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Abstract we are concerned with DoS attacks secureapplication-
level multicast protocols (such as, e.g., Spinglass [8}, f
We propose a framework and methodology for quantify- cusing only on the multicast protocol layer.
ing the effect of denial of service (DoS) attacks on a dis- A DoS attack that targets every process in a large sys-
tributed system. We present a systematic study of the resistem inevitably causes performance degradation, but also re
tance of gossip-based multicast protocols to DoS attacks.quires vast resources. In order to be effective even with lim
We show that even distributed and randomized gossip-basedted resources, attackers target vulnerable parts of the sy
protocols, which eliminate single points of failure, do not tem. For example, consider a tree-based multicast prgtocol
necessarily eliminate vulnerabilities to DoS attacks. We by targeting a single inner node in the tree, an attacker can
propose Drum — a simple gossip-based multicast proto- effectively partition the multicast group. Hence, elinting
col that eliminates such vulnerabilities. Drum was imple- single points of failure is an essential step in constrggtin
mented in Java and tested on a large cluster. We show,protocols that are less vulnerable to DoS attacks.
using closed-form mathematical analysis, simulationgl an e therefore focus on gossip-based (epidemic) multicast
empirical tests, that Drum survives severe DoS attacks. protocols, e.g., [7, 2, 8, 10], which eliminate single psint
of failure using redundancy and random choices. Such pro-
tocols are robust and have been shown to provide graceful
1. Introduction degradation in the face of amounting failures [9, 11]. One
may expect that such a system will not suffer from vulner-
One of the most devastating security threats faced by aabilities to DoS attacks, since it can continue to be effec-
distributed system is denial of servicDoS) attack, in  tive when many processes fail. Surprisingly, we show that
which an attacker makes a system unresponsive by forc-3ossip-based protocols can be extremely vulnerable to DoS
ing it to handle bogus requests that consume all availableattacks targeted at a small subset of the processes. This oc-
resources. In 2003, approximatel§% of U.S. organiza-  Curs because an attacker can effectively isolate a small set
tions, including government agencies, financial institugi, ~ Of processes from the rest of the group by attacking this set.
medical institutions and universities, were faced with DoS ~ To quantify the effects of DoS attacks, we measure their
attacks [6]. That year, DoS attacks were the second mostnfluence on the time it takes to propagate a message to
financially damaging attack$% million USD), only short  all the processes in the system, as well as on the average
of theft of proprietary information70 million USD), and  throughput processes can receive. We do this using asymp-
far above other attack§.07 — 27 million USD) [6]. There-  totic analysis, simulations, and measurements.
fore, coping with DoS attacks is essential when deploying Having observed the vulnerabilities of traditional proto-
services in a hostile environment such as the Internet [17]. cols, we turn to search for a protocol that will eliminate
As a first defense, one may protect a system againstthese vulnerabilities. Specifically, our goal is to design a
DoS attacks using network-level mechanisms [5]. How- protocol that would not allow an attacker to increase the
ever, network-level filters cannot detect DoS attacks at thedamage it causes by focusing on a subset of the processes.
application level, when the traffic seems legitimate. Even We are not familiar with any previous protocol that achieves
if means are in place to protect against network-level DoS, this goal.
an attack can still be performed at the application level, as We presentDrum (DoS-Resistant Unforgeable Multi-
the bandwidth needed to perform such an attack is usuallycast), a gossip-based multicast protocol, which, usingva fe
lower. This is especially true if the application performsi  simple ideas, eliminates common vulnerabilities to DoS at-
tensive computations for each message, as occurs, ely., wittacks. Mathematical analysis and simulations show that
secure protocols based on digital signatures. In this paperDrum indeed achieves our design goal: when an adversary



has a large sending capacity, its most effective attackagai protocols, e.g., [2, 8, 10]. Our work focuses on symmetric
Drum is an all-out attack that distributes the attacking@ow gossip-based multicast protocols that do not rely on eatern
as broadly as possible. Obviously, performance degratatio mechanisms such as IP multicast, e.g., Ipbcast [8].

