

Exploiting workload similarities

for efficient scheduling in diverse
asymmetric chip multiprocessing

Dani Shaket

Exploiting workload similarities
for efficient scheduling in diverse
asymmetric chip multiprocessing

Research Thesis

In Partial Fulfillment of The Requirements for the Degree of
Master of Science in Electrical Engineering

Dani Shaket

Submitted to the Senate of the Technion - Israel Institute of Technology
Adar 5778 Haifa February 2018

The Research Thesis Was Done Under The Supervision of Professor Idit
Keidar in the Faculty of Electrical Engineering at the Technion.

Acknowledgments

First, I would like to thank my advisor, Prof, Idit Keidar. Thank you for timely
transforming me from an engineer to a researcher, for teaching me to differentiate
between the wheat and the chaff, and for supporting me technically and mentally
during this long, long journey. What I learned from you greatly exceeds any
course, paper or research tasks.

I would also want to thank Uri Weiser, Yoav Etsion, Mattan Erez and Israel Koren
for their contribution to this research, for taking the time to analyze raw, immature
work, for sharing ideas, and for providing highly valuable constructive criticism.

I thank two teachers, Yoram Moses and Shmuel On, who did not have a direct
impact on this work but their excellent courses “Knowledge and Games in
Distributed Systems“ and “Advanced Integer Programming“ (respectively),
enriched my toolbox and expanded my vision.

I’d like to thanks the wonderful Idit’s research group team members: Kfir Lev-Ari,
Sasha Spiegelman, Naama Kraus, Noam Shalev, Itay Tsabary, Hagar Porat, Alon
Berger, Ittay Eyal, Stacy Patterson, Meni Orenbach, and Oved Itzchak. Thank you
for expanding my horizon in so many exciting, innovative, creative and smart
ways.

A special thanks to Alex Shraer for introducing me to Idit and her research group,
for pushing me to do the masters, for expressing a definitive belief that I can do it,
and for timely checking that I am.

Finally, I would like to thank my family. I thank my parents which never cease to
support me and empower me. I thank my amazing wife Ravit, for understanding
me and my studential needs, for supporting me all the way, and for working very
hard to help me achieve my goals. I also thank my kids, Hila and Eyal, which in
turns, allowed me to complete writing my thesis at nights, for being my muse, and
for giving me powers to keep going.

Table of Contents

List of Figures iii

List of Tables iv

1: Introduction 3

1.1 Asymmetric CMP . 4

1.2 A case for specialized cores . 4

1.3 Predicting performance via micro-architecture-independent signatures 5

1.4 Simulator and tools . 6

1.5 Summary of contributions . 7

2: Background and related work 8

3: Model 11

3.1 Workload properties . 11

3.1.1 Instruction level parallelism . 11

3.1.2 Memory usage pattern . 12

3.1.3 Instruction types histogram . 12

3.2 CPU model . 12

3.3 Metrics . 14

4: The case for ASCMP 15

4.1 Profiling workloads . 16

4.2 Selecting cores . 18

4.3 Results: static assignment . 19

4.4 Results: dynamic assignment . 21

5: History-based prediction using signatures 24

5.1 Workload similarities . 24

5.2 Building the signature . 25

5.3 The predictor . 27

5.4 Experiment . 27

6: Conclusion 30

References 31

ii

List of Figures

1.1 Application specific vs. general purpose design[35] 5

3.1 Core model. 13

4.1 MRD extraction mechanism. 16

4.2 The average performance over all benchmarks on each core type. 19

4.3 Performance under static assignment of different benchmarks to all core types. . . 20

4.4 Improvement over Big, dynamic vs. static assignment. 21

4.5 omnetpp execution on all cores. 22

4.6 bzip2 execution on all cores. 22

4.7 Improvement over Big with a perfect scheduler, for all benchmarks. 23

5.1 signature structure. 26

5.2 Performance improvements over Big – Perfect vs. Predictor. 29

iii

List of Tables

4.1 Benchmark behaviors . 18

4.2 Core configurations . 19

5.1 Learning predictor hits, misses and migrations. 28

iv

Abstract

Heterogeneous chip-multiprocessor (HCMP) incorporates different types of cores on a single die.
Each core-type operates in a different way, provides different capabilities, and shows different
performance attributes. Asymmetric chip-multiprocessor (ACMP) is an HCMP in which all core-
types comply to the same instruction set architecture (ISA). In some ACMP design schemes cores
share functional components, sometimes even mutually exclude each other.

ACMPs can increase power-efficiency by executing diverse workloads on suitable cores. Match-
ing workloads to cores with ever-changing workload behaviors is a challenge. Practical solutions
so far assume ordering of core strength from simple “small” energy-efficient cores to complex
“big” ones which provide high performance for compute-heavy workloads. This approach allows
relatively straightforward workload-to-core assignment.

