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Abstract

We present Oak (O↵-heap Allocated Keys), a scalable concurrent key-value map de-
signed for real-time big data analytics. Oak o✏oads the data from the virtual machine
heap in managed-memory languages like Java, thereby reducing garbage collection
overheads.

Oak is optimized for big keys and values and for frequent incremental mainte-
nance of existing values, as prevalent in streaming analytics use cases. To this end,
it adopts a zero-copy approach to data update and retrieval, e.g., through concur-
rent update-in-place. Oak’s API is similar to that of Java’s ConcurrentNavigableMap
with adjustments for e�cient zero-copy implementation. It provides strong (atomic)
semantics for read, write, and various read-modify-write operations, such as compute
(in-situ update) and put-if-absent, as well as (non-atomic) ascending and descending
iterators.

We provide proof of Oak’s correctness, by identifying linearization points for all
operations, so that concurrent operations appear to execute in the order of their lin-
earization points. We further report on our experiments which show that Oak is
faster by 1.3-4.8x than the currently standard concurrent KV-map, the Java Con-
currentSkipListMap. In addition, our results demonstrate that o↵-heap allocation is
beneficial in scenarios with conditional updates of large values.

Our industrial partners are integrating Oak as the core data index in the popular
Apache Druid in-memory analytics platform. This integration is beyond the scope of
this thesis.
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Abbreviations and Notations

Abbreviations

RAM — Random Access Memory
DRAM — Dynamic Random Access Memory
KV — Key-Value
CPU — Central Processing Unit
API — Application Programming Interface
GC — Garbage Collection
CAS — Compare and Swap
F&I — Fetch and Increment
F&A — Fetch and Add
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Chapter 1

Introduction

Fueled by the steady decline in DRAM prices, the in-memory analytics market is on
the rise. It is projected to grow from $1.26B in 2017 to $3.85B in 2022 [1]. Stor-
ing ever-growing amounts of data in main memory enables new processing paradigms,
e.g., advanced real-time analytics over high-rate event feeds. Modern decision support
systems continuously ingest large volumes of data, while providing up-to-date insights
with minimum delay. For example, Apache Druid (incubating) [17] is a powerful plat-
form for multi-dimensional exploration of event data, which is adopted by Airbnb,
Alibaba, eBay, Netflix, Paypal, and Verizon (Oath), to name only a few. A prominent
Druid application is Flurry Analytics [21] – a service for mobile developers that en-
ables exploration of user characteristics (age, gender, location, app context, etc.) and
behavior (e.g., which code paths they follow and how they churn). As of late 2017,
Flurry infrastructure monitored 1M+ mobile apps on 2.6B devices [22].

In-memory analytics engines often implement complex data layouts and query se-
mantics atop a simple dynamic key-value (KV)-map storage abstraction. A KV-map is
an ordered collection of key-value (KV-)pairs that provides simple random write (put),
random read (get), and range query (scan) API. In many cases, both keys and values
are composites of application-level data. For example, consider a typical Druid table
for Flurry that summarizes mobile tra�c statistics like counts of page views, clicks, and
unique visitors, grouped by date and user features (dimensions). Druid implements
this table as a KV-map, in which (1) the keys are induced by unique combinations of
dimension codes, and (2) the value for each key is a collection of aggregation objects
that accumulate summaries, some of which are scalars while others are composite –
e.g., data sketchs [13] (compact structures that maintain approximate stream statis-
tics). Both keys and values are therefore big (hundreds of bytes to kilobytes).

Scaling the KV-map implementations on multi-CPU hardware is crucial for the
overall system performance. Analytics engines achieve simultaneous high-speed data
ingestion and reporting through concurrent read and write access to data from multiple
threads. E�cient harnessing of 8 to 16 CPU cores per host is expected with middle-
tier server hardware. Scaling with the growth of available RAM is usually no less
important. For example, a typical multi-dimensional Druid table can easily exceed
a million KV-pairs and have a multi-gigabyte footprint. Modern production servers
often feature 192 to 384 GB of RAM, thereby potentially accommodating hundreds of
such tables.

Existing in-memory KV-maps, in particular implementations in managed-memory
languages like Java, are ill-suited for scaling to very big RAM sizes. Despite recent
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advances, garbage collection (GC) algorithms struggle to scale with the volumes of
memory in big data platforms, capping at heap sizes of about tens of gigabytes. For
example, the Elasticsearch administrator guide recommends using a heap no bigger
than 32GB [19]. This limitation has led developers of big data platforms to consider
ad hoc o↵-heap memory allocators, as reported, e.g., by Druid [18], HBase [33], and
others.

We address the demand for large in-memory concurrent KV-maps for analytics plat-
forms, treating memory allocation as a first-class citizen. We design and implement
Oak (O↵-heap Allocated Keys), a scalable ordered concurrent KV-map for real-time
analytics, which self-manages its memory o↵-heap. To the best of our knowledge, Oak
is the first data structure to combine read-write parallelism with zero-copy access to
internally managed data. A key design consideration in this context is the program-
ming model and API, which ought to allow e�cient access to internally stored keys
and values.

We formally prove Oak’s correctness and benchmark it under a variety of workloads.
The evaluation results show decisive scalability and performance benefits over the de-
facto standard Doug Lee’s JDK8 ConcurrentSkipListMap [30].

We now describe in detail Oak’s key features and design decisions, and then survey
prior art.

1.1 Design principles

O↵-heap allocation. One of the principal motivations for using Oak in Druid and
similar analytics engines is o✏oading the KV-map from the managed-memory heap.
This allows working with an order-of-magnitude more memory (hundreds of gigabytes
instead of tens) and serializing data to avoid Java’s memory overhead for object head-
ers. It further counters undesirable phenomena introduced by GC, like unpredictable
timing of GC cycles, which aggravates tail latencies and may even render the system
unresponsive [4].

Zero-copy API. Oak provides functionality similar to Java’s ConcurrentNaviga-
bleMap (implemented, e.g., by ConcurrentSkipListMap). However, direct support of
this API is not suited as-is for self-managed memory, where data is stored in internal
bu↵ers rather than in first-class objects. For example, the traditional get interface
returns a value object. Supporting this API would entail deserializing and copying the
entire object from the internal bu↵er. Instead of doing so, Oak returns a lightweight
façade object (bu↵er view) that allows deferred access to the value’s components. Sim-
ilarly, the put method omits the return of the old value, with the same rationale.

The update-in-place principle is another manifestation of the zero-copy approach.
Oak allows in-situ update of objects in internal bu↵ers through the use of lambda
functions. This technique allows e�cient incremental maintenance of big values (e.g.,
aggregate sketches). To allow zero-copy safe concurrent access to such values, Oak in-
troduces the abstraction of handles – an indirection that frees application programmers
from the need to deal with concurrency control.

Correctness guarantees. Oak is inherently thread-safe. It provides strong (atomic)
semantics for get, put, remove, and various read-modify-write operations, such as com-
pute (update-in-place) and conditional insertion (put-if-absent). Note that in contrast,
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in the current Java ConcurrentSkipListMap implementation, if compute performs in-
place updates, its operations are not guaranteed to be atomic. Supporting atomic
conditional updates alongside traditional (unconditional) put operations necessitated
designing a new concurrent algorithm. We are not aware of any previous algorithm
addressing this challenge.

Memory organization for e�cient lookup. Similarly to some recently suggested
data structures (e.g., [5,7,8]), Oak stores its keys in contiguous chunks, which speeds up
queries through locality of access. This is challenging in the presence of dynamic-sized
keys and values. In contrast, existing chunk-based data structures [5, 7, 8] maintain
fixed-size serialized keys and values inline, without the additional indirection level.