due to a broad all-out DoS attack is unavoidable for any  sych protocols work roughly as follows: Each process
multicast protocol, and indeed all the tested protocols ex-|ocally divides its time intagossip roundsrounds are not
h|b|t the same performance degradation Under SUCh a broa@ynchronized among the processes_ In each round’ the pro_
attack. cess randomly selects a small number of processes to gos-
We have implemented Drum in Java and tested it on asjp with, and exchanges information with them. Every
on a cluster of workstations. Our measurements validatepjece of information is gossiped for a number of rounds.

the analysis and simulation results, and show that Drum canjt has been shown that the propagation time of gossip pro-
Withstand severe DoS attaCkS, Where naive pr0t0C0|S thatoco|s increases |Ogarithmica”y with the number of pro_
do not take any measures against DoS attacks completely.esses [19, 10]. There are two methods for information
collapse. E.g., under an attack that focused @ of the  gissemination: (1push in which the process sends mes-
processes, Drum’s latency and throughput rencainstant  sages to selected processes; and(®) in which the pro-

as the attack Strength increases, whereas in traditional pl’ cess requests messages from selected processes_ Both meth-
tocols, the latency grownearly with the attack strength,  ods are susceptible to DoS attacks: attacking the incom-
and the throughput continuously degrades. ing push channels of a process may prevent it from receiv-
In summary, this paper makes the following contributions: jng valid messages, and attacking a process’s incoming pull
channels may preventit from sending messages to valid tar-
gets. Some protocols use both methods [7, 10]. Karp et
al. showed that combining push and pull allows the use of
fewer transmissions to ensure data arrival to all group mem-
bers [10].

Drum utilizes both methods, and in addition, allocates a
e It uses the new methodology to conduct the first sys- hounded amount of resources for each operation (push and
tematic study of the impact of DoS attacks on multicast pull), so that a DoS attack on one operation does not hamper
protocols. This study exposes vulnerabilities in tradi- the other. Such a resource separation approach was also
tional gossip-based protocols. used in COCA [22], for the sake of overcoming DoS attacks
on authentication servers. Note that Drum deals with DoS
attacks at the application-level. Network-level DoS as@ly
and mitigation has been extensively dealt with (e.g, [2]), 4]
but DoS-resistance at the secure multicast service layer ha
gotten little attention.

e It provides closed-form asymptotic analysis as wellas  Secure gossip-based dissemination protocols were sug-
simulations and measurements of gossip-based multi-gested by Malkhi et al. [13, 14, 15]. However, they did
cast protocols under DoS attacks varying in strength not deal with DoS attacks. Follow-up work by Minsky and
and extent. Schneider [16] suggested a pull-based protocol that can en-

dure limited DoS attacks by bounding the number of ac-

This paper pr_oceeds as fOI.IOWS: Section 2 gives baCk'cepted requests per round. However, these works solve the
ground on gossip-based multicast and related work. Sec-

4 : . diffusionproblem, in which each message simultaneously
Section s presents eur evaluation methodology and consid N9IN3ISS at more thancorrect processes, where uptto
ered attack models. The following three sections evaluateprom.esses may suffer Byzantine failures. In con.trgst, we
Drum and comparel it to traditional gossip-based protocols cor_15|der a multicast system where a message o_nglnates at

. : ) . . .~ a single source. Hence, using a pull-based solution as sug-
using various tools: S(_actlon 6 gives closed-form asqu:)tqu gested in [16] does not help in withstanding DoS attacks.
latency bounds; Section 7 provides a thorough evaluation

. imulations: and Section 8 ts actual laterd: Moreover, Minsky and Schneider [16] focus on load rather
using simufations, and Section © presents actuat faternty an , , , g attacks; they include only a brief analysis of DoS
throughput measurements. Section 9 concludes.

attacks, under the assumption that no more thanocesses
perform the attack, and that each of them generates a single
2. Background and Related Work message per round (the reception bound is also assumed to
be one message per round). In contrast, we focus on sub-
Gossip-based dissemination [7] is a leading approach instantially more severe attacks, and study how system per-
the design of scalable reliable application-level multica formance degrades as the attack strength increases.

e It presents a new framework and methodology for
guantifying the effects of DoS attacks. We are not fa-
miliar with any previously suggested metrics for DoS-
resistance nor with previous attempts to quantify the
effect of DoS attacks on a system.

e It presents Drum, a simple gossip-based multicast pro-
tocol that eliminates such vulnerabilities. We believe
that the ideas used in Drum can serve to mitigate the
effect of DoS attacks on other protocols as well.



