hampers performance as it does
not allow read operations to proceed concurrently with long-distance concurrent updates. In
the context of modular composition, it means that syncs hamper read-intensive workloads,

i.e., learners cannot serve reads locally concurrently with syncs and updates.

Commit Processor Isolation

We modified ZooKeeper’s commit processor to keep a separate queue of pending requests per
client. Incoming reads for which there is no preceding pending update by the same client,
(i.e., an update for which a commit message has not yet been received), are not blocked.
Instead, they are forwarded directly to the next stage of the pipeline, which responds to the

client based on the current server state.

o8



Read requests of clients with pending updates are enqueued in the order of arrival in the
appropriate queue. For each client, whenever the head of the queue is either a committed
update or a read, the request is forwarded to the next stage of the server pipeline. Updates
are marked committed according to the order of commit messages received from the leader

(the linearization order). For more details, see our ZooKeeper Jira [15].

4.4.2 The ZooNet Client

We prototyped the ZooNet client as a wrapper for ZooKeeper’s Java client library. It
allows clients to establish sessions with multiple ZooKeeper ensembles and maintains these
connections. Users specify the target ZooKeeper ensemble for every operation as a znode
path prefix. Our library strips this prefix and forwards the operation to the appropriate
ZooKeeper, converting some of the reads to synced reads in accordance with Algorithm 1.
Our sync operation performs a dummy update; we do so because ZooKeeper’s sync is not a
linearizable update [50]. The client wrapper consists of roughly 150 lines of documented

code.

4.5 FEvaluation

We now evaluate our modular composition concept using the ZooNet prototype. In Sec-
tion 4.5.1 we describe the environment in which we conduct our experiments. Section 4.5.2
evaluates our server-side modification to ZooKeeper, whereas Section 4.5.3 evaluates the
cost of the synchronization introduced by ZooNet’s client. Finally, Section 4.5.4 compares
ZooNet to a single ZooKeeper ensemble configured to ensure consistency using remote

learners (Figure 4.2b).

4.5.1 Environment and Configurations

We conduct our experiments on Google Compute Engine [12] in two data centers, DC1 in
eastern US (South Carolina) and DC2 in central US (Iowa). In each data center we allocate
five servers: three for a local ZooKeeper ensemble, one for a learner connected to the remote
data center, and one for simulating clients (we run 30 request-generating client threads in
each data center). Each server is allocated a standard 4 CPU machine with 4 virtual CPUs
and 15 GB of memory. DC1 servers are allocated on a 2.3 GHz Intel Xeon E5 v3 (Haswell)
platform, while DC2 servers are allocated on a 2.5GHz Intel Xeon E5 v2 (Ivy Bridge). Each
server has two standard persistent disks. The Compute Engine does not provide us with
information about available network bandwidth between the servers. We use the latest

version of ZooKeeper to date, version 3.5.1-alpha.

99



We benchmark throughput when the system is saturated and configured as in ZooKeeper’s
original evaluation (Section 5.1 in [50]). We configure the servers to log requests to one disk
while taking snapshots on another. Each client thread has at most 200 outstanding requests
at a time. Each request consists of a read or an update of 1KB of data. The operation type
and target coordination service are selected according to the workload specification in each

experiment.

4.5.2 Server-Side Isolation

In this section we evaluate our server-side modification given in Section 4.1. We study
the learner’s throughput with and without our change. Recall that the learner (observer
in ZooKeeper terminology) serves as a fast local read cache for distant clients, and also
forwards update requests to the leader.

We experiment with a single ZooKeeper ensemble running three acceptors in DC1 and
an observer in DC2. Figure 4.4 compares the learner’s throughput with and without our
modification, for a varying percentage of reads in the workload. DC1 clients have the same
workload as DC2 clients.

Our results show that for read-intensive workloads that include some updates, ZooNet’s
learner gets up to around 4x higher throughput by allowing concurrency between reads and
updates of different clients, and there is 30% up to 60% reduction in the tail latency. In
a read-only workload, ZooNet does not improve the throughput or the latency, because
ZooKeeper does not stall any requests. In write-intensive workloads, reads are often blocked
by preceding pending updates by the same client, so few reads can benefit from our increased
parallelism.

Our Jira [15] provides additional evaluation (conducted on Emulab [81]) in which we
show that the throughput speedup for local clients can be up to 10x in a single data center
deployment of ZooKeeper. Moreover, ZooNet significantly reduces read and write latency in
mixed workloads in which the write percentage is below 30 (for reads, we get up to 96%

improvement, and for writes up to 89%).

B ZooNet Learner, DC2 Clients
I ZooKeeper Learner, DC2 Clients

9]
o

1K requests per second
N
o

E W
o0 o0Oo

75 90 99 100
%reads

Figure 4.4: Improved server-side isolation. Learner’s throughput as a function of the
percentage of reads.

60



4.5.3 The Cost of Consistency

ZooNet is a composition of independent ZooKeepers, as depicted in Figure 4.2c, with added
sync requests. In this section we evaluate the cost of the added syncs by comparing our
algorithm to two alternatives: (1) Sync-All, where all reads are executed as synced reads,
and (2) Never-Sync, in which clients never perform synced reads.

Never-Sync in not sequentially consistent (as illustrated in Figure 4.1). It thus corresponds
to the fastest but inconsistent ZooKeeper deployment (Figure 4.2¢), with ZooKeeper patched
to improve isolation. At the other extreme, by changing all reads to be synced, Sync-All
guarantees linearizability for all operations, including reads. ZooNet provides a useful middle
ground (supported by most coordination services in the single-data center setting), which
satisfies sequential consistency for all operations and linearizability for updates.

As a sanity check, we study in Section 4.5.3 a fully partitionable workload with clients
accessing only local data in each data center. In Section 4.5.3 we have DC1 clients perform

only local operations, and DC2 clients perform both local and remote operations.

Local Workload

In Figure 4.5 we depict the saturation throughput of DC1 (solid lines) and DC2 (dashed
lines) with the three alternatives.

ZooNet’s throughput is identical to that of Never-Sync in all workloads, at both data
centers. This is because ZooNet sends sync requests only due to changes in the targeted
ZooKeeper, which do not occur in this scenario. Sync-All has the same write-only throughput
(leftmost data point). But as the rate of reads increases, Sync-All performs more synced
reads, resulting in a significant performance degradation (up to 6x for read-only workloads).
This is because a read can be served locally by any acceptor (or learner), whereas each
synced read, similarly to an update, involves communication with the leader and a quorum.

The read-only throughput of ZooNet and Never-Sync is lower than we expect: since
in this scenario the three acceptors in each data center are dedicated to read requests, we
would expect the throughput to be 3x that of a single learner (reported in Figure 4.4). We
hypothesize that the throughput is lower in this case due to a network bottleneck.

Remote Data Center Access

When clients access remote data, synced reads kick-in and affect performance. We now
evaluate the cost of synced reads as a function of workload locality. We define two workload
parameters: local operations, which represents spatial locality, namely the percentage of
requests that clients address to their local data center, and burst, which represents the

temporal locality of the target ZooKeeper. For simplicity, we consider a fixed burst size,

61



—— Never-Sync DC1 - =- Never-Sync DC2
—&— ZooNet DC1 -A- ZooNet DC2
—— Sync-All DC1 -p - Sync-All DC2

120
100 t

1K Requests per Second

%reads

Figure 4.5: Saturated ZooNet throughput at two data centers with local operations only.
In this sanity check we see that the performance of Never-Sync is identical to ZooNet’s
performance when no syncs are needed.

where the client sends burst requests to the same ZooKeeper and then chooses a new target
ZooKeeper according to the local operations ratio. Note that a burst size of 1 represents
the worst-case scenario for ZooNet, while with high burst sizes, the cost of adding syncs is
minimized.

Our design is optimized for partitionable workloads where spatial locality is high by
definition since clients rarely access data in remote partitions. In ZooKeeper, another factor
significantly contributes to temporal locality: ZooKeeper limits the size of each data object
(called znode) to 1MB, which causes applications to express stored state using many znodes,
organized in a hierarchical manner. ZooKeeper intentionally provides a minimalistic API, so
programs wishing to access stored state (e.g., read the contents of a directory or sub-tree)
usually need to make multiple read requests to ZooKeeper, effectively resulting in a high

burst size.

In Figure 4.6 we compare ZooNet to Sync-All and Never-Sync with different burst sizes
where we vary the local operations ratio of DC2 clients. DC1 clients perform 100% local
operations. We select three read ratios for this comparison: a write-intensive workload in
which 50% of the requests are updates (left column), a read-intensive workload in which
90% of the requests are reads (middle column), and a read-only workload (right column).

DC1 clients and DC2 clients have the same read ratio in each test.

Results show that in a workload with large bursts of 25 or 50 (bottom two rows), the
addition of sync requests has virtually no effect on throughput, which is identical to that of
Never-Sync except in read-intensive workloads, where with a burst of 25 there is a slight
throughput degradation when the workload is less than 80% local.

When there is no temporal locality (burst of 1, top row), the added syncs induce a high
performance cost in scenarios with low spatial locality, since they effectively modify the
workload to become write-intensive. In case most accesses are local, ZooNet seldom adds

syncs, and so it performs as well as Never-Sync regardless of the burst size.

62



All in all, ZooNet incurs a noticeable synchronization cost only if the workload shows no
locality whatsoever, neither temporal nor spatial. Either type of locality mitigates this cost.