Expedited descending scans. Oak’s range scans are not atomic in the sense that
the set of keys in the scanned range may change during the scan; supporting atomic
range queries would be more costly 1, which is not justified for most analytics sce-
narios. Although analytics queries require both ascending and descending scans, no
previous concurrent data structure we are familiar with has built-in support for the lat-
ter. Rather, descending scans are implemented by invoking a query (get) for a smaller
key after each scanned key. In contrast, Oak’s chunk-based organization is amenable
to expediting descending scans without the complexity of managing a doubly-linked
list. In our experiments, Oak’s descending scans are 4.8x faster than ones using Con-
currentSkipListMap.

Summary. All in all, Oak is the first KV-map designed to address the needs of big-
data real-time analytics engines, including o↵-heap memory allocation, incremental
in-place maintenance of large, variable-size values and keys, index locality for fast
queries, and e�cient descending scans. However, its API is not fully compatible with
ConcurrentNavigableMap for e�ciency reasons, and hence, porting applications to use
Oak requires extra e↵ort.

1.2 Related work

Substantial e↵orts have been dedicated to developing e�cient concurrent data struc-
tures [2, 3, 5, 7–11, 14–16, 20, 23, 26, 28, 30, 34, 35]. Each of [2, 3, 8–11, 14, 16, 20, 34]
presents a di↵erent technique for creating e�cient concurrent search trees; other work
focus on scalable concurrent algorithms for priority queues [6], linked lists [7, 25], and
skip lists [15, 26, 27].

However, most of these works do not implement functionalities such as update-in-
place, conditional puts, and descending iterators. Many of these are academic proto-
types, which hold only an ordered key set and not key-value pairs [10,14,16,20,26,34].
Moreover, the ones that do hold key-value pairs typically maintain fixed-size keys and
values [5, 7, 8] and do not support large, variable-size keys and values as Oak does.

The only exception we are aware of is JDK’s ConcurrentSkipListMap [30], which
does support general objects as keys and values, and also implements the full Con-
currentNavigableMap API. Nevertheless, its compute is not necessarily atomic, its
organization is not chunk-based and so searches do not benefit from locality, and its

1We also experimented with atomic scans and they were ⇠25% slower.
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descending iterators are ine�cient, as we show in this paper. Note further that unlike
Oak, ConcurrentSkipListMap does not deal with memory allocation (it stores pre-
allocated key and value objects), and is therefore subject to GC scalability limits.
Finally, ConcurrentSkipListMap does not manage concurrent access to the objects it
stores, which complicates application development in comparison with Oak.

Chunk-based structures were first introduced by [7] to allow cache-conscious lock-
free linked lists. Later, in [8], the chunk mechanism was used to create a lock-free
B+ tree. KiWi [5] is a KV-map that supports atomic scans and its data is organized
in a collection of chunks.

Chunk-based allocation was used in previous research [5,7,8], but not with variable-
size entities or o↵-heap allocation. Custom o↵-heap memory management is employed
by multiple data management systems (e.g., Druid [18] and HBase [33]), predominantly
for storing immutable data. Updates in-place were recently considered also in the
context of persistent key-value storage [12] but not in-memory KV-maps. To the best
of our knowledge, Oak is the first general-purpose data structure library that provides
a dynamic ordered map API with built-in concurrency control and zero-copy updates,
allocated completely o↵-heap. Using it both simplifies the development and improves
the performance of big data platforms, as our Druid proof-of-concept demonstrates.

6



Chapter 2

Programming model

Oak is unique in supporting a map interface for self-managed data, which it stores in
internal bu↵ers, as discussed in Section 2.1. In order to handle concurrent access to
Oak-resident values as well as the dynamic memory usage of such values, Oak uses the
abstraction of handles with pluggable concurrency control, as described in Section 2.2.
We detail Oak’s API in Section 2.3.

2.1 Oak bu↵ers and serialization

A key consideration in the design of Oak is allowing keys and values to be kept in self-
managed (o↵-heap) memory. Thus, in contrast to Java data structures, which store
Java objects, Oak stores data in internal bu↵ers. To convert objects (both keys and
values) to their serialized bu↵er forms, the user must implement the OakSerializer

interface given in Algorithm 1. This interface consists of a (1) serializer, (2) deserializer,
and (3) serialized size calculator (for variable-sized keys and values).

Oak’s insertion operations use the size calculator to deduce the amount of space
to be allocated, then allocate space for the given key or value, and finally use the
serializer to write the key or value directly to the allocated space. By using the user-
provided serializer, we create the byte representation of the object directly into Oak’s
in memory, saving the need to copy it.

Algorithm 1 Interface for user-provided Oak serializer and comparator.
public interface OakSerializer<T> {

// serializes the object

void serialize(T source, ByteBuffer targetBuffer);

// deserializes the given byte buffer

T deserialize(ByteBuffer byteBuffer);

// returns num of bytes needed for serializing the object

int calculateSize(T object);

}

public interface OakComparator<K> {

int compareKeys(K key1, K key2);

int compareSerializedKeys(ByteBuffer serializedKey1, ByteBuffer serializedKey2);

int compareSerializedKeyAndKey(ByteBuffer serializedKey, K key);

}

To allow e�cient search over bu↵er-resident keys, the user is required to provide the
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OakComparator interface for keys, which is also given in Algorithm 1. The comparator
compares two keys, each of which may be provided either as a deserialized object or as
a serialized bu↵er. It determines whether they are equal, and if not, which is bigger.

After key-value pairs are ingested, internally kept keys and values may be accessed
as memory bu↵ers of two types, OakRBuffer (read-only) and OakWBuffer (read and
write), supporting the standard API for read-only Java ByteBu↵ers and writable Java
ByteBu↵ers, respectively. In addition to the standard ByteBu↵er API, Oak bu↵ers
manage concurrency control and dynamic memory allocation for their users. Thus,
user functions can run computational steps on Oak-resident values with no concern of
concurrency control or memory overflow and release. To this end, Oak bu↵ers use the
abstraction of handles, as described in Section 2.2 below.

OakRBuffers are accessed via Oak’s getBufferViewAPI, which returns an OakBufferView
object, which, in turn, supports get(key) and iterators returning OakRBuffers. OakWBuffers
are accessed by user-provided lambda functions passed to Oak’s various compute meth-
ods. Oak bu↵er objects are created on demand by operations that need access to the
key or value; they are ephemeral, and cease to exist once the operation is completed.

The bu↵er-based direct access to serialized key-value pairs reduces copying and
deserialization of the underlying mappings. Furthermore, it relieves programmers of
the need to implement concurrency control for update operations. Note however,
that Oak’s get returns access to the same underlying memory bu↵er that compute
operations update in-place, and the granularity of Oak’s concurrency control is at the
level of individual operations (such as getInt) on that bu↵er. Therefore, the reader
may encounter di↵erent values – and even value deletions1 – when accessing a bu↵er
returned from the same get multiple times. This is of course normal behavior for a
concurrent map that avoids copying.

As an aside, we note that Oak supports two additional access views to objects
in addition to OakRBuffers. First, for backward compatibility with legacy code, we
support “standard” get(key) operations and iterators returning objects rather than
bu↵ers, but this requires deserializing the keys and values and is therefore less e�-
cient. Second, the transformed view API allows users to provide lambda functions
for extracting partial information out of the serialized bu↵er, and the operations re-
turn this extracted information rather than the full OakRBuffer; in contrast to the
OakRBuffer, the returned value is copied and hence remains unchanged after the get
returns it. We do not discuss these two views further in the paper.

