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Abstract11

Financial institutions nowadays are looking into technologies for permissioned blockchains. A major12

effort in this direction is Hyperledger, an open source project hosted by the Linux Foundation and13

backed by a consortium of over a hundred companies. A key component in permissioned blockchain14

protocols is a byzantine fault tolerant (BFT) consensus engine that orders transactions. However,15

currently available BFT solutions in Hyperledger (as well as in the literature at large) are inadequate16

for financial settings; they are not designed to ensure fairness or to tolerate the selfish behavior that17

inevitably arises when financial institutions strive to maximize their own profit.18

We present FairLedger, a permissioned BFT blockchain protocol, which is fair, deigned to deal19

with rational behavior, and, no less important, easy to understand and implement. Our secret sauce20

is a new communication abstraction called detectable all-to-all (DA2A), which allows us to detect21

players (byzantine or rational) that deviate from the protocol and punish them. We implement22

FairLedger in the Hyperledger open source project using the Iroha framework – one of the biggest23

projects therein. To evaluate FairLegder’s performance, we also implement it in the PBFT framework24

and compare the two protocols. Our results show that in failure-free scenarios in wide-area settings,25

FairLedger achieves better throughput than both Iroha’s implementation and PBFT.26
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1 Introduction31

As of today, support for financial transactions between institutions is limited, slow, and32

costly. For example, an oversees money transfer between two banks might take several days33

and entail fees of tens of dollars. The source of this cost (in term of both time and money) is34

the need for a reliable clearing house; sometimes this even requires physical phone calls at the35

end of the day. At the same time, emerging decentralized cryptocurrencies like Bitcoin [42]36

complete transactions within less than hour, at a cost of microcents. It is therefore not37

surprising that financial institutions are looking into newer technologies to bring them up to38

speed and facilitate trading in today’s global economy.39

The most prominent technology considered in this context is that of a blockchain, which40

implements a secure peer-to-peer ledger of financial transactions on top of a consensus engine.41
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A major effort in this direction is Hyperledger [28], an open-source project hosted by the42

Linux Foundation and backed by a consortium of more than a hundred companies. Unlike43

anonymous cryptocurrencies with open participation, in blockchains for financial institutions44

– also called permissioned blockchains – every participant is pre-known and certified, so that45

it has to be responsible for its actions in the real world. Permissioned blockchains [28, 40, 45]46

thus abandon the slow and energy-consuming proof-of-work paradigm of Bitcoin, and tend47

to go back to more traditional distributed consensus protocols. Because of the high stakes,48

malicious deviations from the protocol (due to bugs or attacks), rare as they might be, should49

never compromise the service. Such deviations are modeled as byzantine faults [34], and to50

deal with them, proposed solutions use byzantine fault tolerant (BFT) consensus protocols.51

Yet we believe that dealing with byzantine failures is only a small part of what is required52

in permissioned blockchains. In fact, a break-in that causes a bank’s software to behave53

maliciously is so unusual that it is a top news story and is investigated by the FBI. On the54

other hand, financial institutions always try to maximize their own profit, and would never55

use a system that discriminates against them. Moreover, they can be expected to selfishly56

deviate from the protocol whenever they can benefit from doing so. In particular, financial57

entities typically receive a fee for every transaction they append to the shared ledger, and58

can thus be expected to attempt to game the system in a way that maximizes the rate of59

their own transactions in the ledger. Such rational behavior, if not carefully considered, not60

only can discriminate against some entities, but may also compromise safety.61

Thus, in the FinTec context, one faces a number of important challenges that were not62

always emphasized in previous BFT work: (1) fairness in terms of the opportunities each63

participant gets to append transactions to the ledger; (2) expected rational behavior by all64

players; and (3) optimized failure-free performance in wide-area setting, given that financial65

institutions are usually very secure and inter-institutional platforms would be deployed over66

a secure WAN. In addition, it is important to stress (4) protocol simplicity, because complex67

protocols are inherently bug-prone and easier to attack. In this work we develop FairLedger,68

a new permissioned BFT blockchain protocol for the Hyperledger framework, which addresses69

all of these challenges. Our protocol is fair, designed for rational participants, optimized for70

the failure-free case, simple to understand, and easy to implement. Specifically, we show that71

following the protocol is an equilibrium, and that when rational participants do follow the72

protocol, they all get perfectly fair shares of the ledger.73

Given that byzantine failures are rare, our philosophy is to optimize for the normal mode74

when they do not occur (as also emphasized in some previous works, e.g., Zyzzyva [32]). For75

this mode, we design a simple protocol that provides high performance when all players are76

rational but not byzantine. Under byzantine failures, the normal mode protocol remains safe77

and fair, but may lose progress. Upon detecting that a rogue participant is attempting to78

prevent progress, we switch to the alert mode. At this point, it is expected that real-world79

authorities (such as the FBI or Interpol) will step in to investigate the break-in. But such80

an investigation may take days to complete, and in the time being, the service remains81

operational – albeit slower – using the alert mode protocol.82

An important lesson learned from the deployment of Paxos-like protocols in real systems83

such as ZooKeeper [31] and etcd [19] is that systems will only be used if they are easy to84

understand, implement, and maintain. Like these systems, we follow the Vertical Paxos [4,33]85