While ARM-based big.LITTLE architectures already capture a huge market share, higher
single-ISA diversity is avoided. In this thesis, we argue that restricting the cores design space
to linear ordering limits the potential of ACMP. We examine the notion of using asymmetric spe-
cialized chip-multiprocessors (ASCMPs) to achieve better power-efficiency.

Managing the execution of a multi-core system with high core and workloads diversity is
a complex task. In order to perform this task efficiently, there is a need to predict the power-
performance attributes of a workload on the different cores.

For this purpose, we propose a centralized history-based lookup mechanism that shares execu-
tion information among cores. During workload execution, each core produces micro-architecture-
independent signatures and corresponding performance attributes. The signatures are generated
using workload behavior, and not from the impact on the core. This approach guarantees that the
workload signature is identical regardless of the core it runs on.

The signature is created for performance characterization per core, where workloads that share
the same signature are expected to have similar performance characteristics when executed on
the same core. Thus, the execution management system exploits workload similarities to group
workloads by behaviors and use execution information as a performance predictor.

The micro-architecture-independent signature structure should be small enough (bitwise) to
enable practical mechanism, use execution characteristics which are feasible to extract in addition
to fulfilling two opposing requirements:

1

1. Accuracy - The signature should be flexible enough to express different workload behaviors
and provide a high correlation between the signature and the performance attribute on each
core.

2. Aggregability - The signature space should be small enough to enable grouping workloads
into categories.

In this thesis, we address the challenge of finding the sweet spot between these two opposing
requirements and create a signature structure which is feasible to produce and practical to use.

We propose a six-core platform and evaluate it using GEM5 and McPAT. Our proposed system
with perfect assignment shows up to 37% power-performance gain with 13% on the average for
the SPEC2006 benchmark suite in comparison to big.LITTLE based ACMP. The same system
with a trained history-based predictor shows up to 33.8% power-performance gain with 22.2% on
average for a subset of six benchmarks selected from SPEC2006 benchmarks.

2

1 Introduction

Where labor is not differentiated and distributed like that, where everyone is a

jack-of-all-trades, professions remain at an utterly primitive level.

Immanuel Kant, Groundwork of the Metaphysics of Morals, 1785

Asymmetric Chip Multiprocessors (ACMPs) are composed of different core types that comply
with the same Instruction Set Architecture (ISA). Sometimes different cores may be simultaneously
active, while in other cases they are mutually exclusive. Either way, ACMPs increase power-
efficiency by executing diverse workloads on suitable cores.

Matching workloads to cores with changing behaviors is a challenge. Practical solutions as-
sume ordering of core strength from simple “little” cores, which are power-efficient, to complex
“big” ones which perform compute-heavy workload efficiently. This approach allows relatively
straightforward workload-to-core assignment.

In this thesis, we argue that restricting the cores design space to linear ordering limits the full
potential of ACMPs. We examine the notion of using Asymmetric Specialized CMP (ASCMP) to
achieve higher power-efficiency than state-of-the-art linear-ACMP platforms provide.

To enable workload-to-core matching, we propose a history-based lookup mechanism that
shares execution information among cores. During workload execution, each core produces micro-
architecture-independent signatures and corresponding performance attributes. Workloads that
share the same signature are expected to have similar performance characteristics when executed
on the same core. Thus, the execution management system exploits workload similarities in order
to group workloads by behaviors and uses execution information as a predictor for performance
characteristics.

The rest of this chapter is organized as follows: Section 1.1 gives a general overview of ACMP.
In Section 1.2, we summarize the limitations of linear ACMP and discuss the benefits of using
ACMPs. Section 1.3 introduces the basics of workload characterization, the metrics we use for
power-performance and the concept of micro-architecture-independent signature. Section 1.4 ex-
plains our testing methodology and tools and Section 1.5 enumerates the contributions of this
thesis.

3

1.1 Asymmetric CMP

A Heterogeneous Chip Multiprocessor (HCMP) is a system that incorporates different types of
cores on a single die. Each core type operates differently, has different capabilities, and possibly a
different ISA. A Graphic Processing Unit (GPU), for example, is designed primarily for providing
efficient graphics rendering capabilities. Digital Signal Processors (DSPs) are optimized for real-
time data streaming and numeric calculations. Among other things, a general purpose CPU can
do both graphics rendering and signal processing, but not as efficiently as a GPU or a DSP.

