
Ordered Sequential Consistency:
Composition and Correctness

Kfir Lev-Ari

Ordered Sequential Consistency:
Composition and Correctness

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Kfir Lev-Ari

Submitted to the Senate

of the Technion — Israel Institute of Technology

Tamuz 5777 Haifa July 2017

This research was carried out under the supervision of Prof. Idit Keidar, in the Andrew and

Erna Viterbi Faculty of Electrical Engineering, Technion.

The results in this thesis have been published as articles by the author and research

collaborators in conferences and journals during the course of the author’s doctoral research

period. The most up-to-date versions of which are found in this thesis.

The generous financial help of the Technion is gratefully acknowledged.

Acknowledgements
First, I would like to thank my advisor, Prof. Idit Keidar. Thank you for being highly

available (24/7), for tolerating my faults, and for the consistent guidance throughout the

inconsistent world of distributed systems. I am more than grateful for the opportunity

to work under your supervision. It was an awesome (Paxos-like) journey, in which I got

the chance to grasp (and accept) new concepts, to propose new ideas, to learn a lot from

others, and to lead the way when I was ready. To the anonymous reader, note that there is

a consensus that Idit is the best advisor one could have.

I would also like to thank Edward Bortnikov, Prof. Gregory Chockler, and Alexander

Shraer, for very productive collaborations, as well as for the great time we had together

on many different occasions, such as internships, conferences, work-related-and-not-related

meetings, avocados, and one crazy cab drive back from the airport. Whenever I’ve talked

with you, you guys were always willing to share thoughts based on your experience in order

to help me get things right, as well as to avoid obstacles that you stumble upon in your

journey (whether related or unrelated to my PhD), and I thank you for that. Eventually,

we’ve managed to compose great things together .

I thank the super-smart-crazy-these-guys-scare-me members of Idit’s research group:

Naama Kraus, Noam Shalev, Alexander (Sasha) Spiegelman, Dani Shaket, Hagar Porat,

Itay Tsabary, and Alon Berger, (as well as for past members who I had the pleasure to

meet), for their valuable comments, suggestions, water cooler talks, and (mainly) shared

complaints. Specially, I wish to thank Dani and Naama for introducing me to the group,

and I thank Sasha for our joint efforts while working on a cool yet unpublished paper. I

would like to thank other Technion PhD students who I had the pleasure to learn from and

speak with, such as Maya Arbel, and my office roommates Ofir Shwartz and Aran Bergman.

I had very interesting conversations with you all along the way. You guys really rock! (and

jazz)

Last but not least, I would like to thank my family. I thank my father and mother

for always being supportive, saying (prior to my bachelor degree) that I can go and learn

whatever I want, but they’ll help me financially only if it’ll be computer science, law, or

medicine . I thank all the grandparents of Adam, Liam, and Ethan, for helping us with

them while I’m working around the clock in order to meet (yet another) deadline. I thank

my wonderful and special wife Anat, for supporting me in every step of the way and for

believing in me.

List of Publications

Journal Paper

1. Kfir Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexander Shraer. Composing

ordered sequential consistency. Inf. Process. Lett., 123:47–50, 2017. doi: 10.1016/j.ipl.

2017.03.004. URL https://doi.org/10.1016/j.ipl.2017.03.004

Conference Papers

1. Kfir Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexander Shraer. Modular composi-

tion of coordination services. In 2016 USENIX Annual Technical Conference, USENIX

ATC 2016, Denver, CO, USA, June 22-24, 2016., pages 251–264, 2016. URL https://

www.usenix.org/conference/atc16/technical-sessions/presentation/lev-ari

2. Kfir Lev-Ari, Gregory Chockler, and Idit Keidar. A constructive approach for prov-

ing data structures’ linearizability. In Distributed Computing - 29th International

Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, pages 356–

370, 2015. doi: 10.1007/978-3-662-48653-5 24. URL https://doi.org/10.1007/

978-3-662-48653-5_24

3. Kfir Lev-Ari, Gregory Chockler, and Idit Keidar. On correctness of data structures

under reads-write concurrency. In Distributed Computing - 28th International Sympo-

sium, DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings, pages 273–287,

2014. doi: 10.1007/978-3-662-45174-8 19

4. Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh Khemani,

Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri, Jason Hunter, Roberto Peon, Larry

Kai, Alexander Shraer, Arif Merchant, and Kfir Lev-Ari. Slicer: Auto-sharding for

datacenter applications. In 12th USENIX Symposium on Operating Systems Design and

Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016., pages 739–753,

2016. URL https://www.usenix.org/conference/osdi16/technical-sessions/

presentation/adya (Note: not included in the thesis)

https://doi.org/10.1016/j.ipl.2017.03.004
https://www.usenix.org/conference/atc16/technical-sessions/presentation/lev-ari
https://www.usenix.org/conference/atc16/technical-sessions/presentation/lev-ari
https://doi.org/10.1007/978-3-662-48653-5_24
https://doi.org/10.1007/978-3-662-48653-5_24
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/adya
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/adya

Contents

List of Publications

List of Figures

Abstract 1

Abbreviations and Notations 2

1 Introduction 3

1.1 Thesis Structure . 3

1.2 Brief Scientific Background . 4

1.2.1 Model for Analyzing Concurrent Objects 4

1.2.2 Sequential Consistency . 5

1.2.3 Linearizability . 6

1.2.4 Coordination Services . 6

2 Paper: On Correctness of Data Structures under Reads-Write Concur-

rency 9

2.1 Introduction . 11

2.2 Model and Correctness Definitions . 14

2.2.1 Data Structures and Sequential Executions 14

2.2.2 Correctness Conditions for Concurrent Data Structures 16

2.3 Base Conditions, Validity and Regularity 18

2.3.1 Base Conditions and Base Points . 18

2.3.2 Satisfying the Regularity Base Point Consistency 20

2.3.3 Deriving Correctness from Base Points 21

2.4 Using Our Methodology . 22

2.5 Linearizability . 28

2.5.1 Linearizability Base Point Consistency 28

2.6 Sequential Consistency . 30

3 Paper: A Constructive Approach for Proving Data Structures’ Lineariz-

ability 32

3.1 Introduction . 33

3.2 Preliminaries . 35

3.3 Base Point Analysis . 37

3.4 Linearizability using Base Point Analysis 39

3.4.1 Update Operations . 39

3.4.2 Read-Only Operations . 42

3.5 Roadmap for Proving Linearizability . 44

3.5.1 Stage I: Base Conditions . 44

3.5.2 Stage II: Linearizability of Update Operations 45

3.5.3 Stage III: Linearizability of Read-Only Operations 46

4 Paper: Modular composition of coordination services 48

4.1 Introduction . 49

4.2 Background . 51

4.2.1 Coordination Services . 51

4.2.2 Cross Data Center Deployment . 53

4.3 Design for Composition . 54

4.3.1 Modular Composition of Services . 54

4.3.2 Modular Composition Properties . 55

4.4 ZooNet . 57

4.4.1 Server-Side Isolation . 58

4.4.2 The ZooNet Client . 59

4.5 Evaluation . 59

4.5.1 Environment and Configurations . 59

4.5.2 Server-Side Isolation . 60

4.5.3 The Cost of Consistency . 61

4.5.4 Comparing ZooNet with ZooKeeper 63

4.6 Related Work . 65

4.6.1 Multi-Data Center Deployment . 66

4.6.2 Composition Methods . 66

5 Paper: Composing ordered sequential consistency 69

5.1 Introduction . 70

5.2 Model and Notation . 71

5.3 Ordered Sequential Consistency . 72

5.4 OSC(A) Composability via Leading A-Operations 73

6 Discussion 77

6.1 On Correctness of Data Structures under Reads-Write Concurrency 78

6.2 A Constructive Approach for Proving Data Structures’ Linearizability . . . 79

6.3 Modular Composition of Coordination Services 80

6.4 Composing Ordered Sequential Consistency 81

Hebrew Abstract i

List of Figures

1.1 Possible histories of a read-write register r. 5

1.2 A history of a read-write register r belongs to r’s sequential specification if

each read operation in the history returns the last written value. 5

1.3 A sequentially consistent history h of two processes p1 and p2. π is a sequential

permutation that belongs to x’s sequential specification, in which the program

order is identical to the order in h. h is not linearizable because every

sequential permutation that follows the operations’ real time order contradicts

the sequential specification of x. 6

1.4 The history h of two processes p1 and p2 is not sequentially consistent, since

there is no sequential permutation that belongs to the sequential specification

of x, in which the program order is identical to the order in h (the colored

arrows indicate the required sequential ordering). 6

1.5 A linearizable history of two processes p1 and p2. π is a sequential permutation

that belongs to x sequential specification, in which the operations real time

order is identical to the order in h. 7

1.6 Example of two clients using a coordination service concurrently. Client 1

sets the shared variable x’s value to 5, and Client 2 reads x. A majority of

acceptors is required for the update to take place, whereas reads are served

locally. 7

1.7 A possible history of a coordination service x. Client 2 “reads from the past”,

by not seeing the update of Client 1. This is possible since reads are served

locally. 8

2.1 Two shared states satisfying the same base condition Φ3 : lastPos = 1∧v[1] = 7. 18

2.2 Possible locations of ro’s base points. 19

2.3 Possible locations of ro’s regularity base points. 19

2.4 The shared state s′1. It is the post-state after executing writeSafe or write-

Unsafe from s1 (Figure 2.1) with initial value 80. 20

2.5 Shared states in a concurrent execution consisting of rcuRemove(nk) and

rcuReadLast (ro). 24

2.6 Every local state of ro1 and ro2 has a regularity base point, and still the

execution is not linearizable. If ro1 and ro2 belong to the same process, then

the execution is not even sequentially consistent. 28

2.7 Possible locations of ro’s linearizability base points. 29

3.1 Two states of Lazy List (Algorithm 1): s1 is a base point for contains(7)’s

return true step, as it satisfies the base condition ”there is a node that is

reachable from the head of the list, and its value is 7”. The shared state

s2 is not a base point of this step, since there is no sequential execution of

contains(7) from s2 in which this step is reached. 38

3.2 Operation remove(7) of Lazy List has two write steps. In the first, marked is

set to true. In the second, the next field of the node holding 3 is set to point

to the node holding 9. If a concurrent contains(7) operation sequentially

executes from state s1, it returns true. If we execute contains(7) from s′1, i.e.,

after remove(7)’s first write, contains sees that 7 is marked, and therefore

returns false. If we execute contains from state s2, after remove(7)’s second

write, contains does not see B because it is no longer reachable from the

head of the list, and also returns false. The second write does not affect the

return step, since in both cases it returns false. 39

3.3 The structure of update operations. The steps before the critical sequence

ensure that the pre-state of the first update step is a base point for all of the

update and return steps. 41

4.1 Inconsistent composition of two coordination services holding objects x and

y: each object is consistent by itself, but there is no equivalent sequential

execution. 52

4.2 Different alternatives for coordination service deployment across data centers. 53

4.3 Consistent modular composition of two coordination services holding objects

x and y (as in Figure 4.1): adding syncs prior to reads on new coordination

services ensures that there is an equivalent sequential execution. 56

4.4 Improved server-side isolation. Learner’s throughput as a function of the

percentage of reads. 60

4.5 Saturated ZooNet throughput at two data centers with local operations only.

In this sanity check we see that the performance of Never-Sync is identical to

ZooNet’s performance when no syncs are needed. 62

4.6 Throughput of ZooNet, Never-Sync and Sync-All. Only DC2 clients perform

remote operations. 63

4.7 Throughput speedup (ZooNet/ZooKeeper). DC1 clients perform only local

operations. The percentage of read operations is identical for DC1 clients

and DC2 clients. 65

4.8 Throughput speedup (ZooNet/ZooKeeper). DC1 clients an DC2 clients have

the same local operations ratio as well as read operations percentage. 65

Abstract

We define ordered sequential consistency (OSC), a generic criterion for concurrent objects. We

show that OSC encompasses a range of criteria, from sequential consistency to linearizability,

and captures the typical behavior of real-world coordination services, such as ZooKeeper. A

straightforward composition of OSC objects is not necessarily OSC, e.g., a composition of

sequentially consistent objects is not sequentially consistent. We define a global property

we call leading ordered operations, and prove that it enables correct OSC composition.

A direct implication of our OSC composition global property is the ability to compose

coordination services. Such services, like ZooKeeper, etcd, Doozer, and Consul are increas-

ingly used by distributed applications for consistent, reliable, and high-speed coordination.

When applications execute in multiple geographic regions, coordination service deployments

trade-off between performance, (achieved by using independent services in separate regions),

and consistency. We present a system design for modular composition of services that

addresses this trade-off. We implement ZooNet, a prototype of this concept over ZooKeeper.

ZooNet allows users to compose multiple instances of the service in a consistent fashion,

facilitating applications that execute in multiple regions. In ZooNet, clients that access

only local data suffer no performance penalty compared to working with a standard single

ZooKeeper. Clients that use remote and local ZooKeepers show up to 7x performance

improvement compared to consistent solutions available today.

Linearizability, (which is a special case of OSC), is one of the most common correctness

criteria for shared objects. We present a comprehensive methodology for proving lineariz-

ability and related criteria of concurrent data structures. We exemplify our methodology by

using it to give a roadmap for proving linearizability of the popular Lazy List implementation

of the concurrent set abstraction. Correctness is based on our key theorem, which captures

sufficient conditions for linearizability. In contrast to prior work, our conditions are derived

directly from the properties of the data structure in sequential runs, without requiring the

linearization points to be explicitly identified.

1

Abbreviations and Notations

RCU : read-copy-update

RTO : real time order

CAS : compare-and-swap

RO : read-only

OSC : ordered sequential consistency

2

Chapter 1

Introduction

The common design nowadays for backends of large-scale applications is built upon using

external services as building blocks. Due to the distributed nature of these applications,

(i.e., multiple servers that serve multiple clients concurrently), one of the most frequent and

important building blocks in use is one that is responsible for maintaining correct executions.

E.g., an online application that sells concert tickets uses a global lock service to guarantee

that no ticket is sold twice. We call these global services “coordination services”.

As the scale of applications increases and crosses the data-center boundaries, (e.g.,

serving clients all over the world via multiple data-centers), application designers face

performance challenges that arise from the physical distance between the backend servers,

(e.g., what is the best global lock servers’ deployment alternative w.r.t. the application

servers locations?). Addressing these challenges often requires knowledge of the building

blocks’ internals, and in the case of coordination services’ internals, answering this question

is far from being trivial.

The goal of this thesis is to simplify reasoning about concurrent algorithms’ correctness,

with a focus on coordination services and their performance on global scale deployment.

1.1 Thesis Structure

The presented thesis collates our published papers. The first two papers present our base-

point analysis approach for proving correctness of concurrent algorithms, and the last two

papers present our ordered sequential consistency (OSC) definition, and implications on

real-world services.

The first paper introduces the foundations of our base-point analysis approach for proving

correctness of concurrent data structures. In addition, we define regular data structures,

and state sufficient conditions for regularity, linearizability, and sequential consistency, (all

w.r.t. base points of read-only operations). Last, we prove the correctness of Lazy List

3

under reads-write concurrency.

In the second paper we generalize base-point analysis to any type of data structure and

provide a constructive road-map for proving data structures’ linearizability. We exemplify

our approach using the same Lazy List, this time addressing writes concurrency as well.

The third paper presents a design, an implementation, and an evaluation of a consistent

composition of ZooKeepers, which we call ZooNet. In ZooNet, clients that access only local

data suffer no performance penalty compared to working with a standard single ZooKeeper.

Clients that use several ZooKeeper instances, i.e., remote and local ZooKeepers, show up to

7.5x performance improvement compared to consistent solutions available today.

The fourth paper presents OSC, a criterion that generalizes linearizability and sequential

consistency. In addition, we define a global property called leading A operations, and prove

that OSC objects can be composed via leading As.

1.2 Brief Scientific Background

1.2.1 Model for Analyzing Concurrent Objects

We use a standard shared memory execution model [49], where a set φ of sequential processes

access shared objects from some set X. An object has a name label, a value, and a set

of operations used for manipulating and reading its value. An operation’s execution is

delimited by two events, invoke and response. For example, a read-write register r is an

object with an initial value 0, and two operations: (1) get(r)→ 0 - returns r’s value; and (2)

set(r,5) - modifies r’s value.

A history h is a sequence of operation invoke and response events. An invoke event of

operation op is denoted iop, and the matching response event is denoted rop. For two events

e1, e2 ∈ h, we denote e1 <h e2 if e1 precedes e2 in h, and e1 ≤h e2 if e1 = e2 or e1 <h e2.

For two operations op and op′ in h, op precedes op′, denoted op <h op
′, if rop <h iop′ ,

and op ≤h op′ if op = op′ or op <h op
′. Two operations are concurrent if neither precedes

the other.

For a history h, complete(h) is the sequence obtained by removing all operations with

no response events from h. A history is sequential if it begins with an invoke event and

consists of an alternating sequence of invoke and response events, s.t. each invoke is followed

by the matching response. See Figure 1.1 for history examples.

For p ∈ φ, the process subhistory h|p of a history h is the subsequence of h consisting

of events of process p. The object subhistory hx for an object x ∈ X is similarly defined.

A history h is well-formed if for each process p ∈ φ, h|p is sequential. For the rest of our

discussion, we assume that all histories are well-formed. The order of operations in h|p is

called the process order of p.

4

Figure 1.1: Possible histories of a read-write register r.

We refer to an operation that changes the object’s value as an update operation. In

order to simplify the discussion of initialization, we assume that every history begins with

a dummy (initializing) update operation. A sequential specification of an object x is a set

of allowed sequential histories in which all events are associated with x. For example, the

sequential specification of a read-write object is the set of sequential histories in which each

read operation returns the value written by the last update operation that precedes it or

the initial value if no such operation exists, as depicted in Figure 1.2

Figure 1.2: A history of a read-write register r belongs to r’s sequential specification if
each read operation in the history returns the last written value.

A sequential permutation π of an history h is a sequential history such that (1) all objects

in π start with the same initial value as in h; and (2) π consists of the same operations as h.

1.2.2 Sequential Consistency

A history h is sequentially consistent [53] if there exists a history h′ that can be created

by adding zero or more response events to h, and there is a sequential permutation π of

complete(h′), such that:

1. for every object x ∈ π, πx belongs to the sequential specification of x.

2. for two operations o and o′, if ∃p ∈ φ : o <h|p o
′ then o <π o

′. I.e., every pair of

operations that belong to the same process, appear in the same order in h and in π.

A sequentially consistent history example is depicted in Figure 1.3, a non-sequential

5

consistent history in Figure 1.4.

Figure 1.3: A sequentially consistent history h of two processes p1 and p2. π is a sequential
permutation that belongs to x’s sequential specification, in which the program order is
identical to the order in h. h is not linearizable because every sequential permutation that
follows the operations’ real time order contradicts the sequential specification of x.

An object x is sequentially consistent if for every history h of x, h is sequentially

consistent.

1.2.3 Linearizability

A history h is linearizable [49] if there exists a history h′ that can be created by adding zero

or more response events to h, and there is a sequential permutation π of complete(h′), such

that:

1. for every object x ∈ π, πx belongs to the sequential specification of x.

2. for two operations o and o′, if o <h o
′ then o <π o

′. I.e., every pair of operations that

are not interleaved in h, appear in the same order in h and in π.

Figure 1.4: The history h of two processes p1 and p2 is not sequentially consistent, since
there is no sequential permutation that belongs to the sequential specification of x, in which
the program order is identical to the order in h (the colored arrows indicate the required
sequential ordering).

See Figure 1.5 for an example of linearizable history, and Figure 1.3 for a history that is

not linearizable. An object x is linearizable, also called atomic, if for every history h of x, h

is linearizable.

1.2.4 Coordination Services

Coordination services are used for maintaining shared state in a consistent and fault-tolerant

manner. Fault tolerance is achieved using replication, which is usually done by running a

6

Figure 1.5: A linearizable history of two processes p1 and p2. π is a sequential permutation
that belongs to x sequential specification, in which the operations real time order is identical
to the order in h.

quorum-based state-machine replication protocol such as Paxos [55] or its variants [51, 68].

In Paxos, the history of state updates is managed by a set of servers called acceptors,

s.t. every update is voted on by a quorum (majority) of acceptors (as depicted in Figure 1.6).

One acceptor serves as leader and manages the voting process. In addition to acceptors,

Paxos has learners, which are light-weight services that do not participate in voting and get

notified of updates after the quorum accepts them.

Figure 1.6: Example of two clients using a coordination service concurrently. Client 1 sets
the shared variable x’s value to 5, and Client 2 reads x. A majority of acceptors is required
for the update to take place, whereas reads are served locally.

Coordination services are typically built on top of an underlying key-value store and

offer read and update (read-modify-write) operations. The updates are linearizable, i.e., all

acceptors and learners see the same sequence of updates and this order conforms to the

real-time order of the updates. The read operations are sequentially consistent. A client can

thus read a stale value that has already been overwritten by another client (as showen in

Figure 1.7). These weaker semantics are chosen in order to allow every learner or acceptor

to serve reads locally.

7

Figure 1.7: A possible history of a coordination service x. Client 2 “reads from the past”,
by not seeing the update of Client 1. This is possible since reads are served locally.

8

Chapter 2

Paper: On Correctness of Data

Structures under Reads-Write

Concurrency

Kfir Lev-Ari, Gregory V. Chockler, Idit Keidar: “On Correctness of Data Structures under

Reads-Write Concurrency”. Distributed Computing: 28th International Symposium DISC

2014, Austin, TX, USA, October 12-15, 2014, Proceedings. ed. / Fabian Kuhn. Vol. 8784 1.

ed. Springer-Verlag Berlin Heidelberg, 2014. p. 273-287.

In this paper, we create a base-point analysis approach for proving correctness of concur-

rent data structures, define regular data structures, and prove the correctness of Lazy List

under this type of concurrency.

9

On Correctness of Data Structures under Reads-Write

Concurrency ∗

Kfir Lev-Ari1, Gregory Chockler2, and Idit Keidar1

1Viterbi Department of Electrical Engineering, Technion, Haifa, Israel

2CS Department, Royal Holloway University of London, Egham, UK

Abstract

We study the correctness of shared data structures under reads-write concurrency.

A popular approach to ensuring correctness of read-only operations in the presence of

concurrent update, is read-set validation, which checks that all read variables have not

changed since they were first read. In practice, this approach is often too conservative,

which adversely affects performance. In this paper, we introduce a new framework for

reasoning about correctness of data structures under reads-write concurrency, which

replaces validation of the entire read-set with more general criteria. Namely, instead

of verifying that all read shared variables still hold the values read from them, we

verify abstract conditions over the shared variables, which we call base conditions.

We show that reading values that satisfy some base condition at every point in time

implies correctness of read-only operations executing in parallel with updates. Somewhat

surprisingly, the resulting correctness guarantee is not equivalent to linearizability, rather,

it can express a range of conditions. Here we focus on two new criteria: validity and

regularity. Roughly speaking, the former requires that a read-only operation never

reaches a state unreachable in a sequential execution; the latter generalizes Lamport’s

notion of regularity for arbitrary data structures, and is weaker than linearizability. We

further extend our framework to capture also linearizability and sequential consistency.

We illustrate how our framework can be applied for reasoning about correctness of a

variety of implementations of data structures such as linked lists.

∗This work was partially supported by the Intel Collaborative Research Institute for Computational
Intelligence (ICRI-CI), by the Israeli Ministry of Science, by a Royal Society International Exchanges Grant,
and by the Randy L. and Melvin R. Berlin Fellowship in the Cyber Security Research Program.

10

2.1 Introduction

Motivation Concurrency is an essential aspect of computing nowadays. As part of the

paradigm shift towards concurrency, we face a vast amount of legacy sequential code that

needs to be parallelized. A key challenge for parallelization is verifying the correctness

of the new or transformed code. There is a fundamental tradeoff between generality and

performance in state-of-the-art approaches to correct parallelization. General purpose

methodologies, such as transactional memory [48, 74] and coarse-grained locking, which do

not take into account the inner workings of a specific data structure, are out-performed by

hand-tailored fine-grained solutions [66]. Yet the latter are notoriously difficult to develop

and verify. In this work, we take a step towards mitigating this tradeoff.