approach of using a fixed set of participants (sometimes called quorum) for sequencing86

transactions and reconfiguring this set upon failures. Specifically, we designate a committee87

consisting of all the participants who are interested in issuing transactions and have them run88

a sequencing protocol to order their transactions. A complementary master service monitors89
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the committee’s progress and initiates reconfiguration when needed. Including all interested90

players in the committee is instrumental for fairness – this way, all committee members91

benefit from sequencing batches that include transactions by all of them.92

We assume a loosely synchronous model, where a master can use a coarse time bound (e.g.,93

one minute) to detect lack of progress. This bound is only used for failure recovery, and does94

not otherwise affect performance. A key feature of our alert mode is that whenever participants95

deviate from the protocol in a way that jeopardizes progress, they are accurately detected96

and so can be removed from the committee. Unlike in other Hyperledger protocols [45],97

FairLedger never indicts correct participants, allowing the system to heal itself following98

attacks.99

The sequencing protocol uses all-to-all exchange of signed messages among committee100

members. Since the committee includes all participants and all messages are signed, the101

protocol can ensure safety despite byzantine failures of almost any minority. Specifically, for102

f failures, our protocol is correct whenever the number of participants satisfies n ≥ 2f + 3.103

The flip side is that it is enough for one participant to withhold a single message in order to104

prevent progress. Such a deviation from the protocol is tricky to detect as one participant can105

claim that it had sent a message to another, while the recipient claims that the message has106

not arrived. To deal with such deviations, we define a new communication abstraction, which107

we call detectable all-to-all (DA2A). Besides the standard broadcast and deliver API, DA2A108

exposes a detect method that returns an accurate and complete set of deviating participants.109

We implement FairLedger’s sequencing protocol in Iroha [45], which is part of the110

Hyperledger [28] open-source project, and compare its performance to their implementation.111

Specifically, since Iroha’s implementation is modular, we are able to replace their BFT112

consensus protocol, (which is based on [23]), with our sequencing protocol without changing113

other components (e.g., communication, cryptographic, and database libraries). Experiments114

over WAN emulation [48] show that FairLeadger outperforms Iroha’s BFT protocol in the115

vast majority of the tested scenarios (both in normal mode and in alert mode).116

Since the Iroha system consists of many components (e.g., GRPC [30] communication) that117

may induce overhead, we also implement FairLedger’s sequencing protocol in the PBFT [17]118

framework, which provides a clean environment to evaluate raw consensus performance. Our119

results show that Fairledger’s latency is better than PBFT’s in both the normal and alert120

modes. Fairledger’s throughput exceeds PBFT’s in normal mode but is inferior to it in the121

alert mode, although PBFT’s advantage diminishes as the system scale grows.122

In summary, this paper makes the following contributions:123

1. We define a fair distributed ledger abstraction for rational participants.124

2. We define a detectable all-to-all (DA2A) abstraction as a building block for such ledgers.125

3. We design FairLedger, the first BFT blockchain protocol that ensures strong fairness126

when all participants are rational. FairLedger is safe under byzantine failures of almost127

any minority, and detects and punishes deviating (byzantine and rational) participants.128

It is also simple to understand and implement.129

4. We substitute Iroha, which is one of the Hyperledger’s existing sequencing protocol, with130

FairLedger with improved performance. We also implement FairLedger’s sequencing131

protocol in the PBFT framework; FairLedger outperforms PBFT in the normal mode132

but achieves slightly lower throughput in the alert mode.133

OPODIS 2019



1:4 FairLedger: A Fair Blockchain Protocol for Financial Institutions

2 Problem Definition and System Model134

We consider a set of players, each representing a real-world financial entity, jointly attempting135

to agree on a shared ledger of financial transactions. Every player has an unbounded stream136

of transactions that it wants to append to the ledger and we assume that the player benefits137

from doing so. A principal goal for our service is fairness, that is, providing all entities with138

equal opportunities for appending transactions.139

2.1 Byzantine and rational behavior140

Traditional distributed systems are managed by a single organization, where deviation from141

the protocol – referred to as byzantine behavior – is explained as a bug or by the deviating142

entity being hacked, and only a small subset of the players are byzantine. In this work,143

however, we seek a protocol that coordinates among many organizations that trade with144

financial assets. We thus have to take into account that every entity may behave rationally,145

and deviate from the protocol if doing so increases its benefit.146

To reason about such rational behavior we assume that each entity can be either byzantine147

or rational [5,36,41]. A rational entity has a known utility function that it tries to maximize148

and deviates from the protocol only if this increases its utility, whereas a byzantine entity149

can deviate arbitrarily from the protocol (e.g., crash, withhold messages, or send incorrect150

protocol messages), i.e., its utility function is unknown.151

Our system involves two types of entities – players and auditors. Players (e.g., banks)152

propose transactions to append to the ledger, while auditors oversee the system. The same153

physical entity may be both a player and an auditor, but other entities (e.g., government154

central banks) may also act as auditors. There are initially n players and any number of155

auditors. The number of byzantine players is bounded by a known parameter f , where156

n ≥ 2f + 3. At most a minority of the auditors can be byzantine.157

In order to prove that a protocol is correct in our model, we need to show that following158

the protocol is an equilibrium for rational entities even in the presence of f byzantine faults.159