DoS can also be caused by churn, where processeseparate resource bounds for different operations, and the
rapidly join and leave [12], thus reducing availability. In use of random ports in order to reduce the chance of a port
Drum, as in other gossip-based protocols, churn has littlebeing attacked.
effect on availability: even when as many as half the pro-  Each process, locally divides its time into rounds. A
cesses fail, such protocols can continue to deliver messageround is typically in the order of a second, and its dura-
reliably and with good quality of service [9, 11]. A DoS tion may vary according to local random choices. Every
attack of another form can be caused by process perturbaround,p chooses two small (constant size) random sets of
tions, whereby some processes are intermittently unresponprocessesyiewpysn, andviewy,;, and gossips with them.
sive. The effect of perturbations is analyzed in [2], where E.g., when these views consist of two processes each, this
it is shown that probabilistic protocols, e.g., gossipdehs corresponds to a combined fan-out of four. In additipn,
protocols, solve this problem. This paper focuses on DoSmaintains a message buffer. Procegerforms the follow-
attacks in which the attacker sends fabricated applicationing operations in each round:
messages. We note that our work is the first that we know
of that conducts a systematic study of the effect of DoS at-
tacks on message latency.

e Pull-request- p sends a digest of the messages it has
received to the processes in itsewp,., requesting
missing messages. Pull-request messages are sent to
a well-known port. The pull-request specifies a ran-
domly selected port on which will await responses,
andp spawns a thread for listening on the chosen port.
This thread is terminated after a few rounds.

3. System Model and Architecture

Drum supports probabilistically reliable multicast [2,
8, 10] among processes that are members of a group.
Each message is created by exactly one group member (its o
source.

We assume that the underlying network is fully-

Pull-reply—in response to pull-request messages arriv-
ing on the well-known portp randomly selects mes-
sages that it has and are missing from the received di-

connected. There are no bounds on message delays, i.e., the
communication is asynchronous. The loss rate on the com-
munication links is bounded, uniform, and independent of
any other factor. The communication channels are insecure, ®
meaning that senders of incoming messages cannot be reli-
ably identified in a simple manner. However, the data mes-
sages’ sources (originators) can be identified using stdnda
cryptographic techniques, e.g., [18]. Additionally, soime
formation intended for a specific process may be encrypted
using, e.g., a public-key infrastructure.

An adversary can generate fabricated messages and
snoop on messages. However, these operations require the
adversary to utilize resources. Malicious processes parfo
DoS attacks on group members. In case these malicious
processes are part of the group, they also refrain from for-
warding messages.

For simplicity, we consider a static groupmprocesses
and assume that every process has complete knowledge of
all the other processes in the group. In the full paper [1] we
explain how to deal with dynamic membership, i.e., joins
and leaves. We note that having incomplete knowledge of
current group members in a dynamic setting poses no prob-

gests, and sends them to the destinations indicated in
the requests.

Push— in a traditional push operatiom, randomly
picks messages from its buffer, and sends them to each
targett in its view,ysy. 1N order to avoid wasting
bandwidth on messages thatlready hasp instead
requests to reply with a message digest, as follows:

1. p sends gush-offerto ¢, along with a random
port on which it waits for a push-reply.

2. t replies with apush-replyto p's random port,
containing a digest of the messagdsas, and a
random port on which waits for data messages.

3. If p has messages that are missing from the di-
gest, it chooses a random subset of these, and
sends them back tts randomly chosen port.

The target process listens on a well-known port for
push-offers.

The random ports transmitted during the push and pull
operations are encrypted (e.g., using the recipient’s pub-

lem, as long as enough members are known. For more deTic key), in order to prevent an adversary from discovering

tails see [1].

4. DoS-Resistant Gossip-Based Multicast Pro-
tocol

them. Thus |viewpysn| + |[view,u| €ncryptions are per-
formed each time these ports are changed.

Upon receiving a new data message, either by push or
in response to a pull-requegt first performs some sanity
checks. If the message passes these checHslivers it

Drum is a simple gossip protocol, which achieves DoS- to the application and saves it in its message buffer for a
resistance using a combination of pull and push operations number of rounds.