It has been observed by many that correctly implementing concurrent modifications of

a data structure is extremely hard, and moreover, contention among writers can severely

hamper performance [71]. It is therefore not surprising that many approaches do not

allow write-write concurrency; these include the read-copy-update (RCU) approach [64],

flat-combining [47], coarse-grained readers-writer locking [38], and pessimistic software

lock-elision [23]. It has been shown that such methodologies can perform better than ones

that allow write-write concurrency, both when there are very few updates relative to queries

[64] and when writes contend heavily [47]. We focus here on solutions that allow only

read-read and read-write concurrency.

A popular approach to ensuring correctness of read-only operations in the presence of

concurrent updates, is read-set validation, which checks before the operation returns that no

shared variables have changed since they were first read by the operation. In practice, this

approach is often too conservative, which adversely affects performance. For example, when

traversing a linked list, it suffices to require that the last read node is connected to the rest

of the list; there is no need to verify the values of other traversed nodes, since the operation

no longer depends on them. In this paper, we introduce a new framework for reasoning

about correctness of concurrent data structures, which replaces validation of the entire

read-set with more general conditions: instead of verifying that all read shared variables

still hold the values read from them, we verify abstract conditions over the variables. These

are captured by our new notion of base conditions.

Roughly speaking, a base condition of a read-only operation at time t, is a predicate over

shared variables, (typically ones read by the operation), that captures the local state the

operation has reached at time t. Base conditions are defined over sequential code. Intuitively,

they represent invariants that the read-only operation relies upon in sequential executions.

We show that the operation’s correctness in a concurrent execution depends on whether

these invariants are preserved by update operations executed concurrently with the read-only

11

one. We capture this formally by requiring each state in every read-only operation to have a

base point of some base condition, that is, a point in the execution where the base condition

holds. In the linked list example – it does not hurt to see old values in one section of the

list and new ones in another section, as long as we read every next pointer consistently with

the element it points to. Indeed, this is the intuition behind the famous hand-over-hand

locking (lock-coupling) approach [28, 70].

Our framework yields a methodology for verifiable reads-write concurrency. In essence,

it suffices for programmers to identify base conditions for their sequential data structure’s

read-only operations. Then, they can transform their sequential code using means such as

readers-writer locks or RCU, to ensure that read-only operations have base points when run

concurrently with updates.

It is worth noting that there is a degree of freedom in defining base conditions. If

coarsely defined, they can capture the validity of the entire read-set, yielding coarse-grained

synchronization as in snapshot isolation and transactional memories. Yet using more precise

observations based on the data structure’s inner workings can lead to fine-grained base

conditions and to better concurrency. Our formalism thus applies to solutions ranging from

validation of the entire read-set [40], through multi-versioned concurrency control [30], which

has read-only operations read a consistent snapshot of their entire read-set, to fine-grained

solutions that hold a small number of locks, like hand-over-hand locking.

Overview of Contributions This paper makes several contributions that arise from

our observation regarding the key role of base conditions. We observe that obtaining base

points of base conditions guarantees a property we call validity, which specifies that a

concurrent execution does not reach local states that are not reachable in sequential ones.

Intuitively, this property is needed in order to avoid situations like division by zero during

the execution of the operation. To avoid returning old values, we restrict the locations of the

base points that can potentially have effect on the return value of a read-only operation ro

to coincide with the return event of an update operation which either immediately precedes,

or is executed concurrently with ro. Somewhat surprisingly, this does not suffice for the

commonly-used correctness criterion of linearizability (atomicity) [49] or even sequential

consistency [53]. Rather, it guarantees a correctness notion weaker than linearizability,

similar to Lamport’s regularity semantics for registers, which we extend here for general

objects for the first time.

In Section 2.2, we present a formal model for shared memory data structure implementa-

tions and executions, and define correctness criteria. Section 2.3 presents our methodology

for achieving regularity and validity: We formally define the notion of a base condition, as

well as base points, which link the sequentially-defined base conditions to concurrent execu-

12

tions. We assert that base point consistency implies validity, and that the more restricted

base point condition, which we call regularity base point consistency, implies regularity. We

proceed to exemplify our methodology for a standard linked list implementation, in Section

2.4. In Section 2.5 we turn to extend the result for linearizability. We introduce a criterion

called linearizability base point consistency - a direct generalisation of regularity base point

consistency that restricts the base points of non-overlapping read-only operation to respect

their real-time order.

Comparison with Other Approaches The regularity correctness condition was intro-

duced by Lamport [54] for registers. To the best of our knowledge, the regularity of a data

structure as we present in this paper is a new extension of the definition.

Using our methodology, proving correctness relies on defining a base condition for every

state in a given sequential implementation. One easy way to do so is to define base conditions

that capture the entire read-set, i.e., specify that there is a point in the execution where

all shared variables the operation has read hold the values that were first read from them.

But often, such a definition of base conditions is too strict, and spuriously excludes correct

concurrent executions. Our definition generalizes it and thus allows for more parallelism in

implementations.

Opacity [43] defines a sufficient condition for validity and linearizability, but not a

necessary one. It requires that every transaction see a consistent snapshot of all values it

reads, i.e., that all these values belong to the same sequentially reachable state. We relax

the restriction on shared states busing base conditions.

Snapshot isolation [29] guarantees that no operation ever sees updates of concurrent

operations. This restriction is a special case of the possible base points that our base point

consistency criterion defines, and thus also implies our condition for the entire read-set.

In this paper we focus on correctness conditions that can be used for deriving a correct

data structure that allows reads-write concurrency from a sequential implementation. The

implementation itself may rely on known techniques such as locking, RCU [64], pessimistic

lock-elision [23], or any combinations of those, such as RCU combined with fine-grained

locking [24]. There are several techniques, such as flat-combining [47] and read-write

locking [38], that can naturally expand such an implementation to support also write-write

concurrency by adding synchronization among update operations.

Algorithm designers usually prove linearizability of by identifying a serialization point

for every operation, showing the existence of a specific partial ordering of operations [35], or

using rely-guarantee reasoning [79]. Our approach simplifies reasoning – all the designer

needs to do now is identify a base condition for every state in the existing sequential

implementation, and show that it holds under concurrency. This is often easier than finding

13

and proving serialization points, as we exemplify. In essence, we break up the task of

proving data structure correctness into a generic part, which we prove once and for all, and

a shorter, algorithm-specific part. Given our results, one does not need to prove correctness

explicitly (e.g., using linearization points or rely-guarantee reasoning, which typically result

in complex proofs). Rather, it suffices to prove the much simpler conditions that read-only

operations have base points and linearizability follows from our theorems. Another approach

that simplifies verifiable parallelization is to re-write the data structure using primitives

that guarantee linearizability such as LLX and SCX [33]. Whereas the latter focuses on

non-blocking concurrent data structure implementations using their primitive, our work is

focused on reads-write concurrency, and does not restrict the implementation; in particular,

we target lock-based implementations as well as non-blocking ones.

2.2 Model and Correctness Definitions

We consider a shared memory model where each process performs a sequence of operations

on shared data structures. The data structures are implemented using a set X = {x1, x2, ...}

of shared variables. The shared variables support atomic read and write operations (i.e., are

atomic registers), and are used to implement more complex data structures. The values in

the xi’s are taken from some domain V.

2.2.1 Data Structures and Sequential Executions

A data structure implementation (algorithm) is defined as follows:

• A set of states, S, were a shared state s ∈ S is a mapping s : X → V , assigning values

to all shared variables. A set S0 ⊆ S defines initial states.

• A set of operations representing methods and their parameters. For example, find(7)

is an operation. Each operation op is a state machine defined by:

– A set of local states Lop, which are usually given as a set of mappings l of values

to local variables. For example, for a local state l, l(y) refers to the value of the

local variable y in l. Lop contains a special initial local state ⊥∈ Lop.

– A deterministic transition function τop(Lop × S) → Steps × Lop × S where

step∈ Steps is an atomic transition label, which can be invoke, a ← read(xi),

write(xi,v), or return(v):

∗ An invoke changes the initial local state ⊥ into another local state, and does

not change the shared state.

∗ A write(xi, v) changes the local state and changes the value of shared variable

xi ∈ X to v.

14

∗ A a← read(xi) reads the value of one variable xi ∈ X from the shared state

and changes the local state accordingly (i.e., stores the value of xi in a local

variable a).

∗ A return(v) ends the operation by changing the local state to ⊥ and returning

v to the calling process. It does not change the shared state.

Note that there are no atomic read-modify-write steps. Invoke and return steps

interact with the application while read and write steps interact with the shared

memory.

We assume that every operation has an isolated state machine, which begins executing

from local state ⊥.

For a transition τ(l, s) = 〈step, l′, s′〉, l determines the step. If step is an invoke, return,

or write step, then l′ is uniquely defined by l. If step is a read step, then l′ is defined by l

and s, specifically, read(xi) is determined by s(xi). Since only write steps can change the

content of shared variables, s = s′ for invoke, return, and read steps.

For the purpose of our discussion, we assume the entire shared memory is statically

allocated. This means that every read step is defined for every shared state in S. One

can simulate dynamic allocation in this model by writing to new variables that were not

previously used. Memory can be freed by writing a special value, e.g., “invalid”, to it.

A state consists of a local state l and a shared state s. By a slight abuse of terminology,

in the following, we will often omit either shared or local component of the state if its

content is immaterial to the discussion.

A sequential execution of an operation from a shared state si ∈ S is a sequence of

transitions of the form:

⊥
si
, invoke,

l1
si
, step1,

l2
si+1

, step2, ... ,
lk
sj
, returnk,

⊥
sj
,

where τ(lm, sn) = 〈stepm, lm+1, sn+1〉. The first step is invoke, ensuing steps are read or

write steps, and the last step is a return step.

A sequential execution of a data structure is a (finite or infinite) sequence µ:

µ =
⊥
s1
, O1,

⊥
s2
, O2, ... ,

where s1 ∈ S0 and every ⊥sj , Oj ,
⊥
sj+1

in µ is a sequential execution of some operation. If µ

is finite, it can end after an operation or during an operation. In the latter case, we say

that the last operation is pending in µ. Note that in a sequential execution there can be at

most one pending operation.

15

A read-only operation is an operation that does not perform write steps in any execution.

All other operations are update operations.

A state is sequentially reachable if it is reachable in some sequential execution of a data

structure. By definition, every initial state is sequentially reachable. The post-state of

an invocation of operation o in execution µ is the shared state of the data structure after

o’s return step in µ; the pre-state is the shared state before o’s invoke step. Recall that

read-only operations do not change the shared state and execution of update operations is

serial. Therefore, every pre-state and post-state of an update operation in µ is sequentially

reachable. A state st′ is sequentially reachable from a state st if there exists a sequential

execution fragment that starts at st and ends at st′.

In order to simplify the discussion of initialization, we assume that every execution begins

with a dummy (initializing) update operation that does not overlap any other operation.

2.2.2 Correctness Conditions for Concurrent Data Structures

A concurrent execution fragment of a data structure is a sequence of interleaved states and

steps of different operations, where state consists of a set of local states {li, ..., lj} and a

shared state sk, where every li is a local state of a pending operation. A concurrent execution

of a data structure is a concurrent execution fragment of a data structure that starts from

an initial shared state. Note that a sequential execution is a special case of concurrent

execution.

For example, the following is a concurrent execution fragment that starts from a shared

state si and invokes two operations: OA and OB. The first operation takes a write step,

and then OB takes a read step. We subscript every step and local state with the operation

it pertains to.

∅
si
, invokeA(),

{l1,A}
si

, writeA(xi, v),
{l2,A}
si+1

, invokeB(),
{l2,A, l1,B}

si+1
, a← readB(xi),

{l2,A, l2,B}
si+1

.

In the remainder of this paper we assume that for all concurrent executions µ of the

date structure, and any two update operations uo1 and uo2 invoked in µ, uo1 and uo2 are

not executed concurrently to each other (i.e., either uo1 is invoked after uo2 returns, or vice

versa).

For an execution σ of data structure ds, the history of σ, denoted Hσ, is the subsequence

of σ consisting of the invoke and return steps in σ (with their respective return values). For

a history Hσ, complete(Hσ) is the subsequence obtained by removing pending operations,

i.e., operations with no return step, from Hσ. A history is sequential if it begins with an

invoke step and consists of an alternating sequence of invoke and return steps.

16

A data structure’s correctness in sequential executions is defined using a sequential

specification, which is a set of its allowed sequential histories.

Given a correct sequential data structure, we need to address two aspects when defining

its correctness in concurrent executions. As observed in the definition of opacity [43] for

memory transactions, it is not enough to ensure serialization of completed operations, we

must also prevent operations from reaching undefined states along the way. The first aspect

relates to the data structure’s external behavior, as reflected in method invocations and

responses (i.e., histories):

Linearizability A history Hσ is linearizable [49] if there exists H ′σ that can be created

by adding zero or more return steps to Hσ, and there is a sequential permutation π of

complete(H ′σ), such that: (1) π belongs to the sequential specification of ds; and (2) every

pair of operations that are not interleaved in σ, appear in the same order in σ and in π. A

data structure ds is linearizable, also called atomic, if for every execution σ of ds, Hσ is

linearizable.

Regularity We next extend Lamport’s regular register definition [54] for data structures

(we do not discuss regularity for executions with concurrent update operations, which can

be defined similarly to [72]). A data structure ds is regular if for every execution σ of ds,

and every read-only operation ro ∈ Hσ, if we omit all other read-only operations from Hσ,

then the resulting history is linearizable.

Sequential Consistency A history Hσ is sequentially consistent [53] if there exists H ′σ

that can be created by adding zero or more return steps to Hσ, and there is a sequential

permutation π of complete(H ′σ), such that: (1) π belongs to the sequential specification of

ds; and (2) every pair of operations that belong to the same process, appear in the same

order in σ and in π. A data structure ds is sequentially consistent, if for every execution σ

of ds, Hσ is sequentially consistent.

Validity The second correctness aspect is ruling out bad cases like division by zero or

access to uninitialized data. It is formally captured by the following notion of validity : A

data structure is valid if every local state reached in an execution of one of its operations is

sequentially reachable. We note that, like opacity, validity is a conservative criterion, which

rules out bad behavior without any specific data structure knowledge. A data structure

that does not satisfy our notion of validity may still be correct in a weaker sense, e.g., if

allowed to abort an operation, which encountered a sequentially unreachable state. We do

not address such an alternative notions of correctness in our discussion.

17

2.3 Base Conditions, Validity and Regularity

2.3.1 Base Conditions and Base Points

Intuitively, a base condition establishes some link between the local state an operation

reaches and the shared variables the operation has read before reaching this state. It is

given as a predicate Φ over shared variable assignments. Formally:

Definition 2.3.1 (Base Condition). Let l be a local state of an operation op. A predicate

Φ over shared variables is a base condition for l if every sequential execution of op starting

from a shared state s such that Φ(s) = true, reaches l.

For completeness, we define a base condition for stepi in an execution µ to be a base

condition of the local state that precedes stepi in µ.

Consider a data structure consisting of an array of elements v and a variable lastPos,

whose last element is read by the function readLast. An example of an execution fragment

of readLast that starts from state s1 (depicted in Figure 2.1) and the corresponding base

conditions appear in Algorithm 1. The readLast operation needs the value it reads from

v[tmp] to be consistent with the value of lastPos that it reads into tmp because if lastPos

is newer than v[tmp], then v[tmp] may contain garbage.

v[0] v[1] v[2] ...
35 7 99 ...

lastPos
1

(a) s1

v[0] v[1] v[2] ...
2 7 15 ...

lastPos
1

(b) s2
Figure 2.1: Two shared states satisfying the same base condition Φ3 : lastPos = 1∧ v[1] =
7.

local state
l1 : {}
l2 : {tmp = 1}
l3 : {tmp = 1, res = 7}

base condition
Φ1 : true
Φ2 : lastPos = 1
Φ3 : lastPos = 1 ∧ v[1] = 7

Function readLast()
tmp← read(lastPos)
res← read(v[tmp])
return(res)

Algorithm 1: The local states and base conditions of readLast when executed from
s1. The shared variable lastPos is the index of the last updated value in array v. See
Algorithm 3 for corresponding update operations.

The predicate Φ3 : lastPos = 1∧ v[1] = 7 is a base condition of l3 because l3 is reachable

from any shared state in which lastPos = 1 and v[1] = 7 (e.g., s2 in Figure 2.1), by executing

lines 1-2. The base conditions for every possible local state of readLast are detailed in

Algorithm 2.

We now turn to define base points of base conditions, which link a local state with base

condition Φ to a shared state s where Φ(s) holds.

Definition 2.3.2 (Base Point). Let µ be a concurrent execution, ro be a read-only oper-

ation executed in µ, and Φt be a base condition of the local state and step at index t in

18

Shared variables: lastPos, ∀i ∈ N : v[i]

base condition step
Φ1 : true tmp← read(lastPos)
Φ2 : lastPos = tmp res← read(v[tmp])
Φ3 : lastPos = tmp ∧ v[tmp] = res return(res)

Algorithm 2: ReadLast operation. The shared variable lastPos is the index of the last
updated value in array v. See Algorithm 3 for the corresponding update operation.

µ. An execution fragment of ro in µ has a base point for point t with Φt, if there exists a

sequentially reachable post-state s in µ, called a base point of t, such that Φt(s) holds.

Note that together with Definition 2.3.1, the existence of a base point s implies that t is

reachable from s in all sequential runs starting from s.

We say that a data structure ds satisfies base point consistency if every point t in every

execution of every read-only operation ro of ds has a base point with some base condition

of t.

The possible base points of read-only operation ro are illustrated in Figure 2.2. To

capture real-time order requirements we further restrict base point locations.

ro
uo uo uououo uo uo

Figure 2.2: Possible locations of ro’s base points.

Definition 2.3.3 (Regularity Base Point). A base point s of a point t of ro in a concurrent

execution µ is a regularity base point if s is the post-state of either an update operation

executed concurrently with ro in µ or of the last update operation that ended before ro’s

invoke step in µ.

The possible regularity base points of a read-only operation are illustrated in Figure 2.3.

We say that a data structure ds satisfies regularity base point consistency if every return

step t in every execution of every read-only operation ro of ds has a regularity base point

with a base condition of t. Note that the base point location is only restricted for the return

step, since the return value is determined by its state.

ro
uo uo uououo uo uo

Figure 2.3: Possible locations of ro’s regularity base points.

In Algorithm 3 we see two versions of an update operation: writeSafe guarantees the

existence of a base point for every local state of readLast (Algorithm 1), and writeUnsafe

does not. As shown in Section 2.3.2, writeUnsafe can cause a concurrent readLast operation

interleaved between its two write steps to see values of lastPos and v[lastPos] that do not

satisfy readLast ’s return step’s base condition, and to return an uninitialized value.

19

Function writeSafe(val)
i ← read(lastPos)
write(v[i+ 1], val)
write(lastPos, i+ 1)

Function writeUnsafe(val)
i ← read(lastPos)
write(lastPos, i+ 1)
write(v[i+ 1], val)

Algorithm 3: Unlike writeUnsafe, writeSafe ensures a regularity base point for every
local state of readLast ; it guarantees that any concurrent readLast operation sees values
of lastPos and v[tmp] that occur in the same sequentially reachable post-state. It also
has a single visible mutation point (as defined in Section 2.5), and hence linearizability is
established.

2.3.2 Satisfying the Regularity Base Point Consistency

Let us examine the possible concurrent executions an invocation ro of readLast (Algorithm

1) and an invocation uo of writeSafe (Algorithm 3) with parameter 80 starting from s1

(Figure 2.1). There are four possible interleavings of write steps of uo and read steps of ro

starting from s1 shown in Algorithm 4. In each of them, ro returns 7, and s1 is the base

point of its last local state.

µ1 :

readro(lastPos)

readuo(lastPos)

writeuo(v[2], 80)

writeuo(lastPos, 2)

readro(v[1])

returnro(7)

µ2 :

readro(lastPos)

readuo(lastPos)

writeuo(v[2], 80)

readro(v[1])

returnro(7)

writeuo(lastPos, 2)

µ3 :

readuo(lastPos)

writeuo(v[2], 80)

readro(lastPos)

writeuo(lastPos, 2)

readro(v[1])

returnro(7)

µ4 :

readuo(lastPos)

writeuo(v[2], 80)

readro(lastPos)

readro(v[1])

returnro(7)

writeuo(lastPos, 2)

Algorithm 4: Four interleaved executions of invocation ro of readLast and

invocation uo of writeSafe that start from s1.

v[0] v[1] v[2] ...
35 7 80 ...

lastPos
2

Figure 2.4: The shared state s′1. It is the post-state after executing writeSafe or writeUnsafe
from s1 (Figure 2.1) with initial value 80.

Now let us examine a concurrent execution consisting of readLast and writeUnsafe

(Algorithm 3), in which readLast reads a value from lastPos right after writeUnsafe writes

to it. In Algorithm 5 we see such an execution that starts from s1. The last local state of ro is

l′3 = {tmp = 2, res = 99}. Neither s1 and s′1 (Figure 2.4) satisfies Φ′3 : lastPos = 2∧v[2] = 99,

meaning that l′3 does not have a base point with Φ′3.

Below we show that this is not an artifact of our choice of a base condition – we prove

that for every base condition Φ′3 of l′3, both Φ′3(s1) and Φ′3(s′1) are false.

Lemma 2.3.4. A data structure that has both writeUnsafe and readLast is not regularity

base point consistent.

20

readseq(lastPos)
writeseq(lastPos, 2)
readro(lastPos)
readro(v[2])
returnro(99)
writeseq(v[2], 80)

Algorithm 5: A possible concurrent execution consisting of readLast and writeUnsafe,
starting from s1.

Proof. Given the execution of Algorithm 5 that starts from the shared state s1 and

ends in shared state s′1, we assume by contradiction that there is such a base condition of

l′3 = {tmp = 2, res = 99} that is satisfied by s1 or s′1. By the definition of base condition, if

we execute readLast sequentially from a shared state that satisfies l′3’s base condition, we

reach l′3. But if we execute readLast from s1 we reach l3 : {tmp = 1, res = 7} and if we

execute from s′1 we reach l′′3 : {tmp = 2, res = 80}. A contradiction. �

2.3.3 Deriving Correctness from Base Points

We start by proving that the base point consistency implies validity.

Theorem 2.1 (Validity). If a data structure ds satisfies base point consistency, then ds is

valid.

Proof. In order to prove that ds is valid, we need to prove that for every execution µ

of ds, for any operation op ∈ µ of ds, every local state is sequentially reachable. If µ is a

sequential execution then the claim holds. If op is an update operation, since every update

operation is executed sequentially starting from a sequentially reachable post-state, then

every local state of op is sequentially reachable. Now we prove for op that is a read-only

operation in concurrent execution µ. Given that the data structure satisfies the base point

consistency, every local state l of every read-only operation in µ has a base point sbase. In

order to show that l is sequentially reachable, we build a sequential execution µ′ that starts

from the same initial state as µ and consists of the same update operations that appear in

µ until sbase. Then we add a sequential execution of op. Since sbase is a base point of l, l is

reached in µ′ and therefore is sequentially reachable. �

We now prove that the regularity base point consistency implies regularity.

Lemma 2.3.5. Let µ be a concurrent execution of a data structure ds. Let ro be a read-

only operation of ds executed in µ, which returns v. If ds satisfies regularity base point

consistency then there exists a sequentially reachable shared state s in µ such that: (1) s is

the post-state of some update operation that is either concurrent with ro or is the last before

ro is invoked; and (2) when executing ro from s, its return value is equal to v.

21

Proof. Let l be the local state that precedes ro’s return step. Since τ is deterministic, its

return value v is fully determined by l, and every execution of ro that reaches l returns v.

Given that ds satisfies regularity base point consistency, l, which is the last local state of ro,

has a regularity base point for some base condition Φ of l. Let s denote a base point of l for

Φ in µ. By the definition of a regularity base point, the shared state s is the post-state of

some update operation that is either concurrent with ro or is the last before ro is invoked,

and Φ(s) is true. By the definition of base condition Φ, we get that l is reached in ro’s

sequential execution from s, that is, when ro is sequentially executed from s, its return

value is v. �

Theorem 2.2 (Regularity). If a data structure ds satisfies regularity base point consistency,

then ds is regular.