2.2 Distributed fair ledger160

A ledger is an abstract object that maintains a log (i.e., sequence) of transactions from161

some domain T . It supports two operations with the following sequential specification: An162

append(t), t ∈ T , changes the state of the log by appending t to its end. A read(l) operation163

returns the last l transactions in the log. The log is initially empty.164

The utility function of a rational player is the ratio of transactions that it appends to165

the ledger, i.e., the number of transactions it appends to the ledger out of the total number166

of transactions in the ledger. Between two ledgers with the same ratio, the longer one is167

preferred. This models players who care about the overall system progress but care more168

about getting their fair share of it.169

The utility function of an auditor is the committee size in case progress is being made,170

and 0 in case the system stalls. In other words, the auditors aim to ensure the system’s171

overall health. In case an entity acts as an auditor and as a player, the auditor’s utility is172

the dominating and the player’s utility breaks ties.173

We require ’strict fairness. Intuitively, this means that for every player p1 that follows the174

protocol, at any point when the log contains k transactions appended by p1, the log does not175

contain more than k + 1 transactions appended by any other player. In the full paper [35] we176
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formalize and extend this definition to allow differential quality of service, whereby different177

players are allocated different shares of the log and these shares may change over time.178

2.3 System model179

We assume that players have been certified by some trusted certification authority known to180

all players. In addition, we assume a PKI [44]: each player has a unique pair of public and181

private cryptographic keys, where the public keys are known to all players, and the adversary182

does not have enough computational power to unravel non-byzantine players’ private keys.183

We assume reliable communication channels between pairs of players. As in previous184

works on permissioned blockchains [23,28,45], we assume that there is a known upper bound185

∆ on message latency. Nevertheless, our sequencing protocol is safe and fair even if the bound186

does not hold. We exploit this bound to detect failures when the protocol stalls because a187

rogue player deviates from the protocol by withholding messages. Thus, the bound can be188

set very conservatively (e.g., in the order of minutes) so as to avoid false detection.189

3 Solution Components190

Our goal is to design a ledger that financial institutions will be able to use. Such a protocol,191

besides being fair, secure against malicious attacks, and resilient to selfish behavior, must be192

simple to understand, implement, and maintain. Therefore, although we appreciate complex193

protocols with many corner cases and clever optimizations, we try here to keep the design as194

simple as possible. The simple design not only reduces vulnerabilities, it also makes it much195

easier to reason about selfish behavior.196

Committee and master. We adopt the Vertical Paxos [4,33] paradigm, where a single197

committee (known to all) partakes in agreeing on all transactions. Initially, the committee198

consists of all players. By requiring all committee members to endorse transactions, we199

create an incentive for all of them to append to the log batches including transactions from200

all of them. To handle cases when committee members stop responding (e.g., due to a crash201

or an attack), a complementary master service performs reconfiguration: detecting such202

members and removing (or replacing) them. Thus, we logically implement two components:203

(1) a committee that runs the sequencing protocol and (2) a master responsible for progress.204

The master is implemented by auditors using a minority-resilient synchronous BFT protocol205

like [21]; its impact on overall system performance is small, and so we do not optimize its206

implementation. For the remainder of this paper, we abstract away this protocol and simply207

treat the master as a single trusted authority.208

Detection of misbehavior. The master’s ability to evict deviating (byzantine or209

rational) players relies on its ability to detect deviations from the protocol. We divide the210

possible deviations into two categories: active and passive. An active deviation occurs when211

a player sends messages that do not coincide with the protocol. By singing all messages with212

private keys, we achieve non-repudiation, i.e., messages can be linked to their senders and213

provide evidence of misbehavior, which the master can use to detect deviation.214

Passive deviation, which stalls the protocol by withholding messages, is much harder215

to detect. For example, if the protocol hangs waiting for p1 to take an action following a216

message it expects from p2, we cannot, in general, know if p2 is the culprit (because it never217

sent a message to p1) or p1 is at fault.218

To address this challenge we present our novel DA2A broadcast abstraction, which219

supports broadcast(m) and deliver(m) operations for the players and a detect() operation220

for the master. Every player pi invokes broadcast(m) for some message m s.t. all the other221

OPODIS 2019
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players should deliver(m). The detect() operation performed by the master returns a set S222

of players that deviate from the protocol together with corresponding proofs:223

I Definition 1 (Detectability). For every two players pj , pi s.t. pi does not deliver a message224

from pj , S contains pj (with a proof of pj ’s deviation) in case pj did not perform broadcast(m)225

properly, and otherwise, it contains pi (with a proof of pi’s deviation). Moreover, S contains226

only deviating players.227

Note that in case S is empty, all the players follow the protocol, meaning that all the228

players broadcast a message and deliver messages broadcast by all other players.229

4 FairLedger Protocol230

We present our detectable all-to-all building block in Section 4.1, then use it for our sequencing231

protocol in Section 4.2, and for the recovery protocol in Section 4.3. In Section 4.4, we232

informally argue that following the protocol is a Nash equilibrium. For space limitations, the233

full correctness proof (including game theoretical analysis) is deferred to the full paper [35].234

4.1 Detectable all-to-all (DA2A)235

(a) direct all-to-all (b) relayed all-to-all

Figure 1 All-to-all communication patterns.

