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Abstract

Fast advancements in the production and construction of computer systems
have led to the proliferation of highly distributed systems, at a scale that
was unimaginable not many years ago. We address here two types of such
systems — sensor networks and cloud storage. We construct scalable and
robust distributed algorithms for these environments, prove their correctness,
and analyze their behavior through simulation.

To perform monitoring of large environments, we can expect to see in
years to come sensor networks with thousands of light-weight nodes mon-
itoring conditions like seismic activity, humidity or temperature. Each of
these nodes is comprised of a sensor, a wireless communication module to
connect with close-by nodes, a processing unit and some storage. The nature
of these widely-spread networks prohibits a centralized solution in which the
raw monitored data is accumulated at a single location. Fortunately, often
the raw data is not necessary. Rather, an aggregate that can be computed
inside the network.

In the first part of this work, we address two aggregation challenges in
the field of sensor networks. First, we present LiMoSense, a fault-tolerant
live monitoring algorithm for dynamic sensor networks. This is the first
asynchronous robust average aggregation algorithm that performs live moni-
toring, i.e., it constantly obtains a timely and accurate picture of dynamically
changing data. Second, we address the distributed clustering problem, where
the computed aggregate is a clustering of the sensor data, i.e., the goal is to
partition these values into multiple clusters, and describe each cluster con-
cisely. We present a generic algorithm that solves the distributed clustering
problem and may be implemented in various topologies, using different clus-
tering types.

In the second part of this work, we address two challenges relating to
consistency in large scale cloud storage systems. Advances in datacenter
technologies are leading users, both consumers and large companies, to store
large volumes of data in managed services, where storage is offered as a ser-
vice — cloud storage. The users of such systems have increasing expectations

viii



of both efficiency and reliability, leading to various challenges in implement-
ing these data stores.

First, we observe that a single storage provider, large as it may be, might
fail, either losing data or just being temporarily unavailable. We provide
a storage algorithm that achieves reliable storage using multiple real-world
production storage services. A key-value store (KVS) offers functions for
storing and retrieving values associated with unique keys. KVSs have be-
come the most popular way to access Internet-scale “cloud” storage sys-
tems. We present an efficient wait-free algorithm that emulates multi-reader
multi-writer storage from a set of potentially faulty KVS replicas in an asyn-
chronous environment.

Second, we introduce ACID-RAIN: ACID1 transactions in a Resilient
Archive with Independent Nodes. ACID-RAIN is a novel architecture for ef-
ficiently implementing transactions in a distributed data store. ACID-RAIN
uses logs in a novel way, limiting reliability to a single tier of the system: a
large and scalable set of independent nodes form an outer layer that caches
the data, backed by a set of independent reliable log services. If concur-
rent transactions conflict with one another, one or more of them must abort.
ACID-RAIN avoids such conflicts by using prediction to order transactions
before they take actions that would lead to an abort.

1“ACID transactions”, stands for Atomic, Consistent, Isolated and Durable transac-
tions. These are commonly known in the distributed systems literature as atomic trans-
actions with persistent storage.
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Chapter 1

Introduction

The field of distributed computing has been dealing for a long while with
challenges of designing robust and scalable algorithms for different purposes,
from data acquisition, through processing, to storage. Recently, advance-
ments in the production and construction of large scale networked systems
has made such algorithms a practical necessity. The design of a distributed
algorithm has to follow the following principles.

Robustness A system with thousands of nodes naturally suffers from occa-
sional node failures, and consequently new node additions. Similarly,
message loss and link failure are unavoidable in large systems, and the
system must be resilient to all of these.

Asynchrony Synchronous algorithms make assumptions on the maximal
delay in the system. This allows a node to deduce, by waiting this de-
lay, that a message it has sent was received, or that if it does not receive
a message, that message was never sent, or was lost. Using a conserva-
tive assumption (large delay) causes the system to progress slowly, as
nodes have to wait long to make these deduction. However, choosing
a shorter delay is not an option — in a large system occasional occur-
rences of long delays are the norm. A single node may suffer from a
temporal malfunction slowing it down considerably, and messages may
be delayed in a multi-hop network. A system should therefore avoid
these assumptions, and use an asynchronous algorithm that makes no
assumptions on message delay.

Scalability To be truly scalable, a system must refrain from depending on
any single element in its critical path, since this element will become a
bottleneck.
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This dissertation describes four scalable algorithms that follow these prin-
ciples. They are all asynchronous, allow for node and link failure, and depend
on no single element for operation.

1.0.0..1 Aggregation in sensor networks In Part I we address two
aggregation challenges in the field of sensor networks. Sensor networks are
ad-hoc networks of light-weight nodes monitoring environmental conditions,
each communicating via radio with close-by nodes. We briefly introduce
aggregation in sensor networks in Chapter 2.

In Chapter 3, we present LiMoSense, a fault-tolerant live monitoring al-
gorithm for dynamic sensor networks. This is the first asynchronous robust
average aggregation algorithm that performs live monitoring, i.e., it con-
stantly obtains a timely and accurate average of dynamically changing data.

However, more elaborate data summaries are sometimes required. For
example, outliers caused by erroneous samples may divert the average, or
the data may be partitioned into several clusters with different averages. In
Chapter 4 we address the distributed clustering problem, where the computed
aggregate is a clustering of the sensor data, i.e., the goal is to partition
the values into multiple clusters, and describe each cluster concisely. We
present a generic algorithm that solves the distributed clustering problem and
may be implemented in various topologies, using different clustering types.
As an example, we implement Gaussian mixture clustering and evaluate its
accuracy and convergence speed through simulation.

1.0.0..2 Consistency in Cloud Storage In Part II, we present two al-
gorithms that deal with distributed cloud storage. Cloud storage allows many
users to concurrently access replicated data stored on multiple machines re-
siding in datacenters. We provide the relevant background in Chapter 5.

Cloud storage providers typically offer several storage interfaces, each
implementing different interfaces. However, practically all providers offer a
key-value store (KVS), with functions for storing and retrieving values asso-
ciated with unique keys. Cloud storage providers promise high availability,
but even the largest of them sometimes fail, either losing data or just being
temporarily unavailable.

In Chapter 6 we present a storage algorithm that provides reliable storage
using multiple real-world production storage services. We present an efficient
wait-free algorithm that provides multi-reader multi-writer storage from a set
of potentially faulty KVS replicas in an asynchronous environment.

In cloud-scale data centers, it is common to shard data across many nodes,
each maintaining a small subset of the data. Although ACID transactions are

2



desirable, architects of such systems often tradeoff efficiency for consistency,
and do not support them. In Chapter 7 we present a novel architecture
for support of low-latency high-throughput ACID transactions in a Resilient
Archive with Independent Nodes (ACID-RAIN). ACID-RAIN uses logs in a
novel way, limiting the requirement for reliability to a single scalable tier: A
set of independent highly-available logs is accessed by large set of independent
fault-prone nodes that caches the sharded data. This structure allows for
rapid data access through the cache, and simple and fast restoration in case
of node failure. ACID-RAIN dramatically reduces concurrency conflicts by
using prediction to order transactions before they take actions that would
lead to an abort. We compare ACID-RAIN with contemporary architectures
for the support of ACID transactions, and demonstrate effective contention
handling and linear scalability, whereas other approaches reach a bottleneck.
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Part I

Aggregation in Sensor
Networks

4



Chapter 2

Background

To perform monitoring of large environments, we can expect to see in years
to come sensor networks with thousands of light-weight nodes monitoring
conditions like seismic activity, humidity or temperature [10, 105]. Each of
these nodes is comprised of a sensor, a wireless communication module to
connect with close-by nodes, a processing unit and some storage. The nature
of these widely spread networks prohibits a centralized approach in which
the raw monitored data is accumulated at a single location. Specifically, all
sensors cannot directly communicate with a central unit.

Fortunately, often the raw data itself is not the goal. Rather, an aggregate
that can be computed inside the network, such as the sum or average of sensor
reads, is of interest. For example, when measuring rainfall, one is interested
only in the total amount of rain, and not in the individual reads at each
of the sensors. Similarly, one may be interested in the average humidity or
temperature rather than minor local irregularities.

Several works have dealt with the single-shot version of this problem [72,
21, 87, 83]. In the single-shot case, each sensor takes a single sample, and
then the nodes communicate and learn the average of these read-values. How-
ever, to perform live monitoring, we need to constantly obtain a timely and
accurate picture of the ever-changing data. Running multiple iterations of
a single-shot algorithm is either inefficient (starting iterations with high fre-
quency) or inaccurate (starting them with a low frequency, or not allowing
the runs to converge). In Chapter 3 we tackle the problem of live monitoring
in a dynamic sensor network. This problem is particularly challenging due
to the dynamic nature of sensor networks, where nodes may fail and may
be added on the fly (churn), and the network topology may change due to
battery decay or weather change.

While average aggregation is useful in many scenarios, there are applica-
tions that call for a more elaborate summarization of the sensors’ readings. In
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the distributed clustering problem, numerous interconnected nodes compute
a clustering of their data, i.e., partition these values into multiple clusters,
and describe each cluster concisely.

We present in Chapter 4 a generic algorithm that solves the distributed
clustering problem and may be used in any connected topology, using differ-
ent clustering types. For example, the generic algorithm can be instantiated
to cluster values according to distance, targeting the same problem as the
famous k-means clustering algorithm. Since the distance criterion is often
not sufficient to provide good clustering results, we present an instantiation
of the generic algorithm that describes the values as a Gaussian Mixture (a
set of weighted normal distributions), and uses machine learning tools for
clustering decisions. Simulations show the robustness, speed and scalability
of this algorithm. We prove that any implementation of the generic algo-
rithm converges over any connected topology, clustering criterion and cluster
representation, in fully asynchronous settings.
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Chapter 3

LiMoSense

The subject of environmental monitoring is gaining increasing interest in
recent years. Live monitoring is necessary for research, and it is critical for
protecting the environment by quickly discovering fire outbreaks in distant
areas, cutting off electricity in the event of an earthquake, etc. In order to
perform these tasks, it is necessary to perform constant measurements in
wide areas, and collect this data quickly.

However, most previous solutions have focused on a static (single-shot)
version of the problem, where the average of a single input-set is calcu-
lated [72, 21, 87, 83]. Though it is in principle possible to perform live
monitoring using multiple iterations of such algorithms, this approach is not
adequate, due to the inherent tradeoff it induces between accuracy and speed
of detection. For further details on previous work, see Section 3.1. In this
chapter we tackle the problem of live monitoring in a dynamic sensor network.
This problem is particularly challenging due to the dynamic nature of sensor
networks, where nodes may fail and may be added on the fly (churn), and
the network topology may change due to battery decay or weather change.
The formal model and problem definition appear in Section 3.2.

In Section 3.3 we present our new Live Monitoring for Sensor networks
algorithm, LiMoSense. Our algorithm computes the average over a dynami-
cally changing collection of sensor reads. The algorithm has each node calcu-
late an estimate of the average, which continuously converges to the current
average. The space complexity at each node is linear in the number of its
neighbors, and message complexity is that of the sensed values plus a con-
stant. At its core, LiMoSense employs gossip-based aggregation [72, 87], with
a new approach to accommodate data changes while the aggregation is on-
going. This is tricky, because when a sensor read value changes, its old value
should be removed from the system after it has propagated to other nodes.
LiMoSense further employs a new technique to accommodate message loss,
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failures, and dynamic network behavior in asynchronous settings. This is
again difficult, since a node cannot know whether a previous message it had
sent over a faulty link has arrived or not.

In Section 3.4, we prove the correctness of the algorithm, showing that
once the network stabilizes, in the sense that no more value or topology
changes occur, LiMoSense eventually converges to the correct average, de-
spite message loss. Since the algorithm cannot tell if and when the network
has stabilized, it constantly converges to the current average.

To demonstrate the effectiveness of LiMoSense in various dynamic sce-
narios, we present in Section 3.5 results of extensive simulations, showing its
quick reaction to dynamic data read changes and fault tolerance. In order
to preserve energy, communication rates may be decreased, and nodes may
switch to sleep mode for limited periods. These issues are outside the scope
of this work.

In summary, this chapter makes the following contributions:

1. It presents LiMoSense, a live monitoring algorithm for highly dynamic
and error-prone environments.

2. It proves correctness of the algorithm, namely robustness and eventual
convergence.

3. It shows by simulation that LiMoSense converges exponentially fast in
well connected topologies, and demonstrates its efficiency and fault-
tolerance in dynamic scenarios.

A preliminary version of the work presented in this chapter appears in
the proceedings of the 7th International Symposium on Algorithms for Sen-
sor Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities
(ALGOSENSOR’11) [48].

3.1 Related Work

To gather information in a sensor network, one typically relies on in-network
aggregation of sensor reads. The vast majority of the literature on ag-
gregation has focused on obtaining a single summary of sensed data, as-
suming these reads do not change while the aggregation protocol is run-
ning [83, 72, 21, 87].

For obtaining a single aggregate, two main approaches were employed.
The first is hierarchical gathering to a single base station [83]. The hierar-
chical method incurs considerable resource waste for tree maintenance, and
results in aggregation errors in dynamic environments, as shown in [64].
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The second approach is gossip-based aggregation at all nodes. To avoid
counting the same data multiple times, Nath et al. [88] employ order and
duplicate insensitive (ODI) functions to aggregate inputs in the face of mes-
sage loss and a dynamic topology. However, these functions do not support
dynamic inputs or node failures. Moreover, due to the nature of the ODI
functions used, the algorithms’ accuracy is inherently limited – they do not
converge to an accurate value [50].

An alternative approach to gossip-based aggregation is presented by Kempe
et al. [72]. They introduce Push-Sum, an average aggregation algorithm, and
bound its convergence rate, showing that it converges exponentially fast in
fully connected networks where nodes operate in lock-step. Fangani and
Zampieri [49] analyze the exact convergence rate for a fully connected net-
work, and Boyd et al. [22] analyze this algorithm in an arbitrary topology.
Jelasity et al. [67] periodically restart the push-sum algorithm to handle
dynamic settings, trading off accuracy and bandwidth. Although these algo-
rithms do not deal with dynamic inputs and topology as we do, we borrow
some techniques from them. In particular, our algorithm is inspired by the
Push-Sum construct, and operates in a similar manner in static settings.
The aforementioned analyses therefore apply to our algorithm if and when
the system stabilizes.

We are aware of two approaches to aggregate dynamic inputs. The first,
by Birk et al. [18], is limited to unrealistic settings, namely a static topology
with reliable communication links, failure freedom, and synchronous oper-
ation. The second approach, called flow updates [69, 68, 5] also solves ag-
gregation in dynamic settings, overcoming message loss, dynamic topology
and churn, albeit in synchronous settings only, running in rounds. Though
the technique is illustrated to work in one simulation with dynamic inputs,
the correctness proof and analysis [5] cover static inputs only, and the paper
does not prove converge to the correct average in the face of message loss. Fi-
nally, Flow-Update requires maintaining the aggregate of the messages sent
on a link, resulting in an unbounded variable size, a challenge LiMoSense
overcomes.

Note that aggregation in sensor networks is distinct from other aggre-
gation problems, such as stream aggregation, where the data in a sliding
window is summarized. In the latter, a single system component has the
entire data, and the distributed aspects do not exist.
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3.2 Model and Problem Definition

3.2.1 Model

The system is comprised of a dynamic set of nodes (sensors), partially con-
nected by dynamic undirected communication links. Two nodes connected
by a link are called neighbors, and they can send messages to each other.
These messages either arrive at some later time, or are lost. Messages that
are not lost on each link arrive in FIFO order. Links do not generate or
duplicate messages.

The system is asynchronous and progresses in steps, where in each step
an event happens and the appropriate node is notified, or a node acts spon-
taneously. Spontaneous steps occur infinitely often. In a step, a node may
change its internal state and send messages to its neighbors.

Nodes can be dynamically added to the system, and may fail or be re-
moved from the system (churn). The set of nodes at time t is denoted N t and
their number nt. The system state at time t consists of the internal states
of all nodes in N t, and the links among them. When a node is added (init
event), it is notified, and its internal state becomes a part of the system state.
When it is removed (remove event), it is not allowed to perform any action,
and its internal state is removed from the system state.

Each sensor has a time varying data read in R. A node’s initial data read
is provided as a parameter when it is notified of its init event. This value
may later change (change event) and the node is notified with the newly read
value. For a node i in N t, we denote1 by rti , the latest data read provided
by an init or change event at that node before time t.

Communication links may be added or removed from the system. A node
is notified of link addition (addNeighbor event) and removal (removeNeighbor
event), given the identity of the link that was added or removed. We call
these topology events2. For convenience of presentation, we assume that ini-
tially, nodes have no links, and they are notified of their neighbors by a series
of addNeighbor events. We say that a link (i, j) is up at step t if by step
t, both nodes i and j had received an appropriate addNeighbor notification
and no later removeNeighbor notification. Note that a link (i, j) may be
half-up in the sense that the node i was notified of its addition but node j
was not, or if node j had failed.

A node may send messages on a link only if the last message it had

1For any variable, the node it belongs to is written in subscript and, when relevant,
the time is written in superscript.

2There is a rich literature dealing with the means of detecting failures, usually with
timeouts. This subject is outside the scope of this work.
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received regarding the state of the link is addNeighbor. If this is the case,
the node may also receive a message on the link (receive event).

3.2.1..3 Global Stabilization Time We define global stabilization time,
GST, to be the first time from which onward the following properties hold:
(1) The system is static, i.e., there are no change, init, remove, addNeighbor
or removeNeighbor events. (2) If the latest topology event a node i ∈ NGST

has received for another node j is addNeighbor, then node j is alive, and
the latest topology event j has received for i is also addNeighbor (i.e., there
are no half-up links). (3) The network is connected. (4) If a link is up after
GST, and infinitely many messages are sent on it, then infinitely many of
them arrive.

3.2.2 The Live Average Monitoring Problem

We define the read average of the system at time t asRt ∆
= 1
|N t|

∑
i∈N t rti . Note

that the read average does not change after GST. Our goal is to have all nodes
estimate the read average after GST. More formally, an algorithm solves the
Live Average Monitoring Problem if it gets time-varying data reads as its
inputs, and has nodes continuously output their estimates of the average,
such that at every node in NGST, the output estimate converges to the read
average after GST.

3.2.2..4 Metrics We evaluate live average monitoring algorithms using
the following metrics: (1) Mean square error, MSE, which is the mean of the
squares of the distances between the node estimates and the read average;
and (2) ε-inaccuracy, which is the percentage of nodes whose estimate is off
by more than ε.

3.3 The LiMoSense Algorithm

In Section 3.3.1 we describe a simplified version of the algorithm for dy-
namic inputs but static topology and no failures. This simplified version
demonstrates our novel approach for handling dynamic inputs. However,
this simplified version is unable to accommodate topology changes, churn,
and message loss. To overcome these, we present in Section 3.3.2 a robust
algorithm, in which each node maintains for each of its links a summary of
the data communicated over that link thereby enabling it to recover after
these changes. These summaries, however, are aggregates of all exchanges
on the links, and their size grows unboundedly. In Section 3.3.3, we describe
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Algorithm 1: Failure-Free Dynamic Algorithm
1 state
2 (esti, wi) ∈ R2

3 prevReadi ∈ R

4 on initi(initVal)
5 (esti, wi)← (initVal, 1)
6 prevReadi ← initVal

7 on receivei((vin, win)) from j
8 (esti, wi)← (esti, wi)⊕ (vin, win)

9 periodically sendi()
10 Choose a neighbor j uniformly at random.
11 wi ← wi/2
12 send ((esti, wi)) to j

13 on changei(newRead)
14 esti ← esti + 1

wi
· (newRead− prevReadi)

15 prevReadi ← newRead

the complete LiMoSense algorithm, which also implements a clearing mech-
anism that results in bounded sizes of all its variables and messages, without
resorting to atomicity or synchrony assumptions.

3.3.1 Failure-Free Dynamic Algorithm

We begin by describing a version of the algorithm that handles dynamically
changing inputs, but assumes no message loss or link or node failures. The
pseudocode is shown in Algorithm 1.

The base of the algorithm operates like Push-Sum [72, 21]: Each node
maintains a weighted estimate of the read average (a pair containing the esti-
mate and a weight), which is updated as a result of the node’s communication
with its neighbors. As the algorithm progresses, the estimate converges to
the read average.

In order to accommodate dynamic reads, a node whose read value changes
must notify the other nodes. It not only needs to introduce the new value,
but also needs to undo the effect of its previous read value, which by now
has partially propagated through the network.

The algorithm often requires nodes to merge two weighted values into
one. They do so using the weighted value sum operation, which we define
below and concisely denote by ⊕. Subtraction operations will be used later,
they are denoted by 	 and are also defined below. The ⊕ and 	 operations
are undefined when the sum (resp. difference) between the weights of the
operands is zero. We note that the ⊕ operation is commutative and both
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operations are associative.

(va, wa)⊕ (vb, wb)
∆
= (

vawa + vbwb
wa + wb

, wa + wb) . (3.1)

(va, wa)	 (vb, wb)
∆
= (va, wa)⊕ (vb,−wb) . (3.2)

The state of a node (lines 2–3) consists of a weighted value, (esti, wi),
where esti is an output variable holding the node’s estimate of the read
average, and the value prevReadi of the latest data read. We assume at
this stage that each node knows its set of neighbors. We shall remove this
assumption later, in the robust LiMoSense algorithm.

Node i initializes its state on its init event. The data read is initialized
to the given value initVal, and the estimate is (initVal, 1) (lines 5–6).

The algorithm is implemented with the functions receive and change,
which are called in response to events, and the function send, which is called
periodically.

Periodically, a node i shares its estimate with a neighbor j chosen uni-
formly at random (line 10). It transfers half of its estimate to node j by
halving the weight wi of its locally stored estimate and sending the same
weighted value to that neighbor (lines 11-12). When the neighbor receives
the message, it merges the accepted weighted value with its own (line 8).
Nodes keep their weights larger than some small arbitrary size q, by per-
forming a send only if the node’s weight is larger than 2q. A small value of q
therefore increases the weight sending frequency among nodes, but it does
not affect the accuracy of estimation.

Correctness of the algorithm in static settings follows from two key obser-
vations. First, safety of the algorithm is preserved, because the system-wide
weighted average over all weighted-value estimate pairs at all nodes and all
communication links is always the correct read average; this invariant is pre-
served by send and receive operations. Thus, no information is ever “lost”.
Second, the algorithm’s convergence follows from the fact that when a node
merges its estimate with that received from a neighbor, the result is closer
to the read average.

We proceed to discuss the dynamic operation of the algorithm. When
a node’s data read changes, the read average changes, and so the estimate
should change as well. Let us denote the previous read of node i by rt−1

i

and the new read at step t by rti . In essence, the new read, rti , should be
added to the system-wide estimate with weight 1, while the old read, rt−1

i ,
ought to be deducted from it, also with weight 1. But since the old value has
been distributed to an unknown set of nodes, we cannot simply “recall” it.
Instead, we make the appropriate adjustment locally, allowing the natural
flow of the algorithm to propagate it.
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We now explain how we compute the local adjustment. The system-wide
estimate should shift by the difference between the read values, factored
by the relative influence of a single sensor, i.e., 1/n. So an increase of x
increases the system-wide estimate by x/n. However, when a node’s read
value changes, its estimate has an arbitrary weight of w, so we need to factor
the change of its value by 1/w to obtain the required system-wide shift.
Therefore, in response to a change event at time t, if the node’s estimate
before the change was estt−1

i and its weight was wt−1
i , then the estimate is

updated to (lines 14-15)

estti = estt−1
i + (rti − rt−1

i )/wt−1
i .

Note that the value of nt does not appear in the equation, as it is unknown
to any of the nodes.

3.3.2 Adding Robustness

Overcoming failures is challenging in an asynchronous system, where a node
cannot determine whether a message it had sent was successfully received.
In order to overcome message loss and link and node failure, each node main-
tains a summary of its conversations with each of its neighbors. Each node i
maintains the aggregates (as weighted sums) of the messages received from
and sent to node j in the variables receivedTotali(j) and sentTotali(j), respec-
tively. Nodes interact by sending and receiving these summaries, rather than
weighted values as in the failure-free algorithm. The data in each message
subsumes all previous value exchanges on the same link. Thus, if a message
is lost, the lost data is recovered once an ensuing message arrives. When a
link fails, the nodes at both of its ends use the summaries to retroactively
cancel the effect of all the messages ever transferred over it. A node failure
is treated as the failure of all its links. The resulting algorithm, whose pseu-
docode is given in Algorithm 2, is robust to message loss, link failure, and
churn.

To send, node i adds to sentTotali(j) the weighted value it wants to
send, and sends sentTotali(j) to j (lines 18–20). When receiving this mes-
sage, node j calculates the newly received weighted value by subtracting its
receivedTotali(j) variable from the newly received aggregate (line 22). After
acting on the received message (line 23), node j replaces its receivedTotal
variable with the new weighted value (line 24). Thus, if a message is lost,
the next received message compensates for the loss and brings the receiving
neighbor to the same state it would have reached had it received the lost
messages as well. Whenever the most recent message on a link (i, j) is cor-
rectly received and there are no messages in transit, the value of sentTotalji
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Algorithm 2: Robust Dynamic Algorithm with Unbounded State
1 state
2 (esti, wi) ∈ R2

3 prevReadi ∈ R
4 neighborsi ⊂ N, initially ∅
5 sentTotali : N→ R2, initially ∀j : sentTotali(j) = (0, 0)

6 receivedTotali : N→ R2, initially ∀j : receivedTotali(j) = (0, 0)

7 (unrecvVali, unrecvWeighti) ∈ R2, initially (0, 0)

8 on initi(initVal)
9 (esti, wi)← (initVal, 1)

10 prevReadi ← initVal

11 periodically sendi()
12 Choose a neighbor j uniformly at random.
13 if wi >= 2q then
14 wtoUnsend ← max(unrecvWeighti, wi − q)
15 (esti, wi)← (esti, wi)	 (unrecvVali, wtoUnsend)
16 unrecvWeighti ← unrecvWeighti − wtoUnsend

17 if wi >= 2q then
18 sentTotali(j)← sentTotali(j)⊕ (esti, wi/2)
19 (esti, wi)← (esti, wi/2)

20 send sentTotali(j) to j

21 on receivei(vin, win) from j
22 diff← (vin, win)	 receivedTotali(j)
23 (esti, wi)← (esti, wi)⊕ diff
24 receivedTotali(j)← (vin, win)

25 on changei(rnew)
26 esti ← esti + 1

wi
· (rnew − prevReadi)

27 prevReadi ← rnew

28 on addNeighbori(j)
29 neighborsi ← neighborsi ∪ {j}
30 on removeNeighbori(j)
31 (esti, wi)← (esti, wi)⊕ sentTotali(j)
32 (unrecvVal, unrecvWeight)← (unrecvVal, unrecvWeight)⊕ receivedTotali(j)
33 neighborsi ← neighborsi \ {j}
34 sentTotali(j)← (0, 0)
35 receivedTotali(j)← (0, 0)

is identical to the value of receivedTotalij. In order to overcome message loss,
a node i sends its summary to its neighbor j even if its current weight is
smaller than 2q, and the message carries no new information.