Proof. In order to prove that ds is regular, we need to show that for every concurrent

execution µ of ds with history Hµ, for any read-only operation ro ∈ Hµ, if we omit all other

read-only operations from Hµ, the resulting history Hro
µ is linearizable. Recall that update

operations are executed sequentially.

If µ includes only update operations then µ vacuously satisfies the condition. Otherwise,

let ro be a read-only operation in µ. If ro is pending in µ, we build a sequential history by

removing ro’s invocation from Hro
µ , which is allowed by the definition of linearizability.

Consider now a read-only operation ro that returns in µ. Since every return step of ro

has a regularity base point in µ, by Lemma 2.3.5, we get that there is a shared state s in µ

from which ro’s sequential execution returns the same value as in µ, and s is the post-state

of some update operation that is either concurrent with ro or is the last before ro is invoked.

We build a sequential execution µroseq from the sequence of update operations in µ with ro

added at point s. Then µroseq is a sequential execution of ds, which belongs to the sequential

specification. Every pair of operations that are not interleaved in µ appear in the same

order in µroseq. Therefore, Hro
µ is linearizable. �

2.4 Using Our Methodology

We now demonstrate the simplicity of using our methodology. Based on Theorems 2.1 and

2.2 above, the proof for correctness of a data structure (such as a linked list) becomes almost

trivial. We look at three linked list implementations – one assuming managed memory,

(i.e., automatic garbage collection, Algorithm 6), one using read-copy-update methodology

(Algorithm 7), and one using hand-over-hand locking (Algorithm 8).

For Algorithm 6, we first prove that the listed predicates are indeed base conditions,

and next we prove that it satisfies the base point consistency and the regularity base point

22

consistency. By doing so, and based on Theorems 2.1 and 2.2, we get that the algorithm

satisfy both validity and regularity.

Consider a linked list node stored in local variable n (we assume the entire node is stored

in n, including the value and next pointer). Here, head
∗⇒ n denotes that there is a set of

shared variables {head, n1, ..., nk} such that head.next = n1 ∧ n1.next = n2 ∧ ... ∧ nk = n,

i.e., that there exists some path from the shared variable head to n. Note that n is the only

element in this predicate that is associated with a specific read value. We next prove that

this defines base conditions for Algorithm 6.

Lemma 2.4.1. In Algorithm 6, Φi defined therein is a base condition of the ith step of

readLast.

Proof. For Φ1 the claim is vacuously true. For Φ2, let l be a local state where readLast is

about to perform the second read step in readLast ’s code, meaning that l(next) 6=⊥. Note

that in this local state both local variables n and next hold the same value. Let s be a

shared state in which head
∗⇒ l(n). Every sequential execution from s iterates over the list

until it reaches l(n), hence the same local state where n = l(n) and next = l(n) is reached.

For Φ3, Let l be a local state where readLast has exited the while loop, hence l(n).next =⊥.

Let s be a shared state such that head
∗⇒ l(n). Since l(n) is reachable from head and

l(n).next =⊥, every sequential execution starting from s exits the while loop and reaches a

local state where n = l(n) and next =⊥. �

Lemma 2.4.2. In Algorithm 6, if a node n is read during concurrent execution µ of

readLast, then there is a shared state s in µ such that n is reachable from head in s and

readLast is pending.

Proof. If n is read in operation readLast from a shared state s, then s exists concurrently

with readLast. The operation readLast starts by reading head, and it reaches n.

Thus, n must be linked to some node n′ at some point during readLast. If n was

connected (or added) to the list while n′ was still reachable from the head, then there exists

a state where n is reachable from the head and we are done. Otherwise, assume n is added

as the next node of n′ at some point after n′ is already detached from the list. Nodes are

only added via insertLast, which is not executed concurrently with any remove operation.

This means nodes cannot be added to detached elements of the list. A contradiction. �

The following lemma, combined with Theorem 2.2 above, guarantees that Algorithm 6

satisfies regularity.

Lemma 2.4.3. Every local state of readLast in Algorithm 6 has a regularity base point.

Proof. We show regularity base points for predicates Φi, proven to be base points in

Lemma 2.4.1.

23

Function remove(n)
p ← ⊥
next ← read(head.next)
while next 6= n

p ← next
next← read(p.next)

write(p.next, n.next)

Function insertLast(n)
last ← readLast()
write(last.next, n)

Base conditions:

Φ1 : true

Φ2 : head
∗⇒ n

Φ3 : head
∗⇒ n

Function readLast()
n ← ⊥
next ← read(head.next)
while next 6=⊥

n ← next
next← read(n.next)

return(n)

Algorithm 6: A linked list implementation in a memory-managed environment. For
simplicity, we do not deal with boundary cases: we assume that a node can be found in
the list prior to its deletion, and that there is a dummy head node.

next
key

next
key

next
key

n k n k+1n k-1

ro

(a) rcuRemove(nk)’s pre-
state.

next
key

next
key

next
key

n k n k+1n k-1

ro

(b) The shared state during
nk’s removal.

invalid
next
key

next
key

n k n k+1n k-1

ro

(c) rcuRemove(nk)’s post-
state.

Figure 2.5: Shared states in a concurrent execution consisting of rcuRemove(nk) and
rcuReadLast (ro).

The claim is vacuously true for Φ1. We now prove for Φ2 and Φ3 : head
∗⇒ n. By Lemma

2.4.2 we get that there is a shared state s where head
∗⇒ n and readLast is pending. Note

that n’s next field is included in s as part of n’s value. Since both update operations -

remove and insertLast - have a single write step, every shared state is a post-state of an

update operation. Specifically this means that s is a sequentially reachable post-state, and

because readLast is pending, s is one of the possible regularity base points of readLast. �

RCU Read-copy-update [64] is a synchronization strategy that aims to reduce read

operations’ synchronization overhead as much as possible, while risking a high synchronization

overhead for update operations. The idea is that only update operations require locks, and

the writes mutate the data structure in a way that ensures that concurrent readers always

see a consistent view. Additionally, writers do not free data while it is used by readers. Note

that RCU does not allow write-write concurrency.

RCU is commonly used via primitives that resemble readers-writer locks [25]: rcuReadLock

and rcuReadUnLock. There are other primitives that encapsulate list traversal, but we do

not use them in our example since we wish to illustrate the general approach. Instead, we use

primitives that are commonly used for creating RCU-protected non-list data structures (such

as arrays and trees): rcuWrite(p, v) (originally called rcuAssignPointer), and rcuRead(p)

(originally called rcuDereference) [63].

In Algorithm 7, rcuWrite is a write step that changes the next pointer of n’s predecessor,

24

Function rcuRemove(n)
p ← ⊥
next ← read(head.next)
while next 6= n

p ← next
next← read(p.next)

rcuWrite(p.next, n.next)
rcuWaitForReaders()
write(n, invalid)

Function insertLast(n)
last ← readLast()
write(last.next, n)

Base conditions:

Φ1 : true

Φ2 : head
∗⇒ n

Φ3 : head
∗⇒ n

Function rcuReadLast()
rcuReadLock()
n←⊥
next← rcuRead(head.next)
while next 6=⊥

n ← next
next← rcuRead(n.next)

rcuReadUnlock()
return(n)

Algorithm 7: An RCU linked list implementation. For simplicity, we do not deal with
boundary cases: we assume that a node can be found in the list prior to its deletion, and
that there is a dummy head node.

and it occurs between the shared states (a) and (b) in Figure 2.5. The invalidation of n

takes place once all read-only operations that use n no longer hold a reference to it, as

guaranteed by rcuWaitForReaders(). The latter happens between the shared states of

(b) and (c). The rcuReadLast operation holds at most a single reference to list node at a

given time, and our base condition links head to it. We see in Figure 2.5 that invalid nodes

are unreachable from head in sequentially reachable post-states. Thus, the base condition

head
∗⇒ n implies that ro never holds a pointer to an invalid node.

The correctness of the base conditions annotated in Algorithm 7 follows the same

reasoning as Lemma 2.4.1, and hence we omit it here. We now prove that Algorithm 7

satisfies regularity base point consistency, and therefore by Theorems 2.1 and 2.2, Algorithm

7 satisfies validity and regularity.

Lemma 2.4.4. In Algorithm 7, if a node n is read during concurrent execution µ of

rcuReadLast, then there is a state where the shared state is s in µ such that n is reachable

from head in s and ro is pending.

Proof. If n is read in operation rcuReadLast from a shared state s, then s exists concurrently

with rcuReadLast. The operation rcuReadLast starts by reading head, and it reaches n.

Thus, n must be linked to some node n′ at some point during rcuReadLast. If n was

connected (or added) to the list while n′ was still reachable from the head, then there exists

a state where n is reachable from the head and we are done. Otherwise, assume n is added

as the next node of n′ at some point after n′ is already detached from the list. Nodes are

only added via insertLast, which is not executed concurrently with any rcuRemove operation.

This means nodes cannot be added to detached elements of the list. A contradiction. �

Lemma 2.4.5. Every local state of rcuReadLast in Algorithm 7 has a regularity base point.

25

Proof. We show regularity base points for predicates Φi, proven to be base points in

Lemma 2.4.1. The claim is vacuously true for Φ1.

We now prove for Φ2 and Φ3 : head
∗⇒ n. Every read step is encapsulated by rcuRead,

and is surrounded by rcuReadLock and rcuReadUnlock. These calls guarantee that as long

as the reader holds a reference to the value it read using rcuRead, the value cannot be

changed by the write step of rcuRemove that removes a node from the list. In addition,

rcuRemove waits for all readers to forget a node before invalidating it, and invalidates it

only after the node is not reachable. Therefore, it is guaranteed that every node that is

read is valid. In addition, Lemma 2.4.4 guarantees that there is a shared state s where

head
∗⇒ n and rcuReadLast is pending. Note that n’s next field is included in s as part of

n’s value. Since the invalidation is not visible to the readers, the post-state of rcuRemove

and the shared state after rcuWaitForReaders() are indistinguishable to the readers. The

operation insertLast has one write step have a single write step and therefore it is always

found between two sequentially reachable shared states.

In conclusion, every shared state is a post-state of an update operation from every reader

perspective. Specifically this means that s is a sequentially reachable post-state, and because

rcuReadLast is pending, s is one of the possible regularity base points of rcuReadLast. �

hand-over-hand locking In hand-over-hand locking, a data structure is traversed by

holding a lock to the next node in the traversal before unlocking the previous one.

In Algorithm 8 we give a linked list implementation using hand-over-hand locking. The

locks used therein are readers-writer locks [62], where write locks are exclusive and multiple

threads can obtain read locks concurrently. We define a lock for every shared variable xi ∈ X,

and extend the model with lock(xi) and unlock({xi1 , xi2 , ...}) steps. The correctness of the

base conditions annotated in Algorithm 8 follows the same reasoning as Lemma 2.4.1, and

hence we omit it here. The reachable post-states in Figure 2.5 are (a) and (c). State (b)

does not occur in this implementation since ro cannot access n concurrently with an update

operation that holds n’s lock. In the following lemma we prove that Algorithm 8 satisfies

regularity base point consistency.

Lemma 2.4.6. In Algorithm 8, if a node n is read during concurrent execution µ of

hohReadLast, then there is a state where the shared state is s in µ such that n is reachable

from head in s and ro is pending.

Proof. If n is read in operation hohReadLast from a shared state s, then s exists concurrently

with hohReadLast. The operation hohReadLast starts by reading head, and it reaches n.

Thus, n must be linked to some node n′ at some point during hohReadLast. If n was

connected (or added) to the list while n′ was still reachable from the head, then there exists

26

Function hohRemove(n)
p ← ⊥
lock(head.next)
next ← read(head.next)
while next 6= n

p ← next
lock(p.next)
unlock(p)
next← read(p.next)

write(p.next, n.next)
lock(n)
invalidate(n)
unlock(n, p)

Function insertLast(n)
last ← readLast()
write(last.next, n)

Base conditions:

Φ1 : true

Φ2 : head
∗⇒ n

Φ3 : head
∗⇒ n

Function hohReadLast()
n ← ⊥
lock(head.next)
next ← read(head.next)
while next 6=⊥

n ← next
lock(n.next)
next← read(n.next)
unlock(n)

unlock(next)
return(n)

Algorithm 8: A linked list implementation using hand-over-hand locking. For simplicity,
we do not deal with boundary cases: we assume that a node can be found in the list prior
to its deletion, and that there is a dummy head node.

a state where n is reachable from the head and we are done. Otherwise, assume n is added as

the next node of n′ at some point after n′ is already detached from the list. Nodes are only

added via insertLast, which is not executed concurrently with any hohRemove operation.

This means nodes cannot be added to detached elements of the list. A contradiction. �

Lemma 2.4.7. Every local state of hohReadLast in Algorithm 8 has a regularity base point.

Proof. We show regularity base points for predicates Φi, proven to be base points in

Lemma 2.4.1. The claim is vacuously true for Φ1.

We now prove for Φ2 and Φ3 : head
∗⇒ n. In hohReadLast, the reader reads a node only

after locking it. Thus, the invalidation of that node is not visible to the readers due to the

locking that hohRemove performs before any write step, meaning that the post-state of

hohRemove and the shared state after the first write step of hohRemove are indistinguishable

to the readers. Therefore, the reader only sees valid nodes. In addition, Lemma 2.4.6

guarantees that there is a shared state s where head
∗⇒ n and hohReadLast is pending. Note

that n’s next field is included in s as part of n’s value.

The operation insertLast has one write step have a single write step and therefore it is

always found between two sequentially reachable shared states.

In conclusion, every shared state is a post-state of an update operation from every reader

perspective. Specifically this means that s is a sequentially reachable post-state, and because

hohReadLast is pending, s is one of the possible regularity base points of hohReadLast. �

27

2.5 Linearizability

We first show that regularity base point consistency is insufficient for linearizability. In

Figure 2.6 we show an example of a concurrent execution where two read-only operations ro1

and ro2 are executed sequentially, and both have regularity base points. The first operation,

ro1, reads the shared variable first name and returns Joe, and ro2 reads the shared variable

surname and returns Doe. An update operation uo updates the data structure concurrently,

using two write steps. The return step of ro1 is based on the post-state of uo, whereas

ro2’s return step is based on the pre-state of uo. There is no sequential execution of the

operations where ro1 returns Joe and ro2 returns Doe.

uo

Shared variables:
first name = Ron
surname = Doe

Shared variables:
first name = John
 surname = Smithwrite(first name, John) write(surname, Smith)

return surname:
return(Doe)

ro2

return first name:
return(John)

ro1

Figure 2.6: Every local state of ro1 and ro2 has a regularity base point, and still the
execution is not linearizable. If ro1 and ro2 belong to the same process, then the execution
is not even sequentially consistent.

Thus, an additional condition is required for linearizability. We suggest linearizability

base point consistency - a condition that adds a restriction to the possible locations of the

regularity base points, and is suffice for linearizability.

2.5.1 Linearizability Base Point Consistency

Recall that in order to satisfy linearizability, a data structure needs to guarantee that for

every concurrent execution µ there is an equivalent sequential execution µseq such that the

order between non-interleaved operations in µ is preserved in µseq. One way to ensure this is

to determine that the order between the base points has to follow the order of non-interleaved

read-only operations.

Definition 2.5.1 (Linearizability Base Point). A base point s of a point t of ro in a con-

current execution µ is a linearizability base point if s is the post-state of either an update

operation executed concurrently with ro in µ or of the last update operation that ended

before ro’s invoke step in µ.

The possible linearizability base points of a read-only operation are illustrated in Figure

2.7. We say that a data structure ds satisfies linearizability base point consistency if every

return step t in every execution of every read-only operation ro of ds has a linearizability

base point with a base condition of t.

28

ro
uo uo uououo uo

Figure 2.7: Possible locations of ro’s linearizability base points.

Notice that base point consistency, regularity base point consistency and linearizability

base point consistency, are a sequence in which each condition is a subset of the previous one

in terms of possible base point locations. This construction of criteria for data structures

correctness follow the construction of Lamport for safe, regular and atomic registers [54].

The connection between regular and linearizable data structures, (as defined by regularity

and linearizability base point consistency), reflects the one between regular and atomic

registers. Notice that safe data structure can be defined in the same sense.

Theorem 2.3 (Linearizability). If a data structure ds satisfies linearizability base point

consistency, then ds is linearizable.

Proof. Given a concurrent execution µ of ds, we create a total ordering σ of operations in

µ as follows:

• The order of the update operations in σ is the same as their order in µ.

• Let ro be a read-only operation in µ which returns v. Since ds satisfies linearizability

base point consistency, by Lemma 2.3.5, there exists a sequentially reachable state s,

which is a post-state of an update operation uo such that uo is either concurrent with

ro, or returns before ro is invoked, and the return value of ro is v if it is executed

sequentially from s. We therefore, insert immediately the return step of uo, and (2)

completes before any uo′ which follows uo in σ is invoked. If two read-only operations

ro1 and ro2 share the same post-state s, and ro1 returns before ro2 is invoked in µ,

then ro1 is placed before ro2 in σ. Otherwise, the order between them is arbitrary

provided they are inserted sequentially one after the other, and none of them is inserted

after uo′ is invoked.

Since by Lemma 2.3.5, the return value of each ro is the same as the one that will be

returned in a sequential execution of ro if it is invoked after the write operation immediately

preceding ro in σ, σ is a valid sequential execution of ds.

It remains to show that σ preserves the relative order of each pair of non-overlapping

operations in µ. First, it is easy to see that the order of each pair of operations op1 and op2

such that either both op1 and op2 are updates, or exactly one of them is an update, and the

the other one is read-only is the same in both µ and σ.

Let ro1 and ro2 be two complete read-only operations in µ such that ro1 returns before

ro2 is invoked in µ; and ro1’s base point s1 is distinct from ro2’s base point s2 such that s1

and s2 are post-states of update operations uo1 and uo2 respectively.

29

Assume by way of contradiction that ro2 precedes ro1 in σ. By construction of σ, uo2,

(resp., uo1), is the last update operation preceding ro2 (resp., ro1). Also, by construction,

uo2 must precede uo1 in µ, and their respective post-states s2 and s1 are base points of ro2

and ro1 respectively. However, since s2 is reached earlier than s1, by linearizability base

point consistency, ro2 must precede ro1 in µ, which is a contradiction.

We conclude that σ is a valid sequential execution of ds, which preserves the order of all

non-overlapping operations in µ. Therefore, the history H of σ belongs to the sequential

specification of ds, and preserves the order of all non-overlapping operations in µ. Hence, H

is a linearization of µ. �

2.6 Sequential Consistency

Some systems use the correctness criterion of sequential consistency [53], which relaxes

linearizability by not requiring real time order (RTO) between operations of different

processes.

Note that sequential consistency and regularity are incomparable: Regularity does not

impose RTO on read-only operations even if they belong to the same process, while in

sequential consistency, the RTO of read-only operations of the same process is preserved.

On the other hand, regularity enforces the RTO between an update operation and every

other operation, while sequential consistency allows re-ordering of operations executed by

different processes.

We say that a data structure ds satisfies sequentially base point consistency if it satisfies

the base point consistency, and for every concurrent execution µ in which a read-only

operation ro1 of ds precedes a read-only operation ro2 of ds and both belong to the same

process, the return step of ro1 has a base point in µ that precedes or equals to ro2’s return

step’s base point in µ.

We now prove that the sequentially base point consistency condition ensures sequential

consistency.

Lemma 2.6.1. Let µ be a concurrent execution such that: (1) µ starts from a sequentially

reachable post-state s; and (2) every return step of every read-only operation in µ has a base

point ; and (3) for every read-only operation ro1 that precedes a read-only operation ro2 of

the same process, the return step of ro1 has a base point in µ that precedes or equals to ro2’s

return step’s base point in µ.

Then there is a sequential execution µseq such that: (1) µseq and µ contain the same

operations; and (2) for every process, all its operations appear in the same order in µseq and

in µ.

30

Proof. We build a sequential execution µseq in the following way: (1) µseq starts from

the same shared state s as µ. I t is given that s is sequentially reachable. (2) All update

operations in µ appear in the same order in µseq. (3) Every read-only operation ro in µ is

executed in µseq from a post-state that is a base point of the return step of ro. It is given

that for operations of the same process, different base points appear in the execution in

the same order as the operations do. Therefore if there are multiple possibilities for a base

point, the operation is executed from the base point according to the that order. Read-only

operations of the same process that have the same base point are executed from it at the

same order in µseq as in µ. (4) The order of read-only operations that do not belong to the

same process and are executed from the same base point is arbitrary.

Since only update operations can change the shared state and their sequential order

is the same in both executions, every update operation is executed in µseq from the same

shared state as in µ. By the definitions of base point and base condition we get that every

read-only operation in µseq returns the same value in µseq as in µ – ro is executed from a

shared state that is a base point of its return step, and the last local state determines ro’s

return value. �

Theorem 2.4 (Sequential consistency). If a data structure ds satisfies sequentially base

point consistency, then ds is sequentially consistent.

Proof. Let µ be a concurrent execution of ds. By Lemma 2.6.1 we get that there is a

sequential execution µseq, such that Hµseq is a permutation of complete(Hµ) that belongs to

the sequential specification of ds and keeps the RTO of operations that belong to the same

process in µ. Thus ds is sequentially consistent. �

Acknowledgements

We thank Naama Kraus, Dahlia Malkhi, Yoram Moses, Dani Shaket, Noam Shalev, and

Sasha Spiegelman for helpful comments and suggestions.

31

Chapter 3

Paper: A Constructive Approach

for Proving Data Structures’

Linearizability

Kfir Lev-Ari, Gregory V. Chockler, Idit Keidar: “A Constructive Approach for Proving

Data Structures’ Linearizability”. Distributed Computing 29th International Symposium,

DISC 2015 Tokyo, Japan, October 7–9, 2015 Proceedings. ed. / Yoram Moses. Vol. 9363

Springer-Verlag, 2015. p. 356–370.

In this paper we generalize base-point analysis to any type of data structure and provide

a constructive road-map for proving correctness of data structures (exemplify via Lazy List).

32

A Constructive Approach

for Proving Data Structures’ Linearizability ∗

Kfir Lev-Ari1, Gregory Chockler2, and Idit Keidar1

1Viterbi Department of Electrical Engineering, Technion, Haifa, Israel

2CS Department, Royal Holloway University of London, Egham, UK

Abstract

We present a comprehensive methodology for proving correctness of concurrent

data structures. We exemplify our methodology by using it to give a roadmap for

proving linearizability of the popular Lazy List implementation of the concurrent set

abstraction. Correctness is based on our key theorem, which captures sufficient conditions

for linearizability. In contrast to prior work, our conditions are derived directly from the

properties of the data structure in sequential runs, without requiring the linearization

points to be explicitly identified.

3.1 Introduction

While writing an efficient concurrent data structure is challenging, proving its correctness

properties is usually even more challenging. Our goal is to simplify the task of proving

correctness. We present a methodology that offers algorithm designers a constructive way

to analyze their data structures, using the same principles that were used to design them in

the first place. It is a generic appproach for proving handcrafted concurrent data structures’

correctness, which can be used for presenting intuitive proofs.

The methodology we present here generalizes our previous work on reads-write concur-

rency [56], and deals also with concurrency among write operations as well as with any

number of update steps per operation (rather than a single update step per operation as in

∗This work was partially supported by the Israeli Science Foundation (ISF), the Intel Collaborative
Research Institute for Computational Intelligence (ICRI-CI), by a Royal Society International Exchanges
Grant IE130802, and by the Randy L. and Melvin R. Berlin Fellowship in the Cyber Security Research
Program.

33

[56]). To do so, we define the new notions of base point preserving steps, commutative steps,

and critical sequence. We demonstrate the methodology by proving linearizability of Lazy

List [46], as opposed to toy examples in [56].

Our analysis consists of three stages. In the first stage we identify conditions, called

base conditions [56], which are derived entirely by analysis of sequential behavior, i.e., we

analyze the algorithm as if it is designed to implement the data structure correctly only in

sequential executions. These conditions link states of the data structure with outcomes of

operations running on the data structure from these states. More precisely, base conditions

tell us what needs to be satisfied by a state of the data structure in order for a sequential

execution to reach a specific point in an operation from that state. For example, Lazy List’s

contains(31) operation returns true if 31 appears in the list. A possible base condition for

returning true is “there is an element that is reachable from the head of the list and its

value is 31”. Every state of Lazy List that satisfies this base condition causes contains(31)

to return true.