Communication patterns. We start by236

discussing two ways to implement all-to-all237

communication over reliable links. The sim-238

plest way to do so is direct all-to-all, in which239

broadcast(m) sends message m to all other240

players (see Figure 1a). This implementation241

has the optimal cost of 1 hop and n(n− 1)242

messages, but cannot reveal any information243

about passive deviations: In case pi does244

not deliver a message from pj , the master245

has no way of knowing whether pj did not246

send a message to pi, or pi is lying about247

not receiving the message.248

Another approach, which we call relayed all-to-all, designates a subset of the players as249

relays. A broadcast(m) sends m to all players, and when a relay receives a message for the250

first time, it forwards it to all players (see Figure 1b). With r relays, (r + 1)n2 messages are251

sent.252

DA2A implementation. DA2A has two modes: normal and alert. Every instance of253

DA2A starts in the normal mode, in which a broadcast uses direct all-to-all and also informs254

the master of the broadcast. A detect() operation proceeds follows:255

Wait 2∆ time for all players to inform it of their broadcasts.256

In case inform messages are missing from some subset of players P ⊂ Π , detect()257

returns P .258

Otherwise, the master waits 2∆ time to make sure that all messages that had been sent259

have arrived, and then queries all players if they deliver messages from all players.260

If none of the players complains, detect() returns {}.261

Otherwise, the master picks a player pi that did not deliver a message from player pj and262

instructs all players to switch to the alert mode in which they re-broadcast their messages263

using relayed all-to-all with 2f + 1 players different from pi and pj acting as relays.264
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After waiting 2∆ time, the master again queries all players if they deliver messages from265

all players. For every two players pj and pi s.t. pi does not deliver a message from pj ,266

the master asks the relays whether they received a message from pj . The relays’ replies267

are signed and used as proof of a deviation. In case f + 1 relays say yes, the return set268

includes pi. Otherwise, it includes pj .269

Correctness. We now prove the detectability property (Definition 1) of our DA2A270

broadcast.271

I Theorem 2. If no more than f + 1 players deviates from the protocol, then (1) detect()272

never returns a player that does not deviate and (2) for every two players pi, pj s.t. pi does273

not deliver a message from pj, detect() returns either pi or pj.274

Proof. Consider two players pj and pi s.t. pi does not deliver a message from pj in the alert275

mode. In case f + 1 relays tell the master that they received a message from pj , then by the276

protocol detect() includes pi in its return set, and otherwise it includes pj . Since pi does not277

deliver a message from pj , we get that either pi or pj deviated. Thus, since the master picks278

2f + 1 relays other than pi and pj , we get that no more than f relays deviate. Therefore,279

whenever f + 1 relays report that they received a message from pj , at least one non-deviating280

relay forwarded the message from pj to pi, meaning that pi deviated by not delivering it. In281

addition, since we have 2f + 1 relays, at most f of which deviate, we get at least f + 1 are282

not deviating. Therefore, in case fewer than f + 1 relays report that they received a message283

from pj , we get that pj did not send its message to all relays, i.e., has deviated.284

J285

4.2 Sequencing protocol286

The sequencing protocol works in epochs, where in each epoch every participating player287

gets an opportunity to append one transaction (or one fixed-size batch of transactions) to288

the log. To ensure fairness, we commit all the epoch’s transactions to the log atomically289

(all-or-nothing). Recall that we assume that players always have transactions to append.290

An append(t) operation locally buffers t for inclusion in an ensuing epoch, and waits for291

it to be sequenced. Each epoch consists of three DA2A communication rounds among players292

participating in the current epoch (see Figure 2), proceeding as follows:293

1. Broadcast a transaction from the local buffer; upon receiving transactions from all, order294

them by some deterministic rule and sign the hash h of the sequence.295

2. Broadcast h; receive from all and verify that all players signed the same hash.296

3. Broadcast 〈commit, epoch, h〉 (signed), and append to local ledger (and return) when297

receive the same message f + 1 times.298

If any messages are not received, the protocol hangs. The purpose of the first round is to299

broadcast all the transactions of the epoch. The second round ensures safety; at the end of300

this round each player validates that all other players signed the same hash of transactions,301

meaning that only this hash can be committed in the current epoch. The last round ensures302

recoverability during reconfiguration as we explain in Section 4.3 below. Note that we achieve303

fairness by waiting for all players; an epoch is committed only if all the players sign the same304

hash, and since each player signs a hash that contains its own transaction, we get that either305

all the players’ transactions appear in the epoch, or the epoch is not committed.306

Read operations. Since all players make progress together, they all have up-to-date307

local copies of the ledger. A read(l) operation simply returns the last l committed transactions308

in the local ledger. To make sure byzantine players do not lie about committed transactions,309

OPODIS 2019
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a returned batch of transactions st for epoch k is associated with a proof, which is either310

(1) a newConfig message from the master that includes st (more details below), or (2) f + 1311

epoch k round 3 messages, each of which contains a hash of st.312

D
A
2
A

Data 
propagation

TX

TX

TX

D
A
2
A

H(     )

H(     )

Agreement

D
A
2
A

Recoverability 
guarantees

H(     )

TX

TX

TX

Figure 2 Sequencing protocol.