2.2 Handles, concurrency control, and dynamic memory
use

To facilitate programming with Oak bu↵ers, Oak allows user code to access bu↵ers
without worrying about concurrent access or dynamic memory consumption. The
user function provided in a compute operation expects an OakWBuffer, and can run
computational steps on the value with no concern of concurrency control. It can also
increase the size of the bu↵er without worrying about its reallocation.

To this end, Oak’s value bu↵ers employ an additional indirection called handle, as
shown in Figure 2.1. Each value has its own handle and threads are directed by Oak

1An OakRBuffer method throws a ConcurrentModificationException in case the mapping is con-
currently deleted.
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Figure 2.1: Oak handle and bu↵ers.

to this handle for each read or write of the value. OakWBuffer extends the ByteBu↵er
interface and wraps the handle.

The handle implementation is pluggable, and may use di↵erent types of concurrency
control (optimistic or pessimistic). We provide a simple handle implementation using
a read-write lock. In addition, the handle interacts with the memory allocator in order
to dynamically increase value sizes (requesting a new allocation and copying the bu↵er
to it if needed), and informs it when to reclaim bu↵ers that are no longer needed. The
memory manager is a separate module, and is also pluggable in Oak.

Once a value is removed from Oak, the handle assures that no thread will attempt
to read this value, since that memory may be reclaimed. To this end, the handle has
a remove method that performs a logical remove by marking the handle as deleted. A
key is deemed present in Oak only if it is associated with a non-deleted handle.

Since the handle is an on-heap object it remains reachable to all threads that hold
OakBuffers that warp it, even though the value’s memory (o↵-heap) may have been
reclaimed. In this sense, the handle serves as a bridge between the on-heap and the
o↵-heap memory parts of Oak.

The handle further o↵ers put and computemethods that are used by Oak to replace
and update values, respectively. The handle’s put method directs the handle to point
to the given value, and its copmute method executes a user-provided lambda, ensuring
that the update occurs atomically.

2.3 API

Oak’s API is given in Algorithm 2. For data retrieval, OakBufferView o↵ers – get(key)
and iterators (iterating over keys, values, or entries containing both). The subMap and
descendingMap methods are used for range and descending iterators (resp.). As noted
above, Oak provides memory allocation and (epoch-based) reclamation for its inter-
nally kept keys and values. To this end, we need an indication of the end of each
operation. Unlike other operations, the end of the iterator operation is outside Oak’s
control. To allow its discovery, Oak’s iterator implements the Java AutoCloseable
Interface, which adds a close method to the iterator; more details are given in Sec-
tion 3.3.

The data ingestion API supports five conditional and unconditional updates: put,
putIfAbsent, remove, computeIfPresent, and putIfAbsentComputeIfPresent. The
latter two take a user-provided computer function to apply to the value mapped to
the given key, which they do atomically.

Because the ConcurrentNavigableMap API (like all Java APIs) was designed with
managed memory in mind, it required several adaptations in order to become more
o↵-heap-friendly. First, as explained above, data retrieval methods replace Java ob-
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Algorithm 2 Oak API.
// OakBufferView methods for data retrieval:

OakRBuffer get(K key)

CloseableIterator<OakRBuffer> keysIterator()

CloseableIterator<OakRBuffer> valuesIterator()

CloseableIterator<Map.Entry<OakRBuffer, OakRBuffer>> entriesIterator()

OakMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive)

OakMap<K, V> descendingMap()

// Ingestion methods:

void put(K key, V value)

boolean putIfAbsent(K key, V value)

void remove(K key)

boolean computeIfPresent(K key, Consumer<OakWBuffer> computer)

void putIfAbsentComputeIfPresent(K key, V value, Consumer<OakWBuffer> computer)

jects with OakRBuffers and the computer functions passed in the update methods
manipulate OakWBuffers. Second, the put API di↵ers from the one in Concurrent-
NavigableMap in that it does not return the old value. This is because returning the
old value inevitably requires copying that value, which violates Oak’s zero-copy de-
sign principle. For similar reasons, Oak does not require the user-provided function
to return the computed value (as ConcurrentNavigableMap does); note that since the
computation steps are performed in-place, the new computed value is already accessi-
ble.

Oak increases the value’s memory allocation if the updating function requires it.
(As explained above, this is managed by the handle). In the Druid integration,
computer functions update di↵erent types of aggregates, ranging from simple ones
(like counters and sums) to more complex data sketches.
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Chapter 3

Oak algorithm

We now describe the Oak algorithm, which implements a concurrent key-value map
supporting various atomic (linearizable) read and update operations, and non-atomic
ascending/descending iterators over the map and sub-maps. Keys and values are
variable sized. Oak makes use of commodity atomic hardware operations like CAS,
F&I, and F&A.

Section 3.1 explains Oak’s chunk-based data organization. Section 3.2 details how
Oak’s operations are implemented. Section 3.3 discusses epoch-based memory recla-
mation.

3.1 Data organization

Chunks and index. Oak’s structure is chunk-based; it is organized as a linked list
of large blocks of contiguous key ranges, as suggested in [7]. Each chunk has a minKey,
which is invariant throughout its lifespan. We say that key k is in the range of chunk
C if k � C.minKey and k < C.next.minKey. The chunk object has a dedicated
rebalance procedure, which splits chunks when they are over-utilized, merges chunks
when they are under-utilized, and reorganizes the chunks’ internals. The rebalancer
is implemented as in previously suggested chunk-based constructions [5, 8]. Since it is
not novel and orthogonal to our contributions, we do not detail it here.

To allow fast access, we follow the approach of [5,6,27,28,35] and add an index that
maps keys to chunks, as illustrated in Figure 3.1. Each chunk is indexed according to
its minKey. The index is updated in a lazy manner, and so it may be inaccurate, in
which case, locating a chunk may involve a partial traversal of the chunk linked list
(as in [5]).

The index supports standard lookup, insert, and remove operations. It further
supports a flavor of lookup that returns the chunk with the greatest minKey that
is strictly lower than the search key, which is used by the descending iterator. In-
sert and remove are exclusively used by rebalance. In addition, Oak provides the
locateChunk(k) method, which returns the chunk whose range includes key k, by
querying the index and possibly a chunks linked list traversal. This method is used in
all of Oak’s operations.

Intra-chunk organization. As shown in Figure 3.2, chunks hold three types of
objects: entries, keys, and handles. Entries reside on the managed memory heap in
an array-based linked list, sorted in ascending key order. Each entry holds a pointer
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Figure 3.1: Oak chunk list and index.

Figure 3.2: Oak intra-chunk organization.

to a key, a pointer to a handle, and the index of the entry that holds the next key in
the linked list. Oak makes sure that a key does not appear in more than one entry.
Keys are variable size so each entry holds a pointer to the beginning of a key and
its size. Keys are stored in a large o↵-heap ByteBu↵er that is considered part of the
chunk, whereas values reside outside the chunk. Handles are stored within the chunk,
on-heap. There is a single handle per value, and once a key-value pair is removed from
Oak its handle is deleted and never reused (subjected to GC).

As in previous work [5], when the rebalancer creates a new chunk, some prefix of
the entries array is filled with data, and the su�x consists of empty entries for future
allocation. This prefix is initialized sorted, that is, the linked list successor of each
entry is the ensuing entry in the array. The sorted prefix can be searched e�ciently
using binary search. When a new entry is inserted, it is stored in the first free cell and
connected via a bypass in the sorted linked list. In case the insertion order is random,
inserted entries are most likely to be distributed evenly between the ordered prefix
entries, thus creating fairly short bypasses.