Resource allocation and bounds. In each roundp 5. Evaluation M ethodology
sends push-offers to all the processes irvitgw,,s, and
pull-requests to all the processes indigw,,;. If the to-

) i The most important contribution of this paper is our thor-
tal number of push-replies and pull-requests that arrivae in

ough evaluation of the impact of various DoS attacks on

round exceedg’s sending capacity, thepequally divides ossip-based multicast protocols. We evaluate three pro-
its capacity between sending responses to push-replies anﬁxms: (i) Drum, (ii) Push which uses only push opera-

to pull-requests. Likewise, responds to a bounded number iong and (iiiyPull, which uses only pull operations. Pull

(typically [view,usn|) of push-offersin around, and if more 54 pysh are implemented the same way Drum is, with the

data messages than it can handle arrive, fhelivides its  jnortant measures of bounding the number of messages

capability for processing incoming data messages equa”yaccepted in each round and using random ports. Thus, in

between messages arriving in response to pull-requests andymnaring the three protocols, we study the effectiveness

those arriving in response to push-replies. of combining push and pull operations under the assump-
tion that these other measures are used.

At the end of each roung,discards all unread messages  \we begin by evaluating the effect that a range of DoS at-
from its incoming message buffers. This is important, espe-5cks have on message latency using asymptotic mathemat-
cially in the presence of DoS attacks, as an attacker can sengta| analysis (in Section 6) and simulations (in Section 7).
more messages tharcan handle in a round. Since rounds oy simulation results exhibit the trends predicted by the
are locally controlled and randomly vary in duration, the analysis. In the full paper [1], we also present detailed

attacker cannot “aim” its messages for the beginning of a mathematical analysis, with results virtually identicabur
round. Thus, a bogus message has an equal likelihood okjmylations.

being discarded at the end of the round as an authentic mes- Eqr these evaluations. we make some simplifying as-

sages does. sumptions: We consider the propagation of a single mes-
sageM, and assume that/ is never purged from any

Achieving DoSresistance. We now explain how the  process’s message buffer. We model the push operation
combination of push, pull, random port selections, and re- as performed without push-offers (in Drum and in Push).
source bounds achieves resistance to targeted DoS attackgve assume that the rounds are synchronized, and that the
A DosS attack can flood a port with fabricated messages. message-delivery latency is smaller than half the gossip pe
Since the number of messages accepted on each port in fod; thus, a process that sends a pull-request receives the
round is bounded, the probability of successfully recgvin pull-reply in the same round. All of these assumptions
a given valid messag/ in a given round is inversely pro-  were made in previous analyses of gossip-based protocols,
portional to the total number of messages arriving on thee.g., [2, 8, 13, 16].
same port ag/ in that round. Thanks to the separate re-  The analysis and simulations measure latency in terms of
source bounds, an attack on one port does not reduce thgossip rounds: we measulé’s propagation timewhich is
probability for receiving valid messages on other ports.  the expected number of rounds it takes a given protocol to

propagateM to all (in the closed-form analysis) or 9%

In order to prevent a process fresendingits messages  (in the simulations) of the correct processes. We chose a
using apushoperation, one must attack (flood) the push- threshold 0f99% sinceM may fail to reach some of the
offer targets, the ports where push-replies are awaited, orcorrect processes. Note that correct processes can be eithe
the ports where data messages are awaited. However, thattacked or non-attacked. In both cases, they should be able
push destinations are randomly chosen in each round, ando send and receive messages.
the push-reply and data ports are randomly chosen and en- Finally, we turn to measure actual performance on a clus-
crypted. Thus, the attacker has no way of predicting theseter of workstations (in Section 8), and measure the con-
choices. sequences of DoS attacks not only on actual latency (in

msecs.), but also on the throughput of a real system, where

Similarly, in order to prevent a process framceiving multiple messages are sent, and old messages are purged
messages during pull operation, one needs to target the from processes’ message buffers.
destination of the pull-requests or the ports on which pull-  Attacks. In all of our evaluations, we stage various DoS
replies arrive. However, the destinations and ports are ran attacks. In each attack, the adversary focuses on a fraction
domly chosen and the ports are sent encrypted. Thus, usingv of the processe$)(< « < 1), and sends each of them
the push operation, Drum achieves resilience to targeted atfabricated messages per round (in Drum, this méapssh
tacks aimed at preventing a process freendingnessages, messages anél pull-requests). We denote the total attack
and using the pull operation, it withstands attacks thatiary ~ strength byB = z - a - n. We assume that the message
prevent a process fromreceivingmessages. source is being attacked (this has no impact on the results