Asynchronous broadcast. The first313

round of our sequencing protocol exchanges314

transactions (data), the second round ex-315

changes hashes of the transactions (meta-316

data), and the last round exchanges com-317

mit messages (meta-data). Hence, the first318

round consumes most of the bandwidth. In319

order to increase throughput, we decouple320

data from meta-data and asynchronously321

broadcast transactions (i.e., execute the first322

round) of every epoch as soon as possible.323

However, in order to be able to validate324

transactions, we perform rounds 2 and 3 sequentially.325

In other words, we divide our communication into a data path and a meta-data path,326

where the data path is out-of-order and the meta-data path orders the data. This is a common327

approach, used, for example, in atomic broadcast algorithms that use reliable broadcast to328

exchange messages and a consensus engine to order them [13,20].329

4.3 Recovery330

To detect deviations that prevent progress, we use the detect() operation exposed by DA2A.331

Recall that the sequencing protocol is an infinite sequence of DA2A instances. Therefore,332

the master sequentially invokes detect() operations in all DA2A instances. If it returns a333

non-empty set S, the master invokes reconfiguration.334

During reconfiguration the master first stops the current configuration and learns its335

closing state by sending a reconfig message to the current committee. To prove to the players336

on the committee that a reconfiguration is indeed necessary, the master attaches to the337

reconfig message proof reconfiguration is warranted. This can be evidence of active deviation,338

or a proof of passive deviation returned from DA2A detect(). When a player receives a339

reconfig message, it validates the proof for the reconfiguration, sends its local state (ledger)340

to the master, and waits for a newConfig message from the master. When a player receives341

newConfig with a new configuration, it validates that every player removal is justified by a342

proof, and ignores requests that do not have a valid proof.343

State transfer. Note that while a byzantine player cannot make the master believe344

that an uncommitted epoch has been committed (a committed epoch must be signed by345

all the epoch’s players), it can omit a committed epoch when asked (by the master) about346

its local state. Such behavior, if not addressed, could potentially lead to a safety violation:347

suppose that some byzantine player p does not broadcast its last message in the third round348

in epoch k, but delivers messages from all other players. In this case, p has proof that epoch349

k is committed, and may return these transactions in response to a read. However, no other350

player has proof that epoch k is committed and p withholds epoch k’s commit from the351

master. In this case, the new configuration will commit different transactions in epoch k,352

which will lead to a safety violation when a read operation will be performed.353

The third round of the epoch is used to overcome this potential problem. If the master354

observes that some player receives all messages in the second round of epoch k, it concludes355

that some byzantine player may have committed this epoch. Therefore, in this case, the356
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master includes epoch k in the closing state. Since the private keys of byzantine players are357

unavailable to the master, it signs the epoch with its own private key, and sends it to all358

players in the new configuration (committee) as the opening state. A player that sees an359

epoch with the master’s signature refers to it as if it is signed by all players. (Recall that the360

master is a trusted entity, emulated by a BFT protocol.)361

4.4 Rationality – proof sketch362

We now informally argue that following the protocol is an equilibrium for all rational363

committee players. The formal proof of appears in the full paper [35].364

Since a round 2 message is required from all committee members in order for an epoch to365

be committed, and since no committee member will sign a hash on a sequence that excludes366

its transaction (otherwise its ratio in the ledger will decrease), we get that a player on the367

committee cannot be excluded from a committed epoch. Therefore, players cannot increase368

their ratio in the ledger by active deviation. Moreover, since the master may punish them for369

an active deviation by removing them from the committee, following the protocol dominates370

any active deviation.371

As for passive deviations, a possible strategy for a rational player pi is to try to “frame”372

another player pj and get it removed by the master, in which case pi’s ratio in the ledger will373

grow. It can try to do this by not sending messages to pj or by lying about not delivering374

pj ’s messages. In order to prove Nash equilibrium we need to show that if all rational players375

but a player pi follow the protocol, then even if all f byzantine players help pi (and so f + 1376

players deviate from the protocol), pi still cannot frame another player and get it removed:377

This follows from Theorem 2.378

Moreover, since we assume that among ledgers with the same ratio players prefer longer379

ones, sending protocol messages as fast as possible dominates slower sending.380

5 FairLedger implementations381

We implement FairLedger based on Iroha’s framework, written in C++. For better comparison382

we only change Iroha’s consensus algorithm (called Sumeragi [46]) with our sequencing383

protocol, while keeping other components almost untouched (e.g., cryptographic components,384

communication layer, and client API). This implementation is described in Section 5.1.385

In order to evaluate the FairLedger protocol itself, independently of the Hyperledger386

framework, we implement another version of FairLedger’s sequencing protocol based on387