In the second stage of our analysis we prove the linearization of update operations,

(i.e., operations that might modify shared memory). We state two conditions on update

operations that together suffice for linearizability. The first is commutativity of steps taken

by concurrent updates. The idea here is that if two operations’ writes to shared memory

are interleaved, then these operations must be independent. Such behavior is enforced by

standard synchronization approaches, e.g., two-phase locking. The second condition requires

that some state reached during the execution of the update operation satisfy base conditions

of all the update operation’s writes. For example, the update steps of an add(7) operation in

Lazy List depend on the predecessor and successor of 7 in the list. Indeed, Lazy List’s add(7)

operation writes to shared memory only after locking these nodes, which prevent concurrent

operations from changing the two nodes that satisfy the base conditions of add(7)’s steps.

In the third stage we consider the relationship between update operations and read-only

operations. We first require each update operation to have at most one point in which it

changes the state of the data structure in a way that “affects” read-only operations. We

capture the meaning of “affecting” read-only operations using base conditions. Intuitively,

if an update operation has a point in which it changes something that causes the state to

satisfy a base condition of a read-only operation, then we know that this point defines the

outcome of the read-only operation. For example, Lazy List’s remove(3) operation first

marks the node holding 3, and then detaches it from its predecessor. Since contains treats

marked nodes as deleted, the second update step does not affect contains.

In addition, we require that each read-only operation has a state in the course of its

execution that satisfies its base condition. In order to show that such a state exists, we need

to examine how the steps that we have identified in the update operations affect the base

34

conditions of the read-only operations. For example, in Lazy List, contains(9) relies on the

fact that if a node holding 9 is reachable from the head of the list, then there was some

concurrent state in which a node holding 9 was part of the list. We need to make sure that

the update operations support this assumption.

The remainder of this paper is organized as follows: Section 3.2 provides formal prelimi-

naries. We formally present and illustrate the analysis approach in Section 3.3. We state

and prove our main theorem in Section 3.4. Then, we demonstrate how base point analysis

can be used as a roadmap for proving linearizability of Lazy List in Section 3.5.

3.2 Preliminaries

We extend here the model and notions we defined in [56]. Generally speaking, we consider a

standard shared memory model [26] with one refinement, which is differentiating between

local and shared state, as needed for our discussion.

Each process performs a sequence of operations on shared data structures implemented

using a set X = {x1, x2, ...} of shared variables. The shared variables support atomic

operations, such as read, write, CAS, etc. A data structure implementation (algorithm) is

defined as follows:

• A set S of shared states, some of which are initial, where s ∈ S is a mapping assigning

a value to each shared variable.

• A set of operations representing methods and their parameters (e.g., add(7) is an

operation). Each operation op is a state machine defined by: A set of local states

Lop, which are given as mappings l of values to local variables; and a deterministic

transition function τop(Lop × S)→ Steps×Lop × S where Steps are transition labels,

such as invoke, return(v), a ← read(xi), write(xi,v), CAS(xi,vold,vnew), etc.

Invoke and return steps interact with the application, while read and write steps

interact with the shared memory and are defined for every shared state. In addition, the

implementation may use synchronization primitives (locks, barriers), which constrain the

scheduling of ensuing steps, i.e., they restrict the possible executions, as we shortly define.

For a transition τ(l, s) = 〈step, l′, s′〉, l determines the step. If step is an invoke or return,

then l′ is uniquely defined by l. Otherwise, l′ is defined by l and potentially s. For invoke,

return, read and synchronization steps, s = s′. If any of the variables is assigned a different

value in s than in s′, then the step is called an update step.

A state consists of a local state l and a shared state s. We omit either the shared or

the local component of the state if its content is immaterial to the discussion. A sequential

35

execution of an operation from a shared state si ∈ S is a sequence of transitions of the form:

⊥
si
, invoke,

l1
si
, step1,

l2
si+1

, step2, ... ,
lk
sj
, returnk,

⊥
sj
,

where ⊥ is the operation’s initial local sate and τ(lm, sn) = 〈stepm, lm+1, sn+1〉. The first

step is invoke and the last step is a return step.

A sequential execution of a data structure is a (finite or infinite) sequence µ:

µ =
⊥
s1
, O1,

⊥
s2
, O2, ... ,

where s1 ∈ S0 and every ⊥sj , Oj ,
⊥
sj+1

in µ is a sequential execution of some operation. If µ

is finite, it can end after an operation or during an operation. In the latter case, we say

that the last operation is pending in µ. Note that in a sequential execution there can be at

most one pending operation.

A concurrent execution fragment of a data structure is a sequence of interleaved states

and steps of different operations, where each state consists of a set of local states {li, ..., lj}

and a shared state sk, where every li is a local state of a pending operation, which is

an operation that has not returned yet. A concurrent execution of a data structure is a

concurrent execution fragment that starts from an initial shared state and an empty set

of local states. In order to simplify the discussion of initialization, we assume that every

execution begins with a dummy (initializing) update operation that does not overlap any

other operation. A state s′ is reachable from a state s if there exists an execution fragment

that starts at s and ends at s′. A state is reachable if it is reachable from an initial state.

An operation for which there exists an execution in which it perform update steps is

called update operation. Otherwise, it is called a read-only operation.

A data structure’s correctness in sequential executions is defined using a sequential

specification, which is a set of its allowed sequential executions. A linearization of execution

µ is a sequential execution µl, such that:

• Every operation that is not invoked in µ is not invoked in µl.

• Every operation that returns in µ returns also in µl and with the same return value.

• µl belongs to the data structure’s sequential specification.

• The order between non-interleaved operations in µ and µl is identical.

A data structure is linearizable [49] if each of its executions has a linearization.

36

3.3 Base Point Analysis

In this section we present key definitions for analyzing and proving correctness using what

we call base point analysis. We illustrate the notions we define using Lazy List [46], whose

pseudo code appears in Algorithm 1.

. Φloc(s, n1, n2, e) : (Head
∗⇒ n1) ∧ (n1.next = n2) ∧ ¬n1.marked ∧ ¬n2.marked

∧ (n1.val < e) ∧ (e ≤ n2.val)

1 Function contains(e)
2 c ← read(Head)
3 while read(c.val) < e
4 c ← read(c.next)

5 . Φc :(Head
∗⇒ c) ∧ (c.val ≥ e)

∧ (6 ∃n:(Head ∗⇒ n) ∧
(e ≤ n.val < c.val))

6 if read(c.marked)∨read(c.val) 6= e
7 . Φc∧(c.marked ∨c.val 6= e)
8 return false
9 else

10 . Φc ∧ (¬c.marked∧c.val = e)
11 return true

12 Function add(e)
13 〈n1, n2〉 ← locate(e)
14 . Φloc(s, n1, n2, e)
15 if read(n2.val) 6= e
16 . Φloc(s, n1, n2, e) ∧ (n2.val 6= e)
17 write(n3, new Node(e, n2))
18 write(n1.next, n3)
19 unlock(n1)
20 unlock(n2)
21 return true
22 else
23 . Φloc(s, n1, n2, e) ∧ (n2.val = e)
24 unlock(n1)
25 unlock(n2)
26 return false

27 Function locate(e)
28 while true
29 n1 ← read(Head)
30 n2 ← read(n1.next)
31 while read(n2.val) < e
32 n1 ← n2

33 n2 ← read(n2.next)
34 lock(n1)
35 lock(n2)
36 if read(n1.marked) = false ∧
37 read(n2.marked) = false ∧
38 read(n1.next) = n2

39 return 〈n1, n2〉
40 else
41 unlock(n1, n2)

42 Function remove(e)
43 〈n1, n2〉 ← locate(e)
44 . Φloc(s, n1, n2, e)
45 if read(n2.val) = e
46 . Φloc(s, n1, n2, e) ∧ (n2.val = e)
47 write(n2.marked, true)
48 write(n1.next, n2.next)
49 unlock(n1)
50 unlock(n2)
51 return true
52 else
53 . Φloc(s, n1, n2, e) ∧ (n2.val 6= e)
54 unlock(n1)
55 unlock(n2)
56 return false

Algorithm 1: Lazy List. Base conditions are listed as comments, using Φloc defined above
the functions.

We start by defining base conditions [56]. A base condition establishes a connection

between the local state that an operation reaches and the shared variables the operation has

read before reaching this state. It is given as a predicate Φ over shared variable assignments.

Formally:

Definition 3.3.1 (Base Condition). Let l be a local state of an operation op. A predicate

Φ over shared variables is a base condition for l if every sequential execution of op starting

37

from a shared state s such that Φ(s) is true, reaches l.

For completeness, we define a base condition for stepi in an execution µ to be a base

condition of the local state that precedes stepi in µ. For example, consider an execution

of Lazy List’s contains(31) operation that returns true. A possible base condition for that

return step is φ : “there is an unmarked node in which key = 31, and that node is reachable

from the head of the list”. Every sequential execution of contains(31) from a shared state

that satisfied φ reaches the same return true step. Base conditions for all of Lazy List’s

update and return steps are annotated in Algorithm 1, and are discussed in detail in Section

3.5.1 below.

For a given base condition, the notion of base point [56] links the local state that has

base condition Φ to a shared state s where Φ(s) holds.

Definition 3.3.2 (Base Point). Let op be an operation in an execution µ, and let Φt be a

base condition for the local state at point t in µ. An execution prefix of op in µ has a base

point for point t with Φt, if there exists a shared state s in µ, called a base point of t, such

that Φt(s) holds.

Note that together with Definition 3.3.1, the existence of a base point s for point t implies

that the step or local state at point t in operation op is reachable from s in a sequential run

of op starting from s. In Figure 3.1 we depict two states of Lazy List: s1 is a base point for

a return true step of contains(7), whereas s2 is not.

Marked = false
Val=3, Next =

Marked = false
Val=7, Next =

Marked = false
Val=9, Next =

Marked = false
Val=3, Next =

Marked = true
Val=7, Next =

Marked = false
Val=9, Next =

Figure 3.1: Two states of Lazy List (Algorithm 1): s1 is a base point for contains(7)’s
return true step, as it satisfies the base condition ”there is a node that is reachable from
the head of the list, and its value is 7”. The shared state s2 is not a base point of this step,
since there is no sequential execution of contains(7) from s2 in which this step is reached.

Let s0 and s1 be two shared states, and let s0, st, s1 be an execution fragment. We call

s0 the pre-state of step st, and s1 the post-state of st.

We now define base point preserving steps, which are steps under which base conditions

are invariant.

Definition 3.3.3 (Base Point Preserving Step). A step st is base point preserving with

respect to an operation op if for any update or return step b of op, for any concurrently

reachable pre-state of st, st’s pre-state is a base point of b if and only if st’s post-state is a

base point of b.

38

An example of a base point preserving step is illustrated in Figure 3.2. In this example,

the second write step in Lazy List’s remove operation is base point preserving for contains.

Intuitively, since contains treats marked nodes as removed, the same return step is reached

regardless whether the marked node is detached from the list or reachable from the head of

the list.

Figure 3.2: Operation remove(7) of Lazy List has two write steps. In the first, marked
is set to true. In the second, the next field of the node holding 3 is set to point to the
node holding 9. If a concurrent contains(7) operation sequentially executes from state s1, it
returns true. If we execute contains(7) from s′1, i.e., after remove(7)’s first write, contains
sees that 7 is marked, and therefore returns false. If we execute contains from state s2, after
remove(7)’s second write, contains does not see B because it is no longer reachable from
the head of the list, and also returns false. The second write does not affect the return step,
since in both cases it returns false.

3.4 Linearizability using Base Point Analysis

We use the notions introduced in Section 3.3 to define sufficient conditions for linearizability.

In Section 3.4.1 we define conditions for update operations, and in Section 3.4.2 we define

an additional condition on read-only operations, and show that together, our conditions

imply linearizability.

3.4.1 Update Operations

We begin by defining the commutativity of steps.

Definition 3.4.1 (Commutative Steps). Consider an execution µ of a data structure ds

that includes the fragment a, s1, b, s2. We say that steps a and b commute if a, s1, b, s2 in µ

can be replaced with b, s′1, a, s2, so that the resulting sequence µ′ is a valid execution of ds.

We now observe that if two update steps commute, then their resulting shared state is

identical for any ordering of these steps along with interleaved read steps.

39

Observation 3.4.2. Let s0, a, s1, b, s2 be an execution fragment of two update steps a and

b that commute, then s2 is the final shared state in any execution fragment that starts from

s0 and consists of a, b and any number of read steps (for any possible ordering of steps).

We are not interested in commutativity of all steps, but rather of “critical” steps that

modify shared memory or determine return values. This is captured by the following notion:

Definition 3.4.3 (Critical Sequence). The critical sequence of an update operation op in

execution µ is the subsequence of op’s steps from its first to its last update step; if op takes

no update steps in µ, then the critical sequence consists solely of its last read.

For example, if in Lazy List op1 = add(2) and op2 = add(47) concurrently add items in

disjoint parts of the list, then all steps in op1’s critical sequence commute with all those in

op2’s critical sequence. The same is not true for list traversal steps taken before the critical

sequence, since op2 may or may not traverse a node holding 2, depending on the interleaving

of op1 and op2’s steps. In general, Lazy List uses locks to ensure that the critical steps of

two operations overlap only if these operations’ respective steps commute. This is our first

condition for linearizability of update operations.

Our second requirement from update operations is that each critical sequence begin its

execution from a base point of all the operation’s update and return steps. Together, we

have:

Definition 3.4.4 (Linearizable Update Operations). A data structure ds has linearizable

update operations if for every execution µ, for every update operation uoi ∈ µ:

1. ∀uoj ∈ µ, i 6= j, if the critical sequence of uoj interleaves with the critical sequence

of uoi in µ, then all of uoi’s steps in its critical sequence commute with all of the

steps in uoj ’s critical sequence, and all the update steps of uoi and uoj are base point

preserving for uoj and uoi respectively.

2. The pre-state of uoi’s critical sequence is a base point for all of uoi’s update and return

steps, and moreover, if uoi is complete in µ, then this state is not a base point for any

other possible update step of uoi.

To satisfy these conditions, before its critical sequence, an update operation takes actions

to guarantee that the pre-state of its first update will be a base point for the operation’s

update and return steps, as depicted in Figure 3.3. For example, any algorithm that follows

the two-phase locking protocol [31] satisfies these conditions: operations perform concurrent

modifications only if they gain disjoint locks, which means that their steps commute. And

in addition, once all locks are obtained by an operation, the shared state is a base point for

all of its ensuing steps, i.e., for its critical sequence.

40

Figure 3.3: The structure of update operations. The steps before the critical sequence
ensure that the pre-state of the first update step is a base point for all of the update and
return steps.

We now show that every execution that has linearizable update operations and no

read-only operations is linearizable.

Lemma 3.4.5. Let µ be an execution consisting of update operations of some data structure

that has linearizable update operations. Let µ′ be a sequential execution of all the operations

in µ starting from the same initial state as µ such that if some operation op1’s critical

sequence ends before the critical sequence of another operation op2 begins in µ, then op1

precedes op2 in µ′. Then µ′ is a linearization of µ.

Proof. By construction, µ′ includes only invoke steps from µ, and every two operations

that are not interleaved in µ occur in the same order in µ and µ′. It remains to show that

every operation has the same return step in µ and µ′.

Denote by µ′i the prefix of µ′ consisting of i operations, and by µi the subsequence of µ

consisting of the steps of the same i operations. Denote by opi the ith operation in µ′.

We prove by induction on i that µ′i is a linearization of µi and both executions end in the

same final state. As noted above, for linearizability, it suffices to show that all operations

that return in both µ′i and µi return the same value.

The first operation in both µ and µ′ is a dummy initialization, which returns before all

other operations are invoked. Hence, µ1 = µ′1, and their final states are identical.

Assume now that µ′i is a linearization of µi and their final states are the same. The

critical sequence of opi+1 in µi+1 overlaps the critical sequences of the last zero or more

operations in µi. We need to show that (1) the execution of opi+1 that overlaps these steps

in µi+1 yields the same return value and the same final state as a sequential execution of

opi+1 from the final state of µi; and (2) the return values of the operations that opi+1 is

interleaved with in µi+1 are unaffected by the addition of opi+1’s steps.

(1) By definition 3.4.4, the pre-state p of opi+1’s critical sequence in µi+1 is a base point

for opi+1’s update and return steps. Note that p occurs in µi+1 before any update step of

opi+1, and thus it also occurs in µi. Thus, the same p occurs also in µi. All the update

steps after p in µi+1 belong to operations that have interleaved critical sequences with opi+1

in µi+1, and therefore by definition 3.4.4 their update steps are base point preserving for

opi+1. These are the update steps that occur after p in µi, and so the final state of µi is a

base point for the update and return steps that opi+1 takes in µi+1.

41

By the induction hypothesis, the last states of µi and µ′i are identical, and we conclude

that opi+1 has the same update and return steps in µi+1 and µ′i+1.

In addition, the final states of µi+1 and µ′i+1 occur at the end of execution fragments

that consist of the same update steps, s.t. if two update steps have different orders in µi+1

and in µ′i+1 then they are commute. By Observation 3.4.2 we conclude that the last states

of µi+1 and µ′i+1 are identical.

(2) If an update step of opi+1 occurs in µi+1 before operation opj ’s return step, then

opi+1 has an interleaved critical sequence with opj . This means that all of opi+1’s update

steps are base point preserving for opj . Thus, the same base points are reached before opj ’s

critical sequences in µi and in µi+1. By definition 3.4.4, opj takes the same update and

return steps in µi and µi+1. �

3.4.2 Read-Only Operations

We state two conditions that together ensure linearizability of read-only operations. First,

each read-only operation ro should have a base point for its return step, which can be either

a post-state of some step of operation that is concurrent to ro, or the pre-state of ro’s

invoke step. Second, update operations should have at most one step that is not base point

preserving for read-only operations.

In Theorem 3.1 we present a sufficient condition for linearizability. Intuitively, we want

the linearizable update operations to satisfy two conditions: (1) the read-only operations

should see the update operations as a sequence of single steps that mutate the shared state.

To express this relation we use the base point preserving property; and (2) the update

operations should guarantee the correctness of the returned values of the read-only operation,

as expressed by the return steps’ base conditions.

Theorem 3.1. Let ds be a data structure that has linearizable update operations. If ds

satisfies the following conditions, it is linearizable:

1. Every update operation of ds has at most one step that is not base point preserving

with respect to all read-only operations.

2. For every execution µ, for every complete read-only operation ro ∈ µ, there exists in

µ a shared state s between the pre-state of ro’s invoke step and the pre-state of ro’s

return step (both inclusive) that is a base-point for ro’s return step.

Proof. For a given execution µ−, let µ be an execution that is identical to µ− with the

addition that all pending operations in µ− are allowed to complete. Note that µ also has

linearizable update operations. We now show that µ has a linearization, and therefore µ−

has a linearization.

42

We build a sequential execution µseq as follows:

1. µseq starts from the same shared state as µ.

2. We sequentially execute all the update operations that takes steps of their critical

sequence in µ in the order of their steps that are not base point preserving for read-only

operations, (or the last read step in case all steps are base point preserving). We

denote this sequence of steps by {ordi}. The update operation that performs ordi in

µ is denoted uoi.

3. Each read-only operation ro of µ is executed in µseq after an update operation uoi

such that the post-state of ordi in µ is a base point for ro, and is either concurrent

to ro or the latest step in {ordi} that precedes ro’s invoke step. Such a step exists

since (1) by our assumption, ro has a base point between its invoke step’s pre-state

and its return step’s pre-state; and (2) every step that is not in {ordi} is base point

preserving for ro.

4. The order in µseq between non-interleaved read-only operations that share the same

base point follows their order in µ. The order between interleaved read-only operations

that are executed in µseq from the same base point is arbitrary.

Now, by Lemma 3.4.5, the sequence of update operations in µseq is a linearization of the

sequence of update operations in µ.

Therefore we only need to prove that the order between the read-only operations and

other operations that are not interleaved in µ is identical in µseq and µ, and that each

read-only operation has the same return step in both executions.

We observe that:

1. In µ and µseq the steps of {ordi} appear in the same order, and in both executions

each read-only operation is either executed after the same ordi in both, or is executed

concurrently to ordi in µ and immediately after uoi in µseq.

2. Each shared state satisfies the same base conditions since the update steps that appear

in a different order in µ and µseq commute.

Therefore each post-state of ordi remains a base point in µseq for the same read-only

operations that it was in µ, and thus each read-only operation reaches the same return step

as in µ.

Assume towards contradiction that two read-only operations ro1 and ro2 have a different

order in µ and µseq, and w.l.o.g. ro1 precedes ro2 in µ, and ro2 precedes ro1 in µseq.

Let uo1 be the update operation that precedes ro1 in µseq, and uo2 be the update

operation that precedes ro2 in µseq. uo2 6= uo1, otherwise ro1 and ro2 had the same base

43

point and their execution order was identical to their order in µ. Since ro2 precedes ro1 in

µseq, we conclude that ord2 occurs before ord1 in µ. ord1 takes place in µ as last as one step

before uo1’s return step. Therefore ord2 must appear somewhere before ro1’s return step.

But ro1 precedes ro2 in µ, meaning that ord2 is not the latest steps of ord that precedes

ro2’s invoke step, in contradiction. �

3.5 Roadmap for Proving Linearizability

We now prove that Lazy List (Algorithm 1) satisfies the requirements of Theorem 3.1,

implying that it is linearizable. We demonstrate the three stages of our roadmap for proving

linearizability using base point analysis.

3.5.1 Stage I: Base Conditions

We begin by identifying base conditions for the operations’ update and return steps. The

base conditions are annotated in comments in Algorithm 1. To do so, we examine the

possible sequential executions of each operation.

Add & Remove LetHead
∗⇒ n denote that there is a set of shared variables {Head, x1, ..., xk}

such that Head.next = x1 ∧ x1.next = x2 ∧ ... ∧ xk = n, i.e., that there exists some path

from the shared variable Head to n. Let Φloc(s, n1, n2, e) be the predicate indicating that in

the shared state s, the place of the key e in the list is immediately after the node n1, and at

or just before the node n2:

Φloc(s, n1, n2, e) : Head
∗⇒ n1 ∧ n1.next = n2 ∧ ¬n1.marked ∧ ¬n2.marked ∧

n1.val < e ∧ e ≤ n2.val.

Observation 3.5.1. Φloc(s, n1, n2, e) is a base condition for the local state of add(e)

(remove(e)) after line 14 (resp., 44).

Now, Φloc(s, n1, n2, e) ∧ n2.val 6= e is a base condition for add ’s write and return true

steps and removes’s return false step. And a base condition for add ’s return false step

and remove’s write and return true steps is Φloc(s, n1, n2, e) ∧n2.val = e.

Contains First, we define the following predicate:

Φc : Head
∗⇒ c ∧ c.val ≥ e ∧ (6 ∃ n : Head

∗⇒ n ∧ e ≤ n.val < c.val) .

In a shared state satisfying Φc, c is the node with the smallest value greater than or

equal to e in the list. The base condition for contains’s return true step is Φc ∧ c.val = e,

and the base condition for return false is the predicate Φc ∧ (c.marked ∨ c.val 6= e).

44

These predicates are base conditions since every sequential execution from a shared state

satisfying them reaches the same return step, i.e., if c is the node in the list with the smallest

value that is greater than or equal to e and is reachable from the head of the list, then after

traversing the list and reaching it, the return step is determined according to its value.

3.5.2 Stage II: Linearizability of Update Operations

We next prove that Lazy List has linearizable update operations. Using Definition 3.4.4, it

suffices to show the following: (1) each update operation has a base point for its update and

return steps, (2) each critical sequence commutes with interleaved critical sequences, and (3)

the update steps are base point preserving for operations with interleaved critical sequences.

Base Points for Update and Return Steps

Proof Sketch First we claim that in every execution of an add (remove) operation, line

14 (44, respectively), is a base point for all the operation’s update and return steps.

Claim 1. Consider the shared state s immediately after line 14 (44) of an execution of

add(e) (remove(e)). Then Φ(s, n1, n2, e) is true.