of Push). We consider attacks either ofixed strength effective fan-ins and fan-outs:

whereB is fixed andw increases (thus; decreases); or of it = L= F-(a-pat+(1—a) -p.) (3)

increasing strengthwhere either is fixed andw increases, @« =F-p, and O%,; =F-p (4)
. . . .. . pu a pu u

or vice versa (in both cases, m_crea_ses). Examining f|_xe(_1 In Drum, O = %(Opush +Opun) andl = %(Ipush + L)

strength attacks allows us to identify protocol vulnenabil 1 arefore:

ties, e.g., whether an adversary can benefit from targeting a 0% — % — % (@ o+ (1= a)pe +pa) = (5)

subset of the processes. Increasing strength attackseenabl adtl —a

us to assess the protocols’ performance degradation due to F(557 Pt 5% pu)

an increasing attack intensity. O'=I"=% (a-ps+(1—a)pu+pu)= (6)

. F'(%-pa+2_—o‘-u o
. . Lemmal. Fix ¢ andn. Drum’s expec2ted propagation time
6. Asymptotic Closed-Form Analysis is bounded from above by a constant independent of

Proof. From Equations (5) and (6) we get that for all
To simplify the analysis, we assume that all the processespe = 1o > 1—Ta . Fp,, andO% = [ > 2—Ta . Fp,.
are correct and the DoS attack is launched from outside theSincep,, is independent of,, the effective fan-ins and fan-
system. The protocols use a constant fan-@ut, Every outs ofall the processes are bounded from below by a con-
round, each process sends a data messagepmcesses  stant independent of. Therefore, the propagation time is
and accepts data messages from at nfogtrocesses. In inevitably bounded from above by a constant independent
Drum, F' is equally divided between push and pull, e.g., if of z. O
F = 4, thenviewpysy, = viewp, = 2, and each process

accepts push messfages frog at mbptocgsses ang pull- We now consider attacks where the adversary has a fixed
request messages from at m grocesses Inaround. attacking power. We denote lay= % the attack strength
We denote by, the probability of a non-attacked pro- givided by the total system capacity.

cess to accept a valid incoming push or pull-request MeS-| emma 2. For ¢ > 5, Drum’s expected propagation time
sage sent to it. Similarly, we denote py the probability is monotonically increasing with

of an attackeq process to accept a valid incoming MESSAYEL 0t We will show that all the processes’ effective fan-ins
Obviously,p,, is independent of the attack strength. In the

full paper [1], we give detailed formulas fr, andp,, and and fan-outs are monotonically decreasing withThat is,

do* do* ;
show that,, > 0.6 forall ' > 3. Since an attacked process we want t_o p.rove thatig,- < 0 and<g.- < 0. We require
. X the following:

is sent at least messages in a round, and accepts at most

Figure 1(a) in Section 7.1 illustrates this quality of Drum.

. do* _ F dpa | dpa
F of them, we get the following coarse boung: < £. da =7 (pa tagr+ g - pu) <0
pa""(a‘i‘l)% < Pu

6.1. Drum Recall thatp, < % In the full paper [1] we show that

‘iﬁj < % Bounding the left side of the inequality, we get:
, . . dpq
We define theeffective expected fansih, to be the av- Pat(@+)Fe <L+ (a+1)5 =
erage number of valid data messages a process successfully % (a+a+1)= 2a_(j1 <3

receives in a round. (If the same data message is receivedhus, our condition holds wheé < pu,c that is, when

from k processes, we count this Asnessages.) Likewise, ¢ > pi Similarly, for the second derivative we get the
the effective expected fan-qu@, is the average number of  condition:

messages that aprocess sends and are successfully received % = g . (pa 4 a(fipo? — pu) <0
by their targets in a round. 4
Let us examine the effect of a DoS attack ©mand I, Pa + gy < Pu

Bounding the left side of the inequality, we get:

with respect to the push operatiaf,(,s, andl,,sn, resp.). 5| Ja fa r e 2
Pa <E+o¢—:—-(o¢—|—a):—<—