Upon notification of topology events, nodes act as follows. When noti-
fied of an addNeighbor event, a node simply adds the new neighbor to its
neighbors list (line 29). When notified of a removeNeighbor event, a node
reacts by nullifying the effect of this link, clearing the state variables, re-
moving the neighbor from its neighbors list, and discarding its link records
(lines 31–35). The effects of sent and received messages are summarized in
the respective sentTotal and receivedTotal variables. When a node i discovers
that link (i, j) failed, it adds the outgoing link summary sentTotalji to its es-
timate, thus cancelling the effect of ever having sent anything on the link. In
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order to prevent its estimate weight from becoming negative, receivedTotalji
is not immediately subtracted from the estimate. Instead, the node adds
the incoming link summary receivedTotalji to a buffer, the weighted value
(unrecvVal, unrecvWeight) and lazily subtracts it from its estimate, preserv-
ing the estimate weight positive (lines 13–16). The node thus cancels the
effect of everything it has received from that neighbor.

After a node joins the system or leaves it, its neighbors are notified of the
appropriate topology events, adding links to the new node, or removing links
to the failed one. Thus, when a node fails, any part of its read value that
had propagated through the system is annulled, and it no longer contributes
to the system-wide estimate.

3.3.3 LiMoSense

The summary approach of Algorithm 2 causes summary sizes, namely the
weights of receivedTotali(j) and sentTotali(j), to increase unboundedly as
the algorithm progresses. To avoid that, we devise a channel reset mecha-
nism that prevents this without resorting to synchronization assumptions.
Instead of storing the aggregates of all received and sent weights, we store
only their difference, which can be bounded, and we store the received and
sent aggregates only for limited epochs, thereby bounding them as well.

The result is the full LiMoSense algorithm, shown as Algorithms 3–4,
where the state information of Algorithm 2 is replaced with a more elaborate
scheme. Messages are aggregated in epochs, and the aggregate is reset on
epoch change. Epochs are defined per node, per link, and per direction, and
are identified by binary serial numbers, so each node maintains an incoming
and an outgoing serial number per link. Node i maintains for its link with
node j the serial numbers inSNi(j) and outSNi(j) for the incoming and outgo-
ing weights, respectively. Epochs on different directed links are independent
of each other. Neighboring nodes reset their aggregates for their connect-
ing directed link and proceed to the next epoch after reaching consensus on
the aggregate values sent in the current epoch. This approach is similar to
the classical stop-and-wait message exchange protocol [100]. However, here
the receiving end of the link initiates the transition to the next epoch, after
receiving multiple messages. Intuitively, the stop-and-wait is performed for
the ACKs, each of which acknowledges a set of weight transfers.

For a link (i, j), node i maintains in senti(j) and receivedi(j) the aggregate
sent and received values in the current epoch (rather than the entire history
as in the failure-free algorithm). In addition, it maintains in totalDiffi(j) the
difference between the sent and received aggregates over the entire history.

A channel reset for a link (i, j) is initiated by the receiver j when it notices
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Algorithm 3: LiMoSense – part 1
1 state
2 (esti, wi) ∈ R2

3 prevReadi ∈ R
4 neighborsi ⊂ N, initially ∅
5 totalDiffi : N→ R2, initially ∀j : totalDiffi(j) = (0, 0)

6 (unrecvVali, unrecvWeighti) ∈ R2, initially (0, 0)

7 senti : N→ R2, initially ∀j : senti(j) = (0, 0)
8 outSNi : N→ {0, 1}, initially ∀j : outSNi(j) = (0, 0) (Serial number of outgoing messages)

9 receivedi : N→ R2, initially ∀j : receivedi(j) = (0, 0)
10 inSNi : N→ {0, 1}, initially ∀j : inSNi(j) = 0 (Expected serial number of incoming

messages)

11 clearedi : N→ R2, initially ∀j : clearedi(j) = (0, 0) (Weight received with previous serial
number)

12 on initi(initVal)
13 (esti, wi)← (initVal, 1)
14 prevReadi ← initVal

15 periodically sendi()
16 Choose a neighbor j uniformly at random.
17 if wi >= 2q then
18 wtoUnsend ← max(unrecvWeighti, wi − q)
19 (esti, wi)← (esti, wi)	 (unrecvVali, wtoUnsend)
20 unrecvWeighti ← unrecvWeighti − wtoUnsend

21 if wi >= 2q and weight of totalDiffi(j) > −2 · bound and weight of senti(j) < 2 · bound
then

22 senti(j)← senti(j)⊕ (esti, wi/2) (sentTotali(j)← sentTotali(j) + (esti, wi/2))
23 totalDiffi(j)← totalDiffi(j)	 (esti, wi/2)
24 (esti, wi)← (esti, wi/2)

25 send (senti(j), outSNi(j), inSNi(j)− 1 mod 2, clearedi(j)) to j (Ack cleared vals and serial
of previous epoch)

26 on receivei((vin, win),msgSN, clearSN, clearVal) from j
27 if clearSN = outSNi(j) then (Relevant clear)
28 outSNi(j)← outSNi(j) + 1 mod 2
29 senti(j)← senti(j)	 clearVal (sentClearedi(j)← sentClearedi(j) + clearVal)

30 if msgSN = inSNi(j) then (Relevant message)
31 diff← (vin, win)	 receivedi(j)
32 (esti, wi)← (esti, wi)⊕ diff
33 totalDiffi(j)← totalDiffi(j)⊕ diff
34 receivedi(j)← (vin, win) (receivedTotali(j)← receivedTotali(j) + diff)

35 if (weight of receivedi(j)) > bound then (Reset the channel)
36 inSNi(j)← inSNi(j) + 1 mod 2
37 clearedi(j)← receivedi(j)

(receivedClearedi(j)← receivedClearedi(j) + receivedi(j))
38 receivedi(j)← (0, 0)

that the weight in receivedi(j) reaches a certain threshold (line 35). Node j
then (1) increments modulo 2 the serial number on that link, (2) adds the
aggregate received values in the completed epoch to its totalDiffi(j) summary
of the link, and (3) clears the aggregate by storing receivedi(j) in clearedi(j)
and setting receivedi(j) to zero (lines 36–38). Node j will not accept future
messages for the previous serial number — it will simply ignore them. On its
next send to i (in the inverse direction), node j’s message will update i about
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Algorithm 4: LiMoSense – part 2
39 on changei(rnew)
40 esti ← esti + 1

wi
· (rnew − prevReadi)

41 prevReadi ← rnew

42 on addNeighbori(j)
43 neighborsi ← neighborsi ∪ {j}
44 inSNi(j)← 0
45 outSNi(j)← 0

46 on removeNeighbori(j)
47 if Weight of totalDiffi(j) < 0 then
48 (esti, wi)← (esti, wi)	 totalDiffi(j)
49 else
50 (unrecvVali, unrecvWeighti)← (unrecvVali, unrecvWeighti)⊕ totalDiffi(j)
51 neighborsi ← neighborsi \ {j}
52 totalDiffi(j)← (0, 0) (receivedClearedi(j)← (0, 0), sentClearedi(j)← (0, 0))
53 senti(j)← (0, 0)
54 receivedi(j)← (0, 0)
55 clearedi(j)← (0, 0)

the epoch reset by sending the index and final aggregate of the completed
epoch (line 25).

When notified of the channel reset, the sender resets the aggregate for
that channel, and increases modulo 2 the serial number as well. Note that i
may have sent messages with the old serial number after the receiver reset the
link, but these messages are ignored by j. To prevent this weight from being
lost, node i does not reset its aggregate to zero, but rather to the aggregate
of messages sent with the old serial number but not cleared (line 29).

Upon notification of topology events, nodes act as follows. When notified
of an addNeighbor event, a node adds the new neighbor to its neighbors list
and resets the epoch serial numbers for the link (lines 43–45). When notified
of a removeNeighbor event, a node removes the neighbor from its neighbors
list and discards its link records. Additionally, it subtracts totalDiff from
its estimate, thus cancelling the effect of ever having communicated over the
link. Unlike Algorithm 2, we cannot separate here the sent from the received
weights. To prevent the estimate weight from being negative, we check if
the weight in totalDiff is positive. If it is, we add to an aggregate buffer
(unrecvVal, unrecvWeight), which is later subtracted in stages from totalDiff
(on send events), as before.

We follow in comments the behavior of four virtual variables, the to-
tal sent and received aggregates in sentTotali(j) and receivedTotali(j), re-
spectively, and the aggregates of everything that was ever cleared from
senti(j) and receivedi(j) in sentClearedi(j) and receivedClearedi(j), respec-
tively. These virtual variables all grow unboundedly as the algorithm pro-
gresses and we will use them for proving correctness in Section 3.4.
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3.4 Correctness

In this section, we show that the LiMoSense algorithm (Algorithms 3–4)
adapts to network topology as well as value changes and converges to the
correct average. We start in Section 3.4.1 by proving that when there are no
half-up links, a combination of the system’s variables equals the read sum.
Then, in Section 3.4.2, we prove that after GST the estimates at all nodes
eventually converge to the average of the latest read values.

3.4.1 Invariant

We denote by (Rt, nt) the read sum at time t, as shown in Equation 3.3.

(Rt, nt) =
n⊕
i=1

(rti , 1) (3.3)

We denote by (Et, n) the weighted sum over all nodes at time t of their
(1) weighted values, (2) outgoing link summaries in their sent variables,
(3) the inverse of their incoming summaries in their received variables, and
(4) the latest cleared received aggregate, if their neighbor has not yet received
the reset message. The sum is shown in Equation 3.4

(Et, nt) =
n⊕
i=1


(estti, w

t
i)	 (unrecvValti, unrecvWeightti)⊕

⊕
⊕

j∈neighborsti

(
sentti(j)	 receivedti(j)

)
	
⊕

j ∈ neighborsti s.t.

inSNt
i(j) 6=

outSNt
j(i)

clearedti(j)

 (3.4)

We show that if there are no half-up links in the system (each link is
known to be up or down by both its nodes), then Rt = Et.

Lemma 1. For any time t, if for any nodes i and j, either j ∈ neighborsti∧i ∈
neighborstj or j 6∈ neighborsti ∧ i 6∈ neighborstj, then Rt = Et.

We begin by analyzing the effect of communication steps, then of dynamic
steps, and then conclude by proving the statement.

Static Behavior

First, we consider send and receive events. Note that message loss is not
an event and does not affect the state of the system. In particular, it does
not affect the correctness of this lemma or the following ones.
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Lemma 2 (Static operations). If step t is either send or receive at some
node i, then Rt − Et = Rt−1 − Et−1 .

Proof. First, consider a send step. If the weight in i is below the threshold
of 2q, no variables are changed (lines 17 and 21), so the lemma trivially holds.
If the weight is above the threshold, then a certain weight is subtracted from
the pairs (unrecvValt−1

i , unrecvWeightt−1
i ) and (estt−1

i , wt−1
i ) (lines 18– 20).

Since the two pairs appear with opposite signs in Equation 3.4, the value of
E is unchanged. If the weight in i is still above the threshold of 2q, then
the weighted value (estt−1

i , 1
2
wt−1
i ) is subtracted from the weighted value of

node i, and added to sentji , again leaving (Et, n) according to Equation 3.4
unchanged.

Next consider a receive step. Lines 27–29 handle the outgoing link to
j. If the message’s clearSN is the same as the current outSNi(j) (line 27),
it causes a reset. Node i reacts by resetting senti(j) and incrementing
outSNi(j). Incrementing outSNi(j) makes it equal to its counterpart inSNj(i),
removing the negative clearedj(i) element from the sum in Equation 3.4. De-
creasing senti(j) by the same value, leaves Et in Equation 3.4 unchanged.

Next, if the incoming message carries the appropriate serial number, the
incoming value (deducting the previously received value from the incoming
aggregate) is added to the weighted value of node j, and the same weighted
value is added to receivedij. Since the latter is subtracted in Equation 3.4,
this leaves (Et, n) unchanged.

Finally, if the weight in the incoming message is too high, the receiver ini-
tiates a channel reset. Note that the incoming message serial number equals
outSNj(i). The node increments inSNi(j), causing clearedi(j) to be counted
in the sum, since after the change it becomes different than outSNj(i). Then
it stores the value of receivedi(j) in clearedi(j), and nullifies receivedi(j), both
with negative sign in Equation 3.4, leaving (Et, n) unchanged.

None of these events changes the read sum, therefore, since neither the
read sum nor (Et, n) change, Rt − Et = Rt−1 − Et−1

Dynamic Values

When the value read by node i changes from rt−1
i to rti , the node updates its

estimate in a manner that changes (E, n) correctly, as shown in the following
lemma.

Lemma 3 (Read value change). If step t is change at node i, then Rt−Et =
Rt−1 − Et−1
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Proof. After the change of the read value, the new read average is Rt =

Rt−1 +
rti−r

t−1
i

nt−1 , and the weighted value3
(

estt−1
i +

rti−r
t−1
i

wi
, wi

)
replaces the

weighted value of node i. We show that the new (E, n) changes just like the
read sum:

(Et, nt) = (Et−1, nt−1)	
(
estt−1

i , wt−1
i

)
⊕

⊕
(

estt−1
i +

rti − rt−1
i

wt−1
i

, wt−1
i

)
=

= (Et−1 +
rti − rt−1

i

nt−1
, nt−1) ,

leaving the difference between R and E unchanged.

Dynamic Topology

When a link is added, the node adding it starts to keep track of the messages
passed on the link. When a link is removed, the node retroactively cancels
the messages that passed through this link, as if it never existed. In both
cases, both Et and Rt are unchanged, as we now show.

Lemma 4 (Dynamic Topology). If step t is addNeighbor at node i, then
Rt − Et = Rt−1 − Et−1, and if the link between nodes i and j fails and its
nodes receive removeNeighbor at times ti and tj (respectively), with ti < tj,
then

(Eti , nti)− (Eti−1, nti−1) = (Etj−1, ntj−1)− (Etj , ntj) .

Proof. The addNeighbor function does not affect the read sum or Et, so the
claim holds. We proceed to handle link failure. When the failure is discovered
at ti by i, the weighted value totalDifft−1

i (j) is subtracted from esti or added to
(unrecvVali, unrecvWeighti) at node i, and the variables senti(j), receivedi(j)
and clearedi(j) are nullified. The same happens in j at tj.

We note that totalDiffi(j) does not directly appear in Equation 3.4.
We decompose totalDiffi(j) to the difference between the virtual variables
receivedTotali(j) and sentTotali(j), defined above.

totalDiffi(j) = receivedTotali(j)	 sentTotali(j) .

We also note that summing virtual variables sentClearedi(j) and receivedClearedi(j),
together with the real variables senti(j) and receivedi(j) (respectively) re-
sults in sentTotali(j) and receivedTotali(j), respectively. Therefore, when

3Note that the weight at a node never drops below q, so the expression is valid.
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subtracting totalDiffi(j) in i’s side, we subtract

totalDiffi(j) = receivedTotali(j)	 sentTotali(j) =

= receivedClearedi(j)⊕ receivedi(j)	
	 sentClearedi(j)	 senti(j) .

Now, the receivedi(j) and senti(j) cancel each other on i’s side, as they
are subtracted and added (respectively) directly (lines 53–54) when clearing
totalDiffi(j) (line 52).

On the other hand, receivedClearedi(j) and sentClearedi(j) must be can-
celed by an inverse change on j’s side. Note that if inSNi(j) = outSNj(i),
we have receivedClearedi(j) = sentClearedj(i), and clearedi(j) is not counted
in Equation 3.4, whereas if inSNi(j) 6= outSNj(i) then clearedi(j) is counted,
and we have receivedClearedi(j) + clearedi(j) = sentClearedj(i). In both
cases, the change is canceled, i.e., inverse weighted values are subtracted
from/added to est and (unrecvVal, unrecvWeight) (respectively) at ti and tj,
and the equation in the lemma holds.

Dynamic Node Set

When a node is added, its state is added to the system. When it is removed,
its state is removed.

Lemma 5 (Dynamic Node Set). If step t is init or remove, then Rt−Et =
Rt−1 − Et−1

Proof. An addition of a node i with initial estimate rti results in (Rt, nt) =
(Rt−1, nt−1) ⊕ (rti , 1) and (Et, nt) = (Et−1, nt−1) ⊕ (rti , 1), so their difference
is unchanged at step t.

We model the failure of a node i as the failure of all its links, followed by
its removal from the system. The failure of the links leaves i with its most
recent read value and a weight of one, (rt−1

i , 1), and all other state variables
empty (totalDiffi(j), senti(j), etc.), with (Et, n) unchanged.

Removing the node thus results in (Rt, nt) = (Rt−1, nt−1)	 (rt−1
i , 1) and

(Et, nt) = (Et−1, nt−1)	 (rt−1
i , 1), so their difference is unchanged at step t.

We are now ready to prove Lemma 1.

Proof. Initially, at t = 0, the claim holds, since for any node i, the component
of the read sum is identical to that of Et: (rti , 1) = (estti, 1).

According to Lemmas 2–5, the difference between Rt and Et changes only
due to link failure events. Since there are no half-up links, then if a node i
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detected the failure of its link with j before t, then j has also detected the
failure of the link before t. Lemma 4 shows that the resulting operations by i
and j compensate each other, resulting in the required equality at t.

3.4.2 Convergence

We show that after GST the estimate at all nodes converges to the read
average. Since after GST messages are not lost, we can simplify our proof by
abstracting away the fact that messages contain aggregated values; instead,
we consider each message to deliver only the delta from the previous one, as
translated in the code to the diff variable upon receipt (line 31).

First, we prove in Section 3.4.2.a that connected nodes send each other
values infinitely often. Then, in Section 3.4.2.b, we define the tracking of the
propagation of the weighted value from a node i at time t at any time later
time. We proceed to show in Section 3.4.2.c that there exists a time t′ after t
such that the ratio of the weight propagated to any node j from any node i,
relative to the total weight at j, is bounded from below. In Section 3.4.2.d
we construct a series of such times, where in each time tx the values from tx−1

have propagated and match this bound. This allows us to prove convergence,
as required.

3.4.2.a Fair Scheduling

We begin by proving the following lemma.

Lemma 6. every node sends weight to each of its neighbors infinitely often.

Proof. We prove by contradiction. Assume that a node i never sends a
message to its neighbor j. Since neighbors are chosen infinitely often (we
assume a fair scheduler and neighbors are chosen uniformly at random), this
means the condition of line 21 evaluates to false.

The last part of the condition may evaluate to false only if weight was
sent to j but not received. Once this weight is received, node j changes
epochs (line 36–38), which will reset senti(j) once the next message arrives
from j to i, and the condition will evaluate to true.

Therefore, either the first or the second part of the condition do not
hold. Assume first that the first part does not hold, i.e., the weight in i is
always smaller than 2q. This means that none of i’s neighbors ever sends it
weight (from some time). Otherwise, eventually unrecvWeighti would drop
to zero, and subsequently esti would rise above zero. Assume that none of
i’s neighbors ever sends it weight also due to their weights being smaller
than 2q, and continue similarly, i.e., all nodes in the system hold a weight
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smaller than 2q. Since the entire weight in the est variables is at least n
(possibly more, if nodes have non-zero unrecvWeight variables)), at least one
node must hold a weight larger than one, i.e., larger than 2q, and we reach
a contradiction.

Maintaining our initial assumption, we conclude that there exists some
node i that never sends weight to a neighbor j since the second part of the
condition holds, i.e., it already sent to j much more than it got back. Once a
message from i successfully reaches j, the value of j’s totalDiffj(i) is correctly
updated to −totalDiffi(j), so it is positive. Therefore the second part of the
condition is true in j. However, if j sends weight to i, the value of totalDiffi(j)
eventually becomes positive, contradicting our assumption, and we conclude
that j stops sending weight at some point, since its weight never rises above
2q. For that to happen, j must not receive weight from any of its neighbors.
So each of j’s neighbors either has a weight less than 2q, or has already sent
to j more than it got back. If all of j’s neighbors (including i) have sent it
more than they got back, than j’s weight would be more than 2q, which we
already ruled out. Therefore at least one neighbor k received from j more
than it sent, but it does not send weight to j because its own (k’s) weight is
too small. Now, the same logic that held for j holds for k, and we continue
this, forming a chain of nodes. Each node in the chain holds a weight smaller
than 2q. At the end of such a chain (and there is an end, since the number
of nodes is finite) there is a node z that does not send weight to any of its
neighbors, but has received from each of them more weight than it has sent.
The weight at node z is therefore larger than one, and its totalDiff for all its
neighbors is positive, So the condition in line 21 holds, and it should have
sent weights to its neighbors, leading to a contradiction.

After GST, no links failures are detected. Since weights are sent infinitely
often between neighbors by Lemma 6, we conclude that there exists a time
GST ≥ GST after which the unrecvWeight variables at all nodes are zero:

Definition 1 (GST). The time GST is a time after which for all i ∈ NGST

and for all t > GST: unrecvWeightti = 0.

3.4.2.b Propagation Tracking

We explain how to track the propagation of the weighted value from a node i
as of some time t > GST. The definition recursively defines two components
maintained at each node k: The prop component, (estti, w

t′

k,prop), which is the
propagation of i’s weighted value at t to k at t′, and the agg component,
(estt

′

k,agg, w
t′

k,agg), which is the aggregation from all nodes but i. The prop
component is called the component of estti at node k at time t′. Though these
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definitions depend on i and t, we fix i and t and omit them, to make the
expressions cleaner.

Definition 2 (Propagation tracking). Initially, at t, at all nodes k 6= i, agg
is the weighted value (esttk, w

t
k), and prop is (0, 0). At node i, agg is (0, 0)

and prop is (estti, w
t
i).

For all steps t′ > t:

1. If the operation at t′ is a send at node k, then

(estt
′

k,agg, w
t′

k,agg) = (estt
′−1
k,agg, w

t′−1
k,agg/2)

and
(estti, w

t′

k,prop) = (estti, w
t′−1
k,prop/2)

and the message sent is partitioned:

(estt
′−1
k,agg, w

t′−1
k,agg/2)⊕ (estti, w

t′−1
k,prop/2) .

2. If the operation at t′ is a receive at node k of a message (vin, win)
partitioned to (estin,agg, win,agg) and (estti, win,prop) components, then

(estt
′

k,agg, w
t′

k,agg) = (estt
′−1
k,agg, w

t′−1
k,agg)⊕ (estin,agg, win,agg)

and
(estti, w

t′

k,prop) = (estti, w
t′−1
k,prop)⊕ (estti, win,prop) .

It can be readily seen that the agg and prop components partition the
weighted value at the node k at all times t′ ≥ t:

(estt
′

k , w
t′

k ) = (estt
′

k,agg, w
t′

k,agg)⊕ (estti, w
t′

k,prop) .

We define the component ratio of node i at a node k to be the ratio
between i’s prop component in k and the total weight at k:

Definition 3 (Component ratio). The component ratio of estti at node k at
t′ > t is

wt
′

k,prop

wt
′
k,prop + wt

′
k,agg

=
wt
′

k,prop

wt
′
k

.
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3.4.2.c Bounded Ratio

We proceed to prove that for any time t after GST, eventually each node has
a component of estti with a ratio that is bounded from below.

Denote by M s
i the set of nodes with an estti component at time s > t.

Denote by wMs
i

the sum of weights at the nodes in M s
i and in messages sent

from nodes in M s′
i with s′ < s and not yet received.

Lemma 7. Given two times s and t s.t. s > t > GST, at all nodes in M i
s,

the estti component ratio is at least

(
q

wMs
i

)wMs
i
/q

.

Proof. We prove by induction on the steps taken from t. We omit the i
superscript for M i hereinafter.

At time t the only node with an estti component is i with a ratio of
one, and the invariant holds. Consider the system at time s, assuming the
invariant holds at s− 1. We show that after any of the possible events at s,
the invariant continues to hold.

1. Send: No effect on the invariant. The ratio at the sender stays the
same, and wM is unchanged.

2. Receive from j 6∈M s−1
i by k 6∈M s−1

i : No effect on the invariant since
no nodes in M are concerned.

3. Receive from j ∈M s−1
i by k 6∈M s−1

i : Two things change: (1) wMs
i

=

wMs−1
i

+ws−1
k and (2) k becomes a part of Mi. The first change decreases

the lower bound, therefore the assumption holds at s for all nodes in
M s−1. Denote by α the ratio at j when it sent the message. According

to the induction assumption, α ≥
(

q
w

Ms−1
i

)w
Ms−1

i
/q

. The new ratio at

k is minimal when the weight of the received message is minimal (i.e.,
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q). Therefore, the ratio at k, which is now also in Mi, is at least

α · q

ws−1
k

induction
hypothesis

≥

≥

(
q

wMs−1
i

)w
Ms−1

i
/q

q

ws−1
k

ws−1
k
q

> 1

>

>

(
q

wMs−1
i

)w
Ms−1

i
/q (

q

ws−1
k

)ws−1
k /q

>

>
q

w
Ms−1

i

+ws−1
k

q

(wMs−1
i

+ ws−1
k )

w
Ms−1

i
q (wMs−1

i
+ ws−1

k )
ws−1
k
q

=

=

(
q

wMs−1
i

+ ws−1
k

)w
Ms−1

i

+ws−1
k

q

=

=

(
q

wMs
i

)wMs
i
/q

.

We conclude that the ratio at all the nodes in Ms is larger than the
bound at s.

4. Receive from j 6∈M s−1
i by k ∈M s−1

i : Denote the weight of the mes-
sage by win. Two things change: (1) wMs

i
= wMs−1

i
+ win and (2) the

ratio at k. The change of wMi
decreases the bound, therefore the as-

sumption holds at s for all nodes other than k. The relative weight at k

before receiving is at least

(
q

w
Ms−1

i

)w
Ms−1

i
/q

. Therefore, after receiving

the message, it is at least(
q

wMs−1
i

)w
Ms−1

i
/q

· q

q + win

>

>

(
q

wMs−1
i

+ win

)w
Ms−1

i

+win

q

=

=

(
q

wMs
i

)wMs
i
/q

.
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We conclude that the ratio at all the nodes in Ms is larger than the
bound at s.

5. Receive from j ∈M s−1
i by k ∈M s−1

i : The ratio does not decrease be-
low the minimum between the ratios in j and k, therefore the invariant’s
correctness follows directly from the induction hypothesis.

Lemma 8. For any time t > GST and node i, there exists a time t′ > t after

which every node j has an estti component with ratio larger than
(
q
n

)n/q
.

Proof. Once a node has an estti component, it will always have an estti com-
ponent (no operation removes it), and eventually it will succeed sending a
message to all of its neighbors (lemma 6). Therefore, due to the connectivity
of the network after GST, and according to Lemma 7, eventually every node
has an estti component. Then we have MGST = N , so wM=

GST
n, and the ratio

is not smaller than
(
q
n

)n/q
.

3.4.2.d Convergence

Theorem 1 (Liveness). After GST, the estimate at all nodes converges to
the read average.

Proof. We construct a series of times t0, t1, t2, . . . recursively, where the initial
time is t0 = GST. For every tp−1 we define tp to be a time from which each

node k ∈ NGST has an estp−1
i component with ratio at least

(
q
n

)n/q
for each

i ∈ NGST. Such a tp exists according to Lemma 8.
Denote by ep−1

max the largest estimate at a node at time tp−1, i.e., ep−1
max =

maxi{estp−1
i }. Assume without loss of generality that the average is zero. If

all node estimates are the exact average, then the estimate is zero at all nodes
and it does not change. Otherwise, ep−1

max is strictly positive, and there exists
some node j whose estimate is negative. At tp, a node i has a component of

est
tp−1

j with weight at least
(
q
n

)n/q
(lemma 8). The weight of the rest of its

components is smaller than n, and their values are at most ep−1
max. Therefore,

the estimate of i at tp is bounded:

est
tp
i <

(
n · ep−1

max +
( q
n

)n/q
· est

tp−1

j

)
· 1

n+
(
q
n

)n/q est
tp−1
j <0

<
n

n+
(
q
n

)n/q ep−1
max .
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The estimate at i is similarly bounded from below with respect to the min-
imal value at tp−1. The maximal error (absolute distance from average) at
tp is therefore bounded by n

n+( q
n)

n/q the maximal error at tp−1. We conclude

that the maximal error decreases at least exponentially with p, and therefore
the estimates converge to some value x.