Claim 1 can be proven by induction on the steps of an execution. Intuitively, the idea

is to show by induction that the list is sorted, and that in each add (remove) operation,

locate locks the two nodes and verifies that they are unmarked, and so no other operation

can change them and they remain reachable from the head of the list and connected to each

other. Formal proofs of this claim were given in [67, 78].

Based on Claim 1 and the observation that after line 14 (44) of an execution of add(e)

(remove(e)) the value of n2.val persists until n2 is unlocked, we conclude that the shared

state after locate returns is a base point for update operations’ update and return steps.

Since the locked nodes cannot be modified by concurrent operations, the pre-state of the

first update step is also a base point for the same steps. In case the update operation has

no update steps, the same holds for the last read step.

Commutative and Base Point Preserving Steps

Proof Sketch We now show that the steps of update operations that have interleaved

updates are commutative, and that the update steps are base point preserving. Specifically,

we examine the steps between the first update step and the last one (or just the last read

step in case of an update operation that does no have update steps).

45

In order to add a key to the list, an update operation locks the predecessor and successor

of the new node. For removing a node from the list, the update operation locks the node and

it predecessor. This means that every update operation locks the nodes that it changes and

the nodes that it relies upon before it verifies its steps’ base point. Thus, update operations

have concurrent critical sequence only if they access different nodes. Therefore their steps

commute, and are base point preserving for one another.

3.5.3 Stage III: Linearizability of Read-Only Operations

The final stage in our proof is to show the conditions stated in Theorem 3.1 hold for each

read-only operation.

Single Non-Preserving Step per Update Operation First we show that every update

operation of Lazy List has at most one step that is not base point preserving for all read-only

operations.

Proof Sketch We only need to consider update steps, since every other step in add and

remove does not modify the shared memory, and therefore does not affect any base condition

of contains. There are two update steps in an operation. In add, the first update step

allocates a new (unreachable) node. Nodes that are not reachable from the head of the list

do not affect any base condition. Therefore, only the second step, the one that changes the

list, is not base point preserving for contains.

In remove, the first update step marks the removed node, and the second makes the

node unreachable from the head of the list. Since marked nodes are treated in every base

condition of contains as if they are already detached from the list, the second update step

does not change the truth value of the base condition of contains. More precisely, if we

compare the second update step’s pre-state to its post-state, they both satisfy the same

base conditions of contains’s return steps.

Concurrent Base Points Last, we show that in every execution of contains, the return

step of contains has a base point, and that base point occurs between the pre-state of

contains’s invoke step and the pre-state of contains’s return step.

Proof Sketch When add inserts a new value to the list, it locks the predecessor node n

and the successor m, and verifies that n and m are not marked and that n.next = m.

Since n or m cannot be removed as long as they are locked, and since nodes are removed

only when their predecessor is also locked, new nodes are not added to detached parts of the

list. This means that every node encountered during a traversal of the list was reachable

from the head at some point.

46

In addition, if add inserts a value e, it satisfies n.val < e < m.val, since n and m are

locked, and no value other than e is inserted between them before e is added (this can be

proven by induction on executions).

The execution of contains(e) reaches line 6 only after it traverses the list from its head

and reaches the first node c whose value v satisfies e ≤ v. Thus, there is some concurrent

shared state s that occurs after the invocation of contains(e) in which c is unmarked and

reachable from the head of the list. State s is a base-point of contains(e)’s return step.

Acknowledgements

We thank Naama Kraus, Noam Rinetzky and the anonymous reviewers for helpful comments

and suggestions.

47

Chapter 4

Paper: Modular composition of

coordination services

Kfir Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexander Shraer : “Modular composition

of coordination services”. In Proceedings of the 2016 USENIX Conference on Usenix Annual

Technical Conference (USENIX ATC ’16). USENIX Association, Berkeley, CA, USA,

251-264.

In this paper we design, implement, and evaluate ZooKeepers’ consistent composition.

48

Modular Composition of Coordination Services

Kfir Lev-Ari1, Edward Bortnikov2, Idit Keidar1,2, and Alexander Shraer3

1Viterbi Department of Electrical Engineering, Technion, Haifa, Israel

2Yahoo Research, Haifa, Israel

3Google, Mountain View, CA, USA

Abstract

Coordination services like ZooKeeper, etcd, Doozer, and Consul are increasingly used

by distributed applications for consistent, reliable, and high-speed coordination. When

applications execute in multiple geographic regions, coordination service deployments trade-

off between performance, (achieved by using independent services in separate regions), and

consistency.

We present a system design for modular composition of services that addresses this

trade-off. We implement ZooNet, a prototype of this concept over ZooKeeper. ZooNet

allows users to compose multiple instances of the service in a consistent fashion, facilitating

applications that execute in multiple regions. In ZooNet, clients that access only local

data suffer no performance penalty compared to working with a standard single ZooKeeper.

Clients that use remote and local ZooKeepers show up to 7.5x performance improvement

compared to consistent solutions available today.

4.1 Introduction

Many applications nowadays rely on coordination services such as ZooKeeper [50], etcd

[11], Chubby [34], Doozer [6], and Consul [4]. A coordination service facilitates maintaining

shared state in a consistent and fault-tolerant manner. Such services are commonly used

for inter-process coordination (e.g., global locks and leader election), service discovery,

configuration and metadata storage, and more.

When applications span multiple data centers, one is faced with a choice between

sacrificing performance, as occurs in a cross data center deployment, and forgoing consistency

49

by running coordination services independently in the different data centers. For many

applications, the need for consistency outweighs its cost. For example, Akamai [75] and

Facebook [76] use strongly-consistent globally distributed coordination services (Facebook’s

Zeus is an enhanced version of ZooKeeper) for storing configuration files; dependencies

among configuration files mandate that multiple users reading such files get consistent

versions in order for the system to operate properly. Other examples include global service

discovery [3], storage of access-control lists [9] and more.

In this work we leverage the observation that, nevertheless, such workloads tend to be

highly partitionable. For example, configuration files of user or email accounts for users

in Asia will rarely be accessed outside Asia. Yet currently, systems that wish to ensure

consistency in the rare cases of remote access, (like [75, 76]), globally serialize all updates,

requiring multiple cross data center messages.

To understand the challenge in providing consistency with less coordination, consider

the architecture and semantics of an individual coordination service. Each coordination

service is typically replicated for high-availability, and clients submit requests to one of

the replicas. Usually, update requests are serialized via a quorum-based protocol such as

Paxos [55], Zab [51] or Raft [68]. Reads are served locally by any of the replicas and hence

can be somewhat stale but nevertheless represent a valid snapshot. This design entails the

typical semantics of coordination services [4, 11, 50] – atomic (linearizable [49]) updates

and sequentially-consistent [53] reads. Although such weaker read semantics enable fast

local reads, this property makes coordination services non-composable: correct coordination

services may fail to provide consistency when combined. In other words, a workload accessing

multiple consistent coordination services may not be consistent, as we illustrate in Section 4.2.

This shifts the burden of providing consistency back to the application, beating the purpose

of using coordination services in the first place.

In Section 4.3 we present a system design for modular composition of coordination

services, which addresses this challenge. We propose deploying a single coordination service

instance in each data center, which is shared among many applications. Each application

partitions its data among one or more coordination service instances to maximize operation

locality. Distinct coordination service instances, either within a data center or geo-distributed,

are then composed in a manner that guarantees global consistency. Consistency is achieved

on the client side by judiciously adding synchronization requests. The overhead incurred

by a client due to such requests depends on the frequency with which that client issues

read requests to different coordination services. In particular, clients that use a single

coordination service do not pay any price.

In Section 4.4 we present ZooNet, a prototype implementation of our modular composition

for ZooKeeper. ZooNet implements a client-side library that enables composing multiple

50

ZooKeeper ensembles, (i.e., service instances), in a consistent fashion, facilitating data

sharing across geographical regions. Each application using the library may compose

ZooKeeper ensembles according to its own requirements, independently of other applications.

Even though our algorithm requires only client-side changes, we tackle an additional issue,

specific to ZooKeeper – we modify ZooKeeper to provide better isolation among clients.

While not strictly essential for composition, this boosts performance of both stand-alone

and composed ZooKeeper ensembles by up to 10x. This modification has been contributed

back to ZooKeeper [15] and is planned to be released in ZooKeeper 3.6.

In Section 4.5 we evaluate ZooNet. Our experiments show that under high load and

high spatial or temporal locality, ZooNet achieves the same performance as an inconsistent

deployment of independent ZooKeepers (modified for better isolation). This means that our

support for consistency comes at a low performance overhead. In addition, ZooNet shows

up to 7.5x performance improvement compared to a consistent ZooKeeper deployment (the

“recommended” way to deploy ZooKeeper across data centers [13]).

We discuss related work in Section 4.6.

In summary, this paper makes the following contributions:

• A system design for composition of coordination services that maintains their semantics.

• A significant improvement to ZooKeeper’s server-side isolation and concurrency.

• ZooNet – a client-side library to compose multiple ZooKeepers.

4.2 Background

We discuss the service and semantics offered by coordination services in Section 4.2.1,

and then proceed to discuss possible ways to deploy them in a geo-distributed setting in

Section 4.2.2.

4.2.1 Coordination Services

Coordination services are used for maintaining shared state in a consistent and fault-tolerant

manner. Fault tolerance is achieved using replication, which is usually done by running a

quorum-based state-machine replication protocol such as Paxos [55] or its variants [51, 68].

In Paxos, the history of state updates is managed by a set of servers called acceptors,

s.t. every update is voted on by a quorum (majority) of acceptors. One acceptor serves as

leader and manages the voting process. In addition to acceptors, Paxos has learners (called

observers in ZooKeeper and proxies in Consul), which are light-weight services that do not

participate in voting and get notified of updates after the quorum accepts them. In the

51

context of this paper, acceptors are also (voting) learners, i.e., they learn the outcomes of

votes.

Coordination services are typically built on top of an underlying key-value store and

offer read and update (read-modify-write) operations. The updates are linearizable, i.e., all

acceptors and learners see the same sequence of updates and this order conforms to the

real-time order of the updates. The read operations are sequentially consistent, which is a

weaker notion similar to linearizability in that an equivalent sequential execution must exist,

but it must only preserve the program order of each individual client and not the global

real-time order. A client can thus read a stale value that has already been overwritten

by another client. These weaker semantics are chosen in order to allow a single learner or

acceptor to serve reads locally. This motivates using learners in remote data centers – they

offer fast local reads without paying the cost of cross data center voting.

As an aside, we note that some coordination service implementations offer their clients an

asynchronous API. This is a client-side abstraction that improves performance by masking

network delays. At the server-side, each client’s requests are handled sequentially, and

so the interaction is well-formed, corresponding to the standard correctness definitions of

linearizability and sequential consistency.

Unfortunately, these semantics of linearizable updates and sequentially consistent reads

are not composable, i.e., a composition of such services does not satisfy the same semantics.

This means that the clients cannot predict the composed system’s behavior. As an example,

consider two clients that perform operations concurrently as we depict in Figure 4.1. Client 1

updates object x managed by coordination service s1, and then reads an old version of

object y, which is managed by service s2. Client 2 updates y and then reads an old version

of x. While the semantics are preserved at both s1 and s2 (recall that reads don’t have to

return the latest value), the resulting execution violates the service semantics since there is

no equivalent sequential execution: the update of y by client 2 must be serialized after the

read of y by client 1 (otherwise the read should have returned 3 and not 0), but then the

read of x by client 2 appears after the update of x by client 1 and therefore should have

returned 5.

Figure 4.1: Inconsistent composition of two coordination services holding objects x and y:
each object is consistent by itself, but there is no equivalent sequential execution.

52

Alternative Performance
Updates Reads

Correctness Availability during partitions
Updates Reads

Single Service Very slow Fast Yes In majority Everywhere

Learners Slow Fast Yes In acceptors Everywhere

Multiple Services Fast Fast No Local Everywhere

Modular Composition Fast Fast Yes Local Local

Table 4.1: Comparison of different alternatives for coordination service deployments across
data centers. The first three alternatives are depicted in Figure 4.2. Our design alternative,
modular composition, is detailed in Section 4.3.

(a) Single Service – Coordination service ac-
ceptors are deployed in all data centers, no
single point of failure.

(b) Learners – Coordination service acceptors
are deployed in one data center and learners
in all other data centers.

(c) Multiple Services – A single coordination service is deployed
in each data center and a learner is deployed in every other data
center.

Figure 4.2: Different alternatives for coordination service deployment across data centers.

4.2.2 Cross Data Center Deployment

When coordination is required across multiple data centers over WAN, system architects

currently have three main deployment alternatives. In this section we discuss these alterna-

tives with respect to their performance, consistency, and availability in case of partitions. A

summary of our comparison is given in Table 4.1.

Alternative 1 – Single Coordination Service A coordination service can be deployed

over multiple geographical regions by placing its acceptors in different locations (as done,

e.g., in Facebook’s Zeus [76] or Akamai’s ACMS [75]), as we depict in Figure 4.2a. Using a

single coordination service for all operations guarantees consistency.

This setting achieves the best availability since no single failure of a data center takes

down all acceptors. But in order to provide availability following a loss or disconnection of

any single data center, more than two locations are needed, which is not common.

With this approach, voting on each update is done across WAN, which hampers latency

53

and wastes WAN bandwidth, (usually an expensive and contended resource). In addition,

performance is sensitive to placement of the leader and acceptors, which is frequently far

from optimal [73]. On the other hand, reads can be served locally in each partition.

Alternative 2 – Learners A second option is to deploy all of the acceptors in one data

center and learners in others, as we depict in Figure 4.2b. In fact, this architecture was one

of the main motivations for offering learners (observers) in ZooKeeper [13]. As opposed

to acceptors, a learner does not participate in the voting process and it only receives the

updates from the leader once they are committed. Thus, cross data center consistency is

preserved without running costly voting over WAN. Often, alternatives 1 and 2 are combined,

such as in Spanner [37], Megastore [27] and Zeus [76].

The update throughput in this deployment is limited by the throughput of one coor-

dination service, and the update latency in remote data centers is greatly affected by the

distance between the learners and the leader. In addition, in this approach we have a single

point of failure, i.e., if the acceptors’ data center fails or a network partition occurs, remote

learners are only able to serve read requests.

Alternative 3 – Multiple Coordination Services In the third approach data is

partitioned among several independent coordination services, usually one per data center

or region, each potentially accompanied by learners in remote locations, as depicted in

Figure 4.2c. In this case, each coordination service processes only updates for its own data

partition and if applications in different regions need to access unrelated items they can

do so independently and in parallel, which leads to high throughput. Moreover, if one

cluster fails all other locations are unaffected. Due to these benefits, multiple production

systems [3, 17, 21] follow this general pattern. The disadvantage of this design is that it does

not guarantee the coordination service’s consistency semantics, as explained in Section 4.2.1.

4.3 Design for Composition

In Section 4.3.1 we describe our design approach and our client-side algorithm for modular

composition of coordination services while maintaining consistency. In Section 4.3.2 we

discuss the properties of our design, namely correctness (a formal proof is given in an online

Technical Report [59]), performance, and availability.

4.3.1 Modular Composition of Services

Our design is based on multiple coordination services (as depicted in Figure 4.2c), to which

we add client-side logic that enforces consistency.

54

Our solution achieves consistency by injecting sync requests, which are non-mutating

update operations. If the coordination service itself does not natively support such operations,

they can be implemented using an update request addressed to a dummy object.

The client-side logic is implemented as a layer in the coordination service client library,

which receives the sequential stream of client requests before they are sent to the coordination

service. It is a state machine that selectively injects sync requests prior to some of the reads.

Intuitively, this is done to bound the staleness of ensuing reads. In Algorithm 1, we give a

pseudo-code for this layer at a client accessing multiple coordination services, each of which

has a unique identifier.

An injected sync and ensuing read may be composed into a single operation, which we

call synced read. A synced read can be implemented by buffering the local read request,

sending a sync (or non-mutating update) to the server, and serving the read immediately

upon receipt of a commit for the sync request. Some coordination services natively support

such synced reads, e.g., Consul calls them consistent reads [5]. If all reads are synced the

execution is linearizable. Our algorithm only makes some of the reads synced to achieve

coordination service’s semantics with minimal synchronization overhead.

Since each coordination service orders requests independently, concurrent processing

of a client’s updates at two coordination services may inverse their order. To avoid such

re-ordering (as required, e.g., by ZooKeeper’s FIFO program order guarantee), we refrain

from asynchronously issuing updates to a new coordination service before responses to

earlier requests arrive. Rather, we buffer requests whenever we identify a new coordination

service target for as long as there are pending requests to other coordination services. This

approach also guarantees that coordination service failures do not introduce gaps in the

execution sequence of asynchronous requests.

4.3.2 Modular Composition Properties

We now discuss the properties of our modular composition design.

Correctness

The main problem in composing coordination services is that reads might read “from the

past”, causing clients to see updates of different coordination services in a different order,

as depicted in Figure 4.1. Our algorithm adds sync operations in order to make ensuing

reads “read from the present”, i.e., read at least from the sync point. We do this every time

a client’s read request accesses a different coordination service than the previous request.

Subsequent reads from the same coordination service are naturally ordered after the first,

and so no additional syncs are needed.

55

1: lastService ← nil // Last service this client accessed

2: numOutstanding ←0 // #outstanding requests to lastService

3: onUpdate(targetService, req)
4: if targetService 6= lastService then
5: // Wait until all requests to previous service complete

6: wait until numOutstanding = 0
7: lastService ← targetService
8: numOutstanding++
9: send req to targetService

10: onRead(targetService, req)
11: if targetService 6= lastService then
12: // Wait until all requests to previous service complete

13: wait until numOutstanding = 0
14: lastService ← targetService
15: numOutstanding++
16: // Send sync before read

17: send sync to targetService
18: numOutstanding++
19: send req to targetService

20: onResponse(req)
21: numOutstanding−−

Algorithm 1: Modular composition, client-side logic.

In Figure 4.3 we depict the same operations as in Figure 4.1 with sync operations added

according to our algorithm. As before, client 1 updates object x residing in service s1

and then reads y from service s2. Right before the read, the algorithm interjects a sync

to s2. Similarly, client 2 updates y on s2, followed by a sync and a read from s1. Since

s2 guarantees update linearizability and client 1’s sync starts after client 2’s update of y

completes, reads made by client 1 after the sync will retrieve the new state, in this case 3.

Client 2’s sync, on the other hand, is concurrent with client 1’s update of x, and therefore

may be ordered either before or after the update. In this case, we know that it is ordered

before the update, since client 2’s read returns 0. In other words, there exists an equivalent

sequential execution that consists of client 2’s requests followed by client 1’s requests, and

this execution preserves linearizability of updates (and syncs) and sequential consistency

of read requests, as required by the coordination service’s semantics. See [59] for a formal

discussion.

Figure 4.3: Consistent modular composition of two coordination services holding objects
x and y (as in Figure 4.1): adding syncs prior to reads on new coordination services ensures
that there is an equivalent sequential execution.

56

Performance

By running multiple independent coordination services, the modular composition can

potentially process requests at a rate as high as the sum of the individual throughputs.

However, sync requests take up part of this bandwidth, so the net throughput gain depends

on the frequency with which syncs are sent.

The number of syncs corresponds to the temporal locality of the workload, since sync is

added only when the accessed coordination service changes.

Read latency is low (accessing a local acceptor or learner) when the read does not

necessitate a sync, and is otherwise equal to the latency of an update.

Availability

Following failures or partitions, each local coordination service (where a quorum of acceptors

remains available and connected) can readily process update and read requests submitted

by local clients. However, this may not be the case for remote client requests: If a learner in

data center A loses connectivity with its coordination service in data center B, sync requests

submitted to the learner by clients in A will fail and these clients will be unable to access

the coordination service.

Some coordination services support state that corresponds to active client sessions,

e.g., an ephemeral node in ZooKeeper is automatically deleted once its creator’s session

terminates. Currently, we do not support composition semantics for such session-based

state: clients initiate a separate session with each service instance they use, and if their

session with one ZooKeeper ensemble expires (e.g., due to a network partition) they may

still access data from other ZooKeepers. Later, if the session is re-instated they may fail to

see their previous session-based state, violating consistency. A possible extension addressing

this problem could be to maintain a single virtual session for each client, corresponding to

the composed service, and to invalidate it together with all the client’s sessions if one of its

sessions terminates.

4.4 ZooNet

We implement ZooNet, a modular composition of ZooKeepers. Though in principle, modular

composition requires only client-side support, we identified a design issue in ZooKeeper that

makes remote learner (observer) deployments slow due to poor isolation among clients. Since

remote learners are instrumental to our solution, we address this issue in the ZooKeeper

server, as detailed in Section 4.4.1. We then discuss our client-side code in Section 4.4.2.

57

4.4.1 Server-Side Isolation

The original ZooKeeper implementation stalls reads when there are concurrent updates

by other clients. Generally speaking, reads wait until an update is served even when the

semantics do not require it. In Section 4.4.1 we describe this problem in more detail

and in Section 4.4.1 we present our solution, which we have made available as a patch to

ZooKeeper [15] and has been recently committed to ZooKeeper’s main repository.

ZooKeeper’s Commit Processor

ZooKeeper servers consist of several components that process requests in a pipeline. When

an update request arrives to a ZooKeeper server from a client, the server forwards the update

to the leader and places the request in a local queue until it hears from the leader that voting

on the update is complete (i.e., the leader has committed the request). Only at that point

can the update be applied to the local server state. A component called commit processor

is responsible for matching incoming client requests with commit responses received from

the leader, while maintaining the order of operations submitted by each client.

In the original implementation of the commit processor, (up to ZooKeeper version

3.5.1-alpha), clients are not isolated from each other: once some update request reaches the

head of the request stream, all pending requests by all clients connected to this server stall

until a commit message for the head request arrives from the leader. This means that there

is a period, whose duration depends on the round-trip latency between the server and the

leader plus the latency of quorum voting, during which all requests are stalled. While the

commit processor must maintain the order of operations submitted by each client, enforcing

order among updates of different clients is the task of the leader. Hence, blocking requests

of other clients in this situation, only because they were unlucky enough to connect via the

same server, is redundant.

In a geo-distributed deployment, this approach severely hampers performance as it does

not allow read operations to proceed concurrently with long-distance concurrent updates. In

the context of modular composition, it means that syncs hamper read-intensive workloads,

i.e., learners cannot serve reads locally concurrently with syncs and updates.

Commit Processor Isolation

We modified ZooKeeper’s commit processor to keep a separate queue of pending requests per

client. Incoming reads for which there is no preceding pending update by the same client,

(i.e., an update for which a commit message has not yet been received), are not blocked.

Instead, they are forwarded directly to the next stage of the pipeline, which responds to the

client based on the current server state.

58

Read requests of clients with pending updates are enqueued in the order of arrival in the

appropriate queue. For each client, whenever the head of the queue is either a committed

update or a read, the request is forwarded to the next stage of the server pipeline. Updates

are marked committed according to the order of commit messages received from the leader

(the linearization order). For more details, see our ZooKeeper Jira [15].

4.4.2 The ZooNet Client

We prototyped the ZooNet client as a wrapper for ZooKeeper’s Java client library. It

allows clients to establish sessions with multiple ZooKeeper ensembles and maintains these

connections. Users specify the target ZooKeeper ensemble for every operation as a znode

path prefix. Our library strips this prefix and forwards the operation to the appropriate

ZooKeeper, converting some of the reads to synced reads in accordance with Algorithm 1.

Our sync operation performs a dummy update; we do so because ZooKeeper’s sync is not a

linearizable update [50]. The client wrapper consists of roughly 150 lines of documented

code.

4.5 Evaluation

We now evaluate our modular composition concept using the ZooNet prototype. In Sec-

tion 4.5.1 we describe the environment in which we conduct our experiments. Section 4.5.2

evaluates our server-side modification to ZooKeeper, whereas Section 4.5.3 evaluates the

cost of the synchronization introduced by ZooNet’s client. Finally, Section 4.5.4 compares

ZooNet to a single ZooKeeper ensemble configured to ensure consistency using remote

learners (Figure 4.2b).