The probability of an attacked process to receive a push p, + «
message ig,. The probability of a non-attacked process to Thus. we rcéquire that ar or 2 £ ¢

) h s Theref he effective f < py, Or thate > =. This is al-
receive a push messagepis. Therefore, the effective fan- o4y inferred from our previous result. The lemma follows
ins 7, ., andl, , of an attacked and non-attacked process

sincep,, > 0.6. O
(resp.) are:
push = F *pa and L5, =F - py, 1) This behavior is validated in the simulations. More-

Whenan processes are attacked, the effective fan-outs are:over, the simulations show that even for smaller values of
oush = Opush = F - (@ pa+ (1 — ) - pu) (2) ¢ (e.g.,2), Drum’s propagation time increases with(see
A similar analysis for the pull operation yields the followi Figure 3(a)).



6.2. Push

We first prove the following simple lemma.

Lemma3. Va > 0 a<ﬁ<a+1.

1 1 1
Proof. We show that/'y > 0 s <mimpy <3y T 1.

Defineh(y) = In(1 +y) — ¥ andg(y) = In(1 +y) —y.
By taking derivatives we get:

W) =tk — (1 — ) = e > 0, Wy >0,

(y+1)?
g) =15 —1<0, Vy>0.

Sinceh(0) = g(0) =0,y > In(1+y) > (7!—;711) Therefore,
1 1 1
§<—ln(1+y)<§+1' [l

We proceed to show that Push’s propagation time is lin-

earinz.

Lemma 4. The expected propagation time to all processes

in Push is bounded from below by:
Inn—In[(1—-a)n+1]
In(1+ Fap,)

Proof. We prove that the given bound holds even for t

case where initially all the non-attacked processes Myve
in addition to the source (which is attacked). The lemma

then follows immediately.

Let M (k) denote the expected number of processes that

haveM at the beginning of round. In roundk, each pro-

cess havingV/ sends it toF’ other processes. On average
Fa of those are attacked, and each attacked process re,

ceives the message with probability. Thus, we get the
coarse recursive bound (k +1) < M (k) + M (k) - Fap,
with the initial conditionM (0) = (1 — a)n + 1. Thus,
M(k) < [(1—a)n+1](1+ Fap,)". M reaches all the
processes whehf (k) > n. The first round numbek that
satisfies this inequality is the required formula. O
Corollary 1. Fix a andn > % The propagation time of
Push increases at least linearly with

Proof. Sincea andn > 1

~ are fixed, the numerator in

Proof. Let Y be the number of correct processes that
choose to send a pull-request to the source in a round, then
Y is binomially distributed with, = F. Applying a Cher-

noff bound forF > 4, we get that the probability that at
most3F other processes choose the source in a round is
greater thar.994. Let p denote the probability of propa-
gating a message beyond the source in a round. We give a
gross over-estimate @fby assuming that exactiy/F' other
processes choose the source every round. (When fewer
processes choose the sourbkjs lesslikely to leave the
source.) Since, < L, p < (1 — (£=£)3F). The number

of rounds it takes to propagate a message beyond the mes-
sage source is geometrically distributed withTherefore,

its expectation iép > % In the full paper [1]

we show thats = (). a

Figure 1(a) illustrates this behavior of Pull.

7. Smulation Results

This section presents MATLAB simulations of the three

he protocols under various DoS attack scenarios. We consider

a loss rate 00.01 on all links and a fan-out of' = 4. We
assume that0% of the processes are controlled by the ad-
versary and they do not propagate any valid messages. We
note that, according to our model, malicious group members
performing a DoS attack are equivalent to group members
suffering crash failures, and an externally-sourced DeS at

' tack of the same strength. In the full paper [1] we evaluate

the protocols without DoS attacks, and show that they are
highly robust to crash failures (cf. [9, 11]). Thus, cortrol
ling more group members does not grant the adversary with
a significant advantage. We measure the propagation times
to the correct processes, both attacked and non-attacked.
Each data point is averaged oué€¥0 runs.

7.1. Targeted DoS Attacks

Figure 1 compares the time it takbbkto reach99% of
the correct processes for the three protocols under various

Lemma 4 is a positive constant. Consider the denomina-DoS attacks, withi20 and 1000 processes. Figure 1(a)

tor: sincep, < £, it holds thatF" - o - p, = O(%). The
H 1 —
lemma follows since, by Lemma %m = 6(x). O

The above corollary explains the trend exhibited by Pus

in Figure 1(a).