Burst 1, 50% reads Burst 1, 90% reads Burst 1, 100% reads

15 90 120
] [ —
40 - 80 S <] A
/ 100
35 > 70 / /
30 - /&] 60 80 {
25 50 o A
20k /)\ — 40
15— ~—3p 30 — ,A_/ 40 g
10 20 = - |
5 10| T O =y
0 60 70 80 90 100 30 60 70 8 90 100 30 60 70 80 90 100
©
g a5 Burst 25, 50% reads 90 Burst 25, 90% reads 120 Burst 25, 100% reads
D 40 X 80 k——— &
0 P 100
35 Ve 70
o] v
Q30 // 60 80
2 25 50 o0
Y20 PN —3 40
T 15 —] 3 K 40
[0 /
5 10 20 > b 20
- 5 10| — L)
o~
8 % 60 70 8 90 100 %0 60 70 8 90 100 %0 60 70 80 90 100

5 Burst 50, 50% reads 100 Burst 50, 90% reads 140 Burst 50, 100% reads
40 b4
P 120
35 /| ™. 80 F’J£$
Ve 100
30/
25§ 60 80
>
20 60
“i\_' 40
K
= 40
10 20 -
5 ] s — b

0 60 70 80 90 100 30 60 70 80 90 100 30 60 70 8 90 100
%local operations of DC2 clients

‘% Never-Sync —&— ZooNet -Pp— Sync—AII|

Figure 4.6: Throughput of ZooNet, Never-Sync and Sync-All. Only DC2 clients perform
remote operations.

4.5.4 Comparing ZooNet with ZooKeeper

We compare ZooNet with the fastest cross data center deployment of ZooKeeper that is also
consistent, i.e., a single ZooKeeper ensemble where all acceptors are in DC1 and a learner
is located in DC2 (Figure 4.2b). The single coordination service deployment (Figure 4.2a)
is less efficient since: (1) acceptors participate in the voting along with serving clients (or,
alternatively, more servers need to be deployed as learners as in [76]); and (2) the voting
is done over WAN (see [13] for more details). We patch ZooKeeper with the improvement
described in Section 4.4.1 and set the burst size to 50 in order to focus the current discussion
on the impact that data locality has on performance.

We measure aggregate client throughput and latency in DC1 and DC2 with ZooKeeper
and ZooNet, varying the workload’s read ratio and the fraction of local operations of the

clients in DC2. We first run a test where all operations of clients in DC1 are local. Figure 4.7a

63



shows the throughput speedup of ZooNet over ZooKeeper at DC1 clients, and Figure 4.7b
shows the throughput speedup for DC2 clients.

Our results show that in write-intensive workloads, DC2 clients get up to 7.5x higher
throughput and up to 92% reduction in latency. This is due to the locality of update requests
in ZooNet, compared to the ZooKeeper deployment in which each update request of a DC2
client is forwarded to DC1. The peak throughput saturates at the update rate that a single
leader can handle. Beyond that saturation point, it is preferable to send update operations
to a remote DC rather than have them handled locally, which leads to a decrease in total
throughput.

In read-intensive workloads (90% — 99% reads), DC2 clients also get a higher throughput
with ZooNet (4x to 2x), and up to 90% reduction in latency. This is due to the fact that in
ZooKeeper, a single learner can handle a lower update throughput than three acceptors. In
read-only workloads, the added acceptors have less impact on throughput; we assume that
this is due to a network bottleneck as observed in our sanity check above (Figure 4.5).

In addition, we see that DC1 clients are almost unaffected by DC2 clients in read-intensive
workloads. This is due to the fact that with both ZooKeeper and ZooNet, reads issued by
clients in DC2 are handled locally in DC2. The added synced reads add negligible load to
the acceptors in DC1 due to the high burst size and locality of requests (nevertheless, they
do cause the throughput speedup to drop slightly below 1 when there is low locality). With
a write-intensive workload, DC1 clients have a 1.7x throughput speedup when DC2 clients
perform no remote operations. This is because remote updates of DC2 clients in ZooKeeper
add to the load of acceptors in DC1, whereas in ZooNet some of these updates are local and
processed by acceptors in DC2.

Finally, we examine a scenario where clients in both locations perform remote operations.
Figure 4.8a shows the throughput speedup of ZooNet over ZooKeeper achieved at DC1
clients, and Figure 4.8b shows the throughput speedup of DC2 clients. All clients have the
same locality ratio. Each curve corresponds to a different percentage of reads.

There are two differences between the results in Figure 4.8 and Figure 4.7. First, up
to a local operations ratio of 75%, DC1 clients suffer from performance degradation in
read-intensive workloads. This is because in the ZooKeeper deployment, all the requests
of DC1 clients are served locally, whereas ZooNet serves many of them remotely. This
re-emphasizes the observation that ZooNet is most appropriate for scenarios that exhibit
locality, and is not optimal otherwise.

Second, the DC1 leader is less loaded when DC1 clients also perform remote updates
(Figure 4.8). This mostly affects write-intensive scenarios (top blue curve), in which the
leaders at both data centers share the update load, leading to higher throughput for all
clients. Indeed, this yields higher throughput speedup when locality is low (leftmost data

64



point in Figures 4.8a and 4.8b compared to Figures 4.7a and 4.7b, respectively). As locality
increases to 70%-80%, the DC2 leader becomes more loaded due to DC2’s updates, making
the throughput speedup in Figures 4.7b and Figure 4.8b almost the same, until with 100%

local updates (rightmost data point), the scenarios are identical and so is the throughput

speedup.
—e— 25%reads —&— 99%reads o |T& %reads —A— 99%reads
g ¥— 90%reads —<— 100%reads 23 ¥— 90%reads —4— 100%reads
518 3 A
qC'i). 1.6 8. 7 \.1
n 14 = 4m_l 6
E 12 ¥ 1 55 -
1.0 aQ ¥
Q. 2 4
£os 24 |
g 0.6 8 2./ v
= 0.4 =
£o02 £1
~N
g %% 70 8 90 100 Q % 60 70 8 90 100

%Ilocal operations of DC2 clients

%local operations of DC2 clients

(a) Throughput speedup of DC1 clients. (b) Throughput speedup of DC2 clients.

Figure 4.7: Throughput speedup (ZooNet/ZooKeeper). DC1 clients perform only local
operations. The percentage of read operations is identical for DC1 clients and DC2 clients.

—8— 25%reads —— 99%reads a V. ;z:freags :_— fs:)/;readz
5 20 ¥— 90%reads —a— 100%reads 37 oreads oreads
T 2.
& 15 e @ 5 '\\1{/‘ *
g o i 24 e
= 1.0 — £ 5 +
=) | — v g& 3
205 Y 82 =
= 1
= o
8 % 6 70 80 90 100 Q %o 60 70 80 90 100

%local operations of DC1 and DC2 clients
(b) Throughput speedup of DC2 clients.

%local operations of DC1 and DC2 clients

(a) Throughput speedup of DC1 clients.

Figure 4.8: Throughput speedup (ZooNet/ZooKeeper). DC1 clients an DC2 clients have
the same local operations ratio as well as read operations percentage.

4.6 Related Work

Coordination services such as ZooKeeper [50], Chubby [34], etcd [11], and Consul [4] are
extensively used in industry. Many companies deploying these services run applications in
multiple data centers. But questions on how to use coordination services in a mutli-data
center setting arise very frequently [3, 10, 19-21], and it is now clear that the designers of
coordination services must address this use-case from the outset.

In what follows we first describe the current deployment options in Section 4.6.1 followed
by a discussion of previously proposed composition methods in Section 4.6.2.

A large body of work, e.g., [52, 60, 61], focuses on improving the efficiency of coordination

services. Our work is orthogonal — it allows combining multiple instances to achieve a single

65



system abstraction with the same semantics, while only paying for coordination when it is

needed.

4.6.1 Multi-Data Center Deployment

In Section 4.2 we listed three prevalent strategies for deploying coordination services across
multiple data centers: a single coordination service where acceptors are placed in multiple
data centers, a single coordination service where acceptors run in one data center, or multiple
coordination services. The choice among these options corresponds to the tradeoff system
architects make along three axes: consistency, availability, and performance (a common
interpretation of the CAP theorem [8]). Some are willing to sacrifice update speed for
consistency and high availability in the presence of data center failures [27, 37, 75, 76].
Others prefer to trade-off fault-tolerance for update speed [13], while others prioritize
update speed over consistency [3, 21]. In this work we mitigate this tradeoff, and offer a
fourth deployment option whose performance and availability are close to that of the third
(inconsistent) option, without sacrificing consistency.

Some systems combine more than one of the deployment alternatives described in
Section 4.2. For example, Vitess [18] deploys multiple local ZooKeeper ensembles (as in
Figure 4.2¢) in addition to a single global ensemble (as in Figure 4.2a). The global ensemble
is used to store global data that doesn’t change very often and needs to survive a data
center failure. A similar proposal has been made in the context of SmartStack, Airbnb’s
service discovery system [16]. ZooNet can be used as-is to combine the local and global
ensembles in a consistent manner.

Multiple studies [69, 82] showed that configuration errors and in particular inconsistencies
are a major source of failure for Internet services. To prevent inconsistencies, configuration
stores often use strongly consistent coordination services. ACMS [75] is Akamai’s distributed
configuration store, which, similarly to Facebook’s Zeus [76], is based on a single instance of
a strongly consistent coordination protocol. Our design offers a scalable alternative where,
assuming that the stored information is highly partitionable, updates rarely go through
WAN and can execute with low latency and completely independently in the different
partitions, while all reads (even of data stored remotely) remain local. We demonstrate that
the amortized cost of sync messages is low for such read-heavy systems (in both ACMS and

Zeus the reported rate of updates is only hundreds per hour).