Chunk objects and rebalancing. A chunk object exposes an API for searching,
allocating, and writing, as we now detail. LookUp searches for an entry corresponding
to the given key. This is done by first running a binary search on the entries array
prefix and continuing the search by traversing the entries linked list. Note that there is
at most one relevant entry. AllocateEntryAndKey allocates a new entry in the entries
array and also allocates and writes the given key that it points to; AllocateHandle
allocates a new handle in the handles array. Allocations are done using atomic hard-
ware operations like F&A and F&I, so that the same space is not allocated twice.
After allocating a new entry, Oak tries to link this new entry into the entries linked
list by calling entriesLLputIfAbsent, which uses CAS for safe insertion to the linked
list, so that the invariant of a key not appearing more than once in Oak is preserved.
If it encounters a linked entry with the same key (added by a concurrent insertion
operation), then it returns the encountered entry. WriteValue allocates space for the
value (outside the chunk) and writes the value to it.
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The allocation procedures (allocateEntryAndKey and allocateHandle) may trig-
ger a rebalance “under the hood”. In this case, the allocate procedure fails returning
? and Oak retries the update operation. In case the chunk is being rebalanced, chunk
update methods (entriesLLputIfAbsent) fail and return ?.

Update operations inform the rebalancer of the action they are about to perform on
the chunk by calling the publish method. This method, too, fails in case the chunk is
being rebalanced. In principle, the rebalancer may help published operations complete
(in order to ensure lock-freedom), but for simplicity, our description in Section 3.2
below assumes that the rebalancer does not help published operations. Hence, we
always retry an operation upon failure. When the update operation has finished its
published action, it calls unpublish.

Whereas chunk update methods that encounters a rebalance fail (return ?), chunk
methods that read the chunk (lookUp), modify existing handles (writeValue), or
unpublish an operation proceed with no need to abort. Beyond rebalancing, which
is borrowed from earlier work [5], the implementation of the chunk’s operations is
straightforward.

The rebalancer preserves the integrity of the chunks linked list, as we now specify.
A path is a sequence of chunks C1, C2, . . . , Ck reached by traversing chunks’ next
pointers in a run (until reaching a null pointer). Traversals(C0, r) is the sequence of
keys in all paths starting from chunk C0 in all extensions of run r.

The rebalancer implementation guarantees the following: If locateChunk(k) re-
turns C at time t in run r, then for every traversal T 2 Traversals(C, r) :

RB1 all keys � k that are inserted before time t and not removed after time t are
reachable in T ;

RB2 all keys � k that are removed before time t and not inserted after time t are not
reachable in T ; and

RB3 keys are encountered in T in monotonically increasing order.

3.2 Oak operations

In Section 3.2 we discuss Oak’s queries, namely get and iterators. Oak’s support for
various conditional and unconditional updates raises some subtle interactions that need
to be handled with care. We divide our discussion of these operations into two types:
insertion operations, which may add a new value to Oak, are discussed in Section 3.2,
whereas operations that only take actions when the a↵ected key is in Oak are given
in Section 3.2. To argue that Oak is correct, we identify in Section 3.2 linearization
points for all operations, so that concurrent operations appear to execute in the order
of their linearization points. A formal correctness proof is given in Section 5.

Queries

Get. The get operation is given in Algorithm 3. get returns a read-only view
(oakRBuffer) of the handle that holds the value that is mapped to the given key,
in accordance with our zero-copy policy. Since it is only a view and not a copy of the
value, if the value is then updated by a di↵erent operation, the view will refer to the
updated value. Furthermore, a concurrent operation can remove the key from Oak,
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Algorithm 3 Get

1: procedure get(key)
2: C, ei, hi, handle  ?
3: C  locateChunk(key) ; ei  C.lookUp(key)
4: if ei 6= ? then hi C.entries[ei].hi

5: if hi 6= ? then handle C.handles[hi]

6: if handle = ? _ handle.deleted then return null
7: else return new OakRBu↵er(handle)

in which case the handle will be marked as deleted; reads from the oakRBuffer view
check this deleted flag and throw an exception in case the value is deleted.

The algorithm first locates the relevant chunk and calls lookUp (line 3) to search
for an entry with the given key. Then, it checks if the handle is deleted (line 6). If an
entry holding a valid and non-deleted handle is found, it creates a new oakRBuffer

that points to the handle and returns it. Otherwise, get returns null.

Ascending iterator. The ascending iterator begins by locating the first chunk with
a relevant key in the scanned range using locateChunk. It then traverses the entries
within each relevant chunk using the intra-chunk entries linked list, and continues to
the next chunk in the chunks linked list. The iterator returns an entry it encounters
only if its handle index is not ? and the handle is not deleted. Otherwise, it continues
to the next entry.

Descending iterator. The descending iterator begins by locating the last relevant
chunk. Within each relevant chunk, it first locates the last relevant entry in the sorted
prefix, and then scans the (ascending) linked list from that entry until the last relevant
entry in the chunk, while saving the entries it traverses in a stack. After returning
the last entry, it pops and returns the stacked entries. Upon exhausting the stack and
reaching an entry in the sorted prefix, the iterator simply proceeds to the previous
prefix entry (one cell back in the array) and rebuilds the stack with the linked list
entries in the next bypass.

Figure 3.3 shows an example of an entries linked list and the stacks constructed
during its traversal. In this example, the ordered prefix ends with 9, which does not
have a next entry, so the iterator can return it. Next, we move one entry back in the
prefix, to entry 6, and traverse the linked list until returning to an already seen entry
within the prefix (9 in this case), while creating the stack 8 ! 7 ! 6. We then pop
and return each stack entry. Now, when the stack is empty, we again go one entry
back in the prefix and traverse the linked list. Since after 5 we reach 6, which is also
in the prefix, we can return 5. Finally, we reach 2 and create the stack with entries
4 ! 3 ! 2, which we pop and return.

When exhausting a chunk, the descending iterator continues by querying the index
again, but now for the chunk with the greatest minKey that is strictly smaller than
the current chunk’s minKey. From the chunk returned by the index, we again traverse
the chunks linked list until the last chunk with a smaller minKey than the last key the
iterator returned.
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Figure 3.3: Example entries linked list (left) and stacks built during its traversal by a
descending iterator (right).

Iterator correctness. By RB1-3 it is easy to see that the iterators algorithm de-
scribed above guarantees the following:

1. An iterator returns all relevant keys that were inserted to Oak before the start
of the iteration and not removed until the end of the iteration.

2. An iterator does not return keys that were removed from Oak before the start
of the iteration and not inserted until the end of the iteration.

3. Iterators do not return the same key more than once.

Note that relevant keys inserted or removed concurrently with an iteration may be
either included or excluded.

Insertion operations

The insertion operations – put, putIfAbsent, and putIfAbsentComputeIfPresent –
try to associate the given key with a new value using the doPut function in Algorithm 4.

DoPut first locates the relevant chunk and searches for an entry. We then dis-
tinguish between two cases: if a non-deleted handle is found (case 1: lines 21 –
26) then we say that the key is present. In this case, putIfAbsent returns false

(line 22), put calls handle.put (line 23) to associate the new value with the key, and
putIfAbsentComputeIfPresent calls handle.compute (line 24). These atomic handle
operations return false if the handle is deleted (due to a concurrent remove), in which
case we retry (line 25).

In the second case, the key is absent. If we discover a removed entry that points to
the same key but with hi = ? or a deleted handle, then we reuse this entry. Otherwise,
we call allocateEntryAndKey to allocate a new entry as well as allocate and write
the key that it points to (line 28), and then try to link this new entry into the entries
linked list (line 29). Either way, we allocate a new handle (line 30). These functions
might fail and cause a retry (line 31).

If entriesLLputIfAbsent receives ? as a parameter (because the allocation in
line 28 fails) then it just returns ? as well. Otherwise, if it encounters an already linked
entry then it returns it. In this case, the entry allocated in line 28 remains unlinked in
the entries array and other operations never reach it; the rebalancer eventually removes
it from the array. After allocations of the entry, key, and handle, we allocate and write
the value (outside the chunk), and have the new handle point to it (line 33).