Now, the values in sent, received and cleared are occasionally reset to
the est value of their node (sent) or the neighbor’s (received and cleared),
and since we are after GST, the weight unrecvWeight is zero. Since these all
converge to x, their weighted sum E converges to the same value, i.e., x = E ,
and we have already shown (Lemma 1) that E is equal to the value of the
read sum. We conclude that est, converges to the average read value.

We note that while est variables converge, the weights in the w variables
fluctuate continuously, as nodes lose half their weight on send and similarly
receive considerable weights.

3.4.2.e Bounded State Variables

To conclude, we show that if the rate of dynamism allows the algorithm to
converge between events, all state variables maintained by the nodes do not
grow unboundedly.

Theorem 2 (Bounded variables). If change and removeNeighbor events
occur only when all esti variables are in a 2∆ neighborhood of R, then all
state variables are bounded.

Proof. Consider first the value component of the aggregates. A change event
may significantly change the estimate value at a node if holds a small weight.
Denote the maximal read value change by dchange, the maximal read value
by M and the minimal read value by m. Since the minimal weight at a node
is bounded by q, the change in bounded by dchange/q, and the estimate value
is bounded in the range [m−∆/q,M+∆/q]. Since the variables receivedi(j),
senti(j), totalDiffi(j), and unrecvVali are aggregates of est’s, their values are
also bounded in the same range.

As for weights, the weight in totalDiffi(j) is explicitly bounded by having
the sending node stop sending if its weight is too negative, and hence it
is too positive on the opposite side (line 21). The weight of receivedi(j)
is also explicitly bounded by resetting and changing epoch if its weight is
too high (line 35). Bounding receivedi(j) automatically bounds clearedi(j),
and sentj(i) is bounded explicitly (line 21). Finally, we bound the weight
of esti. Initially, the sum of weights in all est variables is n, and this sum
changes on weight send/receive and on removeNeighbor. Send and receive
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cannot increase the sum of weights, since weight received was previously
sent. On the other hand, removeNeighbor events change esti by subtracting
totalDiffi(j), possibly increasing/decreasing the sum of weights. Since the
totalDiff weights are bounded by 2×bound, and each link could (temporarily)
increment the sum of est weights in the system (if one side increases its
estimate, and the other postpones the decrease to avoid negative weight), we
conclude that the sum of est weights, and hence each est weight, is bounded
by n + 2 × bound × n2. The unrecvWeight variables are similarly bounded,
as they increase only on link failure by the difference of weights transferred
on that link.

3.5 Evaluation

In order to evaluate LiMoSense in the dynamic settings it was designed for,
we have conducted simulations of various scenarios. Our goal is to asses
how fast the algorithm reacts to changes, and succeeds to provide accurate
information.

We compare LiMoSense to a periodically-restarting Push-Sum algorithm.
We explain our methodology and metrics in Section 3.5.1.

We first study how the algorithm copes with different types of data read
changes - a gradual “creeping” change of all values, occurring, e.g., when
temperature is gradually rising (Section 3.5.2), an abrupt value change cap-
tured by a step function (Section 3.5.3), and a temporary glitch or impulse
(Section 3.5.4). We then study the algorithm’s robustness to node and link
failures (Section 3.5.5).

3.5.1 Methodology

We performed the simulations using a custom made Python event driven
simulation that simulated the underlying network and the nodes’ operation.
Unless specified otherwise, all simulations are of a fully connected network of
100 nodes, with initial values taken from the standard normal distribution.
We have seen that in well connected networks the convergence behavior is
similar to that of a fully connected network. The simulation proceeds in steps,
where in each step, the topology and read values may change according to
the simulated scenario, and one node sends a message. Scheduling is uniform
synchronous, i.e., the node performing the action is chosen uniformly at
random.

Unless specified otherwise, each scenario is simulated 1000 times. In all
simulations, we track the algorithm’s output and accuracy over time. In all
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Figure 3.1: Creeping value change Every 10 steps, 5 random reads in-
crease by 0.01. We see that LiMoSense promptly tracks the creeping change.
It provides accurate estimates to 95% of the nodes, with an MSE of about
10−3 throughout the run. The accuracy depends on the rate of change. In
contrast, Periodic Push-Sum converges to the correct average only for a short
period after each restart, before the average creeps away.

of our graphs, the X axis represents steps in the execution. We depict the
following three metrics for each scenario:

(a) base station. We assume that a base station collects the estimated read
average from some arbitrary node. We show the median of the values
obtained in the runs at each step.

(b) ε-inaccuracy. For a chosen ε, we depict the percentage of nodes whose
estimate is off by more than ε after each step. The average of the runs
is depicted.

(c) MSE. We depict the average square distance between the estimates at
all nodes and the read average at each step. The average of all runs is
depicted.

We compare LiMoSense, which does not need restarts, to a Push-Sum
algorithm that restarts at a constant frequency — every 5000 steps unless
specified otherwise. This number is an arbitrary choice, balancing between
convergence accuracy and dynamic response. In base station results, we also
show the read average, i.e., the value the algorithms are trying to estimate.
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Figure 3.2: Response to a step function At step 2500, 10 random
reads increase by 10. We see that LiMoSense immediately reacts, quickly
propagating the new values. In contrast, Periodic Push-Sum starts its new
convergence only after its restart.

3.5.2 Slow monotonic increase

This simulation investigates the behavior of the algorithm when the values
read by the sensors slowly increase. This may happen if the sensors are
measuring rainfall that is slowly increasing. Every 10 steps, a random set
of 5 of the nodes read values larger by 0.01 than their previous reads. The
initial values are taken from the standard normal distribution. The results are
shown in Figure 3.1. The accuracy of LiMoSense remains roughly constant,
affected by the rate of change.

In Figure 3.1a we see that the average is increasing at a constant rate,
and the LiMoSense base station closely follows. The restarting Push-Sum,
however, tries to update its value only at constant intervals, unable to follow
the read average. The time it takes for convergence is so long that it never
gets close the read average line.

In Figure 3.1b we see that after its initial convergence, the LiMoSense
algorithm has most of the nodes maintain a good estimate of the read average
with less than 10% of the nodes outside the 0.1 neighborhood. The restarting
Push-Sum algorithm, on the other hand, has no nodes in this neighborhood
most of the time, and most of the nodes in the neighborhood only for short
intervals.

Finally, in Figure 3.1c we see that the LiMoSense algorithm maintains a
small MSE, with some noise, whereas the restarting Push-Sum algorithm’s
error quickly converges after restart, until the creeping change takes over and
dominates the MSE causing a steady increase until the next restart.
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Figure 3.3: Response to impulse At steps 2500 and 6000, 10 random
values increase by 10 for 100 steps. Both impulses cause temporary distur-
bances in the output of LiMoSense. Periodic Push-Sum is oblivious to the
first impulse, since it does not react to changes. The restart of Push-Sum oc-
curs during the second impulse, causing it to converge to the value measured
then.

3.5.3 Step function

This simulation investigates the behavior of the algorithm when the values
read by some sensors are shifted. This may occur due to a fire outbreak in a
limited area, as close-by temperature nodes suddenly read high values.

At step 2500, a random set of 10 nodes read values larger by 10 than
their previous reads. The initial values are taken from the standard normal
distribution. The results are shown in Figure 3.2.

Figure 3.2a shows how the LiMoSense algorithm updates immediately
after the shift, whereas the periodic Push-Sum algorithm updates at its first
restart only. Figure 3.2b shows the ratio of erroneous sensors with error
larger than 0.01 quickly dropping — right after the read average change for
LiMoSense, and at restart for the periodic Push-Sum. Figure 3.2c shows
the MSE decrease. Both LiMoSense and periodic Push-Sum converge at the
same rate, but start a different times. At the step, LiMoSense suffers from
a temporary MSE spike as nodes with small weight increase their estimates
by a large factor.

3.5.4 Impulse Function

This simulation investigates the behavior of the algorithm when the reads of
some sensors are shifted for a limited time, and then return to their previous
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Figure 3.4: Failure robustness In a disc graph topology, the radio range
of 10 nodes decays in step 3000, resulting in about 7 lost links in the sys-
tem. Then, in step 5000, a node crashes. Each failure causes a temporary
disturbance in the output of LiMoSense. Periodic Push-Sum is oblivious to
the link failure. It recovers from the node failure only after the next restart.

values. This may happen due to sensing errors causing the nodes to read
irrelevant data. As an example, one may consider the case of a heavy vehicle
driving by seismic sensors used to detect earthquakes. The close-by sensors
would read high seismic activity for a short period of time.

At steps 2500 and 6000, a random set of 10 nodes read values larger
by 10 than their previous reads, and after 100 steps they return to their
values before the shift. The initial values are taken from the standard normal
distribution. The results are shown in Figure 3.3.

The LiMoSense algorithm’s reaction is independent of the impulse time —
a short period of noise raises the estimate at the base station as the impulse
value propagates from the sensors that read the impulse. Then, once the
impulse is canceled, this value decreases. The estimate with respect to the
read average is shown in Figure 3.3a, and the ratio of correct sensors is in
Figure 3.3b. The impulse essentially restarts the MSE convergence, as shown
in Figure 3.3c — After an impulse ends, the error returns to its starting point
and starts convergence anew.

The response of the periodic Push-Sum depends on the time of impulse.
If the impulse occurs between restarts (as in step 2500), the algorithm is
completely oblivious to it. All three figures 3.3a–3.3c show that apart from
the impulse time, convergence continues as if it never happened. If, however,
a restart occurs during the impulse (as in step 6000), then the impulse is
sampled and the algorithm converges to this new value. This convergence
is similar to the reaction to the step function of Section 3.5.3, only in this
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case it promptly becomes stale as the impulse ends. Figure 3.3a shows the
error quickly propagating to the base station. Since the algorithm has the
estimates converge to the read average during impulse, the ratio of inaccurate
nodes is 1.0 once the impulse ends, and the MSE stabilizes at a large value
as all nodes converge to the wrong estimate.

3.5.5 Robustness

To investigate the effect of link and node failures, we construct the follow-
ing scenario. The sensors are spread in the unit square, and they have a
transmission range of 0.7 distance units. The neighbors of a sensor are the
sensors in its range. The system is run for 3000 steps, at which point, due
to battery decay, the transmission range of 10 sensors decreases by 0.99.
Due to this decay, about 7 links fail, and respective nodes employ their
removeNeighbor functions. We see the effect of this link removal in Fig-
ure 3.4. In Figure 3.4a the effect can hardly be seen, but a temporary de-
crease of the accurate nodes can be seen in Figure 3.4b, and in Figure 3.4c we
see the MSE rising sharply. The failure of links does not effect the periodic
Push-Sum algorithm, which continues to converge.

In step 5000, a node fails, removing its read value from the read average.
Upon node failure, all of its neighbors call their removeNeighbor functions.
Figure 3.4a shows the extreme noise at the base station caused by the failure,
and in Figure 3.4b we see the ratio of inaccurate nodes rising sharply before
converging again. We see in Figure 3.4c that the node removal effectively
requires the MSE convergence to restart. However, Periodic Push-Sum has
no mechanism for reacting to the change until its next restart. Since the
average changes, until that time, the percentage of inaccurate nodes sharply
rises to 1.0, and the MSE reaches a static value, as the estimates at the nodes
converge to the wrong average. Since in every run a different node crashes,
and the median of the removed value is 0, the node crash does not effect the
median periodic Push-Sum value at the base station in Figure 3.4a.
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Chapter 4

Data Clustering in Sensor
Networks

To analyze large data sets, it is common practice to employ clustering [40]:
In clustering, the data values are partitioned into several clusters, and each
cluster is described concisely using a summary. This classical problem in
machine learning is solved using various heuristic techniques, which typically
base their decisions on a view of the complete data set, stored in some central
database.

However, it is sometimes necessary to perform clustering on data sets
that are distributed among a large number of nodes. For example, in a grid
computing system, load balancing can be implemented by having heavily
loaded machines stop serving new requests. But this requires analysis of the
load of all machines. If, e.g., half the machines have a load of about 10%,
and the other half is 90% utilized, the system’s state can be summarized
by partitioning the machines into two clusters — lightly loaded and heavily
loaded. A machine with 60% load is associated with the heavily loaded
cluster, and should stop taking new requests. But, if the cluster averages
were instead 50% and 80%, it would have been associated with the former,
i.e., lightly loaded, and would keep serving new requests. Another scenario is
that of sensor networks with thousands of nodes monitoring conditions like
seismic activity or temperature [10, 105].

In both of these examples, there are strict constraints on the resources
devoted to the clustering mechanism. Large-scale computation clouds allot
only limited resources to monitoring, so as not to interfere with their main
operation, and sensor networks use lightweight nodes with minimal hard-
ware. These constraints render the collection of all data at a central location
infeasible, and therefore rule out the use of centralized clustering algorithms.

In this chapter, we address the problem of distributed clustering. A de-
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tailed account of previous work appears in Section 4.1, and a formal definition
of the problem appears in Section 4.2.

A solution to distributed clustering ought to summarize data within the
network. There exist distributed algorithms that calculate scalar aggregates,
such as sum and average, of the entire data set [72, 50]. In contrast, a
clustering algorithm must partition the data into clusters, and summarize
each cluster separately. In this case, it seems like we are facing a Catch-
22 [60]: Had the nodes had the summaries, they would have been able to
partition the values by associating each one with the summary it fits best.
Alternatively, if each value was labeled a cluster identifier, it would have been
possible to distributively calculate the summary of each cluster separately,
using the aforementioned aggregation algorithms.

In Section 4.3 we present a generic distributed clustering algorithm to
solve this predicament. In our algorithm, all nodes obtain a clustering of the
complete data set without actually hearing all the data values. The double
bind described above is overcome by implementing adaptive compression: A
clustering can be seen as a lossy compression of the data, where a cluster
of similar values can be described succinctly, whereas a concise summary of
dissimilar values loses a lot of information. Our algorithm tries to distribute
the values between the nodes. At the beginning, it uses minimal compres-
sion, since each node has only little information to store and send. Once a
significant amount of information is obtained, a node may perform efficient
compression, joining only similar values.

Our algorithm captures a large family of algorithms that solve various
instantiations of the problem — with different approaches, clustering values
from any multidimensional domain and with different data distributions, us-
ing various summary representations, and running on arbitrary connected
topologies. A common approach to clustering is k-means, where each cluster
is summarized by its centroid (average of the values in the cluster), and par-
titioning is based on distance. A k-means approach is a possible implemen-
tation of our generic algorithm. The result of this implementation, however,
would differ from that of the classical centralized k-means algorithm.

Since the summary of clusters as centroids is often insufficient in real
life, machine learning solutions typically also take the variance into account,
and summarize values as a weighted set of Gaussians (normal distributions),
which is called a Gaussian Mixture (GM) [97]. In Section 4.4, we present
a novel distributed clustering algorithm that employs this approach, also as
an instance of our generic algorithm. The GM algorithm makes clustering
decisions using a popular machine learning heuristic, Expectation Maximiza-
tion (EM) [39]. We present in Section 4.4.2 simulation results demonstrating
the effectiveness of this approach. These results show that the algorithm con-
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verges quickly. It can provide a rich description of multidimensional data sets.
Additionally, it can detect and remove outlying erroneous values, thereby en-
abling robust calculation of the average.

The centroids and GM algorithms are but two examples of our generic
algorithm; in all instances, nodes independently strive to estimate the clus-
tering of the data. This raises a question that has not been dealt with before:
does this process converge? One of the main contributions of this chapter,
presented in Section 4.5, is a formal proof that indeed any implementation
of our generic algorithm converges, s.t. all nodes in the system learn the
same clustering of the complete data set. We prove that convergence is en-
sured under a broad set of circumstances: arbitrary asynchrony, an arbitrary
connected topology, and no assumptions on the distribution of the values.

Note that in the abstract settings of the generic algorithm, there is no
sense in defining the destination clustering the algorithm converges to pre-
cisely, or in arguing about its quality, since these are application-specific
and usually heuristic in nature. Additionally, due to asynchrony and lack of
constraints on topology, it is also impossible to bound the convergence time.

In summary, this chapter makes the following contributions:

• It provides a generic algorithm that captures a range of algorithms
solving this problem in a variety of settings (Section 4.3).

• It provides a novel distributed clustering algorithm based on Gaussian
Mixtures, which uses machine learning techniques to make clustering
decisions (Section 4.4).

• It proves that the generic algorithm converges in very broad circum-
stances, over any connected topology, using any clustering criterion, in
fully asynchronous settings (Section 4.5).

Preliminary versions of the work presented in this chapter appear in the
proceedings of the 5th Workshop on Hot Topics in System Dependability
(HotDep’09) [46], in the proceeding of the 29th symposium on Principles
of distributed computing (PODC’10) [47] and in the Journal of Distributed
Computing [45].

4.1 Related Work

Kempe et al. [72] and Nath et al. [88] present approaches for calculating
aggregates such as sums and means using gossip. These approaches cannot
be directly used to perform clustering, though this work draws ideas from [72],
in particular the concept of weight diffusion, and the tracing of value weights.
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In the field of machine learning, clustering has been extensively studied
for centrally available data sets (see [40] for a comprehensive survey). In this
context, parallelization is sometimes used, where multiple processes cluster
partial data sets. Parallel clustering differs from distributed clustering in
that all the data is available to all processes, or is carefully distributed among
them, and communication is cheap.

Centralized clustering solutions typically overcome the Catch-22 issue
explained in the introduction by running multiple iterations. They first esti-
mate a solution, and then try to improve it by re-partitioning the values to
create a better clustering. K-means [82] and Expectation Maximization [39]
are examples of such algorithms. Datta et al. [37] implement the k-means
algorithm distributively, whereby nodes simulate the centralized version of
the algorithm. Kowalczyk and Vlassis [73] do the same for Gaussian Mixture
estimation by having the nodes distributively simulate Expectation Max-
imization. These algorithms require multiple aggregation iterations, each
similar in length to one complete run of our algorithm. The message size in
these algorithms is similar to ours, dependent only on the parameters of the
dataset, and not on the number of nodes. Finally, they demonstrate conver-
gence through simulation only, but do not provide a convergence proof.

Haridasan and van Renesse [59] and Sacha et al. [96] estimate distribu-
tions in sensor networks by estimating histograms. Unlike this work, these
solutions are limited to one dimensional data values. Additionally, both
use multiple iterations to improve their estimations. While these algorithms
are suitable for certain distributions, they are not applicable for clustering,
where, for example, small sets of distant values should not be merged with
others. They also do not prove convergence.

4.2 Model and Problem Definitions

4.2.1 Network Model

The system consists of a set of n nodes, connected by communication chan-
nels, s.t. each node i has a set of neighbors neighborsi ⊂ {1, · · · , n}, to
which it is connected. The channels form a static directed connected net-
work. Communication channels are asynchronous but reliable links: A node
may send messages on a link to a neighbor, and eventually every sent mes-
sage reaches its destination. Messages are not duplicated and no spurious
messages are created.

Time is discrete, and an execution is a series of events occurring at times
t = 0, 1, 2, · · · .
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4.2.2 The Distributed Clustering Problem

At time 0, each node i takes an input vali — a value from a domain D. In all
the examples in this chapter, D is a d-dimensional Cartesian space D = Rd

(with d ∈ N). However, in general, D may be any domain.
A weighted value is a pair (val, α) ∈ D × (0, 1], where α is a weight

associated with a value val. We associate a weight of 1 to a whole value, so,
for example, (vali, 1/2) is half of node i’s value. A set of weighted values is
called a cluster :

Definition 4 (Cluster). A cluster c is a set of weighted values with unique
values. The cluster’s weight, c.weight, is the sum of the value weights:

c.weight
∆
=

∑
(val,α)∈c

α .

A cluster may be split into two new clusters, each consisting of the same
values as the original cluster, but associated with half their original weights.
Similarly, multiple clusters may be merged to form a new one, consisting of
the union of their values, where each value is associated with the sum of its
weights in the original clusters.

A cluster can be concisely described by a summary in a domain S, using a
function f that maps clusters to their summaries: f : (D× (0, 1])∗ → S. The
domain S is a pseudo-metric space (like metric, except the distance between
distinct points may be zero), with a distance function dS : S2 → R. For
example, in the centroids algorithm, the function f calculates the weighted
average of samples in a cluster.

A cluster c may be partitioned into several clusters, each holding a subset
of its values and summarized separately1. The set of weighted summaries of
these clusters is called a clustering of c. Weighted values in c may be split
among clusters, so that different clusters contain portions of a given value.
The sum of weights associated with a value val in all clusters is equal to the
sum of weights associated with val in c. Formally:

Definition 5 (Clustering). A clustering C of a cluster c into J clusters
{cj}Jj=1 is the set of weighted summaries of these clusters: C = {(f(cj), cj.weight)}Jj=1

s.t.

∀val :
∑

(val,α)∈c

α =
J∑
j=1

 ∑
(val,α)∈cj

α

 .

A clustering of a value set {valj}lj=1 is a clustering of the cluster {(valj, 1)}lj=1.

1Note that partitioning a cluster is different from splitting it, because, when a cluster
is split, each part holds the same values.
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The number of clusters in a clustering is bounded by a system parame-
ter k.

A clustering algorithm strives to partition the samples into clusters in
a way that optimizes some criterion, for example, minimizes some distance
metric among values assigned to the same cluster (as in k-means). In this
work, we are not concerned with the nature of this criterion, and leave it up
to the application to specify the choice thereof.

A clustering algorithm maintains at every time t a clustering clusteringi(t),
yielding an infinite series of clusterings. For such a series, we define conver-
gence:

Definition 6 (Clustering convergence). A series of clusterings{
{(f(cj(t)), cj(t).weight)}Jtj=1

}∞
t=1

converges to a destination clustering, which is a set of l clusters {destx}lx=1,
if for every t ∈ 0, 1, 2, · · · there exists a mapping ψt between the Jt clusters
at time t and the l clusters in the destination clustering ψt : {1, · · · , Jt} →
{1, · · · , l}, such that:

1. The summaries converge to the clusters to which they are mapped by ψt:

max
j

{
dS(f(cj(t)), f(destψt(j)))

} t→∞−−−→ 0 .

2. For each cluster x in the destination clustering, the relative amount of
weight in all clusters mapped to x converges to x’s relative weight in
the clustering:

∀1 ≤ x ≤ l :

∑
{j|ψt(j)=x} cj(t).weight∑Jt

j=1 cj(t).weight

t→∞−−−→ destx.weight∑l
y=1 desty.weight

.

We are now ready to define the problem addressed in this chapter, where
a set of nodes strive to learn a common clustering of their inputs. As previous
works on aggregation in sensor networks [72, 88, 19], we define a converg-
ing problem, where nodes continuously produce outputs, and these outputs
converge to such a common clustering.

Definition 7 (Distributed clustering). Each node i takes an input vali at
time 0 and maintains a clustering clusteringi(t) at each time t, s.t. there
exists a clustering of the input values {vali}ni=1 to which the clustering in all
nodes converge.
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4.3 Generic Clustering Algorithm

We now present our generic algorithm that solves the Distributed Clustering
Problem. At each node, the algorithm builds a clustering, which converges
over time to one that describes all input values of all nodes. In order to avoid
excessive bandwidth and storage consumption, the algorithm maintains clus-
terings as weighted summaries of clusters, and not the actual sets of weighted
values. By slight abuse of terminology, we refer by the term cluster to both a
set of weighted values c, and its summary–weight pair (c.summary, c.weight).

A node starts with a clustering of its own input value. It then periodi-
cally splits its clustering into two new ones, which have the same summaries
but half the weights of the originals; it sends one clustering to a neighbor,
and keeps the other. Upon receiving a clustering from a neighbor, a node
merges it with its own, according to an application-specific merge rule. The
algorithm thus progresses as a series of merge and split operations.

We begin with an illustrative example in Section 4.3.1 which summarizes
clusters as their centroids — the averages of their weighted values.

Then, in Section 4.3.2, we present the generic distributed clustering al-
gorithm. It is instantiated with a domain S of summaries used to describe
clusters, and with application-specific functions that manipulate summaries
and make clustering decisions. We use the centroid algorithm as an example
instantiation.

In Section 4.3.3, we enumerate a set of requirements on the functions
the algorithm is instantiated with. We then show that in any instantiation
of the generic algorithm with functions that meet these requirements, the
weighted summaries of clusters are the same as those we would have obtained,
had we applied the algorithm’s operations on the original clusters, and then
summarized the results.

4.3.1 Example — Centroids

We begin by considering the example case of centroid summaries, where a
cluster is described by its centroid and weight (c.µ, c.w).

Initially, the centroid is the sensor’s read value, and the weight is 1, so
at node i the cluster is (vali, 1). A node occasionally sends half of its clus-
ters to a neighbor. A node with clusters (c1.µ, c1.w), (c2.µ, c2.w) would keep
(c1.µ,

1
2
c1.w), (c2.µ,

1
2
c2.w) and send to a neighbor a message with the pair

(c1.µ,
1
2
c1.w), (c2.µ,

1
2
c2.w). The neighbor receiving the message will consider

the received clusters with its own, and merge clusters with close centroids.
Merge is performed by calculating the weighted sum. For example, the merge
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Algorithm 5: Generic Distributed Data Clustering Algorithm.
Dashed frames show auxiliary code .
1 state

2 clusteringi, initially {(valToSummary(vali), 1 , ei )}

3 Periodically do atomically
4 Choose j ∈ neighborsi (Selection has to ensure fairness)
5 old← clusteringi

6 clusteringi ←
⋃

c∈old{(c.summary, half(c.weight) ,
half(c.weight)

c.weight
· c.aux )}

7 send (j,
⋃

c∈old{(c.summary, c.weight− half(c.weight) ,
(

1− half(c.weight)
c.weight

)
· c.aux )})

8 Upon receipt of incoming do atomically
9 bigSet← clusteringi ∪ incoming

10 M ← partition(bigSet) (The function partition returns a set of cluster sets)
11 clusteringi ←⋃|M|

x=1

(mergeSet
(⋃

c∈Mx
{(c.summary, c.weight)}

)
,
∑

c∈Mx
c.weight ,

∑
c∈Mx

c.aux )


12 function half(α)
13 return the multiple of q which is closest to α/2.

of two clusters (c.µ, c.w) and (d.µ, d.w) is

(
1
2
c.w · c.µ+ d.w · d.µ

1
2
c.w + d.w

,
1

2
c.w + d.w) .

We now proceed to describe the generic algorithm.

4.3.2 Algorithm

The algorithm for node i is shown in Algorithm 5 (at this stage, we ignore
the parts in dashed frames). The algorithm is generic, and it is instantiated
with the summary domain S and the functions valToSummary, partition
and mergeSet. The functions of the centroids example are given in Al-
gorithm 6. The summary domain S in this case is the same as the value
domain, i.e., Rd.

Initially, each node produces a clustering with a single cluster, based on
the single value it has taken as input (Line 2). The weight of this cluster is
1, and its summary is produced by the function valToSummary : D → S. In
the centroids example, the initial summary is the input value (Algorithm 6,
valToSummary function).