4.5.1 Environment and Configurations

We conduct our experiments on Google Compute Engine [12] in two data centers, DC1 in

eastern US (South Carolina) and DC2 in central US (Iowa). In each data center we allocate

five servers: three for a local ZooKeeper ensemble, one for a learner connected to the remote

data center, and one for simulating clients (we run 30 request-generating client threads in

each data center). Each server is allocated a standard 4 CPU machine with 4 virtual CPUs

and 15 GB of memory. DC1 servers are allocated on a 2.3 GHz Intel Xeon E5 v3 (Haswell)

platform, while DC2 servers are allocated on a 2.5GHz Intel Xeon E5 v2 (Ivy Bridge). Each

server has two standard persistent disks. The Compute Engine does not provide us with

information about available network bandwidth between the servers. We use the latest

version of ZooKeeper to date, version 3.5.1-alpha.

59

We benchmark throughput when the system is saturated and configured as in ZooKeeper’s

original evaluation (Section 5.1 in [50]). We configure the servers to log requests to one disk

while taking snapshots on another. Each client thread has at most 200 outstanding requests

at a time. Each request consists of a read or an update of 1KB of data. The operation type

and target coordination service are selected according to the workload specification in each

experiment.

4.5.2 Server-Side Isolation

In this section we evaluate our server-side modification given in Section 4.1. We study

the learner’s throughput with and without our change. Recall that the learner (observer

in ZooKeeper terminology) serves as a fast local read cache for distant clients, and also

forwards update requests to the leader.

We experiment with a single ZooKeeper ensemble running three acceptors in DC1 and

an observer in DC2. Figure 4.4 compares the learner’s throughput with and without our

modification, for a varying percentage of reads in the workload. DC1 clients have the same

workload as DC2 clients.

Our results show that for read-intensive workloads that include some updates, ZooNet’s

learner gets up to around 4x higher throughput by allowing concurrency between reads and

updates of different clients, and there is 30% up to 60% reduction in the tail latency. In

a read-only workload, ZooNet does not improve the throughput or the latency, because

ZooKeeper does not stall any requests. In write-intensive workloads, reads are often blocked

by preceding pending updates by the same client, so few reads can benefit from our increased

parallelism.

Our Jira [15] provides additional evaluation (conducted on Emulab [81]) in which we

show that the throughput speedup for local clients can be up to 10x in a single data center

deployment of ZooKeeper. Moreover, ZooNet significantly reduces read and write latency in

mixed workloads in which the write percentage is below 30 (for reads, we get up to 96%

improvement, and for writes up to 89%).

Figure 4.4: Improved server-side isolation. Learner’s throughput as a function of the
percentage of reads.

60

4.5.3 The Cost of Consistency

ZooNet is a composition of independent ZooKeepers, as depicted in Figure 4.2c, with added

sync requests. In this section we evaluate the cost of the added syncs by comparing our

algorithm to two alternatives: (1) Sync-All, where all reads are executed as synced reads,

and (2) Never-Sync, in which clients never perform synced reads.

Never-Sync in not sequentially consistent (as illustrated in Figure 4.1). It thus corresponds

to the fastest but inconsistent ZooKeeper deployment (Figure 4.2c), with ZooKeeper patched

to improve isolation. At the other extreme, by changing all reads to be synced, Sync-All

guarantees linearizability for all operations, including reads. ZooNet provides a useful middle

ground (supported by most coordination services in the single-data center setting), which

satisfies sequential consistency for all operations and linearizability for updates.

As a sanity check, we study in Section 4.5.3 a fully partitionable workload with clients

accessing only local data in each data center. In Section 4.5.3 we have DC1 clients perform

only local operations, and DC2 clients perform both local and remote operations.

Local Workload

In Figure 4.5 we depict the saturation throughput of DC1 (solid lines) and DC2 (dashed

lines) with the three alternatives.

ZooNet’s throughput is identical to that of Never-Sync in all workloads, at both data

centers. This is because ZooNet sends sync requests only due to changes in the targeted

ZooKeeper, which do not occur in this scenario. Sync-All has the same write-only throughput

(leftmost data point). But as the rate of reads increases, Sync-All performs more synced

reads, resulting in a significant performance degradation (up to 6x for read-only workloads).

This is because a read can be served locally by any acceptor (or learner), whereas each

synced read, similarly to an update, involves communication with the leader and a quorum.

The read-only throughput of ZooNet and Never-Sync is lower than we expect: since

in this scenario the three acceptors in each data center are dedicated to read requests, we

would expect the throughput to be 3x that of a single learner (reported in Figure 4.4). We

hypothesize that the throughput is lower in this case due to a network bottleneck.

Remote Data Center Access

When clients access remote data, synced reads kick-in and affect performance. We now

evaluate the cost of synced reads as a function of workload locality. We define two workload

parameters: local operations, which represents spatial locality, namely the percentage of

requests that clients address to their local data center, and burst, which represents the

temporal locality of the target ZooKeeper. For simplicity, we consider a fixed burst size,

61

Figure 4.5: Saturated ZooNet throughput at two data centers with local operations only.
In this sanity check we see that the performance of Never-Sync is identical to ZooNet’s
performance when no syncs are needed.

where the client sends burst requests to the same ZooKeeper and then chooses a new target

ZooKeeper according to the local operations ratio. Note that a burst size of 1 represents

the worst-case scenario for ZooNet, while with high burst sizes, the cost of adding syncs is

minimized.

Our design is optimized for partitionable workloads where spatial locality is high by

definition since clients rarely access data in remote partitions. In ZooKeeper, another factor

significantly contributes to temporal locality: ZooKeeper limits the size of each data object

(called znode) to 1MB, which causes applications to express stored state using many znodes,

organized in a hierarchical manner. ZooKeeper intentionally provides a minimalistic API, so

programs wishing to access stored state (e.g., read the contents of a directory or sub-tree)

usually need to make multiple read requests to ZooKeeper, effectively resulting in a high

burst size.

In Figure 4.6 we compare ZooNet to Sync-All and Never-Sync with different burst sizes

where we vary the local operations ratio of DC2 clients. DC1 clients perform 100% local

operations. We select three read ratios for this comparison: a write-intensive workload in

which 50% of the requests are updates (left column), a read-intensive workload in which

90% of the requests are reads (middle column), and a read-only workload (right column).

DC1 clients and DC2 clients have the same read ratio in each test.

Results show that in a workload with large bursts of 25 or 50 (bottom two rows), the

addition of sync requests has virtually no effect on throughput, which is identical to that of

Never-Sync except in read-intensive workloads, where with a burst of 25 there is a slight

throughput degradation when the workload is less than 80% local.

When there is no temporal locality (burst of 1, top row), the added syncs induce a high

performance cost in scenarios with low spatial locality, since they effectively modify the

workload to become write-intensive. In case most accesses are local, ZooNet seldom adds

syncs, and so it performs as well as Never-Sync regardless of the burst size.

62

All in all, ZooNet incurs a noticeable synchronization cost only if the workload shows no

locality whatsoever, neither temporal nor spatial. Either type of locality mitigates this cost.

Figure 4.6: Throughput of ZooNet, Never-Sync and Sync-All. Only DC2 clients perform
remote operations.

4.5.4 Comparing ZooNet with ZooKeeper

We compare ZooNet with the fastest cross data center deployment of ZooKeeper that is also

consistent, i.e., a single ZooKeeper ensemble where all acceptors are in DC1 and a learner

is located in DC2 (Figure 4.2b). The single coordination service deployment (Figure 4.2a)

is less efficient since: (1) acceptors participate in the voting along with serving clients (or,

alternatively, more servers need to be deployed as learners as in [76]); and (2) the voting

is done over WAN (see [13] for more details). We patch ZooKeeper with the improvement

described in Section 4.4.1 and set the burst size to 50 in order to focus the current discussion

on the impact that data locality has on performance.

We measure aggregate client throughput and latency in DC1 and DC2 with ZooKeeper

and ZooNet, varying the workload’s read ratio and the fraction of local operations of the

clients in DC2. We first run a test where all operations of clients in DC1 are local. Figure 4.7a

63

shows the throughput speedup of ZooNet over ZooKeeper at DC1 clients, and Figure 4.7b

shows the throughput speedup for DC2 clients.

Our results show that in write-intensive workloads, DC2 clients get up to 7.5x higher

throughput and up to 92% reduction in latency. This is due to the locality of update requests

in ZooNet, compared to the ZooKeeper deployment in which each update request of a DC2

client is forwarded to DC1. The peak throughput saturates at the update rate that a single

leader can handle. Beyond that saturation point, it is preferable to send update operations

to a remote DC rather than have them handled locally, which leads to a decrease in total

throughput.

In read-intensive workloads (90% – 99% reads), DC2 clients also get a higher throughput

with ZooNet (4x to 2x), and up to 90% reduction in latency. This is due to the fact that in

ZooKeeper, a single learner can handle a lower update throughput than three acceptors. In

read-only workloads, the added acceptors have less impact on throughput; we assume that

this is due to a network bottleneck as observed in our sanity check above (Figure 4.5).

In addition, we see that DC1 clients are almost unaffected by DC2 clients in read-intensive

workloads. This is due to the fact that with both ZooKeeper and ZooNet, reads issued by

clients in DC2 are handled locally in DC2. The added synced reads add negligible load to

the acceptors in DC1 due to the high burst size and locality of requests (nevertheless, they

do cause the throughput speedup to drop slightly below 1 when there is low locality). With

a write-intensive workload, DC1 clients have a 1.7x throughput speedup when DC2 clients

perform no remote operations. This is because remote updates of DC2 clients in ZooKeeper

add to the load of acceptors in DC1, whereas in ZooNet some of these updates are local and

processed by acceptors in DC2.

Finally, we examine a scenario where clients in both locations perform remote operations.

Figure 4.8a shows the throughput speedup of ZooNet over ZooKeeper achieved at DC1

clients, and Figure 4.8b shows the throughput speedup of DC2 clients. All clients have the

same locality ratio. Each curve corresponds to a different percentage of reads.

There are two differences between the results in Figure 4.8 and Figure 4.7. First, up

to a local operations ratio of 75%, DC1 clients suffer from performance degradation in

read-intensive workloads. This is because in the ZooKeeper deployment, all the requests

of DC1 clients are served locally, whereas ZooNet serves many of them remotely. This

re-emphasizes the observation that ZooNet is most appropriate for scenarios that exhibit

locality, and is not optimal otherwise.

Second, the DC1 leader is less loaded when DC1 clients also perform remote updates

(Figure 4.8). This mostly affects write-intensive scenarios (top blue curve), in which the

leaders at both data centers share the update load, leading to higher throughput for all

clients. Indeed, this yields higher throughput speedup when locality is low (leftmost data

64

point in Figures 4.8a and 4.8b compared to Figures 4.7a and 4.7b, respectively). As locality

increases to 70%–80%, the DC2 leader becomes more loaded due to DC2’s updates, making

the throughput speedup in Figures 4.7b and Figure 4.8b almost the same, until with 100%

local updates (rightmost data point), the scenarios are identical and so is the throughput

speedup.

(a) Throughput speedup of DC1 clients. (b) Throughput speedup of DC2 clients.

Figure 4.7: Throughput speedup (ZooNet/ZooKeeper). DC1 clients perform only local
operations. The percentage of read operations is identical for DC1 clients and DC2 clients.

(a) Throughput speedup of DC1 clients. (b) Throughput speedup of DC2 clients.

Figure 4.8: Throughput speedup (ZooNet/ZooKeeper). DC1 clients an DC2 clients have
the same local operations ratio as well as read operations percentage.

4.6 Related Work

Coordination services such as ZooKeeper [50], Chubby [34], etcd [11], and Consul [4] are

extensively used in industry. Many companies deploying these services run applications in

multiple data centers. But questions on how to use coordination services in a mutli-data

center setting arise very frequently [3, 10, 19–21], and it is now clear that the designers of

coordination services must address this use-case from the outset.

In what follows we first describe the current deployment options in Section 4.6.1 followed

by a discussion of previously proposed composition methods in Section 4.6.2.

A large body of work, e.g., [52, 60, 61], focuses on improving the efficiency of coordination

services. Our work is orthogonal – it allows combining multiple instances to achieve a single

65

system abstraction with the same semantics, while only paying for coordination when it is

needed.

4.6.1 Multi-Data Center Deployment

In Section 4.2 we listed three prevalent strategies for deploying coordination services across

multiple data centers: a single coordination service where acceptors are placed in multiple

data centers, a single coordination service where acceptors run in one data center, or multiple

coordination services. The choice among these options corresponds to the tradeoff system

architects make along three axes: consistency, availability, and performance (a common

interpretation of the CAP theorem [8]). Some are willing to sacrifice update speed for

consistency and high availability in the presence of data center failures [27, 37, 75, 76].

Others prefer to trade-off fault-tolerance for update speed [13], while others prioritize

update speed over consistency [3, 21]. In this work we mitigate this tradeoff, and offer a

fourth deployment option whose performance and availability are close to that of the third

(inconsistent) option, without sacrificing consistency.

Some systems combine more than one of the deployment alternatives described in

Section 4.2. For example, Vitess [18] deploys multiple local ZooKeeper ensembles (as in

Figure 4.2c) in addition to a single global ensemble (as in Figure 4.2a). The global ensemble

is used to store global data that doesn’t change very often and needs to survive a data

center failure. A similar proposal has been made in the context of SmartStack, Airbnb’s

service discovery system [16]. ZooNet can be used as-is to combine the local and global

ensembles in a consistent manner.

Multiple studies [69, 82] showed that configuration errors and in particular inconsistencies

are a major source of failure for Internet services. To prevent inconsistencies, configuration

stores often use strongly consistent coordination services. ACMS [75] is Akamai’s distributed

configuration store, which, similarly to Facebook’s Zeus [76], is based on a single instance of

a strongly consistent coordination protocol. Our design offers a scalable alternative where,

assuming that the stored information is highly partitionable, updates rarely go through

WAN and can execute with low latency and completely independently in the different

partitions, while all reads (even of data stored remotely) remain local. We demonstrate that

the amortized cost of sync messages is low for such read-heavy systems (in both ACMS and

Zeus the reported rate of updates is only hundreds per hour).

4.6.2 Composition Methods

Consul [4], ZooFence [45] and Volery [32] are coordination services designed with the multi-

data center deployment in mind. They provide linearizable updates and either linearizable

or sequentially consistent reads. Generally, these systems follow the multiple coordination

66

services methodology (Figure 4.2c) – each coordination service is responsible for part of the

data, and requests are forwarded to the appropriate coordination service (or to a local proxy).

As explained in Section 4.2, when the forwarded operations are sequentially-consistent reads,

this method does not preserve the single coordination service’s semantics. We believe that,

as in ZooKeeper, this issue can be rectified using our modular composition approach.

ZooFence [45] orchestrates multiple instances of ZooKeeper using a client-side library

in addition to a routing layer consisting of replicated queues and executors. Intuitively,

it manages local and cross-data center partitions using data replication. Any operation

(including reads) accessing replicated data must go through ZooFence’s routing layer. This

prevents reads from executing locally, forfeiting a major benefit of replication. In contrast,

ZooNet uses learners, (which natively exist in most coordination services in the form or

proxies or observers), for data replication. This allows local reads, and does not require

orchestration of multiple ZooKeeper instances as in ZooFence.

Volery [32] is an application that implements ZooKeeper’s API, and which consists of

partitions, each of which is an instance of a state machine replication algorithm. Unlike

ZooKeeper, all of Volery operations are linearizable (i.e., including reads). In Volery, the

different partitions must communicate among themselves in order to maintain consistency,

unlike ZooNet’s design in which the burden of maintaining consistency among ZooKeepers is

placed only on clients. In addition, when compared to ZooKeeper, Volery shows degredated

performance in case of a single partition, while ZooNet is identical to ZooKeeper if no remote

operations are needed.

In distributed database systems, composing multiple partitions is usually done with

protocols such as two-phase commit (e.g., as in [37]). In contrast, all coordination services

we are familiar with are built on key-value stores, and expose simpler non-transactional

updates and reads supporting non-ACID semantics.

Server-side solutions were also proposed for coordination services composition [14] but

were never fully implemented due to their complexity, the intrusive changes they require

from the underlying system, as well as the proposed relaxation of coordination service’s

semantics required to make them work. In this paper we show that composing such services

does not require expensive server-side locking and commit protocols among partitions, but

rather can be done using a simple modification of the client-side library and can guarantee

the standard coordination service semantics.

Acknowledgements

We thank Arif Merchant, Mustafa Uysal, John Wilkes, and the anonymous reviewers for

helpful comments and suggestions. We gratefully acknowledge Google for funding our

67

experiments on Google Cloud Platform. We thank Emulab for the opportunity to use

their testbeds. Kfir Lev-Ari is supported in part by the Hasso-Plattner Institute (HPI)

Research School. Research partially done while Kfir Lev-Ari was an intern with Yahoo,

Haifa. Partially supported by the Israeli Ministry of Science.

68

Chapter 5

Paper: Composing ordered

sequential consistency

Kfir Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexander Shraer : “Composing ordered

sequential consistency”. Information Processing Letters, Volume 123, July 2017, Pages

47-50, ISSN 0020-0190.

In this paper we introduce Ordered Sequential Consistency, which generalize linearizability

and sequential consistency, and prove a sufficient conditions for its composability.

69

Composing Ordered Sequential Consistency

Kfir Lev-Ari1, Edward Bortnikov2, Idit Keidar1,2, and Alexander Shraer3

1Viterbi Department of Electrical Engineering, Technion, Haifa, Israel

2Yahoo Research, Haifa, Israel

Abstract

We define ordered sequential consistency (OSC), a generic criterion for concurrent ob-

jects, which encompasses a range of criteria, from sequential consistency to linearizability.

We show that OSC captures the typical behavior real-world coordination services, such

as ZooKeeper. A straightforward composition of OSC objects is not necessarily OSC.

To remedy this, we recently implemented a composition framework that injects dummy

operations in specific scenarios. We prove that injecting such operations, which we call

here leading ordered operations, enables correct OSC composition.

5.1 Introduction

In this work we define a generic correctness criterion named Ordered Sequential Consistency

(OSC), which captures a range of criteria, from sequential consistency [53] to linearizabil-

ity [49].

We use OSC to capture the semantics of coordination services such as ZooKeeper [50].

These coordination services provide so-called “strong consistency” for updates and some

weaker semantics for reads. They are replicated for high-availability, and each client submits

requests to one of the replicas. Reads are not atomic so that they can be served fast, i.e.,

locally by any of the replicas, whereas update requests are serialized via a quorum-based

protocol based on Paxos [55]. Since reads are served locally, they can be somewhat stale

but nevertheless represent a valid system state.

In the literature, these services’ guarantees are described as atomic writes and FIFO

ordered operations for each client [50]. This definition is not accurate in two ways: (1)

linearizability of updates has no meaning when no operation reads the written values; and

(2) this definition allows read operations to read from a future write, which obviously does

70

not occur in any real-world service. A special case of OSC, which we call OSC(U), captures

the actual guarantees of existing coordination services.

Although supporting OSC(U) semantics instead of atomicity of all operations enables

fast local reads, this makes services non-composable: correct OSC(U) coordination services

may fail to provide the same level of consistency when combined [58]. Intuitively, the

problem arises because OSC(U), similarly to sequential consistency [53], allows sub-set of

operations to occur “in the past”, which can introduce cyclic dependencies.

In a companion systems paper [58] we present ZooNet, a system for modular composition

of coordination services, which addresses this challenge: Consistency is achieved on the

client side by judiciously adding synchronization requests called leading ordered operations.

The key idea is to place a “barrier” that limits how far in the past reads can be served from.

ZooNet does so by adding a “leading” update request prior to a read request whenever the

read is addressed to a different service than the previous one accessed by the same client.

We provide here the theoretical underpinnings for the algorithm implemented in ZooNet.

Proving the correctness of ZooNet is made possible by the OSC definition that we present

in this paper. Interestingly, Vitenberg and Friedman [80] showed that sequential consistency,

when combined with any local (i.e., composable) property continues to be non-composable.

Our approach circumvents this impossibility result since having leading ordered operations

is not a local property.

5.2 Model and Notation

We use a standard shared memory execution model [49], where a set φ of sequential processes

access shared objects from some set X. An object has a name label, a value, and a set

of operations used for manipulating and reading its value. An operation’s execution is

delimited by two events, invoke and response.

A history σ is a sequence of operation invoke and response events. An invoke event of

operation op is denoted iop, and the matching response event is denoted rop. For two events

e1, e2 ∈ σ, we denote e1 <σ e2 if e1 precedes e2 in σ, and e1 ≤σ e2 if e1 = e2 or e1 <σ e2.

For two operations op and op′ in σ, op precedes op′, denoted op <σ op
′, if rop <σ iop′ , and

op ≤σ op′ if op = op′ or op <σ op
′. Two operations are concurrent if neither precedes the

other.

For a history σ, complete(σ) is the sequence obtained by removing all operations with

no response events from σ. A history is sequential if it begins with an invoke event and

consists of an alternating sequence of invoke and response events, s.t. each invoke is followed

by the matching response.

For p ∈ φ, the process subhistory σ|p of a history σ is the subsequence of σ consisting

71

of events of process p. The object subhistory σx for an object x ∈ X is similarly defined.

A history σ is well-formed if for each process p ∈ φ, σ|p is sequential. For the rest of our

discussion, we assume that all histories are well-formed. The order of operations in σ|p is

called the process order of p.

For the sake of our analysis, we assume that each subhistory σx starts with a dummy

initialization of x that updates it to a dedicated initial value v0, denoted dix(v0), and that

there are no concurrent operations with dix(v0) in σx.

We refer to an operation that changes the object’s value as an update operation. The

sequential specification of an object x is a set of allowed sequential histories in which all

events are associated with x. For example, the sequential specification of a read-write object

is the set of sequential histories in which each read operation returns the value written by

the last update operation that precedes it.

5.3 Ordered Sequential Consistency

Definition 5.3.1 (OSC(A)). A history σ is OSC w.r.t. a subset A of the objects’ operations

if there exists a history σ′ that can be created by adding zero or more response events to σ,

and there is a sequential permutation π of complete(σ′), satisfying the following:

OSC1 (sequential specification): ∀x ∈ X, πx belongs to the sequential specification of

x.

OSC2 (process order): For two operations o and o′, if ∃p ∈ φ : o <σ|p o
′ then o <π o

′.

OSC3 (A-real-time order): ∀x ∈ X, for an operation o ∈ A and an operation o′ (not

necessarily in A) s.t. o, o′ ∈ σx, if o′ <σ o then o′ <π o.

Such π is called a serialization of σ. An object is OSC(A) if all of its histories are

OSC(A).

We assume that ∀x ∈ X, dix(v0) ∈ A. Linearizability and sequential consistency are

both special cases of OSC(A): (1) we get linearizability using A that consist of all of the

objects’ operations; and (2) we get sequential consistency with A that consists only of

dummy initialization operations, which means that there is no operation that precedes an

A-operation, i.e., OSC3 is null, and we left with the sequential specification and process

order of an object.

If A consists of the objects’ update operations, denoted U , then OSC(U) captures the

semantics of coordination services: (1) updates are globally ordered (by OSC3); and (2) all

operations see some prefix of that order (by OSC3), while respecting each client process

order (by OSC2).

72

5.4 OSC(A) Composability via Leading A-Operations

In this section we show that a history σ of OSC(A) objects satisfies OSC(A), if σ has leading

ordered A-operations. Generally, we prove the composition by ordering every A-operation

oA on object x, according to the first event e ∈ σ s.t. e ≤σ roA and ioA <πx e. Then, we

extend that order to a total order on all operations, by placing every non-A-operation after

the A-operation that precedes it in their object’s serialization. Finally, we show that if σ

has leading ordered A-operations, then the total order satisfies OSC(A).Intuitively, we can

think of the leading A-operations as a barrier for the non-A-operations, that maintains the

total order between objects.

Given a history σ of OSC(A) objects, and a set of serializations Π = {πx}x∈X of {σx}x∈X,

we define a strict total order on all operations in Π. We refer to an operation o ∈ A as an

A-operation, and define the future set of an A-operation as follows:

Definition 5.4.1 (A-operation future set). Given a history σ of OSC(A) objects, an object

x ∈ σ, a serialization πx of σx, and an A-operation oA ∈ σx, the future set of oA in πx is

F πxσ (oA) , {o ∈ πx|oA ≤πx o}.