We complete the insertion by using CAS to make the entry point to the new handle
index (line 36). Before doing so, we publish the operation (as explained in Section 3.1),
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Algorithm 4 Oak’s insertion operations

8: procedure put(key, val)
9: doPut(key, val, ?, put)
10: return

11: procedure putIfAbsent(key, val)
12: return doPut(key, val, ?, putIf)

13: procedure putIfAbsentComputeIfPresent(key, val, func)
14: doPut(key, val, func, compute)
15: return

16: procedure doPut(key, val, func, operation)
17: C, ei, hi, newHi, handle  ?; result, succ  true
18: C  locateChunk(key); ei  C.lookUp(key)
19: if ei 6= ? then hi C.entries[ei].hi

20: if hi 6= ? then handle C.handles[hi]

21: if handle 6= ? ^ ¬handle.deleted then

. Case 1: key is present
22: if operation = putIf then return false

23: if operation = put then succ  handle.put(val)

24: if operation = compute then succ  handle.compute(func)

25: if ¬succ then return doPut(key, val, func, operation)

26: return true
. Case 2: key is absent

27: if ei = ? then

28: ei  C.allocateEntryAndKey(key)
29: ei C.entriesLLputIfAbsent(ei)

30: newHi C.allocateHandle()
31: if ei = ? _ newHi = ? then . allocation or insertion failed
32: return doPut(key, val, func, operation)

33: C.writeValue(newHi, val)
34: if ¬C.publish(ei, hi, newHi, func, operation) then
35: return doPut(key, val, func, operation)

36: result  CAS(C.entries[ei].hi, hi, newHi)
37: C.unpublish(ei, hi, newHi, func, operation)
38: if ¬result then return doPut(key, val, func, operation)

39: return true
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which can also lead to a retry (line 35). After the CAS, we unpublish the operation,
as it is no longer pending (line 37). If CAS fails, we retry the operation (line 38).

To see why we retry, observe that the CAS may fail because of a concurrent non-
insertion operation that sets the handle index to ? or because of a concurrent insertion
operation that sets the handle index to a di↵erent value. In the latter case, we cannot
order (linearize) the current operation before the concurrent insertion, because the
concurrent insertion operation might be a putIfAbsent, and would have returned
false had the current operation preceded it.

Algorithm 5 Oak’s non-insertion update operations

40: procedure computeIfPresent(key, func)
41: return doIfPresent(key, func, comp)

42: procedure remove(key)
43: doIfPresent(key, ?, rm)
44: return

45: procedure doIfPresent(key, func, op)
46: C, ei, hi, handle  ?; res  true
47: C  locateChunk(key); ei  C.lookUp(key)
48: if ei 6= ? then hi C.entries[ei].hi

49: if hi = ? then return false
50: handle C.handles[hi]
51: if ¬handle.deleted then

. Case 1: handle exists and not deleted
52: if op = comp ^ handle.compute(func) then return true

53: if op = rm ^ handle.remove() then return finalizeRemove(handle)

. Case 2: handle is deleted – ensure key is removed
54: if ¬C.publish(ei, hi, ?, func, op) then return doIfPresent(key, func, op)

55: res  CAS(C.entries[ei].hi, hi, ?)
56: C.unpublish(ei, hi, ?, func, op)
57: if ¬res then return doIfPresent(key, func, op)

58: return false

59: procedure finalizeRemove(prev)
60: C, ei, hi, handle  ?
61: C  locateChunk(key);

ei  C.lookUp(key)
62: if ei 6= ? then hi C.entries[ei].hi

63: if hi = ? then return true
64: handle C.handles[hi]
65: if handle 6= prev then return true

66: if ¬C.publish(ei, hi, ?, ?, rm) then return finalizeRemove(prev)

67: CAS(C.entries[ei].hi, hi, ?)
68: C.unpublish(ei, hi, ?, ?, rm)
69: return true
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Non-insertion operations

The second type of updates – computeIfPresent and remove do not insert new entries.
Both invoke the doIfPresent function given in Algorithm 5. It first locates the handle,
and if there is no such handle, returns false (line 49).

In computeIfPresent, if the handle exists and is not deleted (case 1), we run
handle.compute and return true if it is successful (line 52). Otherwise (case 2), a subtle
race may arise: it is possible for another operation to insert the key after we observe it
as deleted and before this point. In this case, to ensure correctness, computeIfPresent
must assure that the key is in fact removed. To this end, it performs a CAS to
change handle index to ? (line 55). Since this a↵ects the chunk’s entries, we need to
synchronize with a possibly ongoing rebalance, and so here too, we publish before the
CAS and unpublish when done. If publish or CAS fails then we retry (lines 54 and 57).
The operation returns false whenever it does not find the entry, or finds the entry
but with ? as its handle index (line 49), or CAS to ? is successful (line 58).

In remove, if a non-deleted handle exists (case 1), it also updates the handle, in
this case, marking it as deleted by calling handle.remove (line 53), and we say that the
remove is successful. This makes all other threads aware of the fact that the key has
been removed, so there will be no further attempts to read its value, which su�ces for
correctness. However, as an optimization, remove also performs a second task after
marking the handle as deleted, namely, marking the appropriate entry’s handle index
as ?. Updating the entry serves two purposes: first, rebalance does not check whether
a handle is deleted, so changing the handle index to ? is needed to allow garbage
collection; second, updating the entry expedites other operations, which do not need
to read the handle in order to see that it is deleted.

Thus, a successful remove calls the finalizeRemove function, which tries to CAS
the handle index to ?. We have to take care, however, in case the handle index had
already changed, not to change it to?. To this end, finalizeRemove takes a parameter
prev – the handle that remove marked as deleted. If the entry no longer points to it,
we do nothing (line 65). We save in prev the handle itself and not the handle index,
to avoid an ABA problem, since after a rebalance, the handle index might remain the
same but reference a di↵erent handle. We note that remove is linearized at the point
where it marks the handle as deleted, and therefore it does not have to succeed in
performing the CAS in finalizeRemove . If CAS fails, this means that either some
insertion operation reused this entry or another non-insertion operation already set
the handle index to ?.

If remove finds an already deleted handle (case 2), it cannot simply return, since by
the time remove notices that the handle is deleted, the entry might point to another
handle. Therefore, similarly to computeIfPresent, it makes sure that the key is
removed by performing a successful CAS of the handle index to ? (line 55). In this
case (case 2) it does not perform finalizeRemove, but rather retries if the CAS fails
(line 57). Note the di↵erence between the two cases: in case 1, we set the handle to
deleted, and so changing the entry’s handle index to ? is merely an optimization, and
should only occur if the entry still points to the deleted handle. In the second case,
on the other hand, remove does not delete any handle, and so it must make sure that
the entry’s handle index is indeed ? before returning.
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Linearization points

In Section 5 we show that Oak’s operations (except for iterators) are linearizable [29];
that is, every operation appears to take place atomically at some point (the lineariza-
tion point) between its invocation and response. Here, we list the linearization points,
abbreviated l.p..

putIfAbsent – if it returns true, the l.p. is the successful CAS of handle index
(line 36). Otherwise, the l.p. is when it finds a non-deleted handle (line 21).

put – if it inserts a new key, the l.p. is the successful CAS of handle index (line 36).
Otherwise, the l.p. is upon a successful nested call to handle.put (line 23).

putIfAbsentComputeIfPresent – if it inserts a new key, the l.p. is the successful
CAS of handle index (line 36). Otherwise, the l.p. is upon a successful nested
call to handle.compute (line 24).

computeIfPresent – if it returns true, the l.p. is upon a successful nested call to
handle.compute (line 52). Otherwise, the l.p. is when the entry is not found, or
it is found but with ? as its handle index (line 49), or a successful CAS of handle
index to ? (line 55).

remove – if it is successful, the l.p. is when a successful nested call to handle remove
occurs, setting the handle to deleted (line 53). Otherwise, the l.p. is when the
entry is not found, or handle index is ? (line 49), or a deleted handle is found
and a successful CAS of handle index to ? occurs (line 55).

get – if it returns a handle, then the l.p. is the read of a non-deleted handle (line 6).
If, it returns null there are two cases. If there is no relevant entry then the l.p.
is when lookUp (line 3) returns ?, or when get reads that the handle index is ?
(line 4).