A node occasionally sends data to a neighbor (Algorithm 5, Lines 3–7):
It first splits its clustering into two new ones. For each cluster in the origi-
nal clustering, there is a matching cluster in each of the new ones, with the
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same summary, but with approximately half the weight. Weight is quan-
tized, limited to multiples of a system parameter q (q, 2q, 3q, . . . ). This is
done in order to avoid a scenario where it takes infinitely many transfers of
infinitesimal weight to transfer a finite weight from one cluster to another
(Zeno effect). We assume that q is small enough to avoid quantization errors:
q � 1

n
. In order to respect the quantization requirement, the weight is not

multiplied by exactly 0.5, but by the closest factor for which the resulting
weight is a multiple of q (function half in Algorithm 5). One of the clusters is
attributed the result of half and the other is attributed the complement, so
that the sum of weights is equal to the original, and system-wide conservation
of weight is maintained. Note that despite the weight quantization, values
and summaries may still be continuous, therefore convergence may still be
continuous.

If the communication topology is dense, it is possible to perform scalable
random peer sampling [85], even under message loss [58], in order to achieve
data propagation guarantees.

The node then keeps one of the new clusterings, replacing its original one
(Line 6), and sends the other to some neighbor j (Line 7). The selection
of neighbors has to ensure fairness in the sense that in an infinite run, each
neighbor is chosen infinitely often; this can be achieved, e.g., using round
robin. Alternatively, the node may implement gossip communication pat-
terns: It may choose a random neighbor and send data to it (push), or ask
it for data (pull), or perform a bilateral exchange (push-pull).

When a message with a neighbor’s clustering reaches the node, an event
handler (Lines 8–11) is called. It first combines the two clusterings of the
nodes into a set bigSet (Line 9). Then, an application-specific function

partition divides the clusters in bigSet into sets M = {Mx}|M |x=1 (Line 10).
The clusters in each of the sets in M are merged into a single cluster, to-
gether forming the new clustering of the node (Line 11). The summary of
each merged cluster is calculated by another application-specific function,
mergeSet, and its weight is the sum of weights of the merged clusters.

To conform with the restrictions of k and q, the partition function must
guarantee that (1) |M | ≤ k; and (2) no Mx includes a single cluster of weight
q (that is, every cluster of weight q is merged with at least one other cluster).

Note that the parameter k forces lossy compression of the data, since
merged values cannot later be separated. At the beginning, only a small
number of data values is known to the node, so it performs only a few (easy)
clustering decisions. As the algorithm progresses, the number of values de-
scribed by the node’s clustering increases. By then, it has enough knowledge
of the data set, so as to perform correct clustering decisions, and achieve a
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Algorithm 6: Centroid Functions
1 function valToSummary(val)
2 return val

3 function mergeSet(clusters)

4 return

 ∑
(avg,m) ∈
clusters

m


−1

×
∑

(avg,m) ∈
clusters

m·avg

5 function partition(bigSet)
6 M ← {{c}}c∈bigSet
7 If there are sets in M whose clusters’ weights are q, then unify them arbitrarily with others
8 while |M | > k do
9 let Mx and My be the (different) cluster sets in M whose centroids are closest

10 M ←M \ {Mx,My} ∪ (Mx ∪My)

11 return M

high compression ratio without losing valuable data.
In the centroids algorithm, the summary of the merged set is the weighted

average of the summaries of the merged clusters, calculated by the implemen-
tation of mergeSet shown in Algorithm 6. Merging decisions are based on the
distance between cluster centroids. Intuitively, it is best to merge close cen-
troids, and keep distant ones separated. This is done greedily by partition

(shown in Algorithm 6) which repeatedly merges the closest sets, until the k
bound is reached. For k = 1, the algorithm is reduced to push-sum.

4.3.3 Auxiliaries and Instantiation Requirements

For the algorithm to perform a meaningful and correct clustering of the
data, its functions must respect a set of requirements. In Section 4.3.3.a we
specify these requirements and in Section 4.3.3.b we show that the centroids
algorithm described above meets these requirements. In Section 4.3.3.c we
prove that these requirements ensure that the summaries described by the
algorithm indeed represent clusters.

4.3.3.a Instantiation Requirements

To phrase the requirements, we describe a cluster in (D, (0, 1])∗ as a vector
in the Mixture Space — the space Rn (n being the number of input values),
where each coordinate represents one input value. A cluster is described in
this space as a vector whose j’th component is the weight associated with
valj in that cluster. For a given input set, a vector in the mixture space
precisely describes a cluster. We can therefore redefine f as a mapping from
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mixture space vectors of clusters to cluster summaries, according to the input
set I ∈ Dn. We denote this mapping fI : Rn → S.

We define the distance function dM : (Rn)2 → R between two vectors
in the mixture space to be the angle between them. Clusters consisting of
similar weighted values are close in the mixture space (according to dM).
Their summaries should be close in the summary space (according to dS),
with some scaling factor ρ. Simply put — clusters consisting of similar values
(i.e., close in dM) should have similar summaries (i.e., close in dS). Formally:

R1 For any input value set I,

∃ρ : ∀v1, v2 ∈ (0, 1]n : dS(fI(v1), fI(v2)) ≤ ρ · dM(v1, v2).

In addition, operations on summaries must preserve the relation to the
clusters they describe. Intuitively, this means that operating on summaries
is similar to performing the various operations on the value set, and then
summarizing the results.

R2 Initial values are mapped by fI to their summaries:

∀i, 1 ≤ i ≤ n : valToSummary(vali) = fI(ei).

R3 Summaries are oblivious to weight scaling:

∀α > 0, v ∈ (0, 1]n : fI(v) = fI(αv).

R4 Merging a summarized description of clusters is equivalent to merging
these clusters and then summarizing the result2:

mergeSet

(⋃
v∈V

({fI(v), ‖v‖1)}

)
= fI

(∑
v∈V

v

)
.

4.3.3.b The Centroids Case

We show now that the centroids algorithm respects the requirements. Recall
that fI in this case is the weighted average of the samples, and let dS be the
L2 distance between centroids. We show that the requirements are respected.

Claim 1. For the centroids algorithm, as described in Algorithm 6, the re-
quirements R1–R4 are respected.

2Denote by ‖v‖p the Lp norm of v.
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Proof. Denote by δmax the maximal L2 distance between values, and let ρ
∆
=

2δmax

√
n. Let ṽ be the L2 normalized vector v. We show that R1 holds with

this ρ.

dS(fI(v1), fI(v2))
(1)
=

dS(fI(ṽ1), fI(ṽ2))
(2)

≤

δmax‖ṽ1 − ṽ2‖1

(3)

≤

δmax

√
n‖ṽ1 − ṽ2‖2

(4)

≤
2δmax

√
n · dM(ṽ1, ṽ2) = ρ · dM(v1, v2)

(1) By the definition of fI and dS.

(2) Each value may contribute at most δmax to the coordinate difference.

(3) The L1 norm is smaller than
√
n times the L2 norm, so a factor of

√
n

is added.

(4) Recall that dM is the angle between the two vectors. The L2 difference
of normalized vectors in [0, 1)n is smaller than twice the angle between
them (Law of Cosines).

It is readily seen that requirements R2–R4 also hold.

4.3.3.c Correctness of Auxiliary Algorithm

Returning to the generic case, we show that the weighted summaries main-
tained by the algorithm to describe clusters that are merged and split, indeed
do so. To do that, we define an auxiliary algorithm. This is an extension of
Algorithm 5 with the auxiliary code in the dashed frames. Clusters are now
triplets, containing, in addition to the summary and weight, the cluster’s
mixture space vector c.aux.

At initialization (Line 2), the auxiliary vector at node i is ei (a unit vector
whose i’th component is 1). When splitting a cluster (Lines 6–7), the vector
is factored by about 1/2 (the same ratio as the weight). When merging a set
of clusters, the mixture vector of the result is the sum of the original clusters’
vectors (Line 11).

The following lemma shows that, at all times, the summary maintained
by the algorithm is indeed that of the cluster described by its mixture vector:
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Lemma 9 (Correctness of auxiliary algorithm). The generic algorithm, in-
stantiated by functions satisfying R2–R4, maintains the following invariant:
For any cluster c either in a node’s clustering (c ∈ clusteringi) or in transit
in a communication channel, the following two equations hold:

fI(c.aux) = c.summary (4.1)

‖c.aux‖1 = c.weight (4.2)

Proof. By induction on the global states of the system.

Basis Initialization puts at time 0, at every node i the auxiliary vector ei,
a weight of 1, and the summary valToSummary of value i. Require-
ment R2 thus ensures that Equation 4.1 holds in the initial state, and
Equation 4.2 holds since ‖ei‖ = 1. Communication channels are empty.

Assumption At time j − 1 the invariant holds.

Step Transition j may be either send or receive. Each of them removes
clusters from the set, and produces a cluster or two. To prove that at
time j the invariant holds, we need only show that in both cases the
new cluster(s) maintain the invariant.

Send We show that the mapping holds for the kept cluster ckeep. A
similar proof holds for the sent one csend. Proof of Equation 4.1:

ckeep.summary
line 6
=

= c.summary
induction

assumption
=

= fI(c.aux) R3=

= fI

(
half(c.weight)

c.weight
· c.aux

) auxiliary
line 6=

= fI(ckeep.aux)
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Proof of Equation 4.2:

ckeep.weight
line 6
=

= half(c.weight) =

=
half(c.weight)

c.weight
· c.weight

induction
assumption

=

=
half(c.weight)

c.weight
· ‖c.aux‖1 =

=

∥∥∥∥half(c.weight)

c.weight
· c.aux

∥∥∥∥
1

auxiliary
line 6=

= ‖ckeep.aux‖1

Receive We prove that the mapping holds for each of the m produced
clusters. Each cluster cx is derived from a set Mx. Proof of Equa-
tion 4.1:

cx.summary
line 11

=

=mergeSet

( ⋃
c∈Mx

{(c.summary, c.weight)}

)
induction

assumption
=

= mergeSet

( ⋃
c∈Mx

{(fI(c.aux), ‖c.aux‖1)}

)
R4
=

= fI

(∑
c∈Mx

c.aux

)
auxiliary
line 11=

= fI (cx.aux)

Proof of Equation 4.2:

cx.weight
line 11

=

=
∑
c∈Mx

c.weight
induction

assumption
=

=
∑
c∈Mx

‖c.aux‖1 =

=

∥∥∥∥∥∑
c∈Mx

c.aux

∥∥∥∥∥
1

auxiliary
line 11=

= ‖cx.aux‖1
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4.4 Gaussian Clustering

When clustering value sets from a metric space, the centroids solution is
seldom sufficient. Consider the example shown in Figure 4.1, where we need
to associate a new value with one of two existing clusters. Figure 4.1a shows
the information that the centroids algorithm has for clusters A and B, and
a new value. The algorithm would associate the new value to cluster A, on
account of it being closer to its centroid. However, Figure 4.1b shows the
set of values that produced the two clusters. We see that it is more likely
that the new value in fact belongs to cluster B, since it has a much larger
variance.

(a) Centroids and a new value

(b) Gaussians and a new value

Figure 4.1: Associating a new value when clusters are summarized (a) as
centroids and (b) as Gaussians.

The field of machine learning suggests the heuristic of clustering data us-
ing a Gaussian Mixture (a weighted set of normal distributions), allowing for
a rich and accurate description of multivariate data. Figure 4.1b illustrates
the summary employed by GM: An ellipse depicts an equidensity line of the
Gaussian summary of each cluster. Given these Gaussians, one can easily
classify the new value correctly.

We present in Section 4.4.1 the GM algorithm — a new distributed clus-
tering algorithm, implementing the generic one by representing clusters as
Gaussians, and clusters as Gaussian Mixtures. Contrary to the classical ma-

50



chine learning algorithms, ours performs the clustering without collecting the
data in a central location. Nodes use the popular machine learning tool of
Expectation Maximization to make clustering decisions (Section 4.4.1). A
taste of the results achieved by our GM algorithm is given in Section 4.4.2
via simulation. It demonstrates the clustering of multidimensional data and
more. Note that due to the heuristic nature of EM, the only possible evalu-
ation of our algorithm’s quality is empirical.

4.4.1 Generic Algorithm Instantiation

The summary of a cluster is a tuple (µ, σ), comprised of the average of the
weighted values in the cluster µ ∈ Rd (where D = Rd is the value space),
and their covariance matrix σ ∈ Rd×d. Together with the weight, a cluster
is described by a weighted Gaussian, and a clustering consists of a weighted
set of Gaussians, or a Gaussian Mixture.

Let v = (v1, · · · , vn) be an auxiliary vector; we denote by ṽ a normalized
version thereof:

ṽ =
v∑s
j=1 vj

.

Recall that vj represents the weight of valj in the cluster. The centroid
µ(v) and covariance matrix σ(v) of the weighted values in the cluster are
calculated as follows:

µ(v) =
n∑
j=1

ṽj · valj , and

σ(v) =
1

1−
∑n

k=1 ṽ
2
k

n∑
j=1

ṽj(valj − µ)(valj − µ)T .

We use them to define the mapping fI from the mixture space to the summary
space:

fI(v) = (µ(v), σ(v)) .

Note that the use of the normalized vector ṽ makes both µ(v) and σ(v)
invariant under weight scaling, thus fulfilling Requirement R3.

We define dS as in the centroids algorithm. Namely, it is the L2 dis-
tance between the centroids of clusters. This fulfills requirement R1 (see
Section 4.3.3.b).

The function valToSummary returns a cluster with an average equal to
val, a zero covariance matrix, and a weight of 1. Requirement R2 is trivially
satisfied.

51



To describe the function mergeSet we use the following definitions: De-
note the weight, average and covariance matrix of cluster x by wx, µx and
σx, respectively. Given the summaries and weights of two clusters a and b,
one can calculate the summary of a cluster c created by merging the two:

µc =
wa

wa + wb
µa +

wb
wa + wb

µb

σc =
wa

wa + wb
σa +

wb
wa + wb

σb +
wa · wb

(wa + wb)2
· (µa − µb) · (µa − µb)T

This merging function maintains the average and covariance of the original
values [97], therefore it can be iterated to merge a set of summaries and
implement mergeSet in a way that conforms to R4.

Expectation Maximization Partitioning

To complete the description of the GM algorithm, we now explain the partition
function. When a node has accumulated more than k clusters, it needs to
merge some of them. In principle, it would be best to choose clusters to
merge according to Maximum Likelihood, which is defined in this case as fol-
lows: We denote a Gaussian Mixture of x Gaussians x-GM. Given a too large
set of l ≥ k clusters, an l-GM, the algorithm tries to find the k-GM proba-
bility distribution for which the l-GM has the maximal likelihood. However,
computing Maximum Likelihood is NP-hard. We therefore instead follow
common practice and approximate it with the Expectation Maximization al-
gorithm [82].

Our goal is to re-classify GMold, an l-GM with l > k, to GMnew, a k-GM.
Denote by V the d dimensional space in which the distributions are defined.
Denote by fX(v) the probability density at point v of distribution X. If X
is a weight distribution such as a Gaussian mixture, it is normalized s.t. it
constitutes a probability density.

The likelihood that the samples concisely described by GMold are the
result of the probability distribution described by (the normalized) GMnew

is:

L =
∑

c∈GMnew

∑
g∈GMold

(∫
v∈V

wcfc(v) · wgfg(v)dv

)
.

The merge employs the Expectation Maximization algorithm to approxi-
mate Maximum Likelihood. It arbitrarily groups the clusters in GMold into k
sets, and merges each set into a single Gaussian, forming a k-GM GMnew. It
then alternately regroups GMold’s clusters to maximize their likelihood w.r.t.
GMnew, and recalculates GMnew according to this grouping. This process is
repeated until convergence.
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4.4.2 Simulation Results

Due to the heuristic nature of the Gaussian Mixture clustering and of EM,
the quality of their results is typically evaluated experimentally. In this sec-
tion, we briefly demonstrate the effectiveness of our GM algorithm through
simulation. First, we demonstrate the algorithm’s ability to cluster multi-
dimensional data, which could be produced by a sensor network. Then, we
demonstrate a possible application using the algorithm to calculate the aver-
age while removing erroneous data reads and coping with node failures. This
result also demonstrates the convergence speed of the algorithm.

In both cases, we simulate a fully connected network of 1,000 nodes. Like
previous works [44, 59], we measure progress in rounds, where in each round
each node sends a clustering to one neighbor. Nodes that receive clusterings
from multiple neighbors accumulate all the received clusters and run EM
once for the entire set.

4.4.2.a Multidimensional Data Clustering

As an example input, we use data generated from a set of three Gaussians
in R2. Values are generated according to the distribution shown in Figure
4.2a, where the ellipses are equidensity contours of normal distributions.
This input might describe temperature readings taken by a set of sensors
positioned on a fence located by the woods, and whose right side is close to
a fire outbreak. Each value is comprised of the sensor’s location x and the
recorded temperature y. The generated input values are shown in Figure
4.2b. We run the GM algorithm with this input until its convergence; k = 7
and q is set by floating point accuracy.

The result is shown in Figure 4.2c. The ellipses are equidensity contours,
and the x’s are singleton clusters (with zero variance). This result is visibly
a usable estimation of the input data.

4.4.2.b Robustness

Erroneous samples removal As an example application, we use the al-
gorithm to calculate a statistically robust average. We consider a sensor
network of 1,000 sensors reading values in R2. Most of these values are
sampled from a given Gaussian distribution and we wish to calculate their
average. Some values, however, are erroneous, and are unlikely to belong to
this distribution. They may be the result of a malfunctioning sensor, or of
a sensing error, e.g., an animal sitting on an ambient temperature sensor.
These values should be removed from the statistics.
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(a) Distribution (b) Values (c) Result

Figure 4.2: Gaussian Mixture clustering example. The three Gaussians in
Figure 4.2a were used to generate the data set in Figure 4.2b. The GM
algorithm produced the estimation in Figure 4.2c.

We use 950 values from the standard normal distribution, i.e., with a mean
(0, 0) and a unit covariance matrix I. Fifty additional values are distributed
normally with covariance matrix 0.1 · I and mean (0,∆), with ∆ ranging
between 0 and 25. The distribution of all values is illustrated in Figure 4.3a.

For each value of ∆, the protocol is run until convergence. We use k = 2,
so that each node has at most 2 clusters at any given time — hopefully one
for good values and one for the erroneous values.

The results are shown in Figure 4.3b. The dotted line shows the average
weight ratio belonging to erroneous samples yet incorrectly assigned to the
good cluster. Erroneous samples are defined to be values with probability
density lower than fmin = 5 × 10−5 (for the standard normal distribution).
The other two lines show the error in calculating the mean, where error is
the average over all nodes of the distance between the estimated mean and
the true mean (0, 0). The solid line shows the result of our algorithm, which
removes erroneous samples, while the dashed line shows the result of regular
average aggregation, which does not.

We see that when the erroneous samples are close to the good values,
the number of misses is large — the proximity of the clusters makes their
separation difficult. However, due to the small distance, this mistake hardly
influences the estimated average. As the erroneous samples’ mean moves
further from the true mean, their identification becomes accurate and their
influence is nullified.

Note that even for large ∆’s, a certain number of erroneous samples is
still missed. These are values from the good distribution, relatively close to
the main cluster, yet with probability density lower than fmin. The protocol
mistakenly considers these to be good values. Additionally, around ∆ = 5
the miss rate is dropped to its minimum, yet the robust error does not. This
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Figure 4.3: Effect of the separation of erroneous samples on the calculation of
the average: A 1,000 values are sampled from two Gaussian distributions (a).
As the erroneous samples’ distribution moves away from the good one, the
regular aggregation error grows linearly (b). However, once the distance is
large enough, our protocol can remove the erroneous samples, which results
in an accurate estimation of the mean.

is due to the fact that bad values are located close enough to the good mean
so that their probability density is higher than fmin. The protocol mistakes
those to belong to fG and allows them to influence the mean. That being
said, for all ∆’s, the error remains small, confirming the conventional wisdom
that “clustering is either easy or not interesting”.

Crash robustness and convergence speed We next examine how crash
failures impact the results obtained by our protocol. Figure 4.4 shows that
the algorithm is indifferent to crashes of nodes. The source data is similar
to the one above, with ∆ = 10. After each round, each node crashes with
probability 0.05. We show the average node estimation error of the mean in
each round. As we have seen above, our protocol achieves a lower error then
the regular one.

Figure 4.4 also demonstrates the convergence speed of our algorithm.
With and without crashes, the convergence speed of our algorithm is equiv-
alent to that of the regular average aggregation algorithm.
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Figure 4.4: The effect of crashes on convergence speed and on the accuracy
of the mean.

4.4.2.c Scalability

To evaluate convergence time we measure the number of rounds until the
estimations at the different nodes are the same. The samples are taken from
a Gaussian mixture of two Gaussians of the same weight with variance 1 at
distance 5 from each other. Since there is no scalar convergence value, the
ε− δ measure which is used, e.g., for analysing Push-Sum, is not applicable
to this scenario. Instead, we use the Kolmogorov-Smirnov (KS) statistic as
the measure of difference between two distributions3. For a range of network
sizes, we let the algorithm run until the maximal KS-statistic between the
estimations of any pair of nodes4 falls below an arbitrary threshold of 0.01.
The results for a complete topology and a grid topology (with samples taken
independently of the grid coordinates) are shown in figures 4.5a and 4.5b,
respectively. For each network size we show the average convergence time
with the 95% confidence interval.

As expected, the scalability in a grid topology is worse than in a complete
topology. The trends shown in these figures match those calculated by Boyd
et al. [21] for the Push-Sum algorithm.

3The Kolmogorov-Smirnov statistic for two distributions is the maximal difference be-
tween their cumulative distribution functions

4To shorten simulation time, we calculate the statistics for 4n random pairs of nodes.
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Figure 4.5: Convergence time of the distributed clustering algorithm as a
function of the number of nodes (a) in a fully connected topology and (b) in
a grid topology.

4.5 Convergence Proof

We now prove that the generic algorithm presented in Section 4.3 solves the
distributed clustering problem. To prove convergence, we consider the pool
of all the clusters in the system, at all nodes and communication channels.
This pool is in fact, at all times, a clustering of the set of all input val-
ues. In Section 4.5.1 we prove that the pool of all clusters converges, i.e.,
roughly speaking, it stops changing. Then, in Section 4.5.2, we prove that
the clusterings in all nodes converge to the same destination.

4.5.1 Collective Convergence

In this section, we ignore the distributive nature of the algorithm, and con-
sider all the clusters in the system (at both processes and communication
channels) at time t as if they belonged to a single multiset pool(t). A run
of the algorithm can therefore be seen as a series of splits and merges of
clusters.

To argue about convergence, we first define the concept of cluster descen-
dants. Intuitively, for t1 ≤ t2, a cluster c2 ∈ pool(t2) is a descendant of a
cluster c1 ∈ pool(t1) if c2 is equal to c1, or is the result of operations on c1.
Formally:

Definition 8 (Cluster genealogy). We recursively define the descendants of
a cluster c ∈ pool(t). First, at t, the descendant set is simply {c}. Next,
consider t1 > t.

Assume the t1’th operation in the execution is splitting (and sending)
(Lines 3–7) a set of clusters {cx}lx=1 ⊂ pool(t1 − 1). This results in two
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new sets of clusters, {c1
x}lx=1 and {c2

x}lx=1, being put in pool(t1) instead of the
original set. If a cluster cx is a descendant of c at t1 − 1, then the clusters
c1
x and c2

x are descendants of c at t1.
Assume the t1’th operation is a (receipt and) merge (Lines 8–11), then

some m (1 ≤ m ≤ k) sets of clusters {Mx}mx=1 ⊂ pool(t1− 1) are merged and
are put in pool(t1) instead of the merged ones. For every Mx, if any of its
clusters is a descendant of c at t1 − 1, then its merge result is a descendant
of c at t1.

By slight abuse of notation, we write v ∈ pool(t) when v is the mixture
vector of a cluster c, and c ∈ pool(t); vector genealogy is similar to cluster
genealogy.

We now state some definitions and the lemmas used in the convergence
proof. We prove that, eventually, the descendants of each vector in the pool
converge (normalized) to one destination. To do that, we investigate the
angles between a vector v and the axes unit vectors. Note that all angles
are between zero and π/2. For i ∈ {1, . . . , d}, we call the angle between v
and the i’th axis v’s i’th reference angle and denote it by ϕvi . We denote by
ϕi,max(t) the maximal i’th reference angle over all vectors in the pool at time
t:

ϕi,max(t)
∆
= max

v∈pool(t)
ϕvi .

We now show that the i’th reference angle is monotonically decreasing
for any 1 ≤ i ≤ n. To achieve this, we use Lemma 10 which states that the
sum of two vectors has an i’th reference angle not larger than the larger i’th
reference angle of the two. Its proof is deferred to Appendix 4.A.

Lemma 10 (Decreasing reference angle). The sum of two vectors in the
mixture space is a vector with a smaller i’th reference angle than the larger
i’th reference angle of the two, for any 1 ≤ i ≤ n.

We are now ready to prove that the maximal reference angle is monoton-
ically decreasing:

Lemma 11. For 1 ≤ i ≤ n, ϕi,max(t) is monotonically decreasing.

Proof. The pool changes in split and merge operations. In case of a split, the
new vectors have the same angles as the split one, so ϕi,max is unchanged. In
case of a merge, a number of vectors are replaced by their sum. This can be
seen as the result of a series of steps, each of which replaces two vectors by
their sum. The sum of two vectors is a vector with a no larger i’th reference
angle than the larger of the i’th reference angles of the two (Lemma 10).
Therefore, whenever a number of vectors are replaced by their sum, the
maximal reference angle may either remain the same or decrease.
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Since the maximal reference angles are bounded from below by zero,
Lemma 11 shows that they converge, and we can define

ϕ̂i,max
∆
= lim

t→∞
ϕi,max(t) .

By slight abuse of terminology, we say that the i’th reference angle of
a vector v ∈ pool(t) converges to ϕ, if for every ε there exists a time t′,
after which the i’th reference angles of all of v’s descendants are in the ε
neighborhood of ϕ.

We proceed to show that there exists a time after which the pool is
partitioned into clusters, and the vectors from each cluster merge only with
one another. Moreover, the descendants of all vectors in a cluster converge
to the same reference angle. More specifically, we show that the vectors
in the pool are partitioned into clusters by the algorithm according to the
i’th reference angle their descendants converge to (for any 1 ≤ i ≤ n). We
further show that, due to the quantization of weight, a gap is formed between
descendants that converge to the maximal reference angle, and those that do
not, as those that do not remain within some minimum distance ε from
ϕ̂i,max.

Since the i’th maximal reference angle converges (Lemma 10), for every
ε there exists a time after which there are always vectors in the ε neighbor-
hood of ϕ̂i,max. The weight (sum of L1 norms of vectors) in this neighborhood
changes over time, and due to the quantization of weight there exists a min-
imal weight qiε such that for every time t there exists a time t′ > t when the
weight in the neighborhood is qiε.

The following observations immediately follow:

Observation 1. For every ε′ < ε, the relation qiε′ ≤ qiε holds. Moreover,
qiε − qiε′ = l · q with l ∈ {0, 1, · · · }.

Observation 2. There exists an ε such that for every ε′ < ε, the minimal
weight in the ε′ neighborhood of ϕ̂i,max is the same as for ε. That is, qiε = qiε′.

The next lemma shows that vectors from different sides of the gap are
never merged. Its proof is deferred to Appendix 4.B.

Lemma 12. For any ε, there exists an ε′ < ε such that if a vector vout

lies outside the ε-neighborhood of ϕ̂i,max (i.e., has a reference angle smaller
than ϕ̂i,max − ε), and a vector vin lies inside the ε′-neighborhood (i.e., has a
reference angle larger than ϕ̂i,max − ε′), then their sum vsum lies outside the
ε′ neighborhood.