4.6.2 Composition Methods

Consul [4], ZooFence [45] and Volery [32] are coordination services designed with the multi-
data center deployment in mind. They provide linearizable updates and either linearizable

or sequentially consistent reads. Generally, these systems follow the multiple coordination

66



services methodology (Figure 4.2c) — each coordination service is responsible for part of the
data, and requests are forwarded to the appropriate coordination service (or to a local proxy).
As explained in Section 4.2, when the forwarded operations are sequentially-consistent reads,
this method does not preserve the single coordination service’s semantics. We believe that,

as in ZooKeeper, this issue can be rectified using our modular composition approach.

ZooFence [45] orchestrates multiple instances of ZooKeeper using a client-side library
in addition to a routing layer consisting of replicated queues and executors. Intuitively,
it manages local and cross-data center partitions using data replication. Any operation
(including reads) accessing replicated data must go through ZooFence’s routing layer. This
prevents reads from executing locally, forfeiting a major benefit of replication. In contrast,
ZooNet uses learners, (which natively exist in most coordination services in the form or
proxies or observers), for data replication. This allows local reads, and does not require

orchestration of multiple ZooKeeper instances as in ZooFence.

Volery [32] is an application that implements ZooKeeper’s API, and which consists of
partitions, each of which is an instance of a state machine replication algorithm. Unlike
ZooKeeper, all of Volery operations are linearizable (i.e., including reads). In Volery, the
different partitions must communicate among themselves in order to maintain consistency,
unlike ZooNet’s design in which the burden of maintaining consistency among ZooKeepers is
placed only on clients. In addition, when compared to ZooKeeper, Volery shows degredated
performance in case of a single partition, while ZooNet is identical to ZooKeeper if no remote
operations are needed.

In distributed database systems, composing multiple partitions is usually done with
protocols such as two-phase commit (e.g., as in [37]). In contrast, all coordination services
we are familiar with are built on key-value stores, and expose simpler non-transactional
updates and reads supporting non-ACID semantics.

Server-side solutions were also proposed for coordination services composition [14] but
were never fully implemented due to their complexity, the intrusive changes they require
from the underlying system, as well as the proposed relaxation of coordination service’s
semantics required to make them work. In this paper we show that composing such services
does not require expensive server-side locking and commit protocols among partitions, but
rather can be done using a simple modification of the client-side library and can guarantee

the standard coordination service semantics.

Acknowledgements

We thank Arif Merchant, Mustafa Uysal, John Wilkes, and the anonymous reviewers for

helpful comments and suggestions. We gratefully acknowledge Google for funding our

67



experiments on Google Cloud Platform. We thank Emulab for the opportunity to use
their testbeds. Kfir Lev-Ari is supported in part by the Hasso-Plattner Institute (HPI)
Research School. Research partially done while Kfir Lev-Ari was an intern with Yahoo,

Haifa. Partially supported by the Israeli Ministry of Science.

68



Chapter 5

Paper: Composing ordered

sequential consistency

Kfir Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexander Shraer : “Composing ordered
sequential consistency”. Information Processing Letters, Volume 123, July 2017, Pages
47-50, ISSN 0020-0190.

In this paper we introduce Ordered Sequential Consistency, which generalize linearizability

and sequential consistency, and prove a sufficient conditions for its composability.

69



Composing Ordered Sequential Consistency

Kfir Lev-Ari', Edward Bortnikov?, Idit Keidar'?, and Alexander Shraer®

LViterbi Department of Electrical Engineering, Technion, Haifa, Israel

2Yahoo Research, Haifa, Israel

Abstract

We define ordered sequential consistency (OSC), a generic criterion for concurrent ob-
jects, which encompasses a range of criteria, from sequential consistency to linearizability.
We show that OSC captures the typical behavior real-world coordination services, such
as ZooKeeper. A straightforward composition of OSC objects is not necessarily OSC.
To remedy this, we recently implemented a composition framework that injects dummy
operations in specific scenarios. We prove that injecting such operations, which we call

here leading ordered operations, enables correct OSC composition.

5.1 Introduction

In this work we define a generic correctness criterion named Ordered Sequential Consistency
(OSC), which captures a range of criteria, from sequential consistency [53] to linearizabil-
ity [49].

We use OSC to capture the semantics of coordination services such as ZooKeeper [50].
These coordination services provide so-called “strong consistency” for updates and some
weaker semantics for reads. They are replicated for high-availability, and each client submits
requests to one of the replicas. Reads are not atomic so that they can be served fast, i.e.,
locally by any of the replicas, whereas update requests are serialized via a quorum-based
protocol based on Paxos [55]. Since reads are served locally, they can be somewhat stale
but nevertheless represent a valid system state.

In the literature, these services’ guarantees are described as atomic writes and FIFO
ordered operations for each client [50]. This definition is not accurate in two ways: (1)
linearizability of updates has no meaning when no operation reads the written values; and

(2) this definition allows read operations to read from a future write, which obviously does

70



not occur in any real-world service. A special case of OSC, which we call OSC(U), captures
the actual guarantees of existing coordination services.

Although supporting OSC(U) semantics instead of atomicity of all operations enables
fast local reads, this makes services non-composable: correct OSC(U) coordination services
may fail to provide the same level of consistency when combined [58]. Intuitively, the
problem arises because OSC(U), similarly to sequential consistency [53], allows sub-set of
operations to occur “in the past”, which can introduce cyclic dependencies.

In a companion systems paper [58] we present ZooNet, a system for modular composition
of coordination services, which addresses this challenge: Consistency is achieved on the
client side by judiciously adding synchronization requests called leading ordered operations.
The key idea is to place a “barrier” that limits how far in the past reads can be served from.
ZooNet does so by adding a “leading” update request prior to a read request whenever the
read is addressed to a different service than the previous one accessed by the same client.
We provide here the theoretical underpinnings for the algorithm implemented in ZooNet.

Proving the correctness of ZooNet is made possible by the OSC definition that we present
in this paper. Interestingly, Vitenberg and Friedman [80] showed that sequential consistency,
when combined with any local (i.e., composable) property continues to be non-composable.
Our approach circumvents this impossibility result since having leading ordered operations

is not a local property.

5.2 Model and Notation

We use a standard shared memory execution model [49], where a set ¢ of sequential processes
access shared objects from some set X. An object has a name label, a value, and a set
of operations used for manipulating and reading its value. An operation’s execution is
delimited by two events, tnvoke and response.

A history o is a sequence of operation invoke and response events. An invoke event of
operation op is denoted .y, and the matching response event is denoted r,,. For two events
e1,eq € o, we denote e; <, ey if e; precedes es in o, and e; <, e if 1 = eg or €7 <, €9.
For two operations op and op in o, op precedes op’, denoted op <, op/, if 7op <o G0y, and
op <, op’ if op = op’ or op <, op’. Two operations are concurrent if neither precedes the
other.

For a history o, complete(o) is the sequence obtained by removing all operations with
no response events from o. A history is sequential if it begins with an invoke event and
consists of an alternating sequence of invoke and response events, s.t. each invoke is followed
by the matching response.

For p € ¢, the process subhistory o|p of a history o is the subsequence of o consisting

71



of events of process p. The object subhistory o, for an object z € X is similarly defined.
A history o is well-formed if for each process p € ¢, o|p is sequential. For the rest of our
discussion, we assume that all histories are well-formed. The order of operations in o|p is
called the process order of p.

For the sake of our analysis, we assume that each subhistory o, starts with a dummy
initialization of x that updates it to a dedicated initial value vy, denoted di,(vg), and that
there are no concurrent operations with di,(vo) in 0.

We refer to an operation that changes the object’s value as an update operation. The
sequential specification of an object z is a set of allowed sequential histories in which all
events are associated with x. For example, the sequential specification of a read-write object
is the set of sequential histories in which each read operation returns the value written by

the last update operation that precedes it.

5.3 Ordered Sequential Consistency

Definition 5.3.1 (OSC(A)). A history o is OSC w.r.t. a subset A of the objects’ operations
if there exists a history ¢’ that can be created by adding zero or more response events to o,

and there is a sequential permutation 7 of complete(c’), satisfying the following:

OSC; (sequential specification): Yz € X, 7, belongs to the sequential specification of

xX.

OSCy (process order): For two operations o and o, if Ip € ¢ : 0 <, 0o then o <, o'.

alp

OSC3 (A-real-time order): Va € X, for an operation o € A and an operation o’ (not

necessarily in A) s.t. 0,0’ € 04, if o/ <, 0 then o' < o.

Such 7 is called a serialization of o. An object is OSC(A) if all of its histories are

OSC(A).

We assume that Vx € X, diy(vg) € A. Linearizability and sequential consistency are
both special cases of OSC(A): (1) we get linearizability using A that consist of all of the
objects’ operations; and (2) we get sequential consistency with A that consists only of
dummy initialization operations, which means that there is no operation that precedes an
A-operation, i.e., OSCs is null, and we left with the sequential specification and process
order of an object.

If A consists of the objects’ update operations, denoted U, then OSC(U) captures the
semantics of coordination services: (1) updates are globally ordered (by OSCs); and (2) all
operations see some prefix of that order (by OSCs), while respecting each client process

order (by OSCay).