PBFT’s code structure, written in C++ as well, as described in Section 5.2.388

5.1 Hyperledger implementation389

The Hyperledger framework consists of two types of entities, players (committee members in390

our case) that run the protocol, and clients that generate transactions and send them to391

players for sequencing.392

The FairLedger protocol at each player is orchestrated by a single thread, referred to as393

logic thread. The logic thread receives transactions from clients as well as messages from394

other players into a wait-free incoming event queue. The connections between clients and395

players are implemented as GRPC sessions [30] (internally using TCP) sending Protobuf396

messages [29]. The logic thread maintains a map of epoch numbers to epoch states. An397

epoch state consists of verified events of that epoch, one event slot per player.398
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Upon receiving a new message, the logic thread verifies it and decides based on the epoch399

state whether it needs to broadcast a message to other players. Whenever broadcast is400

required, the logic thread creates and signs the new message, determines the set of its destina-401

tions (based on the epoch state), and creates send-message tasks, one per destination. These402

tasks are handed over to a work-stealing thread pool, in which each thread communicates403

with its destination over a GRPC connection (See Figure 3).404

PeerPeerPeer

Logic 
thread

GRPC

Incoming 
queue Thread pool

Epoch to state map

dispatch 
send ClientClientClient

Figure 3 FairLedger implementation in Hyper-
ledger.

Iroha is built in a modular fashion, which405

allows us to swap Sumeragi with FairLedger406

in a straightforward way. Our evaluation407

(in Section 6.2) shows that additional Iroha408

components beyond the consensus engine ad-409

versely affect performance. Yet, these com-410

ponents are essential for Hyperledger. For411

example, Iroha supports multiple operating412

systems (including Android and iOS) and413

can be activated from java script code (via414

a web interface). Such features are essentials for client-facing systems like Iroha, and using415

standard libraries such as GRPC enables simple and clean development, which is less prone416

to bugs.417

5.2 Standalone implementation418

To eliminate the effect of the overhead induced the Hyperledger framework, we further419

evaluate the FairLedger protocol by itself, independently of the additional components. To420

this end, we employ the PBFT code [17] as our baseline. PBFT uses UDP channels, and is421

almost entirely self-contained, it depends only on one external library, for cryptography.422

In this implementation of FairLedger, the logic thread directly communicates with clients423

and players over UDP. As in our Hyperledger implementation, the logic thread uses a map424

of epoch numbers to epoch states, and follows the same logic for generating messages.425

Using UDP requires us to handle packet loss. We use a dedicated timer thread that wakes426

up periodically, (after a delay determined according to the line latency), verifies the progress427

of the minimal unfinished epoch, and requests missing messages from the minimal epoch if428

needed.429

6 Evaluation430

We now evaluate our FairLedger protocol using the two prototypes. The Hyperledger431

prototype is comparable to Iroha, and the standalone prototype is comparable to PBFT.432

6.1 Experiment setup433

Configuration. We conduct our experiments on Emulab [48]. We allocate 32 servers: 16434

Emulab D710 machines for protocol players, and 16 Emulab PC3000 machines for request-435

generating threads (clients). Each D710 is a standard machine with a 2.4 GHz 64-bit Quad436

Core Xeon E5530 Nehalem processor, and 12 GB 1066 MHz DDR2 RAM. Each PC3000 is a437

single 3GHz processor machine with 2GB of RAM.438

Given that our system is intended for deployment over WAN among financial institutions,439

we configure the network latency among players to 20ms. In Emulab, the communication440

takes place over a shared 1Gb LAN, denoted S-LAN. Each client is connected to a single441
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(local) player with a zero latency 1Gb LAN. In case clients need to communicate directly442

with remote players (as they do in Iroha’s design), they do so over S-LAN, i.e., with a latency443

penalty. We benchmark the system at its throughput saturation point.444

In our Hyperledger prototype evaluation, we use version v0.75. Since in normal mode we445

assume no byzantine behavior, we configure Iroha with no faulty players, so it signs each446

transaction once. The request-generating threads create transactions formatted according to447

Iroha’s specification (given in Protobuf), which consists of a few hundreds of bytes of data.448

In our standalone prototype evaluation, we create packets of a similar size, namely 512B449

of data, as this is the transaction size in our expected use case.450

Test scenarios. We compare Iroha and PBFT to FairLedger’s two operation modes –451

the failure-free normal mode and the alert mode activated in case of attacks.452

We evaluate the alert mode both under attack of a single byzantine player, and without453

an attack. In the alert mode we assume that f=1, and hence employ 3 relays. In the attack454

scenario the byzantine player remains undetectable by the master. Specifically, one of the455

relays withholds messages that it needs to send to one of the other relays.456

6.2 Hyperledger457

In order to deal with f failures, FairLedger needs 2f+3 players, and Iroha needs 3f+1.458

Therefore, we scale our evaluation from 5 to 9 players. Iroha’s clients perform asynchronous459

operations, and so the operation latency is always zero. Hence, we focus this comparison on460

throughput.461

Figure 4 Throughput of FairLedger and Iroha
over simulated WAN.