We are now ready to prove the that eventually the vectors are partitioned.
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Lemma 13 (Cluster formation). For every 1 ≤ i ≤ n, there exists a time ti
and a set of vectors

Vi,max ⊂ pool(ti)

s.t. the i’th reference angles of the vectors converge to ϕ̂i,max, and their de-
scendants are merged only with one another.

Proof. For a given i, choose an ε such that for every ε′ < ε the minimal
weights are the same: qiε = qiε′ . Such an ε exists according to Observation 2.

According to Lemma 12, there exists an ε̃ s.t. the sum of a vector inside
the ε̃ neighborhood and a vector outside the ε neighborhood is outside the ε̃
neighborhood. Choose such an ε̃.

Denote
vin,ε̃

∆
=
∑

v′∈Vin,ε̃

v′ , vout,ε
∆
=

∑
v′∈Vout,ε

v′ .

Since the Vout,ε vectors have reference angles outside the ε neighborhood,
vout,ε is also outside the ε neighborhood (Lemma 10). vin,ε̃ may either be
inside the ε̃ neighborhood or outside it. If vin,ε̃ is inside the ε̃ neighborhood,
then the sum v is outside the ε neighborhood, due to the choice of ε̃. If it is
outside, then v is outside the ε̃ neighborhood (Lemma 10 again).

Choose a ti s.t. ti > tε̃ and at ti the ε neighborhood contains a weight qε.
Since qε = qε̃, the weight in the ε̃ neighborhood cannot be smaller than qε̃,
therefore the weight is actually in the ε̃ neighborhood.

We now show that all operations after ti keep the descendants of the
vectors that were in the ε̃ neighborhood at ti inside that neighborhood, and
never mix them with the other vector descendants, all of which remain outside
the ε neighborhood.

We prove by induction that the descendants of the vectors that were inside
the ε̃ at ti are always in this neighborhood, and the descendants of the vectors
outside the ε neighborhood at ti are always outside this neighborhood. The
assumption holds at ti. Assume it holds at tj. If the step is a send operation
(Lines 3–7), it does not change the angle of the descendants, therefore the
claim holds at tj+1. If the step is a receive operation (Lines 8–11), then
vectors are merged. There is never a merger of vectors from both inside the
ε̃ neighborhood and outside the ε neighborhood, since the result is outside the
ε̃ neighborhood, leaving inside it a weight smaller than qε̃. Due to the same
reason, the sum of vectors inside the ε̃ neighborhood is always inside this
neighborhood. Finally, the sum of two vectors outside the ε neighborhood is
outside the ε neighborhood (Lemma 10).

Due to the choice of ε, for every ε′ < ε̃ there exists a time after which
there are vectors of weight qε in the ε′ neighborhood of ϕ̂i,max. According to
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what was shown above, these are descendants of the set of vectors Vin,ε̃ that
are never mixed with vectors that are not descendants thereof. This set is
therefore the required Vi,max.

We next prove that the pool of auxiliary vectors converges:

Lemma 14 (Auxiliary collective convergence). There exists a time t, such
that the normalized descendants of each vector in pool(t) converge to a specific
destination vector, and merge only with descendants of vectors that converge
to the same destination.

Proof. By Lemmas 11 and 13, for every 1 ≤ i ≤ n, there exists a maximal
i’th reference angle, ϕ̂i,max, a time, ti, and a set of vectors, Vi,max ⊂ pool(ti),
s.t. the i’th reference angles of the vectors Vi,max converge to ϕ̂i,max, and the
descendants of Vi,max are merged only with one another.

The proof continues by induction. At ti we consider the vectors that
are not descendants of Vi,max ∈ pool(ti). The descendants of these vectors
are never merged with the descendants of the Vi,max vectors. Therefore, the
proof applies to them with a new maximal i’th reference angle. This can be
applied repeatedly, and since the weight of the vectors is bounded from below
by q, we conclude that there exists a time t after which, for every vector v in
the pool at time t′ > t, the i’th reference of v converges. Denote that time
tconv,i.

Next, let tconv = max{tconv,i|1 ≤ i ≤ n}. After tconv, for any vector
in the pool, all of its reference angles converge. Moreover, two vectors are
merged only if all of their reference angles converge to the same destination.
Therefore, at tconv, the vectors in pool(tconv) can be partitioned into disjoint
sets s.t. the descendants of each set are merged only with one another and
their reference angles converge to the same values. For a cluster x of vectors
whose reference angles converge to (ϕxi )

n
i=1, its destination in the mixture

space is the normalized vector (cosϕxi )
n
i=1.

We are now ready to derive the main result of this section.

Corollary 1. The clustering series pool(t) converges.

Proof. Lemma 14 shows that the pool of vectors is eventually partitioned
into clusters. This applies to the weighted summaries pool as well, due to
the correspondence between summaries and auxiliaries (Lemma 9).

For a cluster of clusters, define its destination cluster as follows: Its weight
is the sum of weights of clusters in the cluster at tconv, and its summary is
that of the mixture space destination of the cluster’s mixture vectors. Using
requirement R1, it is easy to see that after tconv, the clustering series pool(∗)
converges to the set of destination clusters formed this way.
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4.5.2 Distributed Convergence

We show that the clusterings in each node converge to the same clustering
of the input values.

Lemma 15. There exists a time tdist after which each node holds at least one
cluster from each cluster of clusters.

Proof. First note that after tconv, once a node has obtained a cluster that
converges to a destination x, it will always have a cluster that converges to
this destination, since it will always have a descendant of that cluster — no
operation can remove it.

Consider a node i that obtains a cluster that converges to a destination x.
It eventually sends a descendant thereof to each of its neighbors due to the
fair choice of neighbors. This can be applied repeatedly and show that, due
to the connectivity of the graph, eventually all nodes hold clusters converging
to x.

Boyd et al. [21] analyzed the convergence of weight based average aggre-
gation. The following lemma can be directly derived from their results:

Lemma 16. In an infinite run of Algorithm 5, after tdist, at every node,
the relative weight of clusters converging to a destination x converges to the
relative weight of x (in the destination clustering).

We are now ready to prove the main result of this section.

Theorem 3. Algorithm 5, with any implementation of the functions valToSummary,
partition and mergeSet that conforms to Requirements R1–R4, solves the
Distributed clustering Problem (Definition 7).

Proof. Corollary 1 shows that the pool of all clusters in the system converges
to some clustering dest, i.e., there exist mappings ψt from clusters in the pool
to the elements in dest, as in Definition 6. Lemma 15 shows that there exists
a time tdist, after which each node obtains at least one cluster that converges
to each destination.

After this time, for each node, the mappings ψt from the clusters of the
node at t to the dest clusters show convergence of the node’s clustering to the
clustering dest (of all input values). Corollary 1 shows that the summaries
converge to the destinations, and Lemma 16 shows that the relative weight
of all clusters that are mapped to a certain cluster x in dest converges to the
relative weight of x.
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Appendix

4.A Decreasing Reference Angle

We prove Lemma 10, showing that the sum of two vectors results in a vector
with a reference angle not larger than those of the original vectors. The proof
considers the 3-dimensional space spanned by the two summed vectors and
the i’th axis. We show in Lemma 17 that it is sufficient to consider the angles
of the two vectors in a 2-dimensional space they span.

Recall we denote by ‖v‖p the Lp norm of v. For simplicity, we denote the
Euclidean (L2) norm by ‖v‖ . Denote by v1 · v2 the scalar product of the
vectors v1 and v2. Then the angle between two vectors in the mixture space
is:

arccos

(
va · vb
‖va‖ · ‖vb‖

)
.

We now show that we may prove for 2-dimensions rather than 3:

Lemma 17 (Reduction to 2 dimensions). In a 3 dimensional space, let va
and vb be two vectors lying on the XY plane with angles not larger than π/2
with the X axis, and va’s angle with the X axis is larger than that of vb.
Let ve be a vector in the XZ plane whose angle with the X axis is smaller
than π/2 and with the Z axis not larger than π/2. Then vb’s angle with ve
is smaller than that of va.

Proof. Let us express the angle of the vector va on the XY plane with ve
using the angle of the vector with the X axis, i.e., with the projection of ve on
the XY plane, as shown in Figure 4.6. Denote the end point of the vector by
A, and the origin by O. Construct a perpendicular line to the X axis passing
through A. Denote the point of intersection Ẽ. From Ẽ take a perpendicular
line to the XY plane, until intersecting ve. Denote that intersection point
E. OE is the vector ei and OẼ is its projection on the XY axis. Denote the
angle AOE by ϕa and AOẼ by ϕ̃a. Denote the angle EOẼ by ϕ̃e.

OẼ = |v| cos ϕ̃a

OE =
OẼ

cos ϕ̃e
=
|v| cos ϕ̃a

cos ϕ̃e

EẼ = OẼ tan ϕ̃e = |v| cos ϕ̃a tan ϕ̃e

AẼ = |v| sin ϕ̃a
AE =

√
EẼ2 + AẼ2 =

√
(|v| cos ϕ̃a tan ϕ̃e)2 + (|v| sin ϕ̃a)2
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Figure 4.6: The angles of the vectors va and ve.

Now we can use the law of cosines to obtain:

ϕa = arccos
OA2 +OE2 − AE2

2 ·OA ·OE
= arccos(cos ϕ̃a cos ϕ̃e) . (4.3)

Since 0 ≤ ϕ̃a ≤ π/2 and 0 ≤ ϕ̃e ≤ π/2, we see that ϕa is monotonically
increasing with ϕ̃a. We use similar notation for the vector b, and since
ϕ̃b < ϕ̃a, and both are smaller than π/2, then:

cos ϕ̃a ≤ cos ϕ̃b

cos ϕ̃a cos ϕ̃e ≤ cos ϕ̃b cos ϕ̃e

arccos(cos ϕ̃a cos ϕ̃e) ≥ arccos(cos ϕ̃b cos ϕ̃e)

ϕa ≥ ϕb . (4.4)

Now we return to the n dimensional mixture space.

Lemma 10 (restated) The sum of two vectors in the mixture space is a
vector with a smaller i’th reference angle than the larger i’th reference angle
of the two, for any 1 ≤ i ≤ n.

Proof. Denote the two vectors va and vb, and their i’th reference angles ϕai
and ϕbi , respectively. Assume without loss of generality that ϕai ≥ ϕbi . Denote
the sum vector by vc.

It is sufficient to prove the above in the 3 dimensional space spanned by
va, vb and ei. Align the XYZ axes such that va and vb lie on the XY plane
and the projection of ei on that plane is on the X axis. The vector vc lies on
the XY plane, as it is a linear combination of two vectors on the plane.
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By Lemma 17, it is sufficient to show that the angle of vc with the projec-
tion of the reference vector is smaller than the angle of va with the projection.

The angle between vc and the X axis is smaller than va’s angle with it.
The only two possible constructions are shown in Figure 4.7.

(a) (b)

Figure 4.7: The possible constructions of two vectors va and vb and their sum
vc, s.t. their angles with the X axis are smaller than π/2 and va’s angle is
larger than vb’s angle.

4.B ε′ Exists

Lemma 12 (restated) For any ε, there exists an ε′ < ε such that if a
vector vout lies outside the ε-neighborhood of ϕ̂i,max (i.e., has a reference angle
smaller than ϕ̂i,max− ε), and a vector vin lies inside the ε′-neighborhood (i.e.,
has a reference angle larger than ϕ̂i,max− ε′), then their sum vsum lies outside
the ε′ neighborhood.

Proof. Consider the 3 dimensional space spanned by vin, vout and ei. Align
the XYZ axes such that vin and vout lie on the XY plane and the projection
of ei on that plane is aligned with the X axis. Denote this projection by ẽi.
vsum lies on the XY plane, as it is a linear combination of two vectors on the
plane. Denote by ϕ̃iin, ϕ̃iout and ϕ̃isum the angles between ẽi and the vectors
vin, vout and vsum, respectively. Denote by ϕ̃iei the angle between ei and its
projection ẽi.

Consider some ε′ ≤ ε/2, so that the angle between vin and vout is at least
ε/2. Notice that the L2 norms of vin and vout are bounded between q from
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below and
√
s from above. Observing Figure 4.7 again, we deduce that there

is a lower bound on the difference between the angles:

ϕ̃isum < ϕ̃iin − x1 . (4.5)

Due to the previous bound, and noting that all angles are not larger than
π/2, a constant x2 exists such that

cos ϕ̃iin < cos ϕ̃isum − x2 . (4.6)

Since the reference angles of vin and vout are different, at least one of them is
smaller than π/2, therefore ϕ̃iei < π/2 for any such couple. Therefore, cos ϕ̃iei
is a bounded size, and factoring Inequality 4.6 we deduce that there exists a
constant x3 such that

cos ϕ̃iin cos ϕ̃iei < cos ϕ̃isum cos ϕ̃iei − x3 . (4.7)

We use the inverse cosine function with Inequality 4.7 to finally deduce that
there exists a constant x4 such that

arccos(cos ϕ̃iin cos ϕ̃iei) > arccos(cos ϕ̃isum cos ϕ̃iei) + x4 (4.8)

ϕiin > ϕisum + x4 (4.9)

Therefore, for a given ε, we choose

ε′ < min

{
1

2
x4,

1

2
ε

}
.

With this ε′, we obtain ϕisum < ϕ̂i,max − ε′, as needed.
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Part II

Consistency in Cloud Storage
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Chapter 5

Background

Advances in data center technologies have led to extensive use of data centers
to store large volumes of data in a managed distributed system. Internet
services such as social networks, search engines and shopping sites store huge
volumes of data. Large companies often use their own datacenters, but both
large and small companies often use external storage services. In both cases,
the users of such storage systems require reliability, as they store their user’s
data, low latency, and high throughput, to swiftly interact with a multitude
of users.

However, with datacenters consisting of thousands of servers, the failure
of individual machines and network components is the norm, rather than the
exception. Thus, to achieve reliability, replication must be used. Second, due
to the large number of concurrent processes and complex network structure,
it is undesirable for replication algorithms to make timing assumptions, as
these may decrease efficiency, requiring unnecessary waits. To avoid such
assumptions, asynchronous algorithms must be used.

In this part we address two challenges regarding reliable large data storage
in datacenters. Recent years have shown that even the largest cloud storage
providers occasionally fail, and users have to replicate data among multiple
providers to obtain reliability. However, classical replication techniques (e.g.,
ABD [11]) are not applicable here, since storage services typically export only
a key-value store (KVS) interface, with functions for storing and retrieving
values associated with unique keys.

In Chapter 6 we present the first efficient, wait-free algorithm that em-
ulates multi-reader, multi-writer reliable storage from a set of potentially
faulty KVS replicas in an asynchronous environment. We implemented the
algorithm and tested it using real-world providers, and we demonstrate through
simulation its low overhead in terms of space and speed in various scenarios.

Next, in Chapter 7 we present an architecture for a datacenter storage
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service called ACID-RAIN: ACID transactions in a Resilient Archive with
Independent Nodes. ACID-RAIN is a novel architecture for efficiently im-
plementing transactions in a distributed data store — a sought-after but
difficult to achieve capability.

ACID-RAIN uses logs in a novel way, limiting reliability to a single tier of
the system. A set of independent nodes form an outer layer that caches the
data, backed by a set of independent reliable log services. ACID-RAIN avoids
collisions between transactions by using prediction to order the transactions
before they take actions that would lead to an abort. ACID-RAIN is efficient
in overcoming failures, and its throughput increases linearly with the number
of nodes.

69



Chapter 6

Robust Data Sharing with
KVS’s

Motivation

In the recent years, the key-value store (KVS ) abstraction has become the
most popular way to access Internet-scale “cloud” storage systems. Such
systems provide storage and coordination services for online platforms [38,
9, 75, 104], ranging from web search to social networks, but they are also
available to consumers directly [8, 26, 94, 86].

A KVS offers a range of simple functions for manipulation of unstruc-
tured data objects, called values, each one identified by a unique key. While
different services and systems offer various extensions to the KVS interface,
the common denominator of existing KVS services implements an associative
array: A client may store a value by associating the value with a key, retrieve
a value associated with a key, list the keys that are currently associated, and
remove a value associated with a key.

Although existing KVS services provide high availability and reliability
using replication internally, a KVS service is managed by one provider; many
common components (and thus failure modes) affect its operation. A prob-
lem with any such component may lead to service outage or even to data
being lost, as witnessed, for example in an Amazon S3 incident [6], an Ama-
zon service disruption [7], Google’s temporary loss of email data [56] and
Microsoft’s Azure’s cluster failure [13]. As a remedy, a client may increase
data reliability by replicating it among several storage providers (all offering
a KVS interface), using the guarantees offered by robust distributed stor-
age algorithms [54, 11]. Data replication across different clouds is a topic of
active research [2, 24, 95, 17]; we discuss related work in Section 6.1.
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Problem

Our data replication scheme relies on multiple providers of raw storage, called
base objects here, and emulates a single, more reliable shared storage ab-
straction, which we model as a read/write register. A register represents the
most basic form of storage, from which a KVS service or more elaborate ab-
stractions may be constructed. The emulated register tolerates asynchrony,
concurrency, and faults among the clients and the base objects. For increased
parallelism, the clients do not communicate with each other for coordination,
and they may not even be aware of each other. We detail the system model
in Section 6.2.

Many well-known robust distributed storage algorithms exist (for an over-
view see [23]). They all use versioning [103], whereby each stored value is
associated with a logical timestamp. For instance, with the multi-writer
variant of the register emulation by Attiya et al. [11], the base objects perform
custom computation depending on the timestamp, in order to identify and
to retain only the newest written value. Without this an old-new overwrite
problem might occur when a slow write request with an old value and a small
timestamp reaches a base object after the latter has already updated its state
to a newer value with a higher timestamp. On the other hand, one might
let each client use its own range of timestamps and retain all versions of a
written value at the KVSs [51, 1], but this approach is overly expensive in the
sense that it requires as many base objects as there are clients. If periodic
garbage collection (GC) is introduced to reduce the consumed storage space,
one may face a GC racing problem, whereby a client attempts to retrieve a
value associated with a key that has become obsolete and was removed.

Contribution

We provide a robust, asynchronous, and space-efficient emulation of a regis-
ter over a set of KVSs, which may fail by crashing. Our formalization of a
key-value store (KVS) object represents the common denominator among ex-
isting commercial KVSs, which renders our approach feasible in practice. In-
spired by Internet-scale systems, the emulation is designed for an unbounded
number of clients and supports multiple readers and writers (MRMW). The
algorithm is wait-free [62] in the sense that all operations invoked by a cor-
rect client eventually complete. It is also optimally resilient, i.e., tolerates
the failure of any minority of the KVSs and of any number of clients.

We give two variations of the emulation in Section 6.3. Our basic algo-
rithm emulates a register with regular semantics in the multi-writer model [98].
It does not require read operations to write to the KVSs. Precluding readers
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from writing is practically appealing, since the clients may belong to different
domains and not all readers may have write privileges for the shared mem-
ory. But it also poses a challenge because of the GC racing problem. Our
solution stores the same value twice in every KVS: (1) under an eternal key,
which is never removed by a garbage collector, and therefore is vulnerable
to an old-new overwrite and (2) under a temporary key, named according to
the version; obsolete temporary keys are garbage-collected by write opera-
tions, which makes these keys vulnerable to the GC racing problem. The
algorithm for reading accesses the values in the KVSs according to a spe-
cific order, which guarantees that every read terminates eventually despite
concurrent write operations. In a sense, the eternal and temporary copies
complement each other and, together, guarantee the desirable properties of
our emulation outlined above.

We then present an extension that emulates an atomic register [78]. It
uses the standard approach of having the readers write back the returned
value [11]. This algorithm requires read operations to write, but this is
necessary [78, 12]. Section 6.4 analyzes the correctness of both algorithms.

Our emulations maintain only two copies of the stored value per KVS in
the common case (i.e., failure-free executions without concurrent operations).
We show that this is also necessary. In the worst case, a stored value exists
in every KVS once for every concurrent write operation, in addition to the
one stored under the eternal key. Hence, our emulations have optimal space
complexity.

Even though it is well-known how to implement a shared, robust multi-
writer register from simpler storage primitives such as unreliable single-writer
registers [12], our algorithm is the first to achieve an emulation from KVSs
with feasible space overhead. Section 6.5 establishes bounds on the algo-
rithms’ space complexity.

Note that some of the available KVSs export proprietary versioning in-
formation [8, 104]. However, one cannot exploit this for a data replication
algorithm before the format and semantics of those versions has been har-
monized. Another KVS prototype allows to execute client operations [52],
but this technique is far from commercial deployment. We believe that some
KVSs may also support atomic “read-modify-write” operations at some fu-
ture time, thereby eliminating the problem addressed here. But until these
extensions are deployed widely and have been standardized, our algorithm
represents the best possible solution for minimizing space overhead of data
replication on KVSs.

Last but not least, we simulate the algorithm with practical network
parameters for exploring its properties. The results, given in Section 6.6,
demonstrate that in realistic cases, our algorithm seldom increases the du-
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ration of read operations beyond the optimal duration. Furthermore, the al-
gorithm scales to many concurrent writers without incurring any slowdown.
We have also implemented our approach and report in Section 6.7 on bench-
marks obtained with cloud-storage providers; they confirm the practicality
of the algorithm.

A preliminary version of the work presented in this chapter appears in
the proceedings of the 42nd International Conference on Dependable Systems
and Networks (DSN’12) [15].

6.1 Related Work

There is a rich body of literature on robust register emulations that provide
guarantees similar to ours. However, virtually all of them assume read-
modify-write functionalities, or computation at the base objects. These in-
clude the single-writer multi-reader (SWMR) atomic wait-free register im-
plementation of Attiya et al. [11], its dynamic multi-writer counterparts by
Lynch and Shvartsman [81, 55] and Englert and Shvartsman [43], wait-free
simulations of Jayanti et al. [65], low-latency atomic wait-free implementa-
tions of Dutta et al. [41] and Georgiou et al. [53], and the consensus-free
versions of Aguilera et al. [3]. These solutions are not directly applicable to
our model where KVSs are used as base objects, due to the old-new overwrite
problem.

Notable exceptions that are applicable in our KVS context are SWMR
regular register emulation by Gafni and Lamport [51] and its Byzantine vari-
ant by Abraham et al. [1] that use registers as base objects. However, trans-
forming these SWMR emulations to support a large number of writers is inef-
ficient: standard register transformations [12, 23] that can be used to this end
require at least as many SWMR regular registers as there are clients, even
if there are no faults. This is prohibitively expensive in terms of space com-
plexity and effectively limits the number of supported clients. Chockler and
Malkhi [29] acknowledge this issue and propose an algorithm that supports
an unbounded number of clients (like our algorithm). However, their method
uses base objects (called “active disks”) that may carry out computations.
In contrast, our emulation leverages the operations in the KVS interface,
which is more general than a register due to its list and remove operations,
and supports an unbounded number of clients. Ye et al. [106] overcome the
GC racing problem by having the readers “reserve” the versions they intend
to read, by storing extra values that signal to the garbage collector not to
remove the version being read. This approach requires readers to have write
access, which is not desirable.
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Two recent works share our goal of providing robust storage from KVS
base objects. Abu-Libdeh et al. [2] propose RACS, an approach that casts
RAID techniques to the KVS context. RACS uses a model different from
ours and basically relies on a proxy between the clients and the KVSs, which
may become a bottleneck and single point-of-failure. In a variant that sup-
ports multiple proxies, the proxies communicate directly with each other for
synchronizing their operations. Bessani et al. [17] propose a distributed stor-
age system, called DepSky, which employs erasure coding and cryptographic
tools to store data on KVS objects prone to Byzantine faults. However,
the basic version of DepSky allows only a single writer and thereby circum-
vents the problems addressed here. An extension supports multiple writers
through a locking mechanism that determines a unique writer using com-
munication among the clients. In comparison, the multi-writer versions of
RACS and DepSky both serialize write operations, whereas our algorithm al-
lows concurrent write operations from multiple clients in a wait-free manner.
Therefore, our solution scales easily to a large number of clients.

6.2 Model

6.2.1 Executions

The system is comprised of multiple clients and (base) objects. We model
them as I/O automata [80], which contain state and potential transitions that
are triggered by actions. The interface of an I/O automaton is determined
by external (input and output) actions. A client may invoke an operation1

on an object (with an output action of the client automaton that is also an
input action of the object automaton). The object reacts to this invocation,
possibly involving state transitions and internal actions, and returns a re-
sponse (an output action of the object that is also an input action of the
client). This completes the operation. We consider an asynchronous system,
i.e., there are no timing assumptions that relate invocations and responses.
(Consult [80, 12] for details.)

Clients and objects may fail by stopping, i.e., crashing, which we model
by a special action stop. When stop occurs at automaton A, all actions of A
become disabled indefinitely and A no longer modifies its state. A client or
base object that does not fail is called correct.

An execution σ of the system is a sequence of invocations and responses.
We define a partial order among the operations. An operation o1 precedes

1For simplicity, we refer to an operation when we should be referring to operation
execution.
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another operation o2 (and o2 follows o1) if the response of o1 precedes the
invocation of o2 in σ. We denote this by o1 ≺σ o2. The two operations are
concurrent if neither of them preceded the other. An operation o is pending
in an execution σ if σ contains the invocation of o but not its response;
otherwise the operation is complete. An execution σ is well-formed if every
subsequence thereof that contains only the invocations and responses of one
client on one object consists of alternating invocations and responses, starting
with an invocation. A well-formed execution σ is sequential if every prefix
of σ contains at most one pending operation; in other words, in a sequential
execution, the response of every operation immediately follows its invocation.

A real-time sequential permutation π of an execution σ is a sequential
execution that contains all operations that are invoked in σ and only those
operations and in which for any two operations o1 and o2 such that o1 ≺σ o2,
it holds o1 ≺π o2.

A sequential specification of some object O is a prefix-closed set of sequen-
tial executions containing operations on O. It defines the desired behavior
of O. A sequential execution π is legal with respect to the sequential defini-
tion of O if the subsequence of σ containing only operations on O lies in the
sequential specification of O.

Finally, an object implementation is wait-free if it eventually responds to
an invocation by a correct client [61].

6.2.2 Register Specifications

6.2.2..1 Sequential Register A register [78] is an object that supports
two operations: one for writing a value v ∈ V , denoted by write(v), which
returns ack, and one for reading a value, denoted by read(), which returns a
value in V . The sequential specification of a register requires that every read
operation returns the value written by the last preceding write operation
in the execution, or the special value ⊥ if no such operation exists. For
simplicity, our description assumes that every distinct value is written only
once.

Registers may exhibit different semantics under concurrent access, as de-
scribed next.

6.2.2..2 Multi-Reader Multi-Writer Regular Register The follow-
ing semantics describe a multi-reader multi-writer regular register (MRMW-
regular), adapted from [98]. A MRMW-regular register only guarantees that
different read operations agree on the order of preceding write operations.
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Definition 9 (MRMW-regular register). A well-formed execution σ of a
register is MRMW-regular if there exists a sequential permutation π of the
operations in σ as follows: for each read operation r in σ, let πr by a subse-
quence of π containing r and those write operations that do not follow r in
σ; furthermore, let σr be the subsequence of σ containing r and those write
operations that do not follow it in σ; then πr is a legal real-time sequential
permutation of σr. A register is MRMW-regular if all well-formed executions
on that register are MRMW-regular.

Atomic Register A stronger consistency notion for a concurrent register
object than regular semantics is atomicity [78], also called linearizability
[62]. In short, atomicity stipulates that it should be possible to place each
operation at a singular point (linearization point) between its invocation and
response.