We now define an A-operation’s first response event to be the earliest response event of

an operation in its future set.

Definition 5.4.2 (First response event). Given a history σ of OSC(A) objects, an object

x ∈ σ, a serialization πx of σx, and an A-operation oA ∈ πx, the first response event of oA

in πx, denoted frπxσ (oA), is the earliest response event in σ of an operation in F πxσ (oA).

Note that it is possible that frπxσ (oA) is oA’s response event. We make two observations

regarding first responses:

Observation 5.4.3. Given OSC(A) objects’ σ, an object x ∈ σ, a serialization πx of σx,

and an A-operation oA ∈ πx, then ioA <σ fr
πx
σ (oA).

Proof. By definition, frπxσ (oA) is a response event in σ of an operation o s.t. oA ≤πx o. If

frπxσ (oA) <σ ioA , i.e., ro <σ ioA , then o <σ oA, a contradiction to OSC3. �

Observation 5.4.4. Let σ be OSC(A) objects’ history, and let πx be a serialization of σx

for some x. For two A-operations o, o′ ∈ πx, if o <πx o
′, then frπxσ (o) ≤σ frπxσ (o′).

Proof. Since o <πx o
′, we get F πxσ (o′) ⊂ F πxσ (o). By Definition 5.4.2, frπuσ (o′) is a response

event of an operation o1 ∈ F πxσ (o′), and therefore o1 ∈ F πxσ (o). Thus, frπxσ (o) is either

frπxσ (o′) or an earlier response event in σ. �

To define our strict total order on operations we begin with A-operations:

73

Definition 5.4.5 (A-Π-order). Let σ be a history of OSC(A) objects. Let Π = {πx}x∈X

be a set of serializations of {σx}x∈X. Let x, y ∈ X, then for two A-operations oA ∈ πx

and o′A ∈ πy, we define their A-Π-order, denoted <AΠ, as follows: (<) If x = y, i.e.,

oA, o
′
A ∈ πx, then oA <AΠ o′A iff oA <πx o′A; otherwise, (fr) x 6= y, and oA <AΠ o′A iff

frπxσ (oA) <σ fr
πy
σ (o′A).

Lemma 5.4.6. For a history σ of OSC objects and a set of serializations Π = {πx}x∈X of

{σx}x∈X, A-Π-order is a strict total order on A-operations in Π.

Proof. Irreflexivity, antisymmetry, and comparability follow immediately from the definition

of <AΠ. We show that <AΠ satisfies transitivity.

Let oA, o′A, and o′′A be three A-operations s.t. uo1 <AΠ uo2 <AΠ uo3; we need to prove

that uo1 <AΠ uo3. We consider four cases according to the condition by which each of the

pairs is ordered:

(<,<) If ∃x ∈ X oA, o
′
A, o

′′
A ∈ πx, then oA <πx o

′
A <πx o

′′
A implies oA <πx o

′′
A, and thus

oA <AΠ o′′A.

(<,fr) If ∃x, y ∈ X, x 6= y : oA <πx o′A, o′′A ∈ πy, and frπxσ (o′A) <σ fr
πy
σ (o′′A), by

Observation 5.4.4, frπxσ (oA) ≤σ frπxσ (o′A), therefore frπxσ (oA) <σ fr
πy
σ (o′′A), and oA <AΠ o′′A.

(fr,<) If ∃x, y ∈ X, x 6= y : oA ∈ πx, o′A <πy o′′A, and frπxσ (oA) <σ fr
πy
σ (o′A), by

Observation 5.4.4, fr
πy
σ (o′A) ≤σ fr

πy
σ (o′′A). We get frπxσ (oA) <σ fr

πy
σ (o′′A), therefore oA <AΠ

o′′A.

(fr,fr) If ∃x, y, z ∈ X, x 6= y, y 6= z : oA ∈ πx, o′A ∈ πy, and o′′A ∈ πz, this means that

frπxσ (oA) <σ fr
πy
σ (o′A) and fr

πy
σ (o′A) <σ frπzσ (o′′A). By transitivity of <σ, frπxσ (oA) <σ

frπzσ (o′′A). If z 6= x, then oA <AΠ o′′A. If z = x, by the contrapositive of Observation 5.4.4,

oA <πx o
′′
A, and oA <AΠ o′′A. �

We extend <AΠ to a weak total order in the usual way: o1 ≤AΠ o2 if o1 <AΠ o2 or o1 = o2.

For a history σ, a serialization πx of σx, and an operation o in πx, the last A-operation

before o in πx, denoted lAπx(o), is the latest A-operation in the prefix of πx that ends

with o. Note that if o is an A-operation then lAπx(o) = o; and that since every history

starts with a dummy initialization, every operation that is not in A is preceded by at least

one A-operation and so lAπx(o) is well-defined. We use last A-operations to extend the

A-Π-order to a strict total order on all operations in Π.

Definition 5.4.7 (Π-order). Let σ be a history of OSC(A) objects. Let Π = {πx}x∈X be a

set of serializations of {σx}x∈X, and let x and y be objects in X. For two operations o1 ∈ πx,

and o2 ∈ πy, we define Π-order, denoted <Π, as follows:

(lAπx(o1) 6= lAπy(o2)) if the last A-operation before o1 and o2 are different, then o1 <Π o2 iff

lAπx(o1) <AΠ lAπy(o2);

74

(lAπx(o1) = lAπy(o2)) otherwise, x = y, and o1 <Π o2 iff o1 <πx o2.

We now observe that <Π generalizes all the serializations πx ∈ Π:

Observation 5.4.8. Let σ be a history of OSC(A) objects, and πx ∈ Π a serialization of

σx for some object x ∈ X. For two operations o1, o2 ∈ πx, if o1 <πx o2 then o1 <Π o2.

Proof. Since o1 <πx o2, then lAπx(o1) ≤πx lAπx(o2). If lAπx(o1) = lAπx(o2) then by

Definition 5.4.7, o1 <Π o2. Otherwise, by Definition 5.4.5, lAπx(o1) <AΠ lAπx(o2) and by

Definition 5.4.7, o1 <Π o2. �

Lemma 5.4.9. Let σ be a history of OSC(A) objects, and Π = {πx}x∈X be a set of

serializations of {σx}x∈X, then Π-order is a strict total order on all operations in Π.

Proof. Irreflexivity, antisymmetry, and comparability follow immediately from the definition

of <Π. We show that <Π satisfies transitivity.

Let o1, o2, and o3 be three operations on objects x, y, z, resp., s.t. o1 <Π o2 <Π o3; we

need to prove that o1 <Π o3.

For every oi and oj , by Definition 5.4.7, oi <Π oj implies lAπi(oi) ≤AΠ lAπj (oj). By

transitivity of ≤AΠ (Lemma 5.4.6), we get from lAπx(o1) ≤AΠ lAπy(o2) ≤AΠ lAπz(o3) that

lAπx(o1) ≤AΠ lAπz(o3).

If lAπx(o1) <AΠ lAπz(o3) then by Definition 5.4.7 o1 <Π o3. If lAπx(o1) = lAπz(o3),

then by lAπx(o1) ≤AΠ lAπy(o2) ≤AΠ lAπz(o3) we get lAπx(o1) = lAπy(o2) = lAπz(o3), and

x = y = z. Therefore by o1 <Π o2 <Π o3 and Definition 5.4.7, o1 <πx o2 <πx o3, and thus

by Definition 5.4.7 o1 <Π o3. �

Note that Π-order is always defined for compositions of OSC objects. Since it generalizes

all the serializations πx (Observation 5.4.8), it preserves OSC1 and OSC3. Nevertheless,

OSC2 is not guaranteed.

To support OSC(A) composition we extend each object with a sync operation, which

does not change the object’s state and does not return any value, but belongs to A. For

example, to compose OSC({dix(v0)|∀x ∈ X}) objects, we extend each of them to be an

OSC({sync} ∪ {dix(v0)|∀x ∈ X}) object and then compose them via adding sync operations.

We say that in a history σ there are leading ordered operations if for every operation

o 6∈ A by a process p in σ, the last operation of p before o is on the same object. This also

means that between every two operations o 6∈ A and o′ 6∈ A of different objects by the same

process in σ, there is an operation oA ∈ A to the second object. We next prove that adding

leading ordered operations allows for correct OSC composition.

Theorem 5.1. If a history σ of OSC(A) objects has leading ordered operations, then σ is

OSC(A).

75

Proof. Let Π = {πx}x∈X be a set of serializations of {σx}x∈X, and let π be the sequential

permutation of σ defined by <Π. We now prove that π satisfies OSC(A). OSC1 and OSC3

follow immediately from Observation 5.4.8.

We prove OSC2. Let o1 and o2 be two operations in Π for which ∃p ∈ φ : o1 <σ|p o2.

We now show that o1 <Π o2.

We start by proving the claim for two consecutive operations in σ|p. If both operations

are on the same object, then by Observation 5.4.8, o1 <Π o2, as needed. Otherwise,

∃x, y ∈ X, x 6= y : o1 ∈ πx, o2 ∈ πy, and o1 immediately precedes o2 in σ|p. By leading

ordered operations, since o1 and o2 are not on the same object, o2 is a A-operation and

hence lAπy(o2) = o2.

By definition, frπxσ (lAπx(o1)) ≤σ ro1 . Since ro1 <σ io2 , and by Observation 5.4.3, io2 <σ

fr
πy
σ (o2), we get that frπxσ (lAπx(o1)) <σ fr

πy
σ (o2). By Definition 5.4.5, lAπx(o1) <AΠ o2,

and by Definition 5.4.7, o1 <Π o2.

Thus, every two consecutive operations oi, oi+1 ∈ Π that are in σ|p satisfy oi <Π oi+1.

By Lemma 5.4.9, <Π is a strict total order on all operations, and therefore by transitivity,

we get o1 <Π o2. �

Acknowledgments We thank Alexey Gotsman for helpful comments on an earlier draft.

Kfir Lev-Ari is supported in part by the Hasso-Plattner Institute (HPI) Research School.

This work was partially supported by the Israeli Ministry of Science.

76

Chapter 6

Discussion

In this thesis we presented the following results:

• We defined ordered sequential consistency (OSC), a generic criterion for concurrent

objects. We show that OSC encompasses a range of criteria, from sequential consistency

to linearizability, and captures the typical behavior of real-world coordination services,

such as ZooKeeper. In Section 6.4 we further discuss the results and implications of

our “Composing Ordered Sequential Consistency” paper.

• We presented a system design for modular composition of services that addresses

the performance-correctness trade-off. We implemented ZooNet, a prototype of this

concept over ZooKeeper. ZooNet allows users to compose multiple instances of

the service in a consistent fashion, facilitating applications that execute in multiple

regions. In Section 6.3 we further discuss the results and implications of our “Modular

Composition of Coordination Services” paper.

• We presented a comprehensive methodology for proving linearizability and related

criteria of concurrent data structures. We exemplified our methodology by using it to

give a road-map for proving linearizability of the popular Lazy List implementation

of the concurrent set abstraction. In Section 6.2 we further discuss the results

and implications of our “A Constructive Approach for Proving Data Structures’

Linearizability” paper, and in Section 6.1 of our “On Correctness of Data Structures

under Reads-Write Concurrency” paper.

The papers we discuss in Section 6.1 and Section 6.2 handle linearizability, which is

one of the most common correctness criteria in use nowadays for shared memory objects.

77

One of the main reasons linearizability is preferred over other correctness criteria is that

linearizability is composable. The paper discussed in Section 6.3 presents our solution

for the composability problem of coordination services, that are essential components of

distributed systems nowadays. In distributed systems, linearizable operations suffer from a

performance penalty, and therefore relax correctness criteria are in use. The paper we discuss

in Section 6.4 generalizes linearizability along with the coordination services’ semantics into

a single definition, and states a generic and sufficient condition for composability.

6.1 On Correctness of Data Structures under Reads-Write

Concurrency

In this paper we introduced a new framework for reasoning about correctness of data

structures in concurrent executions, which facilitates the process of verifiable parallelization

of legacy code. Our methodology consists of identifying base conditions in sequential code,

and ensuring regularity base points for these conditions under concurrency. This yields

two essential correctness aspects in concurrent executions – the internal behavior of the

concurrent code, which we call validity, and the external behavior, in this case regularity,

which we have generalized here for data structures. Linearizability is guaranteed if the

implementation further satisfies linearizability base point consistency.

We believe that this paper is only the tip of the iceberg, and that many interesting

connections can be made using the observations we have presented. For a start, an interesting

direction to pursue is to use our methodology for proving the correctness of more complex

data structures than the linked lists in our examples.

Currently, using our methodology involves manually identifying base conditions. It

would be interesting to create tools for suggesting a base condition for each local state. One

possible approach is to use a dynamic tool that identifies likely program invariants, as in

[42], and suggests them as base conditions. Alternatively, a static analysis tool can suggest

base conditions, for example by iteratively accumulating read shared variables and omitting

ones that are no longer used by the following code (i.e., shared variables whose values are

no longer reflected in the local state).

Another interesting direction for future work might be to define a synchronization

mechanism that uses the base conditions in a way that is both general purpose and fine-

78

grained. A mechanism of this type will use default conservative base conditions, such as

verifying consistency of the entire read-set for every local state, or two-phase locking of

accessed shared variables. In addition, the mechanism will allow users to manually define

or suggest finer-grained base conditions. This can be used to improve performance and

concurrency, by validating the specified base condition instead of the entire read-set, or by

releasing locks when the base condition no longer refers to the value read from them.

From a broader perspective, we showed how correctness can be derived from identify-

ing inner relations in a sequential code, (in our case, base conditions), and maintaining

those relations in concurrent executions (via base points). It may be possible to use sim-

ilar observations in other models and contexts, for example, looking at inner relations

in synchronous protocols, in order to derive conditions that ensure their correctness in

asynchronous executions.

And last but not least, the definitions of internal behavior correctness can be extended

to include weaker conditions than validity, (which is quiet conservative). These weaker

conditions will handle local states in concurrent executions that are un-reachable via

sequential executions but still satisfy the inner correctness of the code.

6.2 A Constructive Approach for Proving Data Structures’

Linearizability

In this paper we introduced a constructive methodology for proving correctness of concurrent

data structures and exemplified it with a popular data structure. Our methodology outlines

a road-map for proving correctness. While we have exemplified its use for writing semi-

formal proofs, we believe it can be used at any level of formalism, from informal correctness

arguments to formal verification. In particular, our framework has the potential to simplify

the proof structure employed by existing formal methodologies for proving linearizability

[35, 36, 39, 41, 44, 67, 79], thus making them more accessible to practitioners.

Currently, using our methodology involves manually identifying base conditions, com-

muting steps, and base point preserving steps. It would be interesting to create tools for

suggesting a base condition for each local state, and identifying the interesting steps in

update operations using either static or dynamic analysis.

79

6.3 Modular Composition of Coordination Services

Coordination services provide consistent and highly available functionality to applications,

relieving them of implementing common (but subtle) distributed algorithms on their own.

Yet today, when applications are deployed in multiple data centers, system architects are

forced to choose between consistency and performance. In this paper we showed that this

does not have to be the case. Our modular composition approach maintains the performance

and simplicity of deploying independent coordination services in each data center, and yet

does not forfeit consistency.

We demonstrated that the simplicity of our technique makes it easy to use with existing

coordination services, such as ZooKeeper – it does not require changes to the underlying

system, and existing clients may continue to work with an individual coordination service

without any changes (even if our client library is used, such applications will not incur

any overhead). Moreover, the cost for applications requiring consistent multi-data center

coordination is low for workloads that exhibit high spatial or temporal locality.

In this work we have focused on the advantages of our composition design in wide-area

deployments. It is possible to leverage the same design for deployments within the data

center boundaries that currently suffer from lack of sharing among coordination services.

Indeed, a typical data center today runs a multitude of coordination service backend services.

For example, it may include: Apache Kafka message queues [1], backed by ZooKeeper and

used in several applications; Swarm [7], a Docker [65] clustering system running an etcd

backend; Apache Solr search platform [2] with an embedded ZooKeeper instance; and Apache

Storm clusters [77], each using a dedicated ZooKeeper instance. Thus, installations end up

running many independent coordination service instances, which need to be independently

provisioned and maintained. This has a number of drawbacks: (1) it does not support cross-

application sharing; (2) it is resource-wasteful, and (3) it complicates system administration.

Our modular composition approach can potentially remedy these short comings.

Our composition algorithm supports individual query and update operations. It can

natively support transactions (e.g., ZooKeeper’s multi operation) involving data in single

service instance. An interesting future direction could be to support transactions involving

multiple service instances. This is especially challenging in the face of possible client and

service failures, if all cross-service coordination is to remain at the client side.

80

6.4 Composing Ordered Sequential Consistency

Coordination services are broadly deployed nowadays in backends of large-scale distributed

systems. In this paper we defined OSC(A), which encompasses a range of criteria, from

sequential consistency to linearizability, and captures the typical behavior of coordination

services, such as ZooKeeper.

By itself, OSC(A) is non-composable. Non-composability precludes multi-data-center

deployments that are both consistent and efficient. We showed a way to compose OSC objects

correctly using a simple non-local property called leading ordered operations. Composability

of coordination services enables low-latency local updates, while having global consistency

among services.

81

Bibliography

[1] Apache Kafka – A high-throughput distributed messaging system., . URL http:

//kafka.apache.org. [Online; accessed 1-Jan-2016].

[2] Apache Solr – a standalone enterprise search server with a REST-like API., . URL

http://lucene.apache.org/solr/. [Online; accessed 1-Jan-2016].

[3] Camille Fournier: Building a Global, Highly Available Service Discovery Infras-

tructure with ZooKeeper. URL http://whilefalse.blogspot.co.il/2012/12/

building-global-highly-available.html. [Online; accessed 1-Jan-2016].

[4] Consul – a tool for service discovery and configuration. Consul is distributed, highly

available, and extremely scalable., . URL https://www.consul.io/. [Online; accessed

1-Jan-2016].

[5] Consul HTTP API, . URL https://www.consul.io/docs/agent/http.html. [Online;

accessed 28-Jan-2016].

[6] Doozer – a highly-available, completely consistent store for small amounts of extremely

important data. URL https://github.com/ha/doozerd. [Online; accessed 1-Jan-

2016].

[7] Swarm: a Docker-native clustering system. URL https://github.com/docker/swarm.

[Online; accessed 1-Jan-2016].

[8] Daniel Abadi: Problems with CAP, and Yahoo’s little known NoSQL system. URL http:

//dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.

html. [Online; accessed 28-Jan-2016].

[9] Access Control in Google Cloud Storage. URL https://cloud.google.com/storage/

docs/access-control. [Online; accessed 28-Jan-2016].

82

http://kafka.apache.org
http://kafka.apache.org
http://lucene.apache.org/solr/
http://whilefalse.blogspot.co.il/2012/12/building-global-highly-available.html
http://whilefalse.blogspot.co.il/2012/12/building-global-highly-available.html
https://www.consul.io/
https://www.consul.io/docs/agent/http.html
https://github.com/ha/doozerd
https://github.com/docker/swarm
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
https://cloud.google.com/storage/docs/access-control
https://cloud.google.com/storage/docs/access-control

[10] Question about multi-datacenter key-value consistency (Consul). URL https://goo.

gl/XMWCcH. [Online; accessed 28-Jan-2016].

[11] etcd – a highly-available key value store for shared configuration and service discovery.

URL https://coreos.com/etcd/. [Online; accessed 1-Jan-2016].

[12] Google Compute Engine – Scalable, High-Performance Virtual Machines. URL https:

//cloud.google.com/compute/. [Online; accessed 1-Jan-2016].

[13] Observers: Making ZooKeeper Scale Even Further. URL https://blog.cloudera.

com/blog/2009/12/observers-making-zookeeper-scale-even-further/. [Online;

accessed 1-Jan-2016].

[14] Proposal: mounting a remote ZooKeeper. URL https://wiki.apache.org/hadoop/

ZooKeeper/MountRemoteZookeeper. [Online; accessed 28-Jan-2016].

[15] ZooKeeper’s Jira - Major throughput improvement with mixed workloads. URL

https://issues.apache.org/jira/browse/ZOOKEEPER-2024. [Online; accessed 16-

May-2016].

[16] Igor Serebryany: SmartStack vs. Consul. URL http://igor.moomers.org/

smartstack-vs-consul/. [Online; accessed 28-Jan-2016].

[17] Solr Cross Data Center Replication. URL http://yonik.com/

solr-cross-data-center-replication/. [Online; accessed 28-Jan-2016].

[18] Vitess deployment: global vs local. URL http://vitess.io/doc/TopologyService/

#global-vs-local. [Online; accessed 28-Jan-2016].

[19] Question about number of nodes spread across datacenters (ZooKeeper)., . URL

https://goo.gl/oPC2Yf. [Online; accessed 28-Jan-2016].

[20] Question about cross-datacenter setup (ZooKeeper)., . URL http://goo.gl/0sD0MZ.

[Online; accessed 28-Jan-2016].

[21] Has anyone deployed a ZooKeeper ensemble across data centers? URL https://www.

quora.com/Has\anyone\deployed\a\ZooKeeper\ensemble\across\data\centers.

[Online; accessed 1-Jan-2016].

83

https://goo.gl/XMWCcH
https://goo.gl/XMWCcH
https://coreos.com/etcd/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://blog.cloudera.com/blog/2009/12/observers-making-zookeeper-scale-even-further/
https://blog.cloudera.com/blog/2009/12/observers-making-zookeeper-scale-even-further/
https://wiki.apache.org/hadoop/ZooKeeper/MountRemoteZookeeper
https://wiki.apache.org/hadoop/ZooKeeper/MountRemoteZookeeper
https://issues.apache.org/jira/browse/ZOOKEEPER-2024
http://igor.moomers.org/smartstack-vs-consul/
http://igor.moomers.org/smartstack-vs-consul/
http://yonik.com/solr-cross-data-center-replication/
http://yonik.com/solr-cross-data-center-replication/
http://vitess.io/doc/TopologyService/#global-vs-local
http://vitess.io/doc/TopologyService/#global-vs-local
https://goo.gl/oPC2Yf
http://goo.gl/0sD0MZ
https://www.quora.com/Has\ anyone\ deployed\ a\ ZooKeeper\ ensemble\ across\ data\ centers
https://www.quora.com/Has\ anyone\ deployed\ a\ ZooKeeper\ ensemble\ across\ data\ centers

[22] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh Khe-

mani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri, Jason Hunter, Roberto

Peon, Larry Kai, Alexander Shraer, Arif Merchant, and Kfir Lev-Ari. Slicer: Auto-

sharding for datacenter applications. In 12th USENIX Symposium on Operating

Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4,

2016., pages 739–753, 2016. URL https://www.usenix.org/conference/osdi16/

technical-sessions/presentation/adya.

[23] Yehuda Afek, Alexander Matveev, and Nir Shavit. Pessimistic software lock-elision. In

Proceedings of the 26th International Conference on Distributed Computing, DISC’12,

pages 297–311, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-33650-8. doi:

10.1007/978-3-642-33651-5 21.

[24] Maya Arbel and Hagit Attiya. Concurrent updates with rcu: Search tree as an example.

In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing,

PODC ’14, pages 196–205, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2944-6.

doi: 10.1145/2611462.2611471.

[25] Andrea Arcangeli, Mingming Cao, Paul E. McKenney, and Dipankar Sarma. Using

read-copy-update techniques for system v ipc in the linux 2.5 kernel. In USENIX

Annual Technical Conference, FREENIX Track, pages 297–309. USENIX, 2003. ISBN

1-931971-11-0.

[26] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations

and Advanced Topics. John Wiley & Sons, 2004. ISBN 0471453242.

[27] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James Larson,

Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megastore:

Providing scalable, highly available storage for interactive services. In Proceedings of

the Conference on Innovative Data system Research (CIDR), pages 223–234, 2011. URL

http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf.

[28] R. Bayer and M. Schkolnick. Readings in database systems. chapter Concurrency

of Operations on B-trees, pages 129–139. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1988. ISBN 0-934613-65-6.

84

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/adya
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/adya
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf

[29] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick

O’Neil. A critique of ansi sql isolation levels. SIGMOD Rec., 24(2):1–10, May 1995.

ISSN 0163-5808. doi: 10.1145/568271.223785.