72



5.4 OSC(A) Composability via Leading A-Operations

In this section we show that a history o of OSC(A) objects satisfies OSC(A), if o has leading
ordered A-operations. Generally, we prove the composition by ordering every A-operation
04 on object x, according to the first event e € 0 s.t. e <, 1., and i,, <, e. Then, we
extend that order to a total order on all operations, by placing every non-A-operation after
the A-operation that precedes it in their object’s serialization. Finally, we show that if o
has leading ordered A-operations, then the total order satisfies OSC(A).Intuitively, we can
think of the leading A-operations as a barrier for the non- A-operations, that maintains the
total order between objects.

Given a history o of OSC(A) objects, and a set of serializations II = {7, },ex of {0z }zex,
we define a strict total order on all operations in II. We refer to an operation o € A as an

A-operation, and define the future set of an A-operation as follows:

Definition 5.4.1 (A-operation future set). Given a history o of OSC(A) objects, an object
x € o, a serialization m, of 0., and an A-operation o4 € o, the future set of 04 in m; is

F™=(04) £ {0 € mz|oa <r, 0}

We now define an A-operation’s first response event to be the earliest response event of

an operation in its future set.

Definition 5.4.2 (First response event). Given a history o of OSC(A) objects, an object
x € o, a serialization m, of o, and an A-operation o4 € 7., the first response event of 0

in 7y, denoted frX=(oa), is the earliest response event in o of an operation in F*(04).

Note that it is possible that fr]=(04) is 0a’s response event. We make two observations

regarding first responses:

Observation 5.4.3. Given OSC(A) objects’ o, an object = € o, a serialization m, of o,

and an A-operation o4 € 7, then iy, <, fri=(oa).

Proof. By definition, fr7=(04) is a response event in o of an operation o s.t. 04 <, o. If

fri=(0a) <o foy, 1.€., To <g lo,, then 0 <, 04, a contradiction to OSCs. B

Observation 5.4.4. Let o be OSC(A) objects’ history, and let 7, be a serialization of o,

for some x. For two A-operations 0,0’ € m,, if 0 <r, o, then fri=(o) <, fri=(d).

Proof. Since o <, o, we get F[*(0') C FJ*(0). By Definition 5.4.2, fr7(0’) is a response
event of an operation o1 € FT*(0'), and therefore 01 € FF*(0). Thus, frZ=(o) is either
fr7=(d’) or an earlier response event in o. B

To define our strict total order on operations we begin with A-operations:

73



Definition 5.4.5 (A-TI-order). Let o be a history of OSC(A) objects. Let IT = {m;}zex
be a set of serializations of {0, }.ex. Let z,y € X, then for two A-operations o4 € 7,
and o/, € m,, we define their A-IT-order, denoted <, as follows: (<) If z = y, ie.,
04,0y € Ty, then o4 <am 0y iff 04 <g, 0y; otherwise, (fr) z # y, and o4 <an 0 iff

fri=(oa) <o fra’(dy).

Lemma 5.4.6. For a history o of OSC objects and a set of serializations Il = {7, },ex of

{02} zex, A-Il-order is a strict total order on A-operations in II.

Proof. Irreflexivity, antisymmetry, and comparability follow immediately from the definition
of <ar. We show that < 4r7 satisfies transitivity.

Let o4, 0y, and 0’j be three A-operations s.t. uo; <am woa <arm uos; we need to prove
that wo; <am uos. We consider four cases according to the condition by which each of the
pairs is ordered:

(<,<) If 3z € X 04,0/y,0") € s, then 0g4 <, 0y <r, 0’} implies 04 <, 0/}, and thus
04 <A OZX'

(<fr) If 3z,y € X,z # y @ o4 <n, 04, 04y € my, and fri=(dy) <, frs'(0}), by
Observation 5.4.4, fr7(04) <, fr¥=(d)), therefore fr7=(04) <o, frs"(0"}), and 04 <am o4.

(fr,<) If 3o,y € X, # y : 04 € Ty, 0y <n, 04, and fri=(oa) <o fro’(0y), by
Observation 5.4.4, frg’(0'y) <o fro’(0"y). We get frT=(04) <, fro’(0"}), therefore 04 <am
o).

(fr,fr) If Jz,y,2 € X,z # y,y # 2 : 04 € Ty, 04 € my, and 0y € 7., this means that
frie(oa) <o fro’(0y) and frg’(0y) <o fri=(o4). By tramsitivity of <,, fri=(o4) <,
fri=(0)). If z # x, then o4 <amn 0/j. If z = z, by the contrapositive of Observation 5.4.4,
04 <, 0y, and 04 <ar o). W
We extend <1 to a weak total order in the usual way: 01 <arr 02 if 01 <ar 02 or 01 = 09.
For a history o, a serialization 7, of 0., and an operation o in m;, the last A-operation
before o in m,, denoted 1A, (0), is the latest A-operation in the prefix of 7, that ends
with o. Note that if o is an A-operation then 14, (0) = o; and that since every history
starts with a dummy initialization, every operation that is not in A is preceded by at least
one A-operation and so 14, (o) is well-defined. We use last A-operations to extend the

A-TI-order to a strict total order on all operations in II.

Definition 5.4.7 (Il-order). Let o be a history of OSC(A) objects. Let IT = {7, },ex be a
set of serializations of {0, },ex, and let x and y be objects in X. For two operations 01 € m,,

and o2 € my, we define II-order, denoted <, as follows:

(14x, (01) # 1Az, (02)) if the last A-operation before 01 and o9 are different, then o1 < 0 iff
lAﬂI (01) <Al lAﬂy (02);

74



1Az, (01) = 1Az, (02)) otherwise, z =y, and 01 <p 0 iff 01 <, 02.

We now observe that <i generalizes all the serializations 7, € II:

Observation 5.4.8. Let ¢ be a history of OSC(A) objects, and 7, € II a serialization of

o4 for some object z € X. For two operations 01,02 € 7y, if 01 <;, 02 then o; <11 09.

Proof. Since 01 <, 02, then 14, (01) <r, 14, (02). If 1A; (01) = 14, (02) then by
Definition 5.4.7, 01 <y1 02. Otherwise, by Definition 5.4.5, 1A, _(01) <am 1A, (02) and by
Definition 5.4.7, 01 <7 02. R

Lemma 5.4.9. Let o be a history of OSC(A) objects, and 11 = {m;}rex be a set of

serializations of {0 }zex, then I-order is a strict total order on all operations in 1.

Proof. Irreflexivity, antisymmetry, and comparability follow immediately from the definition
of <. We show that <y satisfies transitivity.

Let 01, 02, and 03 be three operations on objects x, y, z, resp., s.t. 01 < 02 <11 03; We
need to prove that o1 <y 03.

For every o; and oj, by Definition 5.4.7, 0; <p oj implies 1A, (0;) <an 1Az, (0j). By
transitivity of <ap (Lemma 5.4.6), we get from 14, (01) <am 1Ax,(02) <am 1Ax. (03) that
1A, (01) <am 1Ax, (03).

If 1A;,(01) <am lAx, (03) then by Definition 5.4.7 01 <g1 03. If 1A;, (01) = lAx, (03),
then by 1A, (01) <am 1Ax,(02) <am 1Ax, (03) we get 145, (01) = 1Az, (02) = 144, (03), and
x =y = z. Therefore by 01 <11 02 <11 03 and Definition 5.4.7, 01 <, 02 <, 03, and thus
by Definition 5.4.7 01 <1 03. B

Note that IT-order is always defined for compositions of OSC objects. Since it generalizes
all the serializations m, (Observation 5.4.8), it preserves OSC; and OSCjs. Nevertheless,
0OSC, is not guaranteed.

To support OSC(A) composition we extend each object with a sync operation, which
does not change the object’s state and does not return any value, but belongs to A. For
example, to compose OSC({di,(vo)|Vz € X}) objects, we extend each of them to be an
OSC({sync} U{diz(vo)|Vz € X}) object and then compose them via adding sync operations.

We say that in a history o there are leading ordered operations if for every operation
o ¢ A by a process p in o, the last operation of p before o is on the same object. This also
means that between every two operations o ¢ A and o’ ¢ A of different objects by the same
process in o, there is an operation o4 € A to the second object. We next prove that adding

leading ordered operations allows for correct OSC composition.

Theorem 5.1. If a history o of OSC(A) objects has leading ordered operations, then o is
OSC(A).

75



Proof. Let II = {m, },ex be a set of serializations of {0, },ex, and let 7 be the sequential
permutation of o defined by <. We now prove that 7 satisfies OSC(A). OSC; and OSCj;
follow immediately from Observation 5.4.8.

We prove OSCsy. Let 01 and 09 be two operations in II for which dp € ¢ : 01 <olp 02-
We now show that o1 <11 09.

We start by proving the claim for two consecutive operations in o|p. If both operations
are on the same object, then by Observation 5.4.8, 01 <1 02, as needed. Otherwise,
dz,y € X, # y : 01 € my,00 € Ty, and o1 immediately precedes o2 in o|p. By leading
ordered operations, since o1 and o2 are not on the same object, 0o is a A-operation and
hence 14, (02) = o02.

By definition, frX=(1Ax,(01)) <5 ro,. Since ro, <4 is,, and by Observation 5.4.3, i,, <
fra’(02), we get that fre(14,,(01)) <o fre’(02). By Definition 5.4.5, 14, (01) <am 02,
and by Definition 5.4.7, 01 <11 02.

Thus, every two consecutive operations of, 0’1 € II that are in o|p satisfy o' <y o'
By Lemma 5.4.9, <y is a strict total order on all operations, and therefore by transitivity,

we get 01 <17 02. B

Acknowledgments We thank Alexey Gotsman for helpful comments on an earlier draft.
Kfir Lev-Ari is supported in part by the Hasso-Plattner Institute (HPI) Research School.
This work was partially supported by the Israeli Ministry of Science.