Definition 10 (Atomicity). A well-formed execution σ of a concurrent object
is atomic (or linearizable), if σ can be extended (by appending zero or more
responses) to some execution σ′, such that there is a legal real-time sequential
permutation π of σ′. An object is atomic if all well-formed executions on that
object are atomic.

6.2.3 Key-Value Store

A key-value store (KVS ) object is an associative array that allows storage
and retrieval of values in a set X associated with keys in a set K. The size
of the stored values is typically much larger than the length of a key, so the
values in X cannot be translated to elements of K and be stored as keys.

A KVS supports four operations: (1) Storing a value x associated with a
key key (denoted put(key, x)), (2) retrieving a value x associated with a key
(x← get(key)), which may also return fail if key does not exist, (3) listing
the keys that are currently associated (list ← list()), and (4) removing a
value associated with a key (remove(key)).

Our formal sequential specification of the KVS object is given in Algo-
rithm 7. This implementation maintains in a variable live the set of associated
keys and values. The space complexity of a KVS at some time during an ex-
ecution is given by the number of associated keys, that is, by the value |live|.

6.2.4 Register Emulation

The system is comprised of a finite set of clients and a set of n atomic wait-
free KVSs as base objects. Each client is named with a unique identifier
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Algorithm 7: Key-value store object i
1 state
2 live ⊆ K×X , initially ∅
3 On invocation puti(key, value)
4 live← (live \ {〈key, x〉 |x ∈ X}) ∪ 〈key, value〉
5 return ack

6 On invocation geti(key)
7 if ∃x : 〈key, x〉 ∈ live then
8 return x
9 else

10 return fail

11 On invocation removei(key)
12 live← live \ {〈key, x〉 |x ∈ X}
13 return ack

14 On invocation listi()
15 return {key | ∃x : 〈key, x〉 ∈ live}

from an infinite ordered set ID. The KVS objects are numbered 1, . . . , n.
Initially, the clients do not know the identities of other clients or the total
number of clients.

Our goal is to have the clients emulate a MRMW-regular register and
an atomic register using the KVS base objects [80]. The emulations should
be wait-free and tolerate that any number of clients and any minority of
the KVSs may crash. Furthermore, an emulation algorithm should associate
only few keys to values in every KVS (i.e., have low space complexity).

6.3 Algorithm

6.3.1 Pseudo Code Notation

Our algorithm is formulated using functions that execute the register oper-
ations. They perform computation steps, invoke operations on the base ob-
jects, and may wait for such operations to complete. To simplify the pseudo
code, we imagine there are concurrent execution “threads” as follows. When
a function concurrently executes a block, it perform the same steps and
invokes the same operations once for each KVS base object in parallel. An
algorithm proceeds past a concurrently statement as indicated by a termi-
nation property; in all our algorithms, this condition requires that the block
completes for a majority of base objects.

In order to maintain a well-formed execution, the system implicitly keeps
track of pending operations at the base objects. Relying on this state, ev-
ery instruction to concurrently execute a code block explicitly waits for a
base object to complete a pending operation, before its “thread” may invoke
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another operation. This convention avoids cluttering the pseudo code with
state variables and complicated predicates that have the same effect.

6.3.2 MRMW-Regular Register

We present an algorithm for implementing a MRMW-regular register, where
read operations do not store data at the KVSs.

Inspired by previous work on fault-tolerant register emulations, our al-
gorithm makes use of versioning. Clients associate versions with the values
they store in the KVSs. In each KVS there may be several values stored at
any time, with different versions. Roughly speaking, when writing a value,
a client associates it with a version that is larger than the existing versions,
and when reading a value, a client tries to retrieve the one associated with
the largest version [11]. Since a KVS cannot perform computations and
atomically store one version and remove another one, values associated with
obsolete versions may be left around. Therefore our algorithm explicitly
removes unused values, in order to reduce the space occupied at a KVS.

A version is a pair2 (seq, id) ∈ N0 × ID, where the first number is a
sequence number and the second is the identity of the client that created the
version and used it to store a value. When comparing versions with the <
operator and using the max function, we respect the lexicographic order on
pairs. We assume that the key space of a KVS is the version space, i.e.,
K = N0 × ID, and that the value space of a KVS allows clients to store
either a register value from V or a version and a value in (N0 × ID)× V .3

At the heart of our algorithm lies the idea of using temporary keys,
which are created and later removed at the KVSs, and an eternal key, de-
noted eternal, which is never removed. Both represent a register value and
its associated version. When a client writes a value to the emulated register,
it determines the new version to be associated with the value, accesses a ma-
jority of the KVSs, and stores the value and version twice at every KVS —
once under a new temporary key, named according to the version, and once
under the eternal key, overwriting its current value. The data stored un-
der a temporary key directly represents the written value; data stored under
the eternal key contains the register value and its version. The writer also
performs garbage collection of values stored under obsolete temporary keys,
which ensures the bound on space complexity.

2We denote by N0 the set {0, 1, 2, . . . }.
3In other words, X = V ∪ (N0 × ID) × V. Alternatively one may assume that there

exists a one-to-one transformation from the version space to the KVS key space, and from
the set of values written by the clients to the KVS value space. In practical systems, where
K and X are strings, this assumptions holds.
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6.3.2.a Read

When a client reads from the emulated register through algorithm regularRead
(Algorithm 9), it obtains a version and a value from a majority of the KVSs
and returns the value associated with the largest obtained version.

To obtain such a pair from a KVS i, the reader invokes a function
getFromKVS(i) (shown in Algorithm 8). It first determines the currently
largest stored version, denoted by ver0, through a snapshot of temporary
keys with a list operation.

Then the reader enters a loop, from which it only exits after finding a
value associated with a version that is at least ver0. It first attempts to
retrieve the value under the key representing the largest version. If the key
exists, the reader has found a suitable value. However, this step may fail due
to the GC racing problem, that is, because a concurrent writer has removed
the particular key between the times when the client issues the list and the
get operations.

In this case, the reader retrieves the version/value pair stored under the
eternal key. As the eternal key is stored first by a writer and never removed,
it always exists after the first write to the register. If the retrieved version
is greater than or equal to ver0, the reader returns this value. However, if
this version is smaller than ver0, an old-new overwrite has occurred, and the
reader starts another iteration of the loop.

This loop terminates after a bounded number iterations: Note that an
iteration is not successful only if a GC race and an old-new overwrite have
both occurred. But a concurrent writer that may cause an old-new overwrite
must have invoked its write operation before the reader issued the first list
operation on some KVS. Thus, the number of loop iterations is bounded by
the number of clients that concurrently execute a write operation in parallel
to the read operation (i.e., the point contention of write operations).

Algorithm 8: Retrieve a legal version-value pair
1 function getFromKVS(i)
2 list← listi() \ eternal
3 if list = ∅ then
4 return ((0,⊥),⊥)

5 ver0 ← max(list)
6 while True do
7 val← geti(max(list))
8 if val 6= fail then
9 return (max(list), val)

10 (ver, val)← geti(eternal)
11 if ver ≥ ver0 then
12 return (ver, val)

13 list← listi() \ eternal
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Algorithm 9: Client c MRMW-regular read operation
1 function regularReadc()
2 results← ∅
3 concurrently for each 1 ≤ i ≤ n, until a majority completes
4 if an op. is pending at KVS i then wait for a response
5 result← getFromKVS(i)
6 results← results ∪ {result}
7 return val such that (ver, val) ∈ results and ver′ ≤ ver for any (ver′, val′) ∈ results

6.3.2.b Write

A client writes a value to the register using algorithm regularWrite (Algo-
rithm 11). First, the client lists the temporary keys in each base object and
determines the largest version found in a majority of them. It increments this
version and obtains a new version to be associated with the written value.

Then the client stores the value and the new version in all KVSs using a
function putInKVS, shown in Algorithm 10, which also performs garbage
collection. It first lists the existing keys and removes obsolete temporary
keys, i.e., all temporary keys excluding the one corresponding to the maximal
version. Subsequently the function stores the value and the version under the
eternal key. To store the value under a temporary key, the algorithm checks
whether the new version is larger than the maximal version of an existing key.
If yes, it also stores the new value under the temporary key corresponding to
the new version and removes the key holding the previous maximal version.

Once the function putInKVS finishes for a majority of the KVSs, the
algorithm for writing to the register completes. It is important for ensuring
termination of concurrent read operations that the writer first stores the
value under the eternal key and later under the temporary key.

Algorithm 10: Store a value and a given version
1 function putInKVS(i, verw, valw)
2 list← listi()
3 obsolete← {v | v ∈ list ∧ v 6= eternal ∧ v < max(list)}
4 foreach ver ∈ obsolete do
5 removei(ver)

6 puti(eternal, (verw, valw))
7 if verw > max(list) then
8 puti(verw, valw)
9 removei(max(list))
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Algorithm 11: Client c MRMW-regular write operation
1 function regularWritec(valw)
2 results← {(0,⊥)}
3 concurrently for each 1 ≤ i ≤ n, until a majority completes
4 if an op. is pending at KVS i then wait for a response
5 list← listi()
6 results← results ∪ list

7 (seqmax, idmax)← max(results)
8 verw ← (seqmax + 1, c)

9 concurrently for each 1 ≤ i ≤ n, until a majority completes
10 if an op. is pending at KVS i then wait for a response
11 putInKVS(i, verw, valw)

12 return ack

6.3.3 Atomic Register

The atomic register emulation results from extending the algorithm for em-
ulating the regular register. Atomicity is achieved by having a client write
back its read value before returning it, similar to the write-back procedure
of Attiya et al. [11].

The write operation is the same as before, implemented by function
regularWrite (Algorithm 11). The read operation is implemented by func-
tion atomicRead (Algorithm 12). Its first phase is unchanged from before
and obtains the value associated with the maximal version found among a
majority of the KVSs. Its second phase duplicates the second phase of the
regularWrite function, which stores the versioned value to a majority of
the KVSs.

Algorithm 12: Client c atomic read operation
1 function atomicReadc()
2 results← ∅
3 concurrently for each 1 ≤ i ≤ n, until a majority completes
4 if an op. is pending at KVS i then wait for a response
5 result← getFromKVS(i)
6 results← results ∪ {result}
7 choose (ver, val) ∈ results such that ver′ ≤ ver for any (ver′, val′) ∈ results
8 concurrently for each 1 ≤ i ≤ n, until a majority completes
9 if an op. is pending at KVS i then wait for a response

10 putInKVS(i, ver, val)

11 return val

6.4 Correctness

In this section we sketch the arguments for correctness of the MRMW-regular
register. The correctness of the atomic register follows analogously.
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We say a read operation reads a version ver when the returned value
has been associated with ver (Algorithm 9 line 7), and a write operation
writes a version ver when an induced put operation stores a value under a
temporary key corresponding to ver (Algorithm 11 line 11).

6.4.1 Safety

Consider any execution σ̄ of the algorithm, the induced execution σ of the
KVSs (in terms of KVS operations), and a real-time sequential permutation π
of σ. Denote by πi the sequence of actions from π that occur at some KVS
replica i.

We first establish that for every KVS, the maximums of the versions
returned by consecutive list operations cannot decrease, despite the fact
that write operations also remove versions.

Lemma 18 (KVS version monotonicity). Consider a KVS i, a write oper-
ation w that writes version ver, and some operation puti in πi induced by
w with a temporary key. Then the response of any operation listi in πi that
follows puti contains at least one temporary key that corresponds to a version
equal to or larger than ver.

The next step ensures that the versions of the emulated read and write
operations respect the partial order of the operations in the execution. It
holds because read and write operations always access a majority of the
KVSs, and hence every two operations access at least one common KVS.

Lemma 19 (Partial order). In an execution σ̄ of the algorithm, the versions
of the read and write operations in σ̄ respect the partial order of the operations
in σ̄:

a) When a write operation w writes a version vw and a subsequent (in σ̄)
read operation r reads a version vr, then vw ≤ vr.

b) When a write operation w1 writes a version v1 and a subsequent write
operation w2 writes a version v2, then v1 < v2.

We may now construct a sequential permutation π̄ of an execution σ̄ by
ordering all write operations of σ̄ according to their versions and then adding
all read operations after their matching write operations; concurrent read
operations are added after their respective writes in the same order as in σ̄.
The safety of the MRMW-regular register follows.

Theorem 4 (MRMW-regular safety). Every well-formed execution σ̄ of the
MRMW-regular register emulation in Algorithms 9 and 11 is MRMW-regular.
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6.4.2 Liveness

The write routine obviously completes in finite time. The critical element
is the read operation, for which we include a detailed proof.

Lemma 20 (Wait-free read). Every read operation completes in finite time.

Proof. We argue that when a client c invokes getFromKVS for a correct
KVS i, it returns in finite time. Algorithm 8 first obtains a list list of all
temporary keys from KVS i and returns if no such key exists. If some tem-
porary key is found, it determines the corresponding largest version ver0 and
enters a loop.

Towards a contradiction, assume that client c never exits the loop in some
execution σ̄ and consider the induced execution σ of the KVSs.

We examine one iteration of the loop. Note that its operations are wait-
free and the iteration terminates. Prior to starting the iteration, the client
determines list from an operation listi. In line 8 the algorithm attempts
to retrieve the value associated with key vc = max(list) through an oper-
ation getc(vc). This returns fail and the client retrieves the eternal key
with an operation getc(eternal). We observe that listc ≺σ getc(vc) ≺σ
getc(eternal).

Since getc(vc) fails, some client must have removed it from the KVS with
a remove(vc) operation. Applying Lemma 18 to version vc now implies that
prior to the invocation of getc(vc), there exists a temporary key in KVS i
corresponding to a version vd > vc that was stored by a client d. Denote the
operation that stored vd by putd(vd). Combined with the previous observa-
tion, we conclude that listc ≺σ putd(vd) ≺σ getc(vc) ≺σ getc(eternal).

Furthermore, according to Algorithm 10, client d has stored a tuple con-
taining vd > vc under the eternal key prior to putd(vd) with an operation
putd(eternal). But the subsequent getc(eternal) by client c returns a
value containing a version smaller than vc. Hence, there must be an ex-
tra client e writing concurrently, and its version-value pair has overwrit-
ten vd and the associated value under the eternal key. This means that
operation pute(eternal) precedes getc(eternal) in σ and stores a ver-
sion ve < vc. Note that pute(eternal) occurs exactly once for KVS i
during the write by e.

As client e also uses Algorithm 11 for writing, its results variable must
contain the responses of list operations from a majority of the KVSs. De-
note by liste its list operation whose response contains the largest ver-
sion, as determined by e. Let list0

c denote the initial list operation by c
that determined ver0 in Algorithm 8 (line 5). We conclude that liste pre-
cedes list0

c in σ. Summarizing the partial-order constraints on e, we have
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liste ≺σ list0
c ≺σ pute(eternal) ≺σ getc(eternal).

Thus, in one iteration of the loop by reader c, some client d concurrently
writes to the register. An extra client e has invoked a write operation
before list0

c and irrevocably makes progress after d invokes a write operation.
Therefore, client e may cause at most one extra iteration of the loop by the
reader. Since there are only a finite number of such clients, client c eventually
exits the loop, and the lemma follows.

6.5 Efficiency

We discuss the space complexity of the algorithms in this section. Note
that the algorithm for writing performs garbage collection on a KVS before
storing a temporary key in the KVS. This is necessary for bounding the space
at the KVS, since the putInKVS function is called concurrently for all KVSs
and may be aborted for some of them. If the algorithm would remove the
obsolete temporary keys after storing the value, the function may be aborted
just before garbage collection. This way, many obsolete keys might be left
around and permanently occupy space at the KVS.

We provide an upper bound on the space usage. The time complexity of
our emulations follows from analogous arguments.

It is obvious from Algorithm 11 that when a write operation runs in isola-
tion (i.e., without any concurrent operations) and completes the putInKVS
function on a set C of more than n/2 correct KVSs, then every KVS in C
stores only the eternal key and one temporary key. Every such KVS has space
complexity two. When there are concurrent operations, the space complexity
may increase by one for every concurrent write operation, i.e., by the point
contention of writes.

Theorem 5. The space complexity of the MRMW-regular register emulation
at any KVS is at most two plus the point contention of concurrent write
operations.

Proof. Consider an execution σ̄ of the MRMW-regular register emulation.
We prove the theorem by considering the operations o1, o2, . . . of some legal
real-time sequential permutation π of σ, the KVS execution induced by σ̄.

If at some operation ot the number of keys that is written to KVS i but not
removed is x, then at some operation prior to ot, at least x register operations
were concurrently run. We prove by induction on t. Initially the claim holds
since there are no keys put and no clients run. Assume it holds until ot−1

and prove for ot. If operation ot is not a put, then the number of put keys
is the same as at ot−1 and the claim holds by the induction assumption.
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If operation ot is puti, invoked by some client c, then it is performed
by this client’s writec that first removed all but one temporary keys in its
GC routine (Algorithm 10 lines 4–9). These remove operations precede
the put in σ̄, and therefore also its real-time sequential permutation π. All
(except maybe one) versions that were written by writes that completed
before writec are therefore removed before operation ot. The temporary keys
in the system at ot−1 are ones that were written by operations concurrent
with writec. The putc operation therefore increases their number by one, so
the number of keys is at most the number of concurrent write operations,
as required.

The same bound can be shown for the atomic register emulation, except
here read operations may also increase the space complexity.

6.6 Simulation

To assess the properties of the algorithm, we analyze it through simulations
under realistic conditions in this section. In particular, we demonstrate the
scalability properties of our approach and compare it with a single-writer
replication approach. In Section 6.7, we also assert the accuracy of the
simulator by comparing its output with that of experiments run with an
implementation of the algorithm, which accessed actual KVS cloud-storage
providers over the Internet.

We have built a dedicated event-driven simulation framework in Python
for this task. The simulator models our algorithm for clients (Algorithms 8,
9, 10, and 11) and for KVS replicas (Algorithm 7). In each simulation run,
one or more clients perform read and write operations using our register
emulation.

6.6.1 Simulation Setup

The simulated system contains a varying number of clients and three KVS
replicas. The time for a client to execute a KVS operation consists of three
parts: (1) the time for the invocation message to reach a KVS replica; (2) the
time for a KVS to execute the operation, always assumed to be 0; and (3) the
time for the response message to reach the client. Message delays (1) and (3)
are influenced by two factors: first, the network latency of the client, which
we model as a random variable with exponential distribution with a given
mean; and, second, by the size of the transferred value and the available
network bandwidth. We assume that metadata is always of negligible size
and consider only the size of the stored values.
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Figure 6.1: Simulation of the average duration of read operations shown
with one concurrent writer accessing the KVS replicas at varying network
latencies. The mean network latency of the reader is 100 ms; only when the
writer has a much smaller latency does the read operations take longer than
the expected minimum of 400 ms.

As the base case for our explorations, we use a network latency with a
mean of 100 ms. Unless stated differently, the network available to every
client has 1 MBps bandwidth and the data size is small, namely 500 bytes.

The simulator drives the algorithm through read and write operations
of the clients. Clients issue operations in a closed-loop manner: each client
issues a new request only after it has received a response for the previous
request. For measuring a statistic like the average duration of read and
write operations, a run is simulated for some time, the number of completed
operations is counted, and the average of the statistic per operation is output.
The runs are sufficiently long to produce a reliable average.

6.6.2 Read Duration

6.6.2..1 Latency A read operation takes at least two operations on the
KVSs: an initial list, followed by at least one iteration of the loop in Algo-
rithm 8. More iterations are needed only in the presence of concurrent write
operations.

To observe this behavior, we run the simulation with a single writer and
one reader. The two network latencies for the reader have a mean of 100 ms
each. We vary the two network latencies of the writer from 2 ms to 100 ms
in increments of 2 ms, to investigate a higher rate of write operations than
read operations. Every average is computed from a simulation running for
40 s.
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Figure 6.2: Simulation of the average duration of read operations as a func-
tion of the data size. For small values, the network latency dominates; for
large value, the duration converges to the time for transferring the data.

The average duration of the read operations is shown in Figure 6.1. As
two network roundtrips are needed by every read, the minimum expected
duration is 400 ms. We note that only when the writer’s network latency is
about 20 ms or less, will read operations take noticeably longer than their
minimal duration. This corresponds to a writer that operates at least five
times faster than the reader. However, an average read operation never
exceeds 600 ms.

6.6.2..2 Data size The second parameter that affects the read duration
behavior is the data transfer time. We have already seen that for small
values, read operations take longer than their minimal duration only in the
presence of very fast write operations.

For this simulation, we let a fast writer with 1 ms mean network latency
run concurrently to the reader. We vary the data size from 1 KB to 10 MB
by multiplicative increments and simulate 16 data points for every 10-fold
increase in size. We compare the average read duration of our algorithm
to the theoretical lower bound, which is achieved by a non-robust algorithm
that retrieves the value from one KVS.

The result is depicted in Figure 6.2. It shows that for small sizes, the net-
work latency dominates the time for reading. Here, the read duration corre-
sponds to the time needed for about three network roundtrips and matches
the simulation of the reader’s latency with much faster concurrent writes
described previously. With larger sizes, the data transfer time becomes dom-
inant, the write operations take longer, and the probability that the reader
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Figure 6.3: Simulation of the average duration of write operations as a
function of the number of concurrent writers. The single-writer approach
with serialized operations is shown for comparison.

runs extra iterations of its loop decreases. For a data size of about 400 KB or
more, our algorithm converges to the lower bound. This is because the value
is transferred from the KVS only once, and the data transfer time dominates
the operation duration.

6.6.3 Write Duration

This simulation addresses the scalability of write operations in the presence
of multiple concurrent writers. We use a medium data size of 1 MB to
illustrate the critical issue of write contention. With shorter values, the put
operations finish quickly and we have not experienced much contention in
preliminary simulations. For comparison we also simulate the performance
of single-writer replication approaches, which have been considered in the
related literature about data replication for cloud storage [2, 17]. These
approaches provide the multi-writer capability by agreeing on a schedule
with a single writer at any given time. In effect, this causes serial writes.

The network latencies for all writers are 100 ms; data size of 1 MB incurs
a delay of 1 s because of the bandwidth constraint, which is imposed on
the connection from every writer to the KVS replicas. Figure 6.3 shows
the average duration of write operations invoked concurrently by a pool
of clients, which grows from 1 to 50 clients. The averages are obtained
by running the simulations for 30 s. The single-writer algorithm models
write serialization through agreement, where we ignore the cost of reaching
agreement.

For this simulation we use a batched garbage collection scheme, where a
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Figure 6.4: Simulation of the maximal space usage depending on the number
of concurrent writers. The upper bound is the number of writers plus two
according to Theorem 5.

writing client invokes all remove operations concurrently. Although such a
parallelization is impossible in our formal model, it is a practical optimization
feasible with all KVS services we encountered.

The figure shows how the average duration of a write in our algorithm
remains constant, even with many writers. In contrast, the time for writing
in the single-writer approach obviously grows linearly with the number of
concurrent writers.

6.6.4 Space Usage

To gain insight in the storage overhead, we measure the maximal space used
at any KVS depending on the number of concurrently writing clients. The
data size is 500 bytes, and the simulations are run for 50 s.

Figure 6.4 shows the maximal space usage at a KVS, where the number
of concurrent writers increases from 1 to 50. Space usage is normalized to
multiples of the data size. The upper bound from Theorem 5, given by
the number of concurrent writers plus two, is included for comparison. The
simulation shows that this bound is pessimistic and that the space used in
practice is much smaller.

Further investigations show that the average space usage lies in the range
of 2–5 in this simulation. This behavior can be explained by referring to the
write algorithm. Concurrent writers indeed leave a large number of tem-
porary keys behind, but the next writer removes all of them during garbage
collection. As the time until removal is relatively short, the average space
usage is small.
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Figure 6.5: The median duration of read operations and get operations as
the data size grows. The box plots also show the 30th and the 70th percentile.

6.7 Implementation

6.7.1 Benchmarks

To evaluate the performances of read and write operations on cloud-storage
KVSs in practice, we have implemented the algorithm in Java. The imple-
mentation uses the jclouds library [66], which supports more than a dozen
practical KVS services.

Every client is initialized with a list of n accounts of KVS cloud-storage
providers. The client library buffers operations on the KVSs as required by
our model. Specifically, when a read or a write operation triggers a series
of operations on the KVSs, these are appended to a dedicated FIFO queue
for each one of the n KVSs; for each KVS, the implementation fetches the
first operation from its queue and executes it as soon as the preceding one
terminates.

The benchmark uses n = 3 KVS providers: Amazon S3, Microsoft Azure
Storage, and Rackspace Cloudfiles [8, 26, 94]. The client performs two write
operations with the same key (so as to trigger the deletion of the first ver-
sion) for 1000 different keys in closed-loop mode, followed by as many read
operations with the keys written previously. We have instrumented the code
to measure the completion time of the individual list, put, get, and remove
operations as well as the duration of the read and write operations. The
benchmark explores a data size ranging from 1 KiB to 10000 KiB in ten-fold
increments.

Figures 6.5 and 6.6 show the results of the benchmark. Closer investiga-
tion of these times reveals that the duration of read operations is equal to the
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Figure 6.6: The median duration of write operations and put operations as
the data size grows. The box plots also show the 30th and the 70th percentile.

duration of the second-slowest get plus the duration of the second-slowest
list. The reason is that the reader only waits for responses from a majority
of the providers, and hence ignores the slowest response here. As for write
operations, we observe that their duration equals twice the duration of the
second-slowest put operation plus the duration of the second-slowest list.
We also notice that read and write operations are faster than the slowest
get and put operations: this can be seen in Figure 6.5, where Amazon S3
get operations are much slower than read operations for 10000 KiB data
size, and in Figure 6.6, where Cloudfiles put operations are slightly slower
than write operations for 1000 KiB input files.

6.7.2 Comparison of Simulation and Benchmarks

To compare the simulations with the behavior of the implemented system, we
run an experiment with three KVS replicas and one client that performs 1000
write operations followed 1000 read operations. The data size is 2 MB. The
same scenario is simulated with parameters set to values that were obtained
from the experiment.

In particular, the simulation uses the same model as described before,
with exponentially distributed network latencies for KVS operations. We
measured the network latency of KVS operations excluding the time for data
transfer. We assume that the invocation and response latencies of the sim-
ulated operations are symmetric and set their mean to half of the measured
network latency. Furthermore, we determined the bandwidth of every KVS
provider from the measurements of put and get operations.

For get and put, the mean network latency for the KVSs is set to 39.4 ms,
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Figure 6.7: Comparison of the duration of read and write operations for
the real system (solid lines) and the simulated system (dotted lines). The
graph shows a histogram of the operation durations for 1000 read operations
(centered at about 1200 ms) and 1000 write operations (centered at about
1800 ms).

90.4 ms, and 81.2 ms, respectively. For list, the mean network latency
is 36.5 ms, 181.1 ms, and 130.9 ms; and for remove, network latency is
18.5 ms, 100 ms, and 59.5 ms. The bandwidth limitations for the providers
are 6.67 MBps, 2.33 MBps, and 1.5 MBps, respectively.

Figure 6.7 compares the durations of read and write operations in the
experiment and the simulation. The graphs show a good match between the
experimental system and the simulation. This reinforces the confidence in
the simulation results.
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Chapter 7

ACID-RAIN

Large scale computing systems often employ massive data sets that must
be spread over large numbers of storage nodes. Clients are provided with
read and update access primitives, and to the extent that client transactions
access shared data items, the issue of consistency arises. Ideally, we would use
a system with ACID transactions [14, 71, 4], because this model facilitates
reasoning about system properties and makes possible a variety of high-
assurance guarantees. Nonetheless, the ACID model is widely avoided due
to efficiency concerns [57].