Otherwise, get reads a deleted handle (line 6). However, the l.p. cannot be the
read of the deleted flag in the handle, since by that time, a new handle may
have been inserted. Therefore, if get finds deleted = true, then the l.p. is
the later between (1) the read of handle index by the same get (line 4) and (2)
immediately after the set of deleted = true by some remove (note that exactly
one remove set deleted to true).

3.3 O↵ heap support - epoch-based reclamation

We use epoch-based reclamation (based on [25]) to support o↵-heap keys and values.
We implement a global timestamp that is incremented at the beginning of each oper-
ation. Each thread maintains an active flag and a local timestamp. When a thread
performs an operation (query, insertion, or non-insertion), it first sets its active flag,
increments the global timestamp, and updates its local timestamp to match the global
one. At the end of an operation, the thread unsets its active flag. When a thread
calls remove, it attaches the removed value to a release list with the current global
timestamp. The keys are released in the same manner during rebalance. An entry in
the release list whose timestamp is smaller than the minimum current local timestamp
of any active thread can be reclaimed.

19



One deviation we make from the basic protocol is to expand the active flag from one
bit to several bits (we use one byte), to allow nesting of operations, since we consider
an iteration as a single continuous operation. Therefore, a thread starts an operation
by incrementing its active counter, and decrements it when the operation ends. A
thread is considered active when its active counter is positive. When using an iterator,
we decrement the active counter by calling the close method of the iterator. For this
reason we use closeableIterators.
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Chapter 4

Evaluation

We implement Oak in two ways: o↵-heap and on-heap. The two implementations
di↵er in the memory used for the allocation of keys and values that reside in Oak and
the management of that memory. Both implementations are in Java, the handles are
implemented using a Java ReentrantReadWriteLock [31], and the index is based on
Java ConcurrentSkipListMap [30]. In order to unify the on- and o↵-heap versions, we
use Oak to allocate space for keys and values in both; for fairness of the comparison,
we also copy new values before inserting them into the Java skiplist, to simulate the
serialization done in Oak. The experiments are run on a hardware platform with
four Intel Xeon E5-4650 processors, each with 8 cores. We use the Synchrobench
framework [24]. Each experiment consists of 10 iterations, a few seconds each, and
we report the average result. Unless stated otherwise, the experiment is preceded
by a warm-up period where randomly selected keys are inserted into the map. We
first compare Oak’s on-heap implementation to the (on-heap) Java skiplist, and then
compare the two versions of Oak.

4.1 Oak vs. Java skiplist

Oak is a scalable map that achieves high throughput. We show this by comparing
Oak to Java ConcurrentSkipListMap (skiplist) [30]. Java skiplist holds arbitrary ob-
jects as its keys and values, including ByteBu↵ers as in Oak. Similarly to Oak, Java
skiplist supports put, remove, get, and ascending and descending iterators. We first
run experiments consisting of these operations. The map is initially filled up with 1M
randomly selected keys out of a range of 2M, keys are 4 bytes and values are 100B (in
Figure 4.2 we further report on experiments with 1KB values, where the results are
similar). Figure 4.1 depicts the throughput scalability with the number of threads.

The first experiment is a read-only workload (Figure 4.1a). Oak’s chunk-based
structure has better locality than the skiplist, and indeed we see that Oak’s get op-
eration outperforms Java skiplist’s by 3.3x. The second (Figure 4.1b) is a write-only
workload with 50% puts and 50% removes. Here, Oak outperforms Java by 1.3x, again,
thanks to speeding up the search, which is the first part of an update operation. Next
we run ascending (Figure 4.1c) and descending iterators (Figure 4.1d), scanning ranges
of 100 keys. The ascending iterator is twice as fast as Java’s, again, thanks to fast first
key search. Oak has built-in support for descending iterators while Java skiplist does
not, and so in this workload, Oak outperforms Java significantly – by 4.8x.

Next we evaluate the compute operation. Java supports an operation called com-
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Figure 4.1: Oak vs. Java, 100B values.

pute, which also assigns a new value computed by a function received as a parameter,
however the returned value from the function is used as the new value, therefore this
compute is not an atomic update-in-place as in Oak. If the function updates the
received value in-place, there are no atomicity guarantees. To allow for a fair com-
parison, we create a new object LockableByteBu↵er consisting of a ByteBu↵er and a
Java ReentrantReadWriteLock [31] (as used in the handle implementation), and store
LockableByteBu↵ers in the Java skiplist. We implement a function that first locks the
given value using the write lock, then runs the computation steps on that value, and
finally unlocks the lock. The function returns a pointer to the same value. In our
workload, the computation reads a random byte of the given ByteBu↵er and writes
it to a random byte of the same ByteBu↵er. We run two workloads, one executing
only computeIfPresent, and one mixed workload with get, compute (putIfAbsentCom-
puteIfPresent), put, and remove, 25% each. In both workloads, Oak outperforms Java
skiplist by 70-80%, as shown in Figures 4.1e and 4.1f. The speedup is due to the fast
search in Oak and the extra CAS in Java’s compute, which is used to replace the
current value with the returned value computed by the user’s function.
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Figure 4.2: Oak vs. Java, 1KB values.

4.2 Oak O↵-heap vs. On-heap

We show that there are use cases where one can benefit from o↵-heap allocation. We
configure JVM to use the same amount of memory for both implementations. Since
our o↵-heap implementation currently supports only 2GB of o↵-heap memory, we
configure the o↵-heap heap size to 500MB, and the on-heap heap size to 2.5GB (=
2GB + 500MB). In the following experiments we populate Oak with ⇠100K keys, 4
bytes each, with 1KB or 5KB values; the memory used to hold these keys and values
nearly reaches the 2GB capacity of Oak’s o↵-heap memory.

We implement and supply Oak with simple o↵-heap allocation and deallocation
methods. At the initialization, one continuous 2GB o↵-heap ByteBu↵er is allocated,
and the allocation method uses an atomically incremented index over the ByteBu↵er to
manage Oak’s requests. Deallocation appends an entry to a list of reclaimed memory
locations, and the allocator scans it linearly. Note that in contrast, Oak’s on-heap
implementation uses Java’s highly optimized GC to manage the memory for keys and
values, since they all reside in the Java heap.

The main scenarios in Druid, the platform that Oak is designed to support, are
ones with conditional updates on large values. When Druid runs out of memory it
usually archives it in persistent storage. Therefore, we run experiments demonstrating
these scenarios, and show that in these cases even our simple (unoptimized) alloca-
tion/deallocation is su�cient, and Oak o↵-heap prevails, since Java’s GC works hard
on trying to free space for future allocations.

But before running these Druid-oriented experiments, we first study the impact of
o↵-heap allocation on a classical mixed workload, as depicted in Figure 4.3a. We run
a mixed workload with equal shares of get, put, remove, and compute (putIfAbsent-
ComputeIfPresent) operations with 1KB values. In this experiment Oak is initially
filled with 50K randomly selected keys out of a range of 100K. In this case the o↵-heap
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implementation is 20% slower, since the Java GC is better optimized for this case
compared to Oak’s simple GC implementation.