76



Chapter 6

Discussion

In this thesis we presented the following results:

e We defined ordered sequential consistency (OSC), a generic criterion for concurrent
objects. We show that OSC encompasses a range of criteria, from sequential consistency
to linearizability, and captures the typical behavior of real-world coordination services,
such as ZooKeeper. In Section 6.4 we further discuss the results and implications of

our “Composing Ordered Sequential Consistency” paper.

e We presented a system design for modular composition of services that addresses
the performance-correctness trade-off. We implemented ZooNet, a prototype of this
concept over ZooKeeper. ZooNet allows users to compose multiple instances of
the service in a consistent fashion, facilitating applications that execute in multiple
regions. In Section 6.3 we further discuss the results and implications of our “Modular

Composition of Coordination Services” paper.

e We presented a comprehensive methodology for proving linearizability and related
criteria of concurrent data structures. We exemplified our methodology by using it to
give a road-map for proving linearizability of the popular Lazy List implementation
of the concurrent set abstraction. In Section 6.2 we further discuss the results
and implications of our “A Constructive Approach for Proving Data Structures’
Linearizability” paper, and in Section 6.1 of our “On Correctness of Data Structures

under Reads-Write Concurrency” paper.

The papers we discuss in Section 6.1 and Section 6.2 handle linearizability, which is

one of the most common correctness criteria in use nowadays for shared memory objects.

77



One of the main reasons linearizability is preferred over other correctness criteria is that
linearizability is composable. The paper discussed in Section 6.3 presents our solution
for the composability problem of coordination services, that are essential components of
distributed systems nowadays. In distributed systems, linearizable operations suffer from a
performance penalty, and therefore relax correctness criteria are in use. The paper we discuss
in Section 6.4 generalizes linearizability along with the coordination services’ semantics into

a single definition, and states a generic and sufficient condition for composability.

6.1 On Correctness of Data Structures under Reads-Write

Concurrency

In this paper we introduced a new framework for reasoning about correctness of data
structures in concurrent executions, which facilitates the process of verifiable parallelization
of legacy code. Our methodology consists of identifying base conditions in sequential code,
and ensuring regularity base points for these conditions under concurrency. This yields
two essential correctness aspects in concurrent executions — the internal behavior of the
concurrent code, which we call validity, and the external behavior, in this case regularity,
which we have generalized here for data structures. Linearizability is guaranteed if the
implementation further satisfies linearizability base point consistency.

We believe that this paper is only the tip of the iceberg, and that many interesting
connections can be made using the observations we have presented. For a start, an interesting
direction to pursue is to use our methodology for proving the correctness of more complex
data structures than the linked lists in our examples.

Currently, using our methodology involves manually identifying base conditions. It
would be interesting to create tools for suggesting a base condition for each local state. One
possible approach is to use a dynamic tool that identifies likely program invariants, as in
[42], and suggests them as base conditions. Alternatively, a static analysis tool can suggest
base conditions, for example by iteratively accumulating read shared variables and omitting
ones that are no longer used by the following code (i.e., shared variables whose values are
no longer reflected in the local state).

Another interesting direction for future work might be to define a synchronization

mechanism that uses the base conditions in a way that is both general purpose and fine-

78



grained. A mechanism of this type will use default conservative base conditions, such as
verifying consistency of the entire read-set for every local state, or two-phase locking of
accessed shared variables. In addition, the mechanism will allow users to manually define
or suggest finer-grained base conditions. This can be used to improve performance and
concurrency, by validating the specified base condition instead of the entire read-set, or by

releasing locks when the base condition no longer refers to the value read from them.

From a broader perspective, we showed how correctness can be derived from identify-
ing inner relations in a sequential code, (in our case, base conditions), and maintaining
those relations in concurrent executions (via base points). It may be possible to use sim-
ilar observations in other models and contexts, for example, looking at inner relations
in synchronous protocols, in order to derive conditions that ensure their correctness in

asynchronous executions.

And last but not least, the definitions of internal behavior correctness can be extended
to include weaker conditions than validity, (which is quiet conservative). These weaker
conditions will handle local states in concurrent executions that are un-reachable via

sequential executions but still satisfy the inner correctness of the code.

6.2 A Constructive Approach for Proving Data Structures’

Linearizability

In this paper we introduced a constructive methodology for proving correctness of concurrent
data structures and exemplified it with a popular data structure. Our methodology outlines
a road-map for proving correctness. While we have exemplified its use for writing semi-
formal proofs, we believe it can be used at any level of formalism, from informal correctness
arguments to formal verification. In particular, our framework has the potential to simplify
the proof structure employed by existing formal methodologies for proving linearizability

(35, 36, 39, 41, 44, 67, 79], thus making them more accessible to practitioners.

Currently, using our methodology involves manually identifying base conditions, com-
muting steps, and base point preserving steps. It would be interesting to create tools for
suggesting a base condition for each local state, and identifying the interesting steps in

update operations using either static or dynamic analysis.

79



6.3 Modular Composition of Coordination Services

Coordination services provide consistent and highly available functionality to applications,
relieving them of implementing common (but subtle) distributed algorithms on their own.
Yet today, when applications are deployed in multiple data centers, system architects are
forced to choose between consistency and performance. In this paper we showed that this
does not have to be the case. Our modular composition approach maintains the performance
and simplicity of deploying independent coordination services in each data center, and yet

does not forfeit consistency.

We demonstrated that the simplicity of our technique makes it easy to use with existing
coordination services, such as ZooKeeper — it does not require changes to the underlying
system, and existing clients may continue to work with an individual coordination service
without any changes (even if our client library is used, such applications will not incur
any overhead). Moreover, the cost for applications requiring consistent multi-data center

coordination is low for workloads that exhibit high spatial or temporal locality.

In this work we have focused on the advantages of our composition design in wide-area
deployments. It is possible to leverage the same design for deployments within the data
center boundaries that currently suffer from lack of sharing among coordination services.
Indeed, a typical data center today runs a multitude of coordination service backend services.
For example, it may include: Apache Kafka message queues [1], backed by ZooKeeper and
used in several applications; Swarm [7], a Docker [65] clustering system running an etcd
backend; Apache Solr search platform [2] with an embedded ZooKeeper instance; and Apache
Storm clusters [77], each using a dedicated ZooKeeper instance. Thus, installations end up
running many independent coordination service instances, which need to be independently
provisioned and maintained. This has a number of drawbacks: (1) it does not support cross-
application sharing; (2) it is resource-wasteful, and (3) it complicates system administration.

Our modular composition approach can potentially remedy these short comings.

Our composition algorithm supports individual query and update operations. It can
natively support transactions (e.g., ZooKeeper’s multi operation) involving data in single
service instance. An interesting future direction could be to support transactions involving
multiple service instances. This is especially challenging in the face of possible client and

service failures, if all cross-service coordination is to remain at the client side.

80



6.4 Composing Ordered Sequential Consistency

Coordination services are broadly deployed nowadays in backends of large-scale distributed
systems. In this paper we defined OSC(A), which encompasses a range of criteria, from
sequential consistency to linearizability, and captures the typical behavior of coordination
services, such as ZooKeeper.

By itself, OSC(A) is non-composable. Non-composability precludes multi-data-center
deployments that are both consistent and efficient. We showed a way to compose OSC objects
correctly using a simple non-local property called leading ordered operations. Composability
of coordination services enables low-latency local updates, while having global consistency

among services.

81



Bibliography

1]

Apache Kafka — A high-throughput distributed messaging system., . URL http:

//kafka.apache.org. [Online; accessed 1-Jan-2016].

Apache Solr — a standalone enterprise search server with a REST-like API., . URL

http://lucene.apache.org/solr/. [Online; accessed 1-Jan-2016].

Camille Fournier: Building a Global, Highly Available Service Discovery Infras-
tructure with ZooKeeper. URL http://whilefalse.blogspot.co.il/2012/12/

building-global-highly-available.html. [Online; accessed 1-Jan-2016].

Consul — a tool for service discovery and configuration. Consul is distributed, highly
available, and extremely scalable., . URL https://www.consul.io/. [Online; accessed

1-Jan-2016].

Consul HTTP API, . URL https://www.consul.io/docs/agent/http.html. [Online;

accessed 28-Jan-2016].

Doozer — a highly-available, completely consistent store for small amounts of extremely
important data. URL https://github.com/ha/doozerd. [Online; accessed 1-Jan-

2016).

Swarm: a Docker-native clustering system. URL https://github.com/docker/swarm.

[Online; accessed 1-Jan-2016].

Daniel Abadi: Problems with CAP, and Yahoo's little known NoSQL system. URL http:
//dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-1little.

html. [Online; accessed 28-Jan-2016].

Access Control in Google Cloud Storage. URL https://cloud.google.com/storage/

docs/access-control. [Online; accessed 28-Jan-2016].

82


http://kafka.apache.org
http://kafka.apache.org
http://lucene.apache.org/solr/
http://whilefalse.blogspot.co.il/2012/12/building-global-highly-available.html
http://whilefalse.blogspot.co.il/2012/12/building-global-highly-available.html
https://www.consul.io/
https://www.consul.io/docs/agent/http.html
https://github.com/ha/doozerd
https://github.com/docker/swarm
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
https://cloud.google.com/storage/docs/access-control 
https://cloud.google.com/storage/docs/access-control 

[10]

[11]

[12]

[13]

[16]

Question about multi-datacenter key-value consistency (Consul). URL https://goo.

gl/XMWCcH. [Online; accessed 28-Jan-2016].

eted — a highly-available key value store for shared configuration and service discovery.