Today’s popular cloud-scale data management systems [28, 25, 101, 34,
89] divide the objects into subsets so as to group objects likely to be accessed
by a single transaction into a single subset. Each subset can then be hosted
by a single (reliable) entity. Such a structure makes it possible to allow
atomic operations for objects in the same subset; more difficult are cases
where a transaction spans multiple subsets, and hence multiple nodes.

Were one to support ACID semantics in this case, the most common
approach is to obtain ordering and atomicity by making a central certifica-
tion entity responsible for validating the actions taken when the transaction
is ready to commit. This entity can be a reliable replicated service, such
as Zookeeper [63] or Corfu [84]. With this structure in place, transactions
can perform quite a bit of work optimistically. At commit time, the desired
actions and their read/write dependencies are routed through the certifica-
tion authority, which can then abort actions that violated ACID consistency.
However, this kind of certification entity is limited by the throughput of the
service, and therefore the approach cannot scale beyond a certain point.

Another option is to use a combination of locking or timestamped version
management, together with two phase commit (2PC). This permits atomic
operations on objects that reside in different machines. However, 2PC is
generally avoided in high availability systems due to performance and fault-
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tolerance concerns. When servers fail, a common event in large scale sys-
tems, locks may persist, blocking other operations. Specifically, if a lock
holder crashes mid-transaction, its peers have to wait until its crash is ver-
ified (through the use of server leases), and the lock holder is resurrected
and releases the locks, before allowing the transaction to complete (either
committing or aborting). Resurrecting a lock holder often involves reloading
its state from reliable storage, and until that time, no new transaction with
potential collisions can be processed. Optimistic concurrency control has at
best a limited impact on these costs, as we’ll see in our review of related
work in Section 7.1.

In this chapter, we present ACID-RAIN — an architecture for ACID
transactions in a Resilient Archive with Independent Nodes. The exact model
and goal are described in Section 7.2.

7.0.2..3 Architecture Our approach uses logs in a novel manner. Clas-
sically, logs are used to store the state of individual system components, and
to restore them upon failure; these are either rollback or roll-forward logs, in
which a single server stores its decisions. Our logs, on the other hand, collab-
oratively describe the state of the entire system. They do this in a distributed

TM 1 TM j TM m

Log 1 Log i Log n

OM 1

OM i (1)

OM n

OM i (2)

Figure 7.1: Schematic structure of ACID-RAIN. Transaction Managers
(TMs) 1, . . . ,m access multiple objects per transaction. Objects are managed
(cached) by Object Managers (OMs) 1, . . . , n. OMi(1) is falsely suspected to
have failed, and therefore replaced by OMi(2), causing them to concurrently
serve the same objects. The OMs are backed by reliable logs 1, . . . , n, to
which they store tentative transaction operations for serialization, as well as
(later) certification results.
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fashion, i.e., one would need to combine all logs in order to materialize the
global state. The structure of the system is illustrated in Figure 7.1. Each
log is accessed through an Object Manager (OM ) that caches the data and
provides the data structure abstraction — exporting read and write oper-
ations in the KVS case. Transaction Managers (TM s) provide the atomic
transaction abstraction, sending each individual operation to the object’s log
(via the OM), and certifying the transaction by checking for conflicts in each
log (again, via its OM). We thus separate the consistency of individual ob-
jects, maintained with logs, from that of full transactions, achieved by our
algorithm. The reliability for each log is achieved with replication chains or
state machine replication, abstracted away as reliable logs.

The benefit of our approach is that other than the logs, no system entities
are required to be reliable. If an OM crashes, it is replaced by another
OM, whose state is restored from the log. Since OMs merely cache the
state in the log, safety is not endangered by having multiple OMs acting
concurrently. This allows for quick restoration, since we needn’t worry about
verifying the crash of a potentially slow agent. Should a TM fail, work
can be shifted to other TMs, and transactions currently underway can be
aborted. If a transaction has been written to its logs and certification is
underway, some other TM can take over the certification process: there is
no risk of confusion, because certification is a deterministic algorithm that
depends purely on the log states. To abort a transaction, a TM poisons it by
appending poison entries to the relevant logs, thus preserving the invariant
that one can deterministically compute the state of any object purely from
the logs. The system and algorithm are described in detail in Section 7.3,
and its correctness is discussed in Section 7.4.

The ACID-RAIN architecture model scales linearly, allowing system re-
sizing by adding shards (reliable logs and OMs) and enough TMs to avoid
bottlenecks. A TM always performs read and write operations purely on the
outer (OM) layer, allowing for short latency. Update transactions write back
to the logs only at commit time using sequential access, allowing for short
latency and high throughput.

7.0.2..4 Prediction By its nature, our system uses optimistic concur-
rency control (OCC), since OMs respond to concurrent TM instructions with
no locks. To improve latency, the OMs serve requests with speculative lo-
cal data structures, referring to their validated local data structure only for
certification. However, the use of OCC exposes us to the risk of aborts in
scenarios with contention. We significantly decrease the number of aborts
using predictors that can foresee the likely access pattern of the transac-
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tions. Such predictors can be implemented with machine learning tools that
monitor access patterns over time [92]. The predictor can be conservative,
predicting a “covering set” of objects bigger than the actual one. False nega-
tives (failure to predict that transaction Ti would access object o) may lead to
aborts, but when the predictive component is accurate, all transactions are
always committed when there are no failures, and can therefore be performed
optimistically, in a lock-free manner.

To leverage prediction, we use object leases, where a transaction leases a
version of an object for use on an OM it is predicted to access. Note that
unlike true locks, employed by servers in other systems, failure to respect
an object lease does not violate safety, and therefore does not delay OM
restoration on failures.

7.0.2..5 Evaluation We evaluate ACID-RAIN through simulation with
the transactional YCSB benchmark [36, 42]. We demonstrate the algorithm’s
linear (i.e., optimal) scalability, and the effectiveness of using predictions in
scenarios with contention. Finally, we demonstrate the importance of fast
server replacement upon failure, and why it is important to avoid server
leases. The results are detailed in Section 7.5.

7.0.2..6 Contributions To summarize, our contributions are:

• An architecture that employs a novel use of logs to limit reliability to
a single tier, allowing fast restoration in case of failure.

• A linearly scalable system that allows high throughput (with serial logs)
with low latency (most of the time cache access).

• Use of prediction to obtain good throughput by reducing abort rate in
high contention scenarios.

A preliminary version of the work presented in this chapter was submitted
for publication.

7.1 Related Work

The holy grail of low-latency high-throughput ACID transactions has long
fascinated the data management community. We detail below the most rel-
evant work with respect to this one.

One approach is to realize weaker consistency models that enable better
performance, e.g., parallel snapshot isolation in Walter [99], causal+ con-
sistency in COPS [79], and snapshot isolation in Percolator [93]. It is also
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possible to avoid transactions altogether, as in PNUTS [30], HBase [101], and
other NoSQL systems. However, our target is providing full fledged ACID
transactions.

RAM-Cloud [89], Elastras [34], Bigtable[28], Windows Azure Storage [25],
HBase [101] and others offer atomic transactions in single shards, i.e., for ob-
jects located in a single machine. However, transactions are limited to single
machines only in very particular scenarios, so this approach doesn’t gener-
ally hold. G-Store [35] adds a collocation primitive that allows the user to
explicitly move objects together for collocated transactions, and Schism [33]
cleverly and automatically collocates objects in order to prevent multi-server
transactions. However, real world scenarios, such as social network data, do
not always have clear separation and would require constant object migra-
tion.

Another approach, used by Megastore and its variants [14, 91], H-store [71],
and Spanner [32] is to use two-phase commit for cross-server transactions.
Sinfonia [4] uses an architecture similar in many ways to ours, but employs
locking to provide atomic transactions, and does not take advantage of pre-
diction as ACID-RAIN does. The downside of these approaches compared
to ACID-RAIN is that they require a coordinator that performs transactions
on multiple objects to be highly available. This requires consensus for each
operation, resulting in high latency. High latency reduces throughput, since
conflicting transactions block one another, as we demonstrate in Section 7.5.

Sprint [27] and Hyder [16] order transactions by a global service (a mul-
ticast service, and a log, resp.). The result of each transaction, commit or
abort, is determined by the order of previous transactions. A transaction
commits if and only if it has no conflicts with previous committed transac-
tions. In both cases, the global service used is highly efficient, and sufficient
for the target application. However, at a high enough scale, a global service
becomes a bottleneck. In contrast, our system has no such bottleneck and
achieves unbounded linear scale-out.

The approach of MDCC [74] is close to ACID-RAIN. However, unlike
ACID-RAIN, MDCC requires storage nodes to keep the metadata of all
transactions ever executed. If the failure detector suspects a transaction
to be partially written due to a failure, it initiates a re-execution. To prevent
transaction double execution due to a false suspicion, storage servers need to
check this history on every vote.
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7.2 Model and Goal

7.2.1 Model

Our system is designed to run in a single data center. We assume unreliable
servers that may crash or hang, in an asynchronous, loss-prone network.
To accommodate reliable storage, we employ reliable, available, sequentially
consistent logs, as explained in 7.3.2.

7.2.2 Service

The system exposes a transactional data store supporting serializable trans-
actions. A client invokes a begin-transaction command, followed by the trans-
action’s operations. Each operation is either a read (e.g., a field from a table),
an update (e.g., setting the value of a field in a table or adding a key to a
key-value store) or a read-modify-write (e.g., pushing or popping a queue
element). Finally the client invokes the end-transaction command, and the
system responds with either a commit or an abort. Servers are equipped with
predictors that predict which objects a transaction is likely to touch during
is run.

In order to achieve progress, the system should be obstruction-free. That
is, there should exist a time T after which, if only a single client remains
active, all its transactions eventually either commit or abort and any new
transactions always commit. This is true regardless of the previous system’s
state and previous behavior of other clients, which might, in particular, be
in the midst of transactions. If the logging service is operational, and the
predictive layer is accurate, and there are no failures, transactions complete
without obstruction, and never abort.

7.3 ACID-RAIN

We now describe the operation of ACID-RAIN. The overall structure of the
system is illustrated in Figure 7.1, and we enumerate the system’s elements in
Section 7.3.1. We describe the specification of a reliable log in Section 7.3.2,
and proceed in Section 7.3.3 to overview a simplified version of the algorithm,
skipping resilience issues and prediction. Then we detail the resilient TM and
OM algorithms in sections 7.3.4 and 7.3.5, respectively, and the prediction
mechanism in Section 7.3.6.

We use the following notation to describe concurrency. When a ‖ symbol
precedes a function call, the function is called asynchronously (e.g., by a
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different thread), and the current thread’s control proceeds immediately to
the next line. Additionally, in a loop of type parForeach, all the loop’s
iterations are run concurrently, and control proceeds after the loop when all
of them complete.

Remote function invocations, including the ones running in parForeach
loops, can time out (due to crashes or message loss) and return ⊥.

7.3.1 System Structure

We detail the components of the system below.

1. Clients, typically front-end machines — invoke the transaction opera-
tions and begin/end it.

2. Logs — reliable and available logs. Append entries, and update regis-
tered servers when entries are appended.

3. Transaction managers (TMs) — implement the transaction abstraction.
TMs receive instructions from the client to start and end a transaction,
and operations to perform on individual objects. They return object
values and the commit/abort result. A TM accesses the OMs to read
objects, write objects and coordinate transaction certification.

4. Object managers (OMs) — implement the object abstraction (e.g., ta-
ble or queue). They maintain a cache of the objects in the logs. They
return the values requested by the TM on reads and acknowledgements
on updates.

5. Membership monitors — in charge of deciding and publishing which
machines perform which roles, namely which machines run the log and
OM for each shard, and which TMs are available. Any client can access
any TM for any given transaction. Other than the logs, server role
assignment may be inconsistent. Each object (transaction) is supposed
to be managed by a single OM (TM, resp.) at a given time, but this
may change due to an unjustified crash suspicion whereupon an object
(transaction, resp.) may temporarily be managed by two OMs (TMs,
resp.) that do not know of one another.

In Figure 7.1 there are n reliable logs and object managers associated
with the logs. One, OM i, is falsely suspected as malfunctioning, so it has
two copies, OMi(1) and OMi(2). There are also m transaction managers, each
running a transaction that touches a different set of OMs.
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Note that in an implementation of the system one may use multiple OMs
per log, dividing the log’s object set, or the other way around, have multiple
logs report to a single OM. The choice depends on the throughput of the
specific implementations chosen for each service. Here we use a 1:1 mapping
for simplicity of presentation.

7.3.2 Log Specification

ACID-RAIN uses log servers for reliable storage of data. Each log server
provides a sequentially consistent log object, i.e., update operations are lin-
earizable, but reads may return outdated results. A client of the log object
works as follows. To append an entry, it invokes append(e), and the log
appends the entry e according to the arrival order, associating it with a
sequence number, starting from 0 for each log.

In order to track the log state, a client registers to the log. The log
sends to each registered client all entries as (i, e) (sequence number and entry
content), from the first one in the log, to its end, and then new entries as
they arrive. The client is then able to construct a local copy of the log to
work with. Note that due to processing time and network delays, the client’s
copy of the log may be out of date.

A client may also perform garbage collection (GC) on the log, by invoking
truncate(i) that causes the log to discard all entries earlier than sequence
number i. This sequence number is now the first entry of the log (for new
registering clients, for example). Sequence numbers are not changed due to
a GC event (nor for any other reason).

Such logs may be implemented with chain replication [102], with the Isis2

replication library [20], or using Paxos or a similar SMR algorithm [77, 70],
however we abstract this away, and assume logs are always available.

7.3.3 Simplified Algorithm

We now describe a simplified version of the algorithm. A flow diagram illus-
trating the algorithm’s progress is given in Figure 7.2.

When receiving a begin-transaction from a client, the TM assigns the
transaction a unique identifier txnID and awaits the transaction’s operations.
It then services the operations by routing them to the appropriate OMs. Each
operation is sent to the OM in charge of the object, along with the transaction
ID. The response is delivered back to the client.

Each committed transaction is assigned a timestamp. When reading an
object, the timestamp of the latest transaction that wrote this object is
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Figure 7.2: An example flow of the simplified algorithm. A front end runs
a transaction that reads object x and writes object y. The client ends the
transaction, and the TM certifies it with both relevant OMs, both going
through the appropriate logs before returning their local results. The TM
then sends the commit result to the client. Later, it marks the transaction
in the logs (via the OMs) as committed, and then as ready to GC.

returned to the TM. The TM calculates the transaction’s timestamp by in-
crementing the largest timestamp returned to it in any of the transaction’s
operations. Once a transaction is done, the TM also forms its log set, the set
of logs in charge of the shards it touched.

Certification

Once a TM receives an end-transaction instruction from a client, it notifies
relevant OMs, detailing the transaction’s timestamp and log set. When it
receives an end-transaction instruction, an OM appends to the log of its
shard an entry consisting of the txnID, its timestamp, its read- and write-
sets (read-set with timestamps read, write-set with written values), and its
log set.
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If the transaction was written to all logs, and it does not collide with
previous transactions on any of them, it is construed as having committed.
Collisions are violations of read-write, write-read or write-write order, includ-
ing circular dependencies, and can be checked by comparing timestamps. In
our architecture, each OM can only detect local collisions, so the result of the
transaction can only be certified by combining the information from multiple
logs.

To certify a transaction, the TM goes over all of logSet and confirms the
transaction has no collisions in any of the logs. A transaction that reads
an object updated by a concurrent transaction, cannot be certified until the
latter was certified.

A TM (usually the committing TM), asks all the relevant OMs for their
local collision result. If none of them collided, then the transaction has
committed, otherwise it has aborted. The TM then instructs the OMs to
place the transaction result in the logs. In case of a crash of a TM or an
OM or a missing result entry (due to message loss), resulting in a partially
certified transaction, another TM may read the uncertified entry in one of
the logs, find logSet, and restart/continue the certification process. It is okay
to have multiple result entries for a transaction — they will be the same.
Note that each transaction entry is written once, with no retries on failure,
to avoid duplicates. A lost transaction entry will therefore trigger an abort.

Garbage Collection

Running our algorithm for a long time leads to lengthy logs. This has two
drawbacks. First, an agent that registers itself with the log has to download
and run this long log. Second, storage bounds prohibit infinite-length logs.
Therefore we wish to occasionally compact the log by summarizing its prefix,
placing this summary in the log and GCing the prefix. However, this com-
paction must not break transaction certification. Each transaction should be
either committed or aborted in all its logs, and therefore cannot be removed
from any of them before the result is published.

To allow GC, an agent (usually the committing TM) goes over logSet
to check that the certification result was appended. If it was not, the TM
certifies the transaction by itself. If it was, it proceeds to clear the transaction
for GC by appending to each log in the log set the tuple (txnID,gcOk).
Again, in case of a crash of the TM, or a lost gcOk-tuple, another TM may
read the entry in one of the logs, learn the log set, and restart/continue the
clear-to-GC process. Multiple TMs may attempt to move the system from
one state to the other until the transaction is done (committed or aborted)
and GCed.
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7.3.4 Transaction Manager

The resilient TM’s operation is described in Algorithms 13–14. To limit the
complexity of the code, we consider a KVS data structure, so each operation
either reads a key (tmRead), or writes a value to a key (tmWrite). The
extension to arbitrary data types is immediate. Additionally, the TM handles
tmBeginTxn and tmEndTxn.

When beginning a transaction, the TM chooses a unique identifier for it,
and returns this ID to the client. All the transaction’s operations are tagged
with this ID.

It then uses a predictor to estimate its read and write sets, and chooses
a predicted timestamp by conferring with the relevant OMs and leasing the
objects. The leasing mechanism is described in Section 7.3.6, but omitted
from the pseudo-code for readability.

When asked to read an object, the TM contacts the OM in charge to
retrieve the object’s value and latest written version, and returns the value
to the invoking client. When asked to write an object, the TM calls the OM
in charge to store the write. It maintains locally the highest timestamp each
transaction saw (for certification), and the set of logs that are in charge of
the objects touched by the transaction (for failure recovery purposes).

Finally, when instructed to end a transaction, the TM proceeds as follows.
If the transaction belongs to the TM (not a recovery), the timestamp chosen
is one higher than the max TS seen, and an end-transaction instruction is
concurrently sent to all relevant OMs with this timestamp and with the
transaction’s log set.

Any invocation returning a local failure triggers an immediate abort, since
other results will not change this outcome. This is not shown in the pseudo-
code for brevity.

Based on the local results obtained by the omEndTxn invocations, the
TM learns the result of the transaction. It returns this result to the client,
and the proceeds to complete the end-transaction. First it appends the result
(either commit or abort) to all logs (via the OMs). Then it notifies each OM
the transaction is ready for GC. Note that when committing, the transaction
may have disappeared from all logs, due to concurrent garbage collection.
While this situation is inherently possible for a system with bounded memory,
it is unlikely, and requires the return of an unknown result to the caller.

A slightly different version of tmEndTxn, is called when the client wants
a TM to end a transaction started by another TM. In this case, the log set
is also included in the parameters, so the TM knows where the transaction’s
objects reside, and the function does not return a result, since it is called by
an internal system component that wants to clear the transaction, and not
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by a client.
With message loss and OM failure, it is possible that an end-transaction

routine ends with only a subset of its transactions written to the logs, so
OMs cannot calculate their local results, thus preventing progress. We solve
this by poisoning a transaction in the relevant shards. Poisoning causes the
shard to return a local failure (as if the transaction has collided), and allows
the TM to abort the transaction. If the transaction was already written to
the log, the poison instruction is ignored, and the transaction is processed as
usual.

the TM concurrently and repeatedly sends poison instructions to each of
the OMs, until a local result is returned to the end-transaction invocation.

Algorithm 13: Transaction Manager — Client interface (1/2)
1 initially
2 ∀x : logSets(x) = ∅
3 ∀x : TSs(x) = ⊥
4 ∀x : resultsx = [ ]

5 function tmBeginTxn()
6 txnID← UUID() (Universally unique identifier)
7 TSs(txnID)← (−1,−1) (Latest timestamp seen by transaction txnID)
8 return txnID

9 function tmRead(txnID, objID)
10 logSets(txnID)← logSets(txnID) ∪ {logInCharge(objID)}
11 (val,writeVer)← omReadomInCharge(objID)(txnID, objID))

12 TSs(txnID)← max(TSs(txnID),writeVer)
13 return val

14 function tmWrite(txnID, objID, newValue)
15 logSets(txnID)← logSets(txnID) ∪ {logInCharge(objID)}
16 omWriteomInCharge(objID)(txnID, objID,newValue))

17 return ack

7.3.5 Object Manager

The OM operation is comprised of two interacting components, an interface
that interacts with the TM, and a monitor that monitors the log.

7.3.5..7 Interface The interface component, shown in Algorithm 15, re-
sponds to TM invocations of omRead, omWrite, omEndTxn, and omPoison.
The OM is not explicitly informed on the beginning of a new transactions,
but deduces it when receiving transaction operations. For each operation,
it returns the required response according to the data structure’s state, and
registers the operation as part of the transaction. The object state is not
affected (only for OCC, as explained below).

104



Algorithm 14: Transaction Manager — Client interface (2/2)
18 function tmEndTxn(txnID)

19 resultstxnID ← (⊥)|logSets(txnID)|

20 parForeach i ∈ logSets(txnID) do
21 ‖tmSendPoison(txnID)
22 if TSs(txnID) 6= ⊥ then (my transaction)
23 resultstxnID[i]← omEndTxnomInCharge(i)(txnID, logSets(txnID), inc(TSs(txnID)))

24 if commit ∈ results or results ∈ {localSuccess,missing}|logSet| then
25 result← commit

26 else if abort ∈ results or results ∈ {localFailure,missing}|logSet| then
27 result← abort
28 else
29 result← unknown
30 ‖ completeEndTxn(txnID)
31 return result

32 function tmEndTxn(txnID, logSet)
33 logSets(txnID)← logSet

34 resultstxnID ← (⊥)|logSets(txnID)|

35 parForeach i ∈ logSets(txnID) do
36 ‖tmSendPoison(txnID)
37 ‖ completeEndTxn(txnID)

38 function inc(ver)
39 return (ver[0] + 1, clientID)

40 function tmSendPoison(txnID)
41 while resultstxnID[i] = ⊥ do
42 wait for timeout, allowing entry to take effect
43 omPoisonomInCharge(logSets(txnID)[i])(txnID)

44 function completeEndTxn(txnID)

45 while resultstxnID 6∈ {commit,missing}|logSet| ∪ {abort,missing}|logSet| do
46 if commit ∈ resultstxnID or resultstxnID = (localSuccess)|logSet| then
47 parForeach i s.t. resultstxnID[i] = localSuccess do
48 resultstxnID[i]← omCommitomInCharge(logSets(txnID)[i])(txnID)

49 else if abort ∈ resultstxnID or resultstxnID = (localFailure)|logSet| then
50 parForeach i s.t. resultstxnID[i] ∈ {localFailure, localSuccess} do
51 resultstxnID[i]← omAbortomInCharge(logSets(txnID)[i])(txnID)

52 foreach i ∈ logSets(txnID) do
53 ‖ clearToCompactomInCharge(logSets(txnID)[i])(txnID)

When it receives an end-transaction invocation, the OM appends the
transaction entry to the log, and waits for its result to appear in a local vari-
able. This local variable is updated with the result by the monitor component
once it can be calculated, as detailed later. When it receives a transaction
result (commit or abort) from the TM, the OM executes the transaction if
necessary, thus updating its data structure, and appends the result to the log.
It also removes the entry from its local entry log and marks it committed,
for reasons explained later. When receiving a clear-to-compact invocation,
the OM locally marks the transaction as ready to GC, a fact used by the
monitor to clear the log.
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A poison request causes the OM to append a poison entry to the log,
and return immediately. This is done to release a concurrently pending end-
transaction routine.

Algorithm 15: Object Manager — Interface
1 initially
2 ∀x : RS(x) = ∅
3 ∀x : WS(x) = ∅
4 ∀x : objs(x) = ⊥
5 ∀x : txns(x) = missing
6 myLog = ID of shard’s log

7 function omRead(txnID, objID)
8 if txns(txnID) = ⊥ then txns(txnID)← running
9 if objs(objID) 6= ⊥ then

10 (val, readVer,writeVer)← objs(objID) (We read the latest written version)
11 else
12 (val, readVer)← (⊥, (0, 0))
13 RS(txnID)← RS(txnID) ∪ {(objID,writeVer)}
14 return (val,writeVer)

15 function omWrite(txnID, objID, val)
16 WS(txnID)←WS(txnID) ∪ {(objID, val)}
17 return writeAck

18 function omEndTxn(txnID, TS)
19 if txns(txnID) = ⊥ then
20 return missing
21 else if txns(txnID) 6∈ (running, pending) then
22 return (txnID, txns(txnID))

23 txns(txnID)← pending
24 appendmyLog((txnEntry, txnID,RS(txnID),WS(txnID),TS))

25 wait until txns(txnID) ∈ {localSuccess, localFailure}
26 return txns(txnID)

27 function omPoison(txnID)
28 if txns(txnID) = ⊥ then
29 return missing
30 else if txns(txnID) ∈ (running, pending) then
31 txns(txnID)← pending
32 ‖ appendmyLog((poison, txnID))

33 function omCommit(txnID)
34 if txns(txnID) 6= ⊥ then
35 txns(txnID)← commit
36 execute transaction
37 remove txnID from localEntryLog
38 ‖ appendmyLog((txnID,commit))

39 function omAbort(txnID)
40 if txns(txnID) 6= ⊥ then
41 txns(txnID)← abort
42 remove txnID from localEntryLog
43 ‖ appendmyLog((txnID,abort))

44 function clearToCompact(txnID)
45 if txns(txnID) 6= ⊥ then
46 readyToGCTxns← readyToGCTxns ∪ {txnID}
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7.3.5..8 monitor The OM monitors the log with the code given in Al-
gorithm 16. On initialization, it looks for the first summary in the log, and
loads it if it finds one. Then, it concurrently runs two functions. The first,
parseLog(), goes through the log, and parses the entries, interpreting the
log and updating local variables accordingly. It puts transaction entries in
a local queue localEntryLog. On poison and abort entries it removes the
transactions from the local queue, and on commit it performs the transac-
tion (if it was not committed already by the interface component, i.e., if it
was committed through another OM). Additionally, parseLog() occasionally
adds summaries, and invokes log truncation when possible. To do that, it
maintains two pointers, iStart pointing to the latest summarized prefix (pre-
fix whose summary is found in a later entry), and iClear pointing to the first
entry that is not ready to be GCed.

The second function, handleLocalLog(), is in charge of checking whether
a transaction is locally successful or not. It monitors localEntryLog for trans-
actions that were appended to the log, and whose dependencies (prior entries
in localEntryLog that touch colliding objects) are resolved. Once it finds such
entries, it decides on the transaction’s local result and locally stores it. This
result is read by the interface component, which responds to the TM.

Speculation

In order to facilitate rapid progress when there are no failures (the common
case), the OM maintains two copies of the data structure — the validated
copy, which is the one in the code above, and a speculative copy that applies
all updates once they happen. The latter is omitted from the pseudo-code for
brevity. An OM responds to the transactions’ operations (reads and writes)
from its speculative copy, acting as a non-consistent cache, and applies com-
mitted changes to the validated copy. Note that when using this mechanism,
clients may observe inconsistent data during the course of a transaction, how-
ever only transactions with consistent views may commit. Once a transaction
aborts, the OM discards any associated speculative data.

7.3.6 Prediction

ACID-RAIN leverages predictable transactions by employing leases at the
OM layer. Note that these leases are advisory: failure to respect them harms
liveness (aborts can be triggered), but not safety. This means they can be
ignored, and therefore they do not create a risk of deadlocks.