Next we run the Druid scenarios, with bigger values (5KB) and conditional updates.
In these experiments, shown in Figures 4.3b, 4.3c, and 4.3d, o↵-heap outperforms on-
heap by 40-80%. In the first experiment we use putIfAbsent to fill up the data structure
(with 300K keys), which is initially empty. In the second experiment we run a mixed
workload of putIfAbsent and putIfAbsentComputeIfPresent, after the data structure
is initially filled with 150K keys out of a range of 300K. In the last experiment we run
putIfAbsentComputeIfPresent with a data structure initially filled with 300K keys (out
of a range of 300K). As expected, when monitoring the GC using Java’s JConsole [32],
we observe that Java’s GC wastes time by trying to free space while Oak’s simple
deallocation method is almost idle.
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(c) Compute and putIfAbsent
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Figure 4.3: Oak o↵-heap vs. on-heap, 1-5KB values.
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Chapter 5

Correctness

In this section, we prove Oak’s correctness. Since the rebalancer is orthogonal to our
contribution, we omit it from the discussion of Oak’s correctness. We only assume
that RB1-3 hold. We note that a similar rebalance was fully proven in [8].

5.1 Preliminaries

We consider a shared memory system consisting of a collection of shared variables
accessed by threads, which also have local variables. An algorithm defines the behaviors
of threads as deterministic state machines, where state transitions are associated with
either an instance of a shared variable primitive (read, write, CAS, etc.) or a local step
a↵ecting the thread’s local variables. A configuration describes the current state of
all local and shared variables. An initial configuration is one where all variables hold
an initial value. A data structure implementation provides a set of operations, each
with possible parameters. We say that operations are invoked and return or respond.
The invocation of an operation leads to the execution of an algorithm by a thread.
Both the invocation and the return are local steps of a thread. A run of algorithm
A is an alternating sequence of configurations and steps, beginning with some initial
configuration, such that configuration transitions occur according to A. We say that
two operations are concurrent in a run r if both are invoked in r before either returns.
We use the notion of time t during a run r to refer to the configuration reached after
the tth step in r. An interval of a run r is a sub-sequence that starts with a step and
ends with a configuration. The interval of an operation op starts with the invocation
step of op and ends with the configuration following the return from op or the end of
r, if there is no such return.

An implementation of concurrent data structure is linearizable [29] (a correctness
condition for concurrent objects) if it provides the illusion that each invoked operation
takes e↵ect instantaneously at some point, called the linearization point (l.p.), inside
its interval. A linearization of a run r (lin(r)) is the sequential run constructed by
serially executing each operation at its l.p.

5.2 Linearizability proof

Definition 1. If there is an entry e in Oak that points to key k and handle h, (i.e.,
lookUp(k) returns e s.t. h = handles[entries[e].hi]) and h.deleted = false, we
say that h is associated with k.
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Claim 2. If an Oak operation searches for key k and finds a non-deleted handle h
(h.deleted = false), then h is associated with k.

Proof. If an operation searches for k and finds h, then there is an entry e that points
to k, since Oak ensures that there is at most one entry that points to k, and k is found
only if there is such entry. This also means that e points to handle h (by handle index
hi). Assume that e does not point to handle h, then the handle index is now hi0 6= hi.
If hi0 = ? then the handle index can be set only by a non-insertion operation using a
CAS. According to Algorithm 5 this is only possible when h in handles[hi] is already
deleted, but h is not deleted. Otherwise, hi0 6= hi and hi0 6= ?, then the handle index
can be set only by an insertion operation using a CAS. According to Algorithm 4
this is only possible when h in handles[hi] is already deleted, which is not the case.
Therefore, there is an entry e that points to k and h and h.deleted = false, so by
Definition 1 h is associated with k.

Claim 3. Assume handle h is associated with key k at time t in a run r. Then, h is
associated with k at time (t+1) in r if and only if the (t+1)st step in r is not the l.p.
of a successful remove(k) operation.

Proof. Assume that h is not associated with k at time (t+ 1).
If there is no handle associated with k at time t + 1, then by Definition 1 either

h.deleted = true or the entry’s handle index (hi) is ?. In the first case, the only
possible step that marks a handle as deleted is the l.p. of a successful remove(k). In
the second case, only non-insertion operations turn hi to ? by using CAS (lines 55
and 67), and according to Algorithm 5 this is only possible when the handle is deleted.
However, at time t, h is still associated with k. Therefore, the entry’s handle index
(hi) is not ?.

Otherwise, there is a di↵erent handle h0 6= h that is associated with k at time t+1
(h0 6= ?). This change can only be done by an insertion operation using CAS (line 36).
According to Algorithm 4 an insertion operation reaches that CAS only if the handle
(h) is already deleted (line 21). However, at time t, h is still associated with k, and so
there is no di↵erent handle that is associated with k.

Therefore, as long as the (t+1)st step is not the l.p. of a successful remove(k), then
h is still associated with k at time t+ 1 in r, and there is no handle associated with k
at time t+ 1 if the (t+ 1)st step is a l.p. of a successful remove(k), as required.

Claim 4. Assume no handle is associated with key k at time t in a run r. Then, no
handle is associated with k at time t+1 in r if and only if the (t+1)st step in r is not
the l.p. of a successful insertion operation of k.

Proof. If no handle is associated at time t, and at time t + 1 there is an associated
handle, then according to Definition 1 either a handle’s deleted flag turned from false
to true, or the entry’s handle index turned from ? to a valid one. The former is not
possible because the handles are initialized as not deleted and only become deleted by
a remove; no operation turns a deleted handle to a non-deleted one. In the second
case, this can only be done by a successful insertion operation, at its l.p. (line 36), as
required.

Look at the linearization lin(r) of run r using l.p.s defined in Section 3.2. From
Claims 3 and 4, by induction on the steps of a run, we get:
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Corollary 5. At any point in a concurrent run r, the set of keys associated with
handles is exactly the same as the set of inserted keys and not removed keys, associated
with the same handles, in lin(r) up to that point.

Claim 6 (Get). In run r, if get(k) returns h then the corresponding get(k) in lin(r)
returns h, and if get(k) returns null then the corresponding get(k) in lin(r) returns
null.

Proof. There are three cases for get’s l.p.:

1. Get(k) finds a non-deleted handle h (line 6), then get(k) returns h and by Claim 2
h is associated with k. By Corollary 5, in lin(r) k is inserted and not removed
(the map holds k) and since this is the l.p. of get then the corresponding get(k)
in lin(r) returns h as well.

2. LookUp(k) by get(k) (line 3) returns ? or if get(k) reads that the handle index
is ? (line 4), then there is no handle associated with key k, and get(k) returns
null. By Corollary 5, in lin(r) the map does not hold k, and since this is the
l.p. of get then the corresponding get(k) in lin(r) returns null as well.

3. Get(k) finds a deleted handle h at time t2 (line 6) and returns null. Then its
l.p. is the later between the read of handle index hi by get(k) at time t1 < t2
(line 4) and immediately after the set of deleted = true by remove(k) at some
time t < t2. Again there are two cases:

(a) If t > t1 then the l.p. is immediately after the set of deleted = true then
there is no handle associated with key k, and by Corollary 5, in lin(r) the
map does not hold k, and the corresponding get(k) in lin(r) returns null
as well.