[30] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control

and Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1986. ISBN 0-201-10715-5.

[31] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency Control

and Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1987. ISBN 0-201-10715-5.

[32] Carlos Eduardo Benevides Bezerra, Fernando Pedone, and Robbert van Renesse.

Scalable state-machine replication. In 44th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks, DSN 2014, Atlanta, GA, USA, June 23-26, 2014,

pages 331–342, 2014. doi: 10.1109/DSN.2014.41. URL http://dx.doi.org/10.1109/

DSN.2014.41.

[33] Trevor Brown, Faith Ellen, and Eric Ruppert. Pragmatic primitives for non-blocking

data structures. In PODC, pages 13–22, 2013.

[34] Mike Burrows. The chubby lock service for loosely-coupled distributed systems. In

Proceedings of the 7th Symposium on Operating Systems Design and Implementation,

OSDI ’06, pages 335–350, Berkeley, CA, USA, 2006. USENIX Association. ISBN

1-931971-47-1. URL http://dl.acm.org/citation.cfm?id=1298455.1298487.

[35] Gregory Chockler, Nancy Lynch, Sayan Mitra, and Joshua Tauber. Proving atomicity:

An assertional approach. In Proceedings of the 19th International Conference on

Distributed Computing, DISC’05, pages 152–168, Berlin, Heidelberg, 2005. Springer-

Verlag. ISBN 3-540-29163-6, 978-3-540-29163-3. doi: 10.1007/11561927 13.

[36] Robert Colvin, Lindsay Groves, Victor Luchangco, and Mark Moir. Formal verification

of a lazy concurrent list-based set. In In 18th CAV, pages 475–488. Springer, 2006.

[37] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J.

Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild,

Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey

85

http://dx.doi.org/10.1109/DSN.2014.41
http://dx.doi.org/10.1109/DSN.2014.41
http://dl.acm.org/citation.cfm?id=1298455.1298487

Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig,

Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford.

Spanner: Google’s globally-distributed database. In Proceedings of the 10th USENIX

Conference on Operating Systems Design and Implementation, OSDI’12, pages 251–

264, Berkeley, CA, USA, 2012. USENIX Association. ISBN 978-1-931971-96-6. URL

http://dl.acm.org/citation.cfm?id=2387880.2387905.

[38] Pierre-Jacques Courtois, F. Heymans, and David Lorge Parnas. Concurrent control

with ”readers” and ”writers”. Commun. ACM, 14(10):667–668, 1971.

[39] John Derrick, Gerhard Schellhorn, and Heike Wehrheim. Verifying linearisability with

potential linearisation points. In FM 2011: Formal Methods - 17th International

Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings,

pages 323–337, 2011. doi: 10.1007/978-3-642-21437-0 25.

[40] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In Proc. of the 20th

International Symposium on Distributed Computing (DISC 2006), pages 194–208, 2006.

[41] Brijesh Dongol and John Derrick. Proving linearisability via coarse-grained abstraction.

CoRR, abs/1212.5116, 2012.

[42] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically

discovering likely program invariants to support program evolution. In Proceedings of

the 21st International Conference on Software Engineering, ICSE ’99, pages 213–224,

New York, NY, USA, 1999. ACM. ISBN 1-58113-074-0. doi: 10.1145/302405.302467.

[43] Rachid Guerraoui and Michal Kapalka. On the correctness of transactional memory.

In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP ’08, pages 175–184, New York, NY, USA, 2008. ACM.

ISBN 978-1-59593-795-7. doi: 10.1145/1345206.1345233.

[44] Rachid Guerraoui and Marko Vukolic. A scalable and oblivious atomicity assertion. In

Franck van Breugel and Marsha Chechik, editors, CONCUR, volume 5201 of Lecture

Notes in Computer Science, pages 52–66. Springer, 2008. ISBN 978-3-540-85360-2. URL

http://dblp.uni-trier.de/db/conf/concur/concur2008.html#GuerraouiV08.

86

http://dl.acm.org/citation.cfm?id=2387880.2387905
http://dblp.uni-trier.de/db/conf/concur/concur2008.html#GuerraouiV08

[45] Raluca Halalai, Pierre Sutra, Etienne Riviere, and Pascal Felber. Zoofence: Principled

service partitioning and application to the zookeeper coordination service. In 33rd

IEEE International Symposium on Reliable Distributed Systems, SRDS 2014, Nara,

Japan, October 6-9, 2014, pages 67–78, 2014. doi: 10.1109/SRDS.2014.41. URL

http://dx.doi.org/10.1109/SRDS.2014.41.

[46] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer,

and Nir Shavit. A lazy concurrent list-based set algorithm. In Proceedings of the 9th

International Conference on Principles of Distributed Systems, OPODIS’05, pages 3–16,

Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-36321-1, 978-3-540-36321-7. doi:

10.1007/11795490 3.

[47] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the

synchronization-parallelism tradeoff. In Proceedings of the 22Nd ACM Symposium on

Parallelism in Algorithms and Architectures, SPAA ’10, pages 355–364, New York, NY,

USA, 2010. ACM. ISBN 978-1-4503-0079-7. doi: 10.1145/1810479.1810540.

[48] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support

for lock-free data structures. SIGARCH Comput. Archit. News, 21(2):289–300, May

1993. ISSN 0163-5964. doi: 10.1145/173682.165164.

[49] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition

for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

ISSN 0164-0925. doi: 10.1145/78969.78972.

[50] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. Zookeeper:

Wait-free coordination for internet-scale systems. In Proceedings of the 2010 USENIX

Conference on USENIX Annual Technical Conference, USENIXATC’10, pages 11–11,

Berkeley, CA, USA, 2010. USENIX Association. URL http://dl.acm.org/citation.

cfm?id=1855840.1855851.

[51] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-performance

broadcast for primary-backup systems. In Proceedings of the 2011 IEEE/IFIP 41st

International Conference on Dependable Systems&Networks, DSN ’11, pages 245–256,

Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-1-4244-9232-9. doi:

10.1109/DSN.2011.5958223. URL http://dx.doi.org/10.1109/DSN.2011.5958223.

87

http://dx.doi.org/10.1109/SRDS.2014.41
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dx.doi.org/10.1109/DSN.2011.5958223

[52] Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo Alvisi, and Mike

Dahlin. All about eve: Execute-verify replication for multi-core servers. In Proceedings

of the 10th USENIX Conference on Operating Systems Design and Implementation,

OSDI’12, pages 237–250, Berkeley, CA, USA, 2012. USENIX Association. ISBN

978-1-931971-96-6. URL http://dl.acm.org/citation.cfm?id=2387880.2387903.

[53] L. Lamport. How to make a multiprocessor computer that correctly executes multipro-

cess programs. IEEE Trans. Comput., 28(9):690–691, Sept. 1979. ISSN 0018-9340. doi:

10.1109/TC.1979.1675439.

[54] Leslie Lamport. On interprocess communication. part ii: Algorithms. Distributed

Computing, 1(2):86–101, 1986.

[55] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–

169, 1998. doi: 10.1145/279227.279229. URL http://doi.acm.org/10.1145/279227.

279229.

[56] Kfir Lev-Ari, Gregory Chockler, and Idit Keidar. On correctness of data structures under

reads-write concurrency. In Distributed Computing - 28th International Symposium,

DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings, pages 273–287, 2014.

doi: 10.1007/978-3-662-45174-8 19.

[57] Kfir Lev-Ari, Gregory Chockler, and Idit Keidar. A constructive approach for prov-

ing data structures’ linearizability. In Distributed Computing - 29th International

Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, pages 356–

370, 2015. doi: 10.1007/978-3-662-48653-5 24. URL https://doi.org/10.1007/

978-3-662-48653-5_24.

[58] Kfir Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexander Shraer. Modular

composition of coordination services. In 2016 USENIX Annual Technical Confer-

ence, USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016., pages 251–264,

2016. URL https://www.usenix.org/conference/atc16/technical-sessions/

presentation/lev-ari.

[59] Kfir Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexander Shraer. Composing ordered

sequential consistency. Inf. Process. Lett., 123:47–50, 2017. doi: 10.1016/j.ipl.2017.03.

004. URL https://doi.org/10.1016/j.ipl.2017.03.004.

88

http://dl.acm.org/citation.cfm?id=2387880.2387903
http://doi.acm.org/10.1145/279227.279229
http://doi.acm.org/10.1145/279227.279229
https://doi.org/10.1007/978-3-662-48653-5_24
https://doi.org/10.1007/978-3-662-48653-5_24
https://www.usenix.org/conference/atc16/technical-sessions/presentation/lev-ari
https://www.usenix.org/conference/atc16/technical-sessions/presentation/lev-ari
https://doi.org/10.1016/j.ipl.2017.03.004

[60] Yanhua Mao, Flavio Paiva Junqueira, and Keith Marzullo. Mencius: Building efficient

replicated state machine for wans. In 8th USENIX Symposium on Operating Systems

Design and Implementation, OSDI 2008, December 8-10, 2008, San Diego, Califor-

nia, USA, Proceedings, pages 369–384, 2008. URL http://www.usenix.org/events/

osdi08/tech/full_papers/mao/mao.pdf.

[61] Parisa Jalili Marandi, Carlos Eduardo Bezerra, and Fernando Pedone. Rethinking state-

machine replication for parallelism. In Proceedings of the 2014 IEEE 34th International

Conference on Distributed Computing Systems, ICDCS ’14, pages 368–377, Washington,

DC, USA, 2014. IEEE Computer Society. ISBN 978-1-4799-5169-7. doi: 10.1109/

ICDCS.2014.45. URL http://dx.doi.org/10.1109/ICDCS.2014.45.

[62] Paul E. McKenney. Selecting locking primitives for parallel programming. Commun.

ACM, 39(10):75–82, Oct. 1996. ISSN 0001-0782. doi: 10.1145/236156.236174.

[63] Paul E. McKenney. RCU part 3: the RCU API. January 2008.

[64] Paul E. McKenney and John D. Slingwine. Read-copy update: using execution history

to solve concurrency problems, parallel and distributed computing and systems, 1998.

[65] Dirk Merkel. Docker: Lightweight linux containers for consistent development and

deployment. Linux J., 2014(239), Mar. 2014. ISSN 1075-3583. URL http://dl.acm.

org/citation.cfm?id=2600239.2600241.

[66] M. Moir and N. Shavit. Concurrent data structures. In Handbook of Data Structures

and Applications, D. Metha and S. Sahni Editors, pages 47–14, 47–30, 2007. Chapman

and Hall/CRC Press.

[67] Peter W. O’Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, and Greta Yorsh.

Verifying linearizability with hindsight. In Proceedings of the 29th ACM SIGACT-

SIGOPS Symposium on Principles of Distributed Computing, PODC ’10, pages 85–94,

New York, NY, USA, 2010. ACM. ISBN 978-1-60558-888-9. doi: 10.1145/1835698.

1835722.

[68] Diego Ongaro and John Ousterhout. In search of an understandable consensus algo-

rithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical

Conference, USENIX ATC’14, pages 305–320, Berkeley, CA, USA, 2014. USENIX

89

http://www.usenix.org/events/osdi08/tech/full_papers/mao/mao.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/mao/mao.pdf
http://dx.doi.org/10.1109/ICDCS.2014.45
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241

Association. ISBN 978-1-931971-10-2. URL http://dl.acm.org/citation.cfm?id=

2643634.2643666.

[69] David L. Oppenheimer, Archana Ganapathi, and David A. Patterson. Why do internet

services fail, and what can be done about it? In 4th USENIX Symposium on Internet

Technologies and Systems, USITS’03, Seattle, Washington, USA, March 26-28, 2003,

2003. URL http://www.usenix.org/events/usits03/tech/oppenheimer.html.

[70] Behrokh Samadi. B-trees in a system with multiple users. Inf. Process. Lett., 5(4):

107–112, 1976.

[71] William N. Scherer, III and Michael L. Scott. Advanced contention management for

dynamic software transactional memory. In Proceedings of the Twenty-fourth Annual

ACM Symposium on Principles of Distributed Computing, PODC ’05, pages 240–248,

New York, NY, USA, 2005. ACM. ISBN 1-58113-994-2. doi: 10.1145/1073814.1073861.

[72] Cheng Shao, Jennifer L. Welch, Evelyn Pierce, and Hyunyoung Lee. Multiwriter

consistency conditions for shared memory registers. SIAM J. Comput., 40(1):28–62,

2011.

[73] Artyom Sharov, Alexander Shraer, Arif Merchant, and Murray Stokely. Take me to

your leader!: Online optimization of distributed storage configurations. Proc. VLDB

Endow., 8(12):1490–1501, Aug. 2015. ISSN 2150-8097. doi: 10.14778/2824032.2824047.

URL http://dx.doi.org/10.14778/2824032.2824047.

[74] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the

Fourteenth Annual ACM Symposium on Principles of Distributed Computing, PODC

’95, pages 204–213, New York, NY, USA, 1995. ACM. ISBN 0-89791-710-3. doi:

10.1145/224964.224987.

[75] Alex Sherman, Philip A. Lisiecki, Andy Berkheimer, and Joel Wein. ACMS: the

akamai configuration management system. In 2nd Symposium on Networked Systems

Design and Implementation (NSDI 2005), May 2-4, 2005, Boston, Massachusetts, USA,

Proceedings., 2005. URL http://www.usenix.org/events/nsdi05/tech/sherman.

html.

90

http://dl.acm.org/citation.cfm?id=2643634.2643666
http://dl.acm.org/citation.cfm?id=2643634.2643666
http://www.usenix.org/events/usits03/tech/oppenheimer.html
http://dx.doi.org/10.14778/2824032.2824047
http://www.usenix.org/events/nsdi05/tech/sherman.html
http://www.usenix.org/events/nsdi05/tech/sherman.html

[76] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander, Zhe

Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. Holistic configuration

management at facebook. In Proceedings of the 25th Symposium on Operating Systems

Principles, SOSP ’15, pages 328–343, New York, NY, USA, 2015. ACM. ISBN 978-

1-4503-3834-9. doi: 10.1145/2815400.2815401. URL http://doi.acm.org/10.1145/

2815400.2815401.

[77] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M. Patel,

Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, Nikunj

Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. Storm@twitter. In Proceedings of the

2014 ACM SIGMOD International Conference on Management of Data, SIGMOD

’14, pages 147–156, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2376-5. doi:

10.1145/2588555.2595641. URL http://doi.acm.org/10.1145/2588555.2595641.

[78] Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. A safety proof of a

lazy concurrent list-based set implementation. Technical Report UCAM-CL-TR-659,

University of Cambridge, Computer Laboratory, jan 2006.

[79] Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. Proving correctness

of highly-concurrent linearisable objects. In Proceedings of the Eleventh ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’06, pages

129–136, New York, NY, USA, 2006. ACM. ISBN 1-59593-189-9. doi: 10.1145/1122971.

1122992.

[80] Roman Vitenberg and Roy Friedman. On the locality of consistency conditions. In

DISC’03.

[81] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac

Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated experimental

environment for distributed systems and networks. In Proc. of the Fifth Symposium on

Operating Systems Design and Implementation, pages 255–270, Boston, MA, Dec. 2002.

USENIX Association.

[82] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasundaram,

and Shankar Pasupathy. An empirical study on configuration errors in commercial

and open source systems. In Proceedings of the Twenty-Third ACM Symposium

91

http://doi.acm.org/10.1145/2815400.2815401
http://doi.acm.org/10.1145/2815400.2815401
http://doi.acm.org/10.1145/2588555.2595641

on Operating Systems Principles, SOSP ’11, pages 159–172, New York, NY, USA,

2011. ACM. ISBN 978-1-4503-0977-6. doi: 10.1145/2043556.2043572. URL http:

//doi.acm.org/10.1145/2043556.2043572.

92

http://doi.acm.org/10.1145/2043556.2043572
http://doi.acm.org/10.1145/2043556.2043572

הביצועים. שיפור עבור המקומיוית רתימת תוך עקבי, באופן תיאום שירות אותו של נפרדים למופעים

עם לעבודה בהשוואה ביצועים מבחינת נענש לא בלבד מקומי למידע ניגש אשר משתמש כללי, באופן

שירותי של מופעים במספר למידע ניגשים אשר משתמשים כן, כמו תיאום. שירות אותו של יחיד מופע

שלנו המימוש כיום. הזמינים עקביים לפתרונות בהשוואה 7 פי של בביצועים שיפור מציגים תיאום,

של השרת בצד שהוא כל בשינוי צורך ללא תיאום שרתי של מופעים מספר עם לעבוד ללקוחות מאפשר

מכיר התיאום שרת אותן לפעולות מתורגמות מבצע הלקוח אשר שהפעולות כך ידי על שירותים, אותם

במקביל. תיאום שירותי למספר ניגשים שלא משתמשים כלומר המערכת, של רגילים ממשתמשים

המתודולוגיה את מדגימים אנו מקבילים. נתונים מבני של נכונותם להוכחת מקיפה מתודולוגיה מציגים אנו

מקרה שהינה אטומיות, מקביליים. אובייקטים של אטומיות להוכחת דרכים מפת מספקים שאנו בכך שלנו

משותפים. לאובייקטים ביותר הנפוצים הנכונות מקריטריוני אחת היא וסדורה, רציפה עקביות של מיוחד

עצל, באופן המעודכנת מקושרת רשימה של אטומיות להוכחת שלנו המתודולוגיה של יישום מדגימים אנו

שאנו הנכונות הוכחת נכונות. להוכחת טכניקות בין השוואה עבור פופולרי מקבילי נתונים מבנה שהינה

לעבודות בניגוד אטומיות. עבור מספיקים תנאים שמאגד שלנו, המפתח משפט על מבוססת מציגים

צורך ללא סדרתיות, בריצות הנתונים מבנה של מהמאפיינים ישירות נגזרים שלנו התנאים קודמות,

הנתונים. מבנה פעולות עבור אטומיות נקודות במציאת

ii

תקציר

אנו מקבילים. לאובייקטים גנרי נכונות קריטריון וסדורה, רציפה עקביות מגדירים אנו זו מחקר בעבודת

ועד רציפה מעקביות החל מוכרים, קריטריונים של רחב טווח מכלילה וסדורה רציפה עקביות כי מראים

כיום. נרחב בשימוש שנמצאים תיאום שירותי של אופיינית התנהגות לוכדת גם כמו (אטומיות), לינאריות

וסדור, רציף באופן עקבית בהכרח אינה וסדור רציף באופן עקביים אובייקטים של פשוטה קומפוזיציה

בעבר הוכחה ההרכבה (אי ורציפה עקבית אינה ורציפים עקביים אובייקטים של שהרכבה ידוע למשל,

אובייקטים). של מקומיות לתכונות ביחס

פעולות מכנים שאנו גלובלית תכונה מגדירים אנו וסדורים, רציפים עקביים אובייקטים של הרכבה לשם

וסדורים. רציפים עקביים אוביקטים של נכונה הרכבה מאפשרת זאת תכונה כי ומוכיחים מובילות, סדורות

הזמן) ציר פי על לסידורן (התואם מלא סדר קיים להן פעולות של קבוצה בתת להשתמש הוא הרעיון

פעולות רצף שכל מגדירה התכונה בפועל שכזה. מלא סדר קיים לא להן הפעולות שאר את לתחום כדי

מלא. סידור אותו קיים לה קבוצה תת מאותה בפעולה להתחיל צריך אובייקט על תהליך שמבצע

היכולת היא שהגדרנו, הגלובלית ההרכבה תכונת עם יחד והסדורה הרציפה העקביות של ישירה השלכה

הכרחית בניין לאבן האחרונות בשנים נהפכו כאלה שירותים נכונותם. על שמירה תוך תיאום שירותי לחבר

גיאוגרפיים באזורים מבוצעים יישומים כאשר ומהיר. אמין עקבי, תיאום ביצוע לשם מבוזרים יישומים עבור

עצמאיים שירותים באמצעות (המושגים בביצועים, בחירה בין מכריע התיאום שירות פריסת אופן מרובים,

ביצועים הראו שלנו העבודה לפני בשימוש שהיו השונות הגישות בעקביות. בחירה לבין נפרדים), באזורים

המערכת. עקביות על אי־שמירה או כתיבות, עבור ירודים

באופן הנ״ל. התמורות לשקלול שמתייחס תיאום שירותי של מודולרית להרכבה מערכת תכן מציגים אנו

מבצע, שהלקוח הפעולות אחרי עוקבת זאת שכבה הלקוח. בצד עיבוד שכבת של תוספת הוא התכן כללי,

השכבה אז האחרונה, בפעולתו פנה אליו מזה השונה תיאום בשירות להשתמש פונה והלקוח ובמידה

ביחס מלא באופן מסודרות הסנכרון פעולות החדש. התיאום לשירות הלקוח בין סנכרון פעולת מוסיפה

כלומר גלובלי, באופן המובילות הסדורות הפעולות תכונת שמתקיימת ומכאן הזמן, ציר פי על לסידורן

להתחבר למשתמשים המאפשר הנ״ל, לתכן מימוש מציגים אנו בנוסף, עקביות. על שומרת ההרכבה

i

ויטרבי. וארנה אנדרו שם על חשמל להנדסת בפקולטה קידר, עדית פרופסור של בהנחייתה בוצע המחקר

תקופת במהלך ובכתבי־עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות

זה. בחיבור הנמצאות אלו הינן ביותר העדכניות גרסאותיהם המחבר. של הדוקטורט מחקר

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

ונכונות הרכבה וסדורה: רציפה עקביות

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

לפילוסופיה דוקטור

לב־ארי כפיר

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2017 יולי חיפה התשע״ז תמוז

ונכונות הרכבה וסדורה: רציפה עקביות

לב־ארי כפיר

	List of Publications
	List of Figures
	Abstract
	Abbreviations and Notations
	1 Introduction
	1.1 Thesis Structure
	1.2 Brief Scientific Background
	1.2.1 Model for Analyzing Concurrent Objects
	1.2.2 Sequential Consistency
	1.2.3 Linearizability
	1.2.4 Coordination Services

	2 Paper: On Correctness of Data Structures under Reads-Write Concurrency
	2.1 Introduction
	2.2 Model and Correctness Definitions
	2.2.1 Data Structures and Sequential Executions
	2.2.2 Correctness Conditions for Concurrent Data Structures

	2.3 Base Conditions, Validity and Regularity
	2.3.1 Base Conditions and Base Points
	2.3.2 Satisfying the Regularity Base Point Consistency
	2.3.3 Deriving Correctness from Base Points

	2.4 Using Our Methodology
	2.5 Linearizability
	2.5.1 Linearizability Base Point Consistency

	2.6 Sequential Consistency

	3 Paper: A Constructive Approach for Proving Data Structures' Linearizability
	3.1 Introduction
	3.2 Preliminaries
	3.3 Base Point Analysis
	3.4 Linearizability using Base Point Analysis
	3.4.1 Update Operations
	3.4.2 Read-Only Operations

	3.5 Roadmap for Proving Linearizability
	3.5.1 Stage I: Base Conditions
	3.5.2 Stage II: Linearizability of Update Operations
	3.5.3 Stage III: Linearizability of Read-Only Operations

	4 Paper: Modular composition of coordination services
	4.1 Introduction
	4.2 Background
	4.2.1 Coordination Services
	4.2.2 Cross Data Center Deployment

	4.3 Design for Composition
	4.3.1 Modular Composition of Services
	4.3.2 Modular Composition Properties

	4.4 ZooNet
	4.4.1 Server-Side Isolation
	4.4.2 The ZooNet Client

	4.5 Evaluation
	4.5.1 Environment and Configurations
	4.5.2 Server-Side Isolation
	4.5.3 The Cost of Consistency
	4.5.4 Comparing ZooNet with ZooKeeper

	4.6 Related Work
	4.6.1 Multi-Data Center Deployment
	4.6.2 Composition Methods

	5 Paper: Composing ordered sequential consistency
	5.1 Introduction
	5.2 Model and Notation
	5.3 Ordered Sequential Consistency
	5.4 OSC(A) Composability via Leading A-Operations

	6 Discussion
	6.1 On Correctness of Data Structures under Reads-Write Concurrency
	6.2 A Constructive Approach for Proving Data Structures' Linearizability
	6.3 Modular Composition of Coordination Services
	6.4 Composing Ordered Sequential Consistency

	Hebrew Abstract