Figure 4 compares the two modes of462

FairLedger with Iroha. Results show that463

FairLedger’s normal mode has much higher464

throughput (up to 3.5x) than Iroha’s and465

the difference grows with the number of play-466

ers. In both algorithms, due to the usage467

of GRPC, the bottleneck is the broadcast.468

FairLedger commits more transactions per469

broadcast, since each epoch consists of one470

message from every player, whereas Iroha471

pays the cost of broadcast for every client472

request. Therefore, Iroha suffers more as the473

broadcast cost increases (as we have more474

players to send messages to).475

FairLedger’s alert modes incur a 44%476

reduction in throughput with 5 players, and477

even more as the number of players increases, because the relays worsen the bottleneck by478

issuing additional broadcast operations. Byzantine behavior slightly improves performance479

since withholding messages reduces the load on the relays. However, this effect is negligible.480

6.3 Standalone prototype481

We evaluate our FairLedger prototype that is based on PBFT’s code structure. We configure482

PBFT parameters in a way that maximizes PBFT’s throughput, enabling batching and483

enough outstanding client-requests to saturate the system. We indeed achieve similar results484

to those reported in recent work running PBFT over WAN [40]. Again, since in order to deal485
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with f failures PBFT requires 3f+1 players and FairLedger 2f + 3, we run the evaluation486

with 7 to 16 players. Figure 5 shows the throughput and latency achieved by the protocols.487

First, we observe that the absolute throughput is 5x higher than with Iroha. This is thanks488

to PBFT’s optimized bare-metal approach, which sacrifices modularity and maintainability489

for raw performance. We further see that FairLedger’s normal mode has higher throughput490

than PBFT. This is because PBFT’s clients are directed to a single player (referred to as491

primary or leader), while FairLedger’s clients address their nearest player, distributing the492

load evenly among them.493

Figure 5 Throughput and latency of FairLedger
and PBFT over simulated WAN.

FairLedger’s alert mode with three re-494

lays reduces throughput by 30%-40% com-495

pared to the normal mode. Note that with496

7 players, PBFT achieves about 16% higher497

throughput than FairLedger’s alert mode,498

but as the number of players increases, the499

gap closes, reaching 9% lower throughput500

than PBFT’s with 16 players.501

We measure latency below the saturation502

point. The results for all configuration sizes503

are similar, and so we depict in Figure 7504

only the results with 10 nodes. Error bars505

depict the standard deviation. The average506

latency of FairLedger clients in the normal507

mode is 64ms, which is close to the network508

latency of 3 rounds of 20ms. Indeed when509

communicating over WAN, the performance510

penalty of signing and verifying signatures is negligible. PBFT’s average latency is about511

106ms, and consists of 3 PBFT rounds and 2 client-primary communication steps.512

The average latency of FairLedger’s alert mode with a byzantine relay is 86ms, since it513

consists of 4 rounds of communication. The reason is that one player is always one round514

behind the rest due to missing the byzantine player’s message. Since in the third round he515

require messages from f+1 players (and not all of them), there is no need to wait for the516

lagging player’s round 3 message, and the epoch ends after 4 rounds. The latency of the517

alert modes without byzantine players is 64ms, similarly to the normal mode.518

7 Related Work519

Fairness and rationality. Our work is indebted to recent works that combine game theory520

and distributed systems [2,3,5,9,24,25,36,41,47] to implement different cooperative services.521

In particular, we adopt a BAR-like model [5, 36, 41]. As in previous works on BAR fault522

tolerance [5, 36], we assume non-colluding rational players, whereas colluding players are523

deemed byzantine. As in [41], we do not assume altruistic players – all non-byzantine players524

are rational in our model.525

Practical byzantine fault tolerant consensus protocols [1, 6–8,15,16,18,23,32,37–40,49]526

have been studied for more than two decades, but to the best of our knowledge, only three527

consider some notion of fairness [7,9,40], and only one of which deals with rational players [9].528

One of the important insights in Prime [7] is that the freedom of the leader to propose529

transactions must be restricted and verified by other participants. To this end, Prime extends530

PBFT [16] with three additional all-to-all communication rounds at the beginning, in which531
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participants distribute among them self transactions they wish to append to the ledger. The532

leader proposes in round 4 a batch of transactions that includes all sets of transactions it gets533

in round 3 from 2f + 1 participants. Since each transaction proposed by some participant is534

passed to the leader by at least 2f + 1 participants, its participant may expect its transaction535

to be proposed. In case a participant send a request and the leader does not propose it for536

some time T , the participant votes to replace the leader. As a result, Prime guarantees that537

during synchronous periods every transaction is committed in a bounded time T .538

Similarly to FairLedger, Prime uses batching to commit transactions of different partici-539

pants atomically together, and uses a PKI to ensure fairness and provide proofs that the540

batches are valid. However, their fairness guarantee is weaker than ours. Since the first three541

rounds are asynchronous (i.e., participants do not wait to hear from all, but rather echo542

messages as soon as they receive them), there is no bound on the ratio of transactions issued543

by different participants that are committed during T . More importantly, Prime assumes544

that all non-byzantine participants follow the protocol, and we do not see a simple way to545

adjust to overcome rational behavior. For example, there is no incentive for participants to546

echo transactions issued by other participants in the first three rounds; to the contrary – the547

less they echo, the less transactions from other participants will be proposed by the leader.548