(b) If t1 > t then the l.p. is the read of handle index hi by get(k) (line 4) at
time t1, after the set of deleted = true at time t. We need to show that at
no time between t and t1 the handle index changed to hi0 6= hi and now it
does not point to a deleted handle. Notice that only an insertion operation
l.p. can change hi to hi0. Assume by contradiction that the l.p. of such an
operation occurs between t and t1. Then when get sees hi at time t1, it is
already hi0 and not hi. A contradiction. Hence, at the l.p. of get(k), there is
no handle associated with key k, and by Corollary 5, in lin(r) the map does
not hold k, so the corresponding get(k) in lin(r) returns null as required.

Claim 7 (PutIfAbsent). In run r, if putIfAbsent(k) returns true then the correspond-
ing putIfAbsent(k) in lin(r) returns true, and if putIfAbsent(k) returns false then
in lin(r) the corresponding putIfAbsent(k) returns false.

Proof. If putIfAbsent(k) finds a non-deleted handle h (line 21), then putIfAbsent(k)
returns false and by Claim 2 h is associated with k. By Corollary 5, in lin(r) k is
inserted and not removed (the map holds k) and since this is the l.p. of putIfAbsent
then the corresponding putIfAbsent(k) in lin(r) returns false as well.

Otherwise, if putIfAbsent(k) performs a successful CAS of handle index from ?
(line 36), then putIfAbsent(k) returns true and by Definition 1 there was no handle
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associated with k just before the CAS. By Corollary 5, in lin(r) the map does not hold
k, and since this is the l.p. of putIfAbsent then the corresponding putIfAbsent(k) in
lin(r) returns true as required.

Claim 8 (ComputeIfPresent). In run r, if computeIfPresent(k) returns true then in
lin(r) the corresponding computeIfPresent(k) returns true, and if computeIfPresent(k)
returns false then the corresponding computeIfPresent(k) in lin(r) returns false.

Proof. If computeIfPresent(k) finds a non-deleted handle h and there is a successful
nested call to handle compute (line 52), then computeIfPresent(k) returns true and by
Claim 2 h is associated with k. By Corollary 5, in lin(r) k is inserted and not removed
(the map holds k) and since this is the l.p. of computeIfPresent then the corresponding
computeIfPresent(k) in lin(r) returns true as well.

If lookUp(k) by computeIfPresent(k) returns ?, or if computeIfPresent(k) reads
that the handle index is ? (line 49), then there is no handle associated with key
k, and computeIfPresent(k) returns false. By Corollary 5, in lin(r) the map does
not hold k, and since this is the l.p. of computeIfPresent then the corresponding
computeIfPresent(k) in lin(r) returns false as required.

Otherwise, a successful CAS of handle index to? is performed by computeIfPresent(k)
(line 55), from a handle index pointing to a deleted handle (line 51). Then computeIfPresent(k)
returns false and by Definition 1 there is no handle associated with k just before the
CAS and right after it. By Corollary 5, in lin(r) the map does not hold k, and since
this is the l.p. of computeIfPresent then the corresponding computeIfPresent(k) in
lin(r) returns false.

Claim 9 (Put). In run r, if put(k) inserts k and returns then in lin(r) the correspond-
ing put(k) inserts k and returns, and if put(k) replaces k’s value and returns then in
lin(r) the corresponding put(k) replaces k’s value and returns.

Proof. If put(k) finds a non-deleted handle h and there is a successful nested call to
handle put (line 23), then put(k) replaces k’s value and returns, and by Claim 2 h is
associated with k. By Corollary 5, in lin(r) the map holds k and since this is the l.p.
of put then the corresponding put(k) in lin(r) replaces k’s value and returns as well.

Otherwise, put(k) performs a successful CAS of handle index (line 36) from ?, and
inserts k and returns. By Definition 1 there is no handle associated with k just before
the CAS, and there is one right after the CAS (the handle is initialized as non-deleted).
Since this is the l.p. of put, and by Corollary 5 in lin(r) the map does not hold k before
the l.p. and does after. Therefore, the corresponding put(k) in lin(r) inserts k and
returns as required.

Claim 10 (PutIfAbsentComputeIfPresent). In run r, if putIfAbsentComputeIfPresent(k)
inserts k and returns then in lin(r) the corresponding putIfAbsentComputeIfPresent(k)
inserts k and returns, and if putIfAbsentComputeIfPresent(k) updates k’s value and
returns then in lin(r) the corresponding putIfAbsentComputeIfPresent(k) updates k’s
value and returns.

Proof. If putIfAbsentComputeIfPresent(k) performs a successful CAS of handle index
(line 36) from ?, then it inserts k and returns. By Definition 1 there is no handle
associated with k just before the CAS, and there is one right after the CAS (the handle
is initialized as non-deleted). Since this is the l.p. of putIfAbsentComputeIfPresent,
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and by Corollary 5 in lin(r) the map does not hold k before the l.p. and does after.
Therefore, the corresponding putIfAbsentComputeIfPresent(k) in lin(r) inserts k and
returns as required.

Otherwise, putIfAbsentComputeIfPresent(k) finds a non-deleted handle h and there
is a successful nested call to handle compute (line 24), then putIfAbsentComputeIfPresent(k)
updates k’s value and returns, and by Claim 2 h is associated with k. By Corollary 5,
in lin(r) the map holds k and since this is the l.p. of putIfAbsentComputeIfPresent
then the corresponding putIfAbsentComputeIfPresent(k) in lin(r) updates k’s value
and returns as well.

Claim 11 (Remove). In run r, if remove(k) removes k and returns then in lin(r) the
corresponding remove(k) removes k and returns, and if remove(k) returns unsuccess-
fully (without removing any key) then in lin(r) the corresponding remove(k) returns
unsuccessfully.

Proof. If remove(k) finds a non-deleted handle h and a successful nested call to handle
remove occurs, setting the handle to deleted (line 53), then remove(k) removes k and
returns. By Claim 2 h is associated with k before and there is no handle associated
with k right after (by Definition 1). Since this is the l.p. of remove, and by Corollary 5
in lin(r) the map does hold k before the l.p. and does not after. Therefore, the
corresponding remove(k) in lin(r) removes k and returns as required.

If lookUp(k) by remove(k) returns ?, or if remove(k) reads that the handle index
is ? (line 49), then there is no handle associated with key k, and remove(k) returns
unsuccessfully. By Corollary 5, in lin(r) the map does not hold k, and since this is
the l.p. of remove then the corresponding remove(k) in lin(r) returns unsuccessfully
as required.

Otherwise, a successful CAS of handle index to ? is performed by remove(k)
(line 55), from a handle index pointing to a deleted handle (line 51). Then remove(k)
returns and by Definition 1 there is no handle associated with k just before the CAS and
right after it. By Corollary 5, in lin(r) the map does not hold k, and since this is the
l.p. of remove then the corresponding remove(k) in lin(r) returns unsuccessfully.

Having shown that all of Oaks operations behave the same way in a run r and its
linearization lin(r), we can conclude the following theorem:

Theorem 12. Oak is linearizable with the l.p.s defined in Section 3.2.
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Chapter 6

Conclusion

We presented Oak, a scalable concurrent KV-map for big data analytics. Two main
requirements guided us when designing Oak. The first is supporting large keys and
values. To this end, Oak enforces a zero-copy policy, which allows updates and reads to
occur concurrently and atomically on the same memory location. It further supports
o↵-heap allocation (and reclamation) of these keys and values, which is a recent trend
in systems like HBase [33] and Druid [18]. The second requirement is supporting an
analytics API. In addition to the standard get, put, and remove, Oak provides compute
methods for performing an update of the value in-place. Oak also has built-in support
for ascending and descending scans.

Our experiments have shown that Oak is faster by 1.3-4.8x than the currently
standard concurrent KV-map, the Java ConcurrentSkipListMap. In addition, our
results demonstrated that o↵-heap allocation is beneficial in scenarios with conditional
updates of large values.
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