6.3. Pull

Lemmab5. Fix « andn. The propagation time of Pull grows

at least linearly withe.

shows that wher 0% of the processes are attacked, the
propagation time of both Push and Pull increases linearly
with the severity of the attack, while Drum’s propagation

h time is unaffected by the attack strength. This is consisten

with the prediction of Lemmas 1 and 5 and Corollary 1.
Moreover, the three protocols perform virtually the same
without DoS attacks (see the leftmost data point). Fig-
ure 1(b) illustrates the propagation time as the percentage
of attacked processes (and th@sincreases. Although the
protocols exhibit similar trends, Drum propagates message
faster than Push and Pull.
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(b) & = 40%, = = 32F.

Figure 2 illustrates the cumulative distribution function process, it quickly propagates to the rest of the processes.
(CDF) of the percentage of correct processes that receivelherefore, even if by a certain roukdin most runs, a large
M by a given round, under different DoS attacks. As ex- percentage of the processes have there is still a non-
pected, Push propagathkto the non-attacked processes negligible number of runs in which Pull does not reacly
very quickly, but takes much longer to propagate it to the process (other than the source) by rodndrhis large dif-
attacked processes. Again, we see that Drum significantlyference in the percentage of processes reached has a large

outperforms both Push and Pull when a strict subset of theimpact on the average depicted in Figure 2. In contrast,
Push, which reaches all the non-attacked processes quickly

system is attacked.
in all runs, does not have runs with such low percentages

Interestingly, on average, Push propagad#®so more  factoring into this average. Nevertheless, Push’s average
processes per round than Pull does (see Figure 2), althOUQBropagation time t®9% of the correct processes is much
the average number of rounds Pull takes to propadéte higher than Pull's, because Push has to propatéte all
to 99% of the correct processes is smaller than that of Pushine attacked processes, whereas Pull has to propagdate
(see Figure 1). This paradox occurs since, with Pull, trere i only out of one attacked process.

a non-negligible probability tha#l is delayed at the source
for a long time. In the full paper [1] we compute that with
F = 4 and £ = 32, the probability forM not being propa-
gated beyond the sourcein10, and15 rounds ig).54, 0.3,
and0.16 respectively. Oncé/ reaches one non-attacked
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Figure 3. Average propagation time to 99% of the correct processes.
7.2. Adversary Strategies on other processes.

Our first goal for these experiments is to validate the
We now evaluate the protocols under a range of attackssimulation methodology. To this end, we experiment with
with fixed adversary strengths. First, we consider severe at the same settings that were tested in Section 7. The results
tack with B = 7.2n and B = 36n (corresponding te = 2 are virtually identical to the simulation results, and can b
andc = 10, resp.) fabricated messages per round. If the ad-found in the full paper [1].

versary chooses to attack all correct processes, it can send \We proceed to evaluate the protocols in a realistic setting,
8 (resp.,40) fabricated messages to each of them in eachwhere multiple messages are sent. By running on a real
round, becausg0% of the processes are correct. If the ad- network, we can faithfully evaluate latency in millisecend
versary instead focuses 00% of the processes, it can send  (instead of rounds), as well as throughput.

72 (resp.,360) fabricated messages per round to each. Fig- |, each experiment scenario, a totallof 000 messages
ure 3 illustrates the protocols’ propagation times with dif ;.o gant by a single source, at a ratelofmessages per

ferent percentages of attacked processes, for system size§ycond, The average received throughput and latency are
of 120 and500. It validates the prediction of Lemma 2, and | aasured at the remainirg correct processes (recall that

shows that the most damaging adversary strategy againsf f the 50 processes are faulty.) The average throughput
Drumis to attack all the correct processes. Thatis, an adver s «5jculated ignoring the first and las% of the time of

sary cannot “benefit” from focusing its capacity on a small o, experiment. The round durationlisecond. Data

subset of the processes. In contrast, the performance Ol('nessages arg) bytes long (The evaluation of [8] used a
Push and Pullis seriously hampered when a small subset of;iiar transmission rate and similar message sizes.)

the processes is targeted. Not surprisingly, the thre@prot
cols perform equally when all correct processes are talgete
(see the rightmost data point).