Honeybadger [40] is a recent protocol for permissioned blockchians, which is built on top549

of an optimization of the atomic broadcast algorithm by Cachin et al. [13]. It works under550

fully asynchronous assumptions and provides probabilistic guarantees. Honeybadger assumes551

a model with n servers and infinitely many clients. In brief, clients submit transactions552

to all the servers, and servers agree on their order in epochs. In each epoch, participants553

pick a batch of transactions (previously submitted to them by clients) and use an efficient554

variation of Bracha’s reliable broadcast [11] to disseminate the batches. Then, participants555

use a randomized binary consensus algorithm by Ben-Or et al. [10] for every batch to agree556

whether or not to include it in the epoch.557

Similarly to FairLedger, they use epochs to batch transactions proposed by different558

players, and commit them atomically together. Their (probabilistic) fairness guarantee is559

stronger than the one in Prime: they bound the number of epochs (and accordingly the560

number of transactions) that can be committed before any transaction that is successfully561

submitted to n− f servers. However, if we adapt their protocol to our model where we do562

not consider clients and require fairness among players, we observe that their guarantee is563

weaker than ours: Since communication is asynchronous, it may take arbitrarily long for a564

transaction by player pi to get (be submitted) to n− f players, and in the meantime, other565

players may commit an unbounded number of transactions. In addition, their protocol uses566

building blocks (e.g., Bracha’s broadcast [11] and Ben-Or et al. [10] randomized consensus)567

that are not designed to deal with rational behavior. Moreover, rational players that wish to568

increase their ratio in the ledger will not include transactions issued by other players in their569

batches.570

The only practical work that deals with rational players we are aware of is Helix [9].571

However, in contrast to our work, Helix provide only probabilistic fairness guarantees and572

relies on a randomness beacon.573

Finally, it worth noting that Prime, Honeybadger, and Helix are much more complex574

than FairLedger. Prime’s and Helix’s description in [7] and [9], respectively, is spread over575

more than 6 double column pages, and the reader is referred to their full paper versions for576

more details. Honeybadger combines several building blocks (e.g., the atomic broadcast by577

Cachin et al. [13]), each of which is complex by itself.578

BFT protocols and assumptions. The vast majority of the practical BFT protocols [6,579
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8, 23, 32, 37–39, 49], staring with PBFT [16] assume a model with n symmetric servers580

(participants) that communicate via reliable eventually synchronous channels. Therefore,581

they can tolerate at most f < n/3 byzantine failures [26], and cannot accurately detect582

participants’ passive deviations (withholding a message or lying about not receiving it);583

intuitively, it is impossible to distinguish whether a player maliciously withholds its message584

or the message is just slow. Since passively deviating participants cannot be accurately585

detected, they cannot be punished or removed, and thus byzantine participants can forever586

degradate performance [18], and rational behavior cannot be disincentivize.587

We, in contrast, assume synchronous communication, which together with the use of588

a PKI allows FairLedger to be simple, tolerate almost any minority of byzantine failures,589

guarantee fairness, detect passive as well as active deviations, and penalize deviating players.590

FairLedger uses the synchrony bound only to detect and remove byzantine players that591

prevent progress, allowing it to be very long (even minutes) without hurting normal case592

performance. To reduce the cost of using a PKI, FairLedger signs only the hashes of the593

messages. Moreover, in WAN networks the cost of PKI is reduced due to longer channels594

delays.595

As illustrated by works on Prime [7] and Aardvark [18] most BFT protocols are vulnerable596

to performance degradation caused by byzantine participants. To remedy this, Aardvark597

focuses on improving the worst case scenario. We, on the other hand, follow the approach598

taken in Zyzzyva [32], and optimize the failure-free scenario. We take this approach because599

byzantine failures are rare in financial settings, and one can expect break-ins to be investigated600

remedied.601

We implement FairLedger inside Iroha [45], which is part of the Hyperledger [28] project.602

Specifically, we substitute the ledger protocol in Iroha, which was originally based on the603

BFT protocol in BChain [23], with FairLedger. In brief, their protocol consists of a chain604

of 3f + 1 participants, where the first f + 1 order transactions. To deal with a passively605

deviating participant that withholds messages in the chain, they transfer both the sender606

and the receiver (although only one of them deviates from the protocol) to the back of the607

chain, where they do not take part in ordering transactions. Similarly to FairLedger, they608

assume synchrony with coarse time bounds and use it to detect passive deviations. However,609

in contrast to FairLedger, they do no accurately detect byzantine players and punish correct610

ones as well. Moreover, since the head of the chain decides on the transaction order, Iroha611

does not guarantee fairness.612

Broadcast primitives. In order to detect passive deviation we define DA2A, a new613

detectable all-to-all communication abstraction. Even though many practical byzantine614

broadcasts [12–14,20,22,27,43] were proposed in the past, DA2A is the first to extend its615

API with a detect() method, which accurately returns all misbehaving players.616

8 Discussion617

Blockchains are widely regarded as the trading technology of the future; industry leaders618

in finance, banking, manufacturing, technology, and more are dedicating significant efforts619

towards advancing this technology. The heart of a blockchain is a distributed shared ledger620

protocol. In this paper, we developed FairLedger, a novel shared ledger protocol for the621

blockchain setting. Our protocol features the first byzantine fault-tolerant consensus engine622

to ensure fairness when all players are rational. It is also simple to understand and implement.623

We integrated our protocol into Hyperledger, a leading industry blockchain for business624

framework, and showed that it achieves superior performance to existing protocols therein.625
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We further compared FairLedger to PBFT in a WAN setting, achieving better results in626

failure-free scenarios.627
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