URL https://coreos.com/etcd/. [Online; accessed 1-Jan-2016].

Google Compute Engine — Scalable, High-Performance Virtual Machines. URL https:

//cloud.google.com/compute/. [Online; accessed 1-Jan-2016].

Observers: Making ZooKeeper Scale Even Further. URL https://blog.cloudera.
com/blog/2009/12/0observers-making-zookeeper-scale-even-further/. [Online;

accessed 1-Jan-2016].

Proposal: mounting a remote ZooKeeper. URL https://wiki.apache.org/hadoop/

ZooKeeper/MountRemoteZookeeper. [Online; accessed 28-Jan-2016].

ZooKeeper’s Jira - Major throughput improvement with mixed workloads. URL
https://issues.apache.org/jira/browse/Z00KEEPER-2024. [Online; accessed 16-

May-2016].

Igor Serebryany: SmartStack vs. Consul. = URL http://igor.moomers.org/

smartstack-vs-consul/. [Online; accessed 28-Jan-2016].

Solr  Cross Data  Center Replication. URL  http://yonik.com/

solr-cross-data-center-replication/. [Online; accessed 28-Jan-2016].

Vitess deployment: global vs local. URL http://vitess.io/doc/TopologyService/

#global-vs-local. [Online; accessed 28-Jan-2016].

Question about number of nodes spread across datacenters (ZooKeeper)., . URL

https://goo.gl/oPC2Y£. [Online; accessed 28-Jan-2016].

Question about cross-datacenter setup (ZooKeeper)., . URL http://goo.gl/0sDOMZ.

[Online; accessed 28-Jan-2016].

Has anyone deployed a ZooKeeper ensemble across data centers? URL https://www.
quora.com/Has\anyone\deployed\a\ZooKeeper\ensemble\across\data\centers.

[Online; accessed 1-Jan-2016].

83


https://goo.gl/XMWCcH
https://goo.gl/XMWCcH
https://coreos.com/etcd/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://blog.cloudera.com/blog/2009/12/observers-making-zookeeper-scale-even-further/
https://blog.cloudera.com/blog/2009/12/observers-making-zookeeper-scale-even-further/
https://wiki.apache.org/hadoop/ZooKeeper/MountRemoteZookeeper 
https://wiki.apache.org/hadoop/ZooKeeper/MountRemoteZookeeper 
https://issues.apache.org/jira/browse/ZOOKEEPER-2024
http://igor.moomers.org/smartstack-vs-consul/
http://igor.moomers.org/smartstack-vs-consul/
http://yonik.com/solr-cross-data-center-replication/
http://yonik.com/solr-cross-data-center-replication/
http://vitess.io/doc/TopologyService/#global-vs-local 
http://vitess.io/doc/TopologyService/#global-vs-local 
https://goo.gl/oPC2Yf
http://goo.gl/0sD0MZ
https://www.quora.com/Has\ anyone\ deployed\ a\ ZooKeeper\ ensemble\ across\ data\ centers
https://www.quora.com/Has\ anyone\ deployed\ a\ ZooKeeper\ ensemble\ across\ data\ centers

22]

23]

[24]

[25]

[27]

28]

Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh Khe-
mani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri, Jason Hunter, Roberto
Peon, Larry Kai, Alexander Shraer, Arif Merchant, and Kfir Lev-Ari. Slicer: Auto-
sharding for datacenter applications. In 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4,
2016., pages 739-753, 2016. URL https://www.usenix.org/conference/osdil6/

technical-sessions/presentation/adya.

Yehuda Afek, Alexander Matveev, and Nir Shavit. Pessimistic software lock-elision. In
Proceedings of the 26th International Conference on Distributed Computing, DISC’12,
pages 297-311, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-33650-8. doi:
10.1007/978-3-642-33651-5_21.

Maya Arbel and Hagit Attiya. Concurrent updates with rcu: Search tree as an example.
In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing,
PODC ’14, pages 196-205, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2944-6.
doi: 10.1145/2611462.2611471.

Andrea Arcangeli, Mingming Cao, Paul E. McKenney, and Dipankar Sarma. Using
read-copy-update techniques for system v ipc in the linux 2.5 kernel. In USENIX
Annual Technical Conference, FREENIX Track, pages 297-309. USENIX, 2003. ISBN
1-931971-11-0.

Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations
and Advanced Topics. John Wiley & Sons, 2004. ISBN 0471453242.

Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James Larson,
Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megastore:
Providing scalable, highly available storage for interactive services. In Proceedings of
the Conference on Innovative Data system Research (CIDR), pages 223-234, 2011. URL

http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf.

R. Bayer and M. Schkolnick. Readings in database systems. chapter Concurrency
of Operations on B-trees, pages 129-139. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1988. ISBN 0-934613-65-6.

84


https://www.usenix.org/conference/osdi16/technical-sessions/presentation/adya
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/adya
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf

[29]

[30]

[31]

32]

[33]

[34]

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. A critique of ansi sql isolation levels. SIGMOD Rec., 24(2):1-10, May 1995.
ISSN 0163-5808. doi: 10.1145/568271.223785.

Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986. ISBN 0-201-10715-5.

Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1987. ISBN 0-201-10715-5.

Carlos Eduardo Benevides Bezerra, Fernando Pedone, and Robbert van Renesse.
Scalable state-machine replication. In //th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 201/, Atlanta, GA, USA, June 23-26, 2014,
pages 331-342, 2014. doi: 10.1109/DSN.2014.41. URL http://dx.doi.org/10.1109/

DSN.2014.41.

Trevor Brown, Faith Ellen, and Eric Ruppert. Pragmatic primitives for non-blocking

data structures. In PODC, pages 13-22, 2013.

Mike Burrows. The chubby lock service for loosely-coupled distributed systems. In
Proceedings of the 7th Symposium on Operating Systems Design and Implementation,
OSDI ’06, pages 335-350, Berkeley, CA, USA, 2006. USENIX Association. ISBN

1-931971-47-1. URL http://dl.acm.org/citation.cfm?id=1298455.1298487.

Gregory Chockler, Nancy Lynch, Sayan Mitra, and Joshua Tauber. Proving atomicity:
An assertional approach. In Proceedings of the 19th International Conference on
Distributed Computing, DISC’05, pages 152-168, Berlin, Heidelberg, 2005. Springer-
Verlag. ISBN 3-540-29163-6, 978-3-540-29163-3. doi: 10.1007/11561927_13.

Robert Colvin, Lindsay Groves, Victor Luchangco, and Mark Moir. Formal verification

of a lazy concurrent list-based set. In In 18th CAV, pages 475-488. Springer, 2006.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J.
Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild,

Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey

85


http://dx.doi.org/10.1109/DSN.2014.41
http://dx.doi.org/10.1109/DSN.2014.41
http://dl.acm.org/citation.cfm?id=1298455.1298487

[42]

[43]

[44]

Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig,
Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s globally-distributed database. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation, OSDI’12, pages 251—
264, Berkeley, CA, USA, 2012. USENIX Association. ISBN 978-1-931971-96-6. URL

http://dl.acm.org/citation.cfm?id=2387880.2387905.

Pierre-Jacques Courtois, F. Heymans, and David Lorge Parnas. Concurrent control

with ”readers” and "writers”. Commun. ACM, 14(10):667-668, 1971.

John Derrick, Gerhard Schellhorn, and Heike Wehrheim. Verifying linearisability with
potential linearisation points. In FM 2011: Formal Methods - 17th International
Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings,
pages 323-337, 2011. doi: 10.1007/978-3-642-21437-0_25.

D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In Proc. of the 20th

International Symposium on Distributed Computing (DISC 2006), pages 194-208, 2006.

Brijesh Dongol and John Derrick. Proving linearisability via coarse-grained abstraction.

CoRR, abs/1212.5116, 2012.

Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically
discovering likely program invariants to support program evolution. In Proceedings of
the 21st International Conference on Software Engineering, ICSE ’99, pages 213-224,
New York, NY, USA, 1999. ACM. ISBN 1-58113-074-0. doi: 10.1145/302405.302467.

Rachid Guerraoui and Michal Kapalka. On the correctness of transactional memory.
In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’08, pages 175-184, New York, NY, USA, 2008. ACM.
ISBN 978-1-59593-795-7. doi: 10.1145/1345206.1345233.

Rachid Guerraoui and Marko Vukolic. A scalable and oblivious atomicity assertion. In
Franck van Breugel and Marsha Chechik, editors, CONCUR, volume 5201 of Lecture
Notes in Computer Science, pages 52—66. Springer, 2008. ISBN 978-3-540-85360-2. URL

http://dblp.uni-trier.de/db/conf/concur/concur2008.html#GuerraouiVos.

86


http://dl.acm.org/citation.cfm?id=2387880.2387905
http://dblp.uni-trier.de/db/conf/concur/concur2008.html#GuerraouiV08

[45]

[46]

[48]

[50]

Raluca Halalai, Pierre Sutra, Etienne Riviere, and Pascal Felber. Zoofence: Principled
service partitioning and application to the zookeeper coordination service. In 33rd
IEFEE International Symposium on Reliable Distributed Systems, SRDS 2014, Nara,
Japan, October 6-9, 2014, pages 67-78, 2014. doi: 10.1109/SRDS.2014.41. URL

http://dx.doi.org/10.1109/SRDS.2014.41.

Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer,
and Nir Shavit. A lazy concurrent list-based set algorithm. In Proceedings of the 9th
International Conference on Principles of Distributed Systems, OPODIS’05, pages 3—-16,
Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-36321-1, 978-3-540-36321-7. doi:
10.1007/11795490_3.

Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In Proceedings of the 22Nd ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA 10, pages 355364, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0079-7. doi: 10.1145/1810479.1810540.

Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support
for lock-free data structures. SIGARCH Comput. Archit. News, 21(2):289-300, May
1993. ISSN 0163-5964. doi: 10.1145/173682.165164.

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463-492, July 1990.
ISSN 0164-0925. doi: 10.1145/78969.78972.

Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Conference, USENIXATC’10, pages 11-11,
Berkeley, CA, USA, 2010. USENIX Association. URL http://dl.acm.org/citation.

cfm?id=1855840.1855851.

Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-performance
broadcast for primary-backup systems. In Proceedings of the 2011 IEEE/IFIP 41st
International Conference on Dependable SystemséNetworks, DSN 11, pages 245-256,
Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-1-4244-9232-9. doi:
10.1109/DSN.2011.5958223. URL http://dx.doi.org/10.1109/DSN.2011.5958223.

87


http://dx.doi.org/10.1109/SRDS.2014.41
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dx.doi.org/10.1109/DSN.2011.5958223

[52]

[57]

[59]

Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo Alvisi, and Mike
Dahlin. All about eve: Execute-verify replication for multi-core servers. In Proceedings
of the 10th USENIX Conference on Operating Systems Design and Implementation,
OSDI'12, pages 237-250, Berkeley, CA, USA, 2012. USENIX Association. ISBN

978-1-931971-96-6. URL http://dl.acm.org/citation.cfm?id=2387880.2387903.

L. Lamport. How to make a multiprocessor computer that correctly executes multipro-
cess programs. [EEE Trans. Comput., 28(9):690-691, Sept. 1979. ISSN 0018-9340. doi:
10.1109/TC.1979.1675439.

Leslie Lamport. On interprocess communication. part ii: Algorithms. Distributed

Computing, 1(2):86-101, 1986.

Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133—
169, 1998. doi: 10.1145/279227.279229. URL http://doi.acm.org/10.1145/279227.

279229.

Kfir Lev-Ari, Gregory Chockler, and Idit Keidar. On correctness of data structures under
reads-write concurrency. In Distributed Computing - 28th International Symposium,
DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings, pages 273-287, 2014.
doi: 10.1007/978-3-662-45174-8_19.

Kfir Lev-Ari, Gregory Chockler, and Idit Keidar. A constructive approach for prov-
ing data structures’ linearizability. In Distributed Computing - 29th International
Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, pages 356—
370, 2015. doi: 10.1007/978-3-662-48653-524. URL https://doi.org/10.1007/

978-3-662-48653-5_24.

Kfir Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexander Shraer. Modular
composition of coordination services. In 2016 USENIX Annual Technical Confer-
ence, USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016., pages 251-264,
2016. URL https://www.usenix.org/conference/atcl6/technical-sessions/

presentation/lev-ari.

Kfir Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexander Shraer. Composing ordered
sequential consistency. Inf. Process. Lett., 123:47-50, 2017. doi: 10.1016/j.ipl.2017.03.

004. URL https://doi.org/10.1016/j.ipl.2017.03.004.

88


http://dl.acm.org/citation.cfm?id=2387880.2387903
http://doi.acm.org/10.1145/279227.279229
http://doi.acm.org/10.1145/279227.279229
https://doi.org/10.1007/978-3-662-48653-5_24
https://doi.org/10.1007/978-3-662-48653-5_24
https://www.usenix.org/conference/atc16/technical-sessions/presentation/lev-ari
https://www.usenix.org/conference/atc16/technical-sessions/presentation/lev-ari
https://doi.org/10.1016/j.ipl.2017.03.004

[60]

[66]

[68]

Yanhua Mao, Flavio Paiva Junqueira, and Keith Marzullo. Mencius: Building efficient
replicated state machine for wans. In §th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2008, December 8-10, 2008, San Diego, Califor-
nia, USA, Proceedings, pages 369-384, 2008. URL http://www.usenix.org/events/

0sdi08/tech/full_papers/mao/mao.pdf.

Parisa Jalili Marandi, Carlos Eduardo Bezerra, and Fernando Pedone. Rethinking state-
machine replication for parallelism. In Proceedings of the 2014 IEEE 3/th International
Conference on Distributed Computing Systems, ICDCS ’14, pages 368-377, Washington,
DC, USA, 2014. IEEE Computer Society. ISBN 978-1-4799-5169-7. doi: 10.1109/

ICDCS.2014.45. URL http://dx.doi.org/10.1109/ICDCS.2014.45.

Paul E. McKenney. Selecting locking primitives for parallel programming. Commun.

ACM, 39(10):75-82, Oct. 1996. ISSN 0001-0782. doi: 10.1145/236156.236174.
Paul E. McKenney. RCU part 3: the RCU API. January 2008.

Paul E. McKenney and John D. Slingwine. Read-copy update: using execution history

to solve concurrency problems, parallel and distributed computing and systems, 1998.

Dirk Merkel. Docker: Lightweight linux containers for consistent development and
deployment. Linuz J., 2014(239), Mar. 2014. ISSN 1075-3583. URL http://dl.acm.

org/citation.cfm?id=2600239.2600241.

M. Moir and N. Shavit. Concurrent data structures. In Handbook of Data Structures
and Applications, D. Metha and S. Sahni Editors, pages 47-14, 47-30, 2007. Chapman
and Hall/CRC Press.

Peter W. O’Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, and Greta Yorsh.
Verifying linearizability with hindsight. In Proceedings of the 29th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, PODC 10, pages 8594,
New York, NY, USA, 2010. ACM. ISBN 978-1-60558-888-9. doi: 10.1145/1835698.
1835722.

Diego Ongaro and John Ousterhout. In search of an understandable consensus algo-
rithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical
Conference, USENIX ATC’14, pages 305-320, Berkeley, CA, USA, 2014. USENIX

89


http://www.usenix.org/events/osdi08/tech/full_papers/mao/mao.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/mao/mao.pdf
http://dx.doi.org/10.1109/ICDCS.2014.45
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241

[70]

[72]

Association. ISBN 978-1-931971-10-2. URL http://dl.acm.org/citation.cfm?id=

2643634 .2643666.

David L. Oppenheimer, Archana Ganapathi, and David A. Patterson. Why do internet
services fail, and what can be done about it? In 4th USENIX Symposium on Internet
Technologies and Systems, USITS’03, Seattle, Washington, USA, March 26-28, 2003,

2003. URL http://www.usenix.org/events/usits03/tech/oppenheimer.html.

Behrokh Samadi. B-trees in a system with multiple users. Inf. Process. Lett., 5(4):
107-112, 1976.

William N. Scherer, IIT and Michael L. Scott. Advanced contention management for
dynamic software transactional memory. In Proceedings of the Twenty-fourth Annual
ACM Symposium on Principles of Distributed Computing, PODC ’05, pages 240-248,
New York, NY, USA, 2005. ACM. ISBN 1-58113-994-2. doi: 10.1145/1073814.1073861.

Cheng Shao, Jennifer L. Welch, Evelyn Pierce, and Hyunyoung Lee. Multiwriter
consistency conditions for shared memory registers. SIAM J. Comput., 40(1):28-62,
2011.

Artyom Sharov, Alexander Shraer, Arif Merchant, and Murray Stokely. Take me to
your leader!: Online optimization of distributed storage configurations. Proc. VLDB
Endow., 8(12):1490-1501, Aug. 2015. ISSN 2150-8097. doi: 10.14778/2824032.2824047.

URL http://dx.doi.org/10.14778/2824032.2824047.

Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing, PODC
95, pages 204-213, New York, NY, USA, 1995. ACM. ISBN 0-89791-710-3. doi:
10.1145/224964.224987.

Alex Sherman, Philip A. Lisiecki, Andy Berkheimer, and Joel Wein. ACMS: the
akamai configuration management system. In 2nd Symposium on Networked Systems
Design and Implementation (NSDI 2005), May 2-4, 2005, Boston, Massachusetts, USA,
Proceedings., 2005. URL http://www.usenix.org/events/nsdi05/tech/sherman.

html.

90


http://dl.acm.org/citation.cfm?id=2643634.2643666
http://dl.acm.org/citation.cfm?id=2643634.2643666
http://www.usenix.org/events/usits03/tech/oppenheimer.html
http://dx.doi.org/10.14778/2824032.2824047
http://www.usenix.org/events/nsdi05/tech/sherman.html
http://www.usenix.org/events/nsdi05/tech/sherman.html

[76]

[77]

[78]

[79]

[82]

Chungiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander, Zhe
Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. Holistic configuration
management at facebook. In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP 15, pages 328-343, New York, NY, USA, 2015. ACM. ISBN 978-
1-4503-3834-9. doi: 10.1145/2815400.2815401. URL http://doi.acm.org/10.1145/

2815400.2815401.

Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M. Patel,
Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, Nikunj
Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. Storm@Qtwitter. In Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data, SIGMOD
14, pages 147-156, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2376-5. doi:

10.1145/2588555.2595641. URL http://doi.acm.org/10.1145/2588555.2595641.

Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. A safety proof of a
lazy concurrent list-based set implementation. Technical Report UCAM-CL-TR-659,

University of Cambridge, Computer Laboratory, jan 2006.

Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. Proving correctness
of highly-concurrent linearisable objects. In Proceedings of the Eleventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP 06, pages
129-136, New York, NY, USA, 2006. ACM. ISBN 1-59593-189-9. doi: 10.1145/1122971.
1122992.

Roman Vitenberg and Roy Friedman. On the locality of consistency conditions. In

DISC’05.

Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated experimental
environment for distributed systems and networks. In Proc. of the Fifth Symposium on
Operating Systems Design and Implementation, pages 255-270, Boston, MA, Dec. 2002.
USENIX Association.

Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasundaram,
and Shankar Pasupathy. An empirical study on configuration errors in commercial

and open source systems. In Proceedings of the Twenty-Third ACM Symposium

91


http://doi.acm.org/10.1145/2815400.2815401
http://doi.acm.org/10.1145/2815400.2815401
http://doi.acm.org/10.1145/2588555.2595641

on Operating Systems Principles, SOSP 11, pages 159-172, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0977-6. doi: 10.1145/2043556.2043572. URL http:

//doi.acm.org/10.1145/2043556.2043572.

92


http://doi.acm.org/10.1145/2043556.2043572
http://doi.acm.org/10.1145/2043556.2043572

DVINAN NV NIAY TYMIPHN NN TN APY 19INT OINON MY IR DY DXTI9) DYy
DY NTIAYY NNNVYNL DY NN WIYI KD T2 PN YTNO WP IUN YNnwn o5 191N
YTPY DY DY 90N Y TN DOVND IUN DVNNYN LJD 1N DN MDY IMN DY TN yam
POV VNN 0P DOYNIN 07APY MNIND INNYND 7 09 DY DHINIT N9V DINND L, OIND
SV NIVN T8 NINY DD M»YWA TN NOD DINN NIV OV DY 190N DY Tayy mMphd Ivann
PON DNNN NIV JMN MW MNXINND Y8AN MPON IWR MWHNY D *T DY , MY DN

20PN DIND XMPY 190NY DIWN) ROV DIVNNYN MDD ,NOIYNN DY OO0 DYNNYNN

NTINGN NN DMTH NN .0°DAPN DXNINI 221 DY DMNIDI NNDIND NOYPN N TIND DXINN 1IN
NIPN NPNY ,NPMILR .D»DXAPN DXVPPAIN DY NPMILN NNDND O’ITT NN DXPODN VRY THI MOV
.DXOMYN DVPMPIIND INPA DXV MNIIN NPIVIPHN NNNX NN ,NNTO) NN NPAPY DY T
LIN8Y 19N NIDTIVHNN NIVIPHN NIPYI DV NPMIVN NNDIND 1OV NNTINND DV DIW» DIXTH DN
NINY NMNDIN NN .7IND) NNDIND MPIOV P2 INNYA NAY 2IM *Dapn DN NIAN NNV
MTAYD T .NPOIVN NAY DPXADN DNIN TINDY DYV NNONN VIYN DYy NDDIAN DINN
TNY NOD ,NPNITO MY ONNN NNAN DY DIANNDNN MPY O DOV ONIND MNP

LOONMN M2 MOYI NAY NPMILN MTIPI NNONNI

ii



851

PN .DDAPN DOPYAIND 1) MND) PIVIP ,NNTO) NPT NPAPY DPTIN NN R IPNN NTaya
TV N9NT NPIAPYN SNN DM D)PIVAIP DY AN NNV NDYIN NNTO) NOST NPAPY 2D DN
.OPD 207 YW DINSDIY DINT XMPY DY IO NNIMINN DT 0) 1D ,(NPDILN) NPINDD
,SNTOY PYT 19IND TPAPY NN NPN NTOY P¥I 191N 07APY DOPPIN JY DOV YMOMIP
93ya NN NN ON) NN PIAPY NPN DN 0rIAPY DOPPAIN Y NADINY NT ODWnd

(DOP»IN DY Nymipn MNond vna

M2Y9 025N NRY TPOAYY NMNON O PTHIN X ,DNTO) DX D»IAPY DOPPAIN HY NI DWD
DNTOY DONT O»APY DOVPPAR DY N1 NADIN NIYAND NNT N1DN 7D 0N, MM MNTD
(AN PR 9 DY INTOD DNXIND) NON IT0 O»P JNY MY DY NP NN WHNYND NID PyIn
M2Ya Q87 5oV NPTHIN NNINN S8 MDY RO ITD OPP NI Y MOIYaN INY NN 0INNYD >T5

NI MO OIMN 0P N9 NNAP NN DMND N9V DNNND TN VPPN DY TONN YNINY

NOIPN NN, NITIIY D290 NADINN NNON DY TN DNTOM NNIN NPAPYN DY NPY NOOYN
PO 1732 JARD MNINND 02IY 1597) NIND DXMPY .ONNDI DY NPHY TN DN XMPY 13NY
DP9INN DINND DOYIAN DIDIVY? TUNRD . PNIN PHONX APy DINN VI DV DINAN D0 Iy
DYNNNY DXMPY MYNNNI ODVIND) 0¥ 1PN PA WIIN DINNN MDY DDA 19N DX
DN INTN NOHY NTIAYN 29D VIDIWI PRV MNYN MYHN .NPapya NN PaY ,(0TI19) DIIRKNA

DOYNRN IAPY DY NPNYIIN N ,MIND NAY T

OIND 073N MMNNN JI1DPYO ONRPNNY DIND XMV DY NXIOTIN NADIND NIIYN 1ON DXINN 1IN
NI MPONY MDYaN MINN NAPIY NNT NAOW .MPON T8 Y NAOY DY NODIN NN JoNN Y05
N25WN IR ,ONINND NPT MO POX MN NNYN DIND MPYA WHNvnd NN Mpdm NN
DN KON J9INI MITION PNIDIDN MW .WTNN DINDN MPYO NMIPON Pa PIDID NS N9
AMIDS PO 9N MDD MNTON MY NNON NNPPNNY INIM ) PN 29 DY yNTOD

22NNND DVNNYNY AYANNN ,0"N 19N VI DOXNN DR 0N .NPAPY DY NNV Na590N



22902 MINIITTIN DY DY HNYN NOTIND NONPOL TP TTY NOMIS DY NNYNINA YA IPNNN

NAPN TONN2 NYT72ANI2 ©20ID2 PN PAMYI 12NN NNRKD OINNNI NMDND Nt NN MNRIND

T NN MINYNIN YR PN ANV NPIDTYN OIPMINDI .I2NNN DY ONOPITH IPNN

STNONYNA NTIN FADIN NPHNN DY PIDVD NTIN IN



NINNDY NAD9A NNTOIY NN NYaPY

PPN DYy MmN

ININD NOAPY MWAITN DY *PON D DYO

PODIDAS NONT

IN"2Y 995

SNV MYNOV NON — NMIDVN VIDY YN

2017 Hv nan Y'yvnn Hmnn



NINNDY NAD9A NNTOIY NN NYaPY

IN"2Y 995



	List of Publications
	List of Figures
	Abstract
	Abbreviations and Notations
	1 Introduction
	1.1 Thesis Structure
	1.2 Brief Scientific Background
	1.2.1 Model for Analyzing Concurrent Objects
	1.2.2 Sequential Consistency
	1.2.3 Linearizability
	1.2.4 Coordination Services


	2 Paper: On Correctness of Data Structures under Reads-Write Concurrency
	2.1 Introduction
	2.2 Model and Correctness Definitions
	2.2.1 Data Structures and Sequential Executions
	2.2.2 Correctness Conditions for Concurrent Data Structures

	2.3 Base Conditions, Validity and Regularity
	2.3.1 Base Conditions and Base Points
	2.3.2 Satisfying the Regularity Base Point Consistency
	2.3.3 Deriving Correctness from Base Points

	2.4 Using Our Methodology
	2.5 Linearizability
	2.5.1 Linearizability Base Point Consistency

	2.6 Sequential Consistency

	3 Paper: A Constructive Approach for Proving Data Structures' Linearizability
	3.1 Introduction
	3.2 Preliminaries
	3.3 Base Point Analysis
	3.4 Linearizability using Base Point Analysis
	3.4.1 Update Operations
	3.4.2 Read-Only Operations

	3.5 Roadmap for Proving Linearizability
	3.5.1 Stage I: Base Conditions
	3.5.2 Stage II: Linearizability of Update Operations
	3.5.3 Stage III: Linearizability of Read-Only Operations


	4 Paper: Modular composition of coordination services
	4.1 Introduction
	4.2 Background
	4.2.1 Coordination Services
	4.2.2 Cross Data Center Deployment

	4.3 Design for Composition
	4.3.1 Modular Composition of Services
	4.3.2 Modular Composition Properties

	4.4 ZooNet
	4.4.1 Server-Side Isolation
	4.4.2 The ZooNet Client

	4.5 Evaluation
	4.5.1 Environment and Configurations
	4.5.2 Server-Side Isolation
	4.5.3 The Cost of Consistency
	4.5.4 Comparing ZooNet with ZooKeeper

	4.6 Related Work
	4.6.1 Multi-Data Center Deployment
	4.6.2 Composition Methods


	5 Paper: Composing ordered sequential consistency
	5.1 Introduction
	5.2 Model and Notation
	5.3 Ordered Sequential Consistency
	5.4 OSC(A) Composability via Leading A-Operations

	6 Discussion
	6.1 On Correctness of Data Structures under Reads-Write Concurrency
	6.2 A Constructive Approach for Proving Data Structures' Linearizability
	6.3 Modular Composition of Coordination Services
	6.4 Composing Ordered Sequential Consistency

	Hebrew Abstract