When a transaction starts, a black-box machine learning mechanism pre-
dicts its read and write sets, and leases them to the transaction. Given these
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Algorithm 16: Object Manager — Log monitor
1 function omInit()
2 iStart ← first index in log
3 iSummary ← iStart
4 while log[iSummary] isn’t a summary pointing to iStart or later and it’s not the log’s end

do
5 iSummary ← iSummary + 1
6 if log[iSummary] is a summary pointing to iStart or later then
7 load summary in log[iSummary]
8 iStart ← where log[iSummary] points to

9 ‖parseLog()
10 ‖handleLocalLog()

11 function parseLog()
12 iLatest ← iStart − 1
13 iClear ← iStart − 1
14 while true do
15 iLatest ← iLatest + 1
16 entry← log[ilastest], or wait until it’s ready
17 if entry = (txnEntry, txnID,RS,WS,TS) then
18 localEntryLog.append(txnID,RS,WS,TS)
19 else if entry = (txnID,abort) then
20 txns(txnID)← abort
21 remove txnID from localEntryLog

22 else if entry = (txnID,commit) then
23 if txns(txnID) 6= commit then
24 execute txnID
25 remove txnID from localEntryLog

26 else if entry = (poison, txnID) then
27 if txns(txnID) ∈ {missing,running} then
28 txns(txnID)← localFailure

29 else if entry is a summary then
30 iStart ← iLatest
31 while log[iClear ] 6= (txnEntry, . . . ) or log[iClear ] ∈ readyToGCTxns do
32 iClear ← iClear + 1
33 if log[iClear ] is a transaction with ID txnID then
34 readyToGCTxns← readyToGCTxns \ {txnID}
35 if iStart − iLatest > summaryThreshold then
36 appendmyLog(summary of data structure)

37 if min(iClear , iStart)− lastClear > threshold then
38 truncatemyLog(min(iClear , iStart))
39 lastClear ← iClear

40 function noCollisions(RS,WS,TS)
41 foreach (obj, ver) ∈ RS do
42 if writeVer(obj) 6= ver then
43 return false

44 foreach (obj, ver) ∈WS do
45 if max(writeVer(obj), readVer(obj)) > TS then
46 return false

47 return true

48 function handleLocalLog()
49 while true do
50 wait for entry (txnID,RS,WS,TS) in localEntryLog with no previous dependencies
51 if noCollisions(RS,WS,TS) then
52 txns(txnID)← localSuccess
53 else
54 txns(txnID)← localFailure
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access predictions, the TM runs a simple two-phase protocol with the OMs
to lease (reserve) a set of object versions valid at some instant in logical time,
using an ordering mechanism introduced by Lamport [76]: When starting a
transaction, the TM interrogates the OMs about all objects it is predicted to
access. Each OM proposes a logical time at which the transaction could be
executed (a logical timestamp larger than the latest version of the requested
objects). The TM computes the maximum over these times (this is the same
method used in Algorithms 13–14), and requests the OMs to reserve the
objects with this logical time, its predicted commit timestamp. Each OM
leases the objects iff they are not reserved already with a larger timestamp
(due to concurrent transactions), and returns accept/deny. Should this fail
(i.e., upon detection of a potential deadlock), the process can be repeated
until the leases are successfully acquired. The TM then proceeds to run the
transaction, sending its operations to the OMs. If two or more transactions
concurrently attempt to access the same object, they are ordered by their
predicted commit time, and each waits until the outcome of its predecessor
is known by the OM. This transaction ordering will be consistent across the
set of OMs at which the transactions conflict.

Access-set misprediction can result in situations in which an OM receives
an operation that accesses an object that was not reserved. If the object is
free, or reserved with a smaller timestamp, the OM can reserve it on the spot.
If it is already reserved with a higher timestamp, however, the unpredicted
access is denied, and the transaction must either abort. or try to shift to a
larger timestamp.

In the interest of shortening latency, a TM can speculatively start per-
forming transaction operations before the lease phase is complete. It would
have to abort, however, if a version discrepancy is detected which would,
in retrospect, require it to have returned a different version for a completed
operation.

7.4 Correctness

We provide proof roadmaps of our system’s correctness.

Serializability

Committed transactions are serializable, i.e., an execution of the system is
equivalent to a serial execution of the transactions.

An execution of our system is a series of read, update, begin-transaction
and end-transaction invocations and responses, as seen by clients, together

109



with internal protocol messages and operations. To prove serializability, we
need to show that the execution is equivalent to one where transactions are
executed serially (with no overlap). We consider only committed transac-
tions.

To prove our statement, we reduce the execution to match the require-
ments of Theorem 2 in [90], adapted as Theorem 6:

Theorem 6. Given an execution e with transactions t1, . . . , tn, form a de-
pendency graph D with vertices v1, . . . , vn, and directed edges E. An edge
(vi, vj) is in E if and only if transactions ti and tj both access some object o,
and at least one of them updates o. If the dependency graph D is acyclic,
then the execution e is serializable.

The history of committed transactions can be modeled as a directed graph
D s.t. each transaction is a vertex, and a directed edge connects transactions
i and j if both update an object o, or if one reads and the other updates an
object o. It remains to show that the graph D is cycle free. Each transac-
tion in our algorithm has a timestamp, and would not commit if there exists
an edge to it in the graph from a transaction with a smaller timestamp.
Therefore, any path in the graph passes through strictly increasing times-
tamps, and there cannot be a cycle. Therefore, according to Theorem 6, any
execution of our system is serializable.

We note that the prediction mechanism does not violate safety. On OM or
TM restoration due to a failure, lost leases can be safely ignored, preserving
safety — collisions are always checked at commit time according to the logs.

Obstruction Freedom

Finally, we show that our algorithm is obstruction free in the absence of server
failures. That is, when run uninterrupted from any moment (possibly after
previous server failures), a single client can always commit transactions. We
show that if there exists a time tstable after which no failures occur, a client
c running alone will successfully commit a transaction. With no failures, all
servers respond in a timely fashion, and so after sufficiently long, all time-
outs expire. Then all failed agents are replaced, and hanging transactions
are resent to certification. Specifically, for every transaction i that was sub-
mitted (end-transaction) to an OM but never certified, the OM invokes an
end-transaction at some TM. The TM then poisons the transaction in each
relevant OM, and checks the result, and either commits or aborts the trans-
action. This goes on for every pending transaction at every OM, eventually
leaving the OM queues empty. When client c next reads an object, it receives
an up-to-date value, and when it commits, each OM appends the transaction
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to its log, resulting in a a local success, followed by a commit result in the
TM.

Abort Freedom

With perfect prediction and no failures, transactions never abort. Before
starting, transactions contend on predicted commit timestamps, and even-
tually each will successfully lease its objects. If the predictive mechanism
is accurate, and guesses in advance all the objects needed by the transac-
tion, the transaction thus obtains leases for all its objects before starting.
Thereafter, as transactions run, they only wait on transactions with lower
timestamps. This prohibits deadlocks: if transaction Y waits for transaction
X at some OM, X must have a smaller timestamp, hence wait-cycles can-
not arise. Finally, since no failures occur, waiting time for an operation is
bounded, and if a TM failed earlier, its leases soon expire.

7.5 Evaluation

We use a custom-built event-driven simulation to evaluate the architecture
of ACID-RAIN. We simulate each of the agents in the system — clients,
transaction managers, object managers and reliable logs. For every run,
we set an average transaction per unit-time rate (TPUT), and transactions
arrivals are governed by a Poisson process with the required TPUT. In order
to avoid second-order effects (e.g., increased latency due to retries triggered
due to latency), aborted transactions are not retried, so the average number
of incoming transactions remains constant, independent of the commit ratio.
Unless noted otherwise, each transaction touches 10 objects out of millions.

Our experiments are an adaptation of the transactional YCSB specifica-
tion used in [36] and [42], based on the original (non-transactional) YCSB
workloads [31]. Each transaction has a set of read/update operations spread
along its execution. Object accesses follow one of three different random
distributions — (1) uniform, where each object is chosen uniformly at ran-
dom among the available objects, (2) Zipfian, and (3) hot-zone, where some
of the objects belong to a so called hot-zone, and each access is either to
the hot-zone, or outside of it (chosen uniformly at random within the picked
zone).
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7.5.1 Latency and Throughput

As the TPUT increases, queues form at the logs, resulting in an increased
commit time. Figure 7.3 demonstrates how this latency increases for a given
number of shards, until reaching a point where the system finally can’t keep
up, at which point queue lengths and delays increase without limit. The
figure depicts how the latency closely follows the length of the logs’ append
queues. Increasing the number of shards decreases the latency for a given
workload and postpones the saturation point, allowing the system to accom-
modate a higher workload.

Figure 7.3: Running with 500,000 objects, we increase the rate of incoming
transactions, each touching a random set of 10 objects. Increasing the num-
ber of shards (2, 4, 8, and 16) improves latency as it decreases the average
queue length at the logs.

7.5.2 Scalability

To evaluate the scalability of ACID-RAIN, we measure the maximal TPUT
it can accommodate with an increasing number of shards (with 3 reads and 3
writes per transaction of 105 objects with uniform access). The result, de-
picted in Figure 7.4 demonstrates a linear scaling. This is expected, as the
conflict rate in is negligible, and our system is scaled without forming any
bottlenecks.

We compare ACID-RAIN with the approaches of (1) using 2PC and
highly available independent TMs, implemented as replicated state machines
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and (2) a global log. In both cases, we allow the systems to skip garbage
collection (while ACID-RAIN does perform it). We simulate highly avail-
able TMs by increasing the TM’s latency to that of a single point to point
message (reality would require at least RTT for Paxos or an equivalent, i.e.,
even worse). To simulate a global log, we bound the TMs’ total throughput
to about 400 operations per unit time. All other parameters are identical.

While the parameters we choose are arbitrary, the trends are apparent;
choosing other parameters would provide similar results, though perhaps at
different scales. Improving the efficiency of the highly available TM or the
global log would allow them to handle more load than in this example, but
they would both reach a bottleneck, at some point.

Figure 7.4: For an increasing number of shards, we run multiple simulations
to find the maximal TPUT the system can handle. We observe linear scaling
for ACID-RAIN, whereas 2PC and global log reach a bound.

7.5.3 Collision Effects

We demonstrate the system behavior under different workloads. In all runs
we use an incoming workload well below the system’s capacity with 16 shards.

The simulation is faithful to the algorithm, with the exception of a small
shortcut — the OM grants leases by arrival time rather than by timestamp.
This change results in deadlocks in high contention scenarios, and these are
resolved with timeouts. Granting leases by timestamp can expedite deadlock
detection.

We compare different predictor qualities to show the importance of pre-
diction. We vary the accuracy, i.e., the ratio of objects the predictor leases
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in advance, to evaluate the importance of the prediction mechanism. Sepa-
rately, we demonstrate that if the predictor requests leases on more objects
than necessary (slack), efficiency decreases only in extreme circumstances.
This means that real world predictors can decrease their miss-rate by enlarg-
ing the predicted object set.

Accuracy

First, we consider uniform random load (Figure 7.5). For a varying number
of objects, we measure the commit rate. We see how commit rate drops as
the number of objects becomes small. Note that a birthday-paradox effect
causes significant collision rate even with a large number of objects. Better
prediction means a better commit ratio, however even with perfect prediction
deadlocks appear with small numbers of objects.1

With a hot-zone of 1000 (Figure 7.6), increasing the probability of hot-
zone access increases the abort rate. Note that at probability 1.0 the rates
are significantly smaller than in the uniform random case (with 1000 objects),
since with the hot-zone all accesses to the hot-zone go through a single OM
that becomes a bottleneck, causing longer queues and hence more aborts. On
the bright side, since object access collisions occur mostly in a single shard,
the leases prevent deadlocks and result in perfect commit ratio with perfect
prediction.

Finally, we investigate the effect of a heavy tail Pareto distribution with
varying α. The high collision rate causes the certification rate to decrease.
Therefore in this case, we measure rates, normalized by the transaction ar-
rival rate, rather than the commit ratio. The results are shown in Fig-
ure 7.7. As the alpha parameter increases, the distribution produces higher
contention. Avoiding prediction results in a full certification rate, but many
aborts. Using prediction produces a better commit rate, until the contention
becomes so high that the leases decrease the certification rate. At this point,
despite a high abort rate, the commit rate without prediction becomes better.

Slack

As noted earlier, we define slack to be the ratio of the size of the predicted
object access set to the actual object access set. In Figure 7.8 we compare the
effect of using a perfect predictor (slack=1) with predictors that overpredict
by factors of 2 and 4. The impact of overprediction is surprisingly minor, a
finding that should make it easier to create a practical predictor.

1With our full leasing algorithm these deadlocks would be eliminated; here, we simply
abort when they occur.
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Figure 7.5: System behavior under a uniformly random workload. With poor
prediction quality and a small number of objects the system observes high
collision rates, and hence high abort rates.

Figure 7.6: System behavior under a hot-zone workload, where a small subset
of the objects are accessed with increasing probability. With poor prediction
quality we observe high collision rates, and hence high abort rates.
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Figure 7.7: System behavior under a Pareto workload. With poor prediction
quality, as the Pareto parameter increases, we observe high collision rates,
and hence high abort rates.

Figure 7.8: Commit ratio for an increasing number of objects and predic-
tors with different slack values, predicting the correct access sets, twice and
four times the required objects. Even with potentially high collision rates
(few objects), commit ratios mostly remain high. Only for small numbers of
objects, and with high slack, does the commit rate fall significantly.
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7.5.4 OM Crashes

The efficiency of the system is inversely linear in the time it takes to replace
a failed server. Until it is replaced, the objects for which the server was
responsible will be inaccessible, blocking any transactions that touch them.
This is demonstrated in Figure 7.9, where a single OM crashes, and is re-
placed. We use 5 OMs so that the unavailability of one has a visible effect,
and each transaction touches 3 objects. The figure shows a sliding window
average of the commit rate, normalized by the incoming rate. Before and
after the failure event, this average fluctuates around the incoming rate, i.e.
1.0. While the OM is down, transactions that access the unavailable objects
abort, resulting in a commit rate of about 60%. Note that the drop and rise
are rather gentle due to the size of the averaging window — the OM crashes
instantly and the replacement is ready to serve instantly (once it restored its
state). A shorter window yields a steeper decline and incline, but a noisier
output.

Since ACID-RAIN has no real locks, servers may be switched swiftly
on suspicion of failure, shortening the interval required to restore a failed
machine compared to competing systems with such locks. We experimented
with this interval and, as seen in the illustration, shorter recovery delays
linearly decrease the number of transactions that must wait.

Figure 7.9: Effect of an OM crash and replacement. A moving average of
the normalized commit rate is shown as a function of time. The OM of one
out of 5 shards crashes at time 20, and is replaced (restoring from the log)
at time 70. The average commit rate (over a sliding window) drops after the
crash and rises once the replacement OM is in place.
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We note that on TM crash, new transactions are simply routed to the
available TMs, and efficiency is affected to the extent these form a bottleneck.
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Chapter 8

Conclusion

This dissertation presented several works that address contemporary and
future challenges in large scale distributed systems. We detail here relevant
future directions that follow directly from this work.

Sensor Networks In Chapter 3, we have shown how to perform live mon-
itoring of the average in a sensor networks with LiMoSense, and in Chapter 4
we have shown how to learn a one-shot clustering of the data. Combining the
two, to perform live monitoring of a clustering, is a challenging task. Unlike
with average monitoring, the merge operation of clusters is a unidirectional
operation. Merged clusters cannot be divided to their original components.
It is therefore, in general, impossible to remove old read-values that have
propagated through the system as clusters. Division of clusters may be done
heuristically, and its accuracy depends on the properties of the input. In
certain scenarios, it may therefore be possible to split clusters and therefore
achieve live monitoring. This should be studied with real-world data, to
evaluate the accuracy with the division heuristic.

Cloud Storage In Chapter 6 we described the construction of a reliable
regular register with multiple atomic key-value stores. However, production
key-value store services typically offer only eventual consistency, where the
state of the service may be arbitrary for short periods. On top of such
service it may only be possible to build eventually consistent data structures.
Defining the properties of eventual consistency and designing an algorithm
that works with such base objects remains future work.

Some cloud providers offer APIs different than KVSs, such as queues and
logs. Learning what robust data structures can be constructed with different
base objects can prove useful for multi-cloud applications.
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Finally, security risks call for byzantine fault tolerant algorithms that can
withstand arbitrary, possibly malicious, behavior by clouds due to bugs or
security breaches.

In Chapter 7 we presented the ACID-RAIN architecture and demon-
strated its efficiency through simulation. In order to evaluate the ACID-
RAIN architecture and compare it against other approaches to large scale
atomic transaction systems, it has to be implemented and run on a datacen-
ter. This would entail several challenges that arise due to its unique structure,
e.g., implementing effective failure detectors, both accurate for the reliable
logs, and inaccurate for the rest of the servers, together with a responsive
load balancer.
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ii 

תקלות המבצע ניטור רציף ברשת בפני אלגוריתם עמיד , לימוסנסאת  3בפרק  יםציגאנו מ, לפיכך
. סינכרוני הראשון לחישוב ממוצע המבצע ניטור רציףזהו האלגוריתם החסין הא. חיישנים דינאמית

  . שתנה באופן דינאמיאשר מ, האלגוריתם מחשב באופן רציף תמונה מדוייקת של המידע

יישומים שונים דורשים תמצית מורכבת יותר של , למרות שחישוב הממוצע מספיק במקרים רבים
מספר גדול של חיישנים מחשבים חלוקה , המבוזרת) קלאסטרים(בעיית החלוקה לצבירים ב. המידע

  . יר באופן תמציתיכלומר מחלקים את המידע לאוסף צבירים ומתארים כל צב, לצבירים של המידע הנדגם

. המבוזרתלצבירים אשר פותר את בעיית החלוקה ) גנרי(כללי אנחנו מציגים אלגוריתם  4בפרק 
, למשל. ובאמצעות טיפוסים שונים של צבירים, ניתן לממש את האלגוריתם בטופולוגיות רשת שונות

האלגוריתם הכללי ניתן למימוש על מנת לבצע את החלוקה על בסיס מרחק של הדגימות מהצביר אליו הן 
, המרחק לא תמיד מפיק חלוקה טובה, ואולם. המפורסמת) k-means(הממוצעים  kזו היא בעיית . שייכות

ם פילוגים גאוסיאניי תערובת שללפיכך אנו מציגים גם מימוש המתאר את הצבירים כ
)Gaussian Mixture .(החלטות החלוקה נעשות בעזרת טכניקות מתחום המערכות , במקרה זה

. מהיר ובר סילום, נפילותפני אנחנו מדגימים כי האלגוריתם עמיד ב) סימולציה(בעזרת הדמיה . הלומדות
מתכנס בלי תלות ) העומד בכללים מסויימים(אנו מוכיחים כי כל מימוש של האלגוריתם הגנרי 

  . באסטרטגיית החלוקה ובייצוג של הצבירים, טופולוגיהב

  עקביות באחסון בענן 

בעת אחסון ) consistency(בחלקה השני של העבודה נעסוק בשתי בעיות הנוגעות בעקביות 
מובילה לשימוש נרחב ) datacenters(ההתפתחות של טכנולוגיות מרכזי הנתונים . מידע במחשוב ענן

, שירותי אינטרנט דוגמת רשתות חברתיות. נפח אדיר של מידע במערכת מבוזרתבמרכזי נתונים לאחסון 
חברות גדולות משתמשות לרוב במרכזי נתונים . סנים נפח מידע אדירחמנועי חיפוש ואתרי קניות מא

בין אם הנתונים . אך גם חברות גדולות וגם קטנות עושות שימוש בשירותי אחסון ענן חיצוניים, משלהן
הם . למשתמשים ציפיות הולכות וגדלות מהשירות, כז פרטי ובין אם הם נשמרים בענןנשמרים במר

  . לצד יעילות וביצועים מהירים, מצפים לאמינות וזמינות גבוהים

הם , במקרה כזה. לעתים כושלים, גם הגדולים ביותר, סון בענןחספקים של שירותי א, ואולם
המשתמשים בשירותים , לפיכך. ינים לפרק זמן מוגבלאו לכל הפחות לא להיות זמ, עלולים לאבד מידע

. אלה חייבים לשכפל את המידע שלהם אצל מספר ספקים שונים על מנת להשיג זמינות גבוהה ורציפה
ששירותי האחסון מספקים  הסיבה היא. לא יישימות בתרחיש זה ]11[ טכניקות שכפול קלאסיות, ואולם

ואינו מספיק , שמירה ושליפה של ערך על פי מפתחציות לפונקהכולל רק  ערך-בדרך כלל מנשק מפתח
אנחנו מציגים אלגוריתם המספק מנשק של אחסון אמין  6בפרק . כאבן בניין של הטכניקות הללו

מספק ו) wait-free(אלגוריתם יעיל וללא עיכובים ה. באמצעות כמה שירותי אחסון מהעולם האמיתי
כל זאת , ערך לא אמינים- באמצעות מאגרי מפתח, עם מספר קוראים ומספר כותבים רגיסטרמנשק של 

בעזרת מדגימים אנו . מימשנו את האלגוריתם ובדקנו אותו באמצעות ספקים קיימים. בסביבה אסינכרונית
המבוססות על המימוש הזה את התקורה הנמוכה של השכפול הן בנפח האחסון הנדרש והן הדמיות 
  . במהירות

זוהי ארכיטקטורה חדשנית למימוש יעיל של . ריין-את אסיד יםציגאנחנו מ, 7בפרק , לאחר מכן
תנועות אטומיות רצויות מאוד במאגרי נתונים . במאגרי נתונים מבוזריםאטומיות ) טרנזקציות(תנועות 
פר ריין בנויה ממס- אסידמערכת , כמו ארכיטקטורות אחרות. אך קשה לממשן באופן יעיל, מבוזרים
). הלקוח מתקשר עם השכבה העליונה(כאשר כל שכבה מספקת שירותים לשכבה שמעליה , שכבות

באופן חדשני המאפשר להגביל את הדרישה לאמינות אל שכבה ) לוגים(ביומנים  תריין משתמש- אסיד
שכבה חיצונית המועדת  האוסף גדול ובר סילום של צמתים בלתי תלויים מהוו. יחידה של המערכת

התנגשויות בין  מתריין מצמצ-אסיד. אלה מגובים על ידי אוסף בלתי תלוי של יומנים אמינים. ותלנפיל
  . המאפשר לסדר את התנועות לפני ביצוע פעולות העלולות להוביל לכשלונן, תנועות בעזרת חיזוי



i 

  תקציר
של מערכות מבוזרות  לשגשוגמתפתחות במהירות ומובילות ייצור ובניה של מערכות מחשב טכנולוגיות 

 – בעבודה זו נעסוק שני סוגים של מערכות כאלה. בסדרי גודל שהיו נחלת הדמיון אך לפני שנים מעטות
, סקאלאביליות(אנחנו מתכננים מערכות חסינות ובנות סילום . סון במחשוב ענןחרשתות חיישנים וא

  ). סימולציה(מוכיחים את נכונותן ומנתחים את התנהגותם על ידי הדמיה , בסביבות אלה) יתנות להגדלהנ

  . תכנון של מערכות מבוזרות גדולות צריך להתבצע על פי מספר עקרונות

מפעיל , בעקבות כך. מטבע הדברים צמתים מדי פעם מתקלקלים, בעלת אלפי צמתיםמערכת ב   חסינות
במערכת גדולה יש , כמו כן. הוסיף צמתים חליפיים שצריכים להשתלב במערכתהמערכת יירצה ל

על המערכת להיות עמידה . אובדן הודעות ונפילת קשרי תקשורת לשלקחת בחשבון אפשרות 
  . כל אלהבפני 

, כמו כן. צומת יחיד במערכת עלול לסבול מתקלה זמנית המאטה את פעולתו באופן ניכר   סינכרוניותא
נכרוניים מניחים יאלגוריתמים ס. ין צמתים עלולות להתעכב אם עליהן לעבור בין נתביםהודעות ב

משמעה ) גבוהחסם (נקיטת הנחה שמרנית . כי משך העיכובים במערכת חסום מלמעלה
היות שצמתים חייבים להמתין זמן ממושך כדי לוודא שכל ההודעות , שהמערכת מתקדמת באטיות

עיכובים שכיוון , נמוךאסור להניח חסם במערכת גדולה . הגיעון אכ) והתשובות עליהן(שנשלחו 
  . רוניים אינם יעילים במערכת גדולהסינכאלגוריתמים , לפיכך. מתרחשים מדי פעםממושכים 

לפעולתה  יש להמנע לחלוטין משימוש ברכיב ריכוזי יחיד, על מנת שמערכת תהיה בת סילום   סילומיות
רכיב שכזה בהכרח יהפוך צוואר בקבוק של המערכת ברגע שהיא תגדל מעבר לגודל . השוטפת
  . מסויים

כולם . אשר פועלים על פי עקרונות אלהבני סילום עבודה זו מתארת ארבעה אלגוריתמים 
בפעולתם  רכיב יחידשום תלויים ב אינםו, הודעות אובדןחסינים לנפילה של צמתים ו, אסינכרוניים

  . השוטפת

  

  הצרפה ברשתות חיישנים

על מנת לנטר שטחים . רשתות החיישניםבחלקה הראשון של העבודה נטפל בשתי בעיות בתחום 
המורכבות מאלפי חיישנים המנטרים  רשתות חיישניםלראות בשנים הקרובות אנו צפויים , נרחבים

הרכיב ורכב מברשתות אלו ממהחיישנים כל אחד . טמרפטורה וכיוצא באלו, לחות, פעילות סיסמית
  . ונפח אחסון מצומצם דיחידת עיבו, רכיב תקשורת אלחוטית להתקשרות עם צמתים קרובים, המודד

מטבען לא מאפשרות לאסוף את כל המידע שנצבר למקום , נרחבהפרושות בשטח , רשתות כאלה
והטופולוגיה הדינאמית של הרשת מקשה , שידור כל המידע ברשת צורך משאבי סוללה ניכרים. אחד

) אגרגציה(כי אם הצרפה , לעתים קרובות המידע הגולמי גם אינו נחוץ, למרבה המזל. להפיץ את המידע
 במדידת משקעים מעוניינים בכמות הגשם הכוללת, לדוגמא. אותה ניתן לחשב באופן מבוזר, של המידע

נתעניין לעתים קרובות בממוצע , במדידת טמפרטורה; ולא במדידות של כל אחד מהחיישנים, באיזור נתון
  . ולא בטמפרטורה הנמדדת בכל חיישן

כל חיישן , בגרסה זו. בעיה זושל פעמית -טיפלו בגרסה החד] 83 ,87 ,21 ,72[ מספר עבודות
כדי לבצע ניטור , ואולם. את ממוצע הדגימותד יחואז כל החיישנים מחשבים  ,פעם אחתאת הסביבה דוגם 
אם נפתור את הבעיה על ידי . המשתנה באופן דינאמייש לחשב באופן רציף את התמצית של המידע , רציף

או ) אם נריץ בתדירות גבוהה(או שנבזבז משאבים , פעמי-הרצה חוזרת ונשנית של האלגוריתם החד
  ). להתכנסדי זמן א ניתן לריצות או ל, אם נריץ בתדירות נמוכה(שנאבד דיוק 



  



  . עדית קידר בפקולטה להנדסת חשמל' רפאל רום ופרופ' המחקר נעשה בהנחייתם של פרופ
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

. אני מודה לטכניון ולמכון האסו פלטנר על התמיכה הכספית הנדיבה בהשתלמותי
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