In a practical system, messages cannot reside in local
buffers forever, nor can a process send all the messages it
ever received in a single round. In our experiments, mes-
sages are purged from processes’ buffers dfferounds,

8. Implementation and M easurements and each process sends at nf&fsmessages to each of its
gossip partners in a round. These are roughly twice the

We have implemented Drum, Push, and Pull in Java. Thebuffer size and sending rate required for the throughput of
implementations are multithreaded. The operations that oc 40 messages per round in an ideal attack-free setting, since
cur in a round are not synchronized, e.g., one process mighthe propagation time in the absence of attacks is about
send messages before trying to receive messages in thdgounds. Due to purging, some messages may fail to reach
round, while another might first receive a new message, anchll the processes. Since we measure throughput at the re-
then propagate it. We run our experimentsiormachines  ceiving end, this is reflected by an average throughput lower
at the Emulab testbed [21], on a 100Mbit LAN, where a than the transmission rate (¢ messages per second).
single process is run on each machine (ie= 50). We Figure 4 shows the throughput at the receiving processes
designatel 0% of the processes as malicious — they do not for Drum, Push, and Pull, under the DoS attack scenar-
propagate any messages, and instead perform DoS attackes staged in the validation above. Figure 4(a) indicates
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Figure 4. Average received throughput.

that, as for latency, Drum’s throughput is also unaffected We have suggested a few simple measures that one can
by increasingr, while Push shows a slight degradation of take in order to improve a system’s resilience to DoS at-
throughput, and Pull's throughput decreases dramatically tacks: (i) combining pull and push operations; (ii) bound-
Figure 4(b) shows that Drum’s throughput gracefully de- ing resources separately for each operation; and (iii) ran-
grades as: increases, while Push exhibits a linear degrada- dom port selection. We have presented Drum, a simple
tion, and Pull's throughput is drastically affected for gve  gossip-based multicast protocol that uses these measures
a>0. in order to eliminate vulnerabilities to DoS attacks. Our
Figure 5 depicts the CDF of the average latencguf- closed-form mathematical analysis, simulations, and empi
cessfully receivednessages in two scenarios. Each data ical tests have proven that using both push and pull opera-
point shows, for a given latendythe percentage of correct tions goes a long way in fortifying a system against DoS at-
processes for which the average latency does not exceed tacks. We have shown that, as the attack strength increases
We observe that Push is the fastest in delivering messagegasymptotically, the most effective attack against Drum is
to non-attacked processes, but suffers from substantial va one that targets all the correct processes in the system. As
ation in delivery latency, as messages take a long time toexpected, the inevitable performance degradation due to
reach the attacked processes. E.g., Figure 5(a) shows thatuch a broad attack is identical for all the studied proto-
the4 attacked processes (other than the source) measure agols. However, protocols that use only pull or only push op-
average latency times longer than non-attacked processes. erations perform much worse under more focused attacks,
While Pull exhibits almost the same average latency for all which have little influence on Drum.
the processes, this latency is very long. Drum combines the We expect our proposed methods for mitigating the ef-
best of Push and Pull: it delivers messages almost as fast afect of DoS attacks to be applicable to various other systems
Push, while maintaining a small variation between attackedoperating in different contexts. Specifically, the use offiwe
and non-attacked processes. known ports should be minimized, and each process should
be able to choose some of its communication partners by
itself. Our analysis process and its corresponding metric
can be used to generally quantify the effect of DoS attacks.
We hope that other researchers will be able to apply similar

We have conducted the first systematic study of the im- techniques in order to quantitatively analyze their sy&em
pact of DoS attacks on multicast protocols, using asymp- resilience to DoS attacks.

totic analysis, simulations, and measurements. Our study

has exposed weaknesses of traditional gossip-based multiAcknowledgments

cast protocols: Although such protocols are very robust in

the face of process crashes, we have shown that they can We thank Aran Bergman and Dahlia Malkhi for many
be extremely vulnerable to DoS attacks. In particular, an helpful comments and suggestions. We are grateful to the
attacker with limited attack strength can cause severe per+lux research group at the University of Utah, and espe-
formance degradation by focusing on a small subset of thecially Mac Newbold, for allowing us to use their network
processes. emulation testbed and assisting us with our experiments.

9. Conclusions
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