While explicitly executing workloads on different cores (e.g., CPU, GPU, DSP) is common
practice, it has major disadvantages. First, it imposes a significant overhead on the development
process. It requires the software engineers as well as frameworks, ecosystems, compilers, and
applications to be familiar with different tool-chains, ISAs, micro-architectures, concepts of op-
erations and APIs. Second, it usually lacks the flexibility to dynamically choose which core is
used in case of input and run-time variations (e.g., resource availability, power profile). Third,
it makes the design cumbersome and expensive by requiring core-specific resources like on-chip
memories (e.g., GPUs). While these downsides motivated the industry and academia to create
powerful offloading mechanisms (e.g., OpenCL, OpenACC, OpenHMPP), these solutions usually
require knowing the target architectures, write the code in a specific way, handle the scheduling ex-
plicitly, pre-compile binaries for multiple architectures, which increases binary size and prevents
on-the-fly migrations, and just-in-time compiling which can increase run-time.

ACMP is an HCMP in which all cores comply to the same ISA. Previous work [1][34] as
well as state-of-the-art commercial products demonstrate that asymmetry, namely using different
core types, yields significant improvements in power-efficiency of small-scale chip multiproces-
sors. ACMPs also include platforms in which different core types are implemented using shared
resources or pipeline components [28, 12], possibly mutually excluding each-other at runtime [20].

By complying to the same ISA, ACMPs eliminate the downsides of HCMPs. The workload-to-
core assignment is done (in most cases) automatically by the operating system or by the hardware.

In Chapter 3, we discuss workloads’ behavioral properties, define our core model and explain
the metrics we use to estimate execution efficiency.

1.2 A case for specialized cores

The main downside of ACMP is that the diversity of the cores is limited by the ability to predict
performance. The implemented cores typically reside on a single line – from little “weak” to big
“strong” cores.

Big cores have complex super-scalar Out-Of-Order (O3) execution mechanism, aiming to ex-
ploit Instruction-Level-Parallelism (ILP) and high data availability (or low data dependencies).
Typically, big cores are capable of running at a high frequency. These cores usually provide high
single thread performance for compute-heavy workloads.

4

Figure 1.1: Application specific vs. general purpose design[35]

Little cores have simple in-order execution pipes and typically run at lower frequencies. These
cores are more power-efficient than big cores, but execute slower for compute-heavy workloads. In
cases where big cores demonstrate poor pipeline utilization (e.g., multi-threaded workloads with
frequent synchronization, i/o, or memory dependencies), the execution times of the little core and
the big core might be similar, but the execution might be significantly more power-efficient for the
little core, and thus more energy-efficient.

The motivation for creating cores with higher diversity, as illustrated in Figure 1.1, stems from
the fact that the more (application) specific the design is, the better performance, power-efficiency,
and area-cost it has.

While ARM-based big.LITTLE [24] architectures already capture a market share (e.g., Apple
A10, Qualcomm Krait [26], Samsung Exynos, MediaTek CorePilot [22], Huawei Kirin)1, wider
diversity is still avoided.

In these products, as well as in recent research, a linear ordering of core strength is assumed,
limiting the benefit that can be achieved. This is partially due to a pessimistic estimation of the
software efforts, complexity, and runtime overheads that may be required to manage more diverse
architectures efficiently. Furthermore, it was not demonstrated that practical systems can benefit
from more diverse asymmetry.

In Chapter 4, we explore the micro-architectural design space and show the potential benefit
of more diverse asymmetry in ACMP.

1.3 Predicting performance via micro-architecture-independent signatures

Managing the execution of a multi-core system with core and workload diversity is a complex
task. To perform this task efficiently, there is a need for an efficient mechanism that predicts
power-performance attributes of a given workload on the different cores.

1 The latest MediaTek Helio X20 takes this further by providing a tri-cluster small-medium-big architecture.

5

For that purpose, we use micro-architecture-independent signatures, which represent a work-
load by collecting partial information on how the workload uses the ISA. Using this approach, the
workload generates the same signature regardless of the core it executes on. We avoid machine-
dependent information, such as cache misses, TLB misses, or delays, which would result in differ-
ent signatures for the same workload. We then associate each workload signature with execution
characteristics such as power and performance for each particular core.

Thus, we make a clear distinction between workload characterization and execution charac-
terization. When characterizing workload, we examine its inherent behavior: what instructions it
runs, in which order, how it accesses memory, etc.

Execution characterization is the impact of executing a workload on a particular core: How
much energy it consumes, how much time it takes, the utilization of the core, cache/TLB misses,
etc. It provides us with power-performance attributes the system needs in order to make educated
workload-to-core assignments.

To enable performance predictions from the history of other cores using micro-architecture-
independent signatures, we need it to be structured in a way that fulfills two opposing require-
ments:

1. Accuracy - The signature should be flexible enough to express different workload behav-
iors and provide a high correlation between the signature and the corresponding workload’s
performance attributes on each core.

2. Aggregability - The signature should be small enough to enable grouping of different work-
loads under the same signature.

On the one extreme, if the signature is too accurate, it creates a unique signature for each
workload. Therefore it is useless for predicting the performance of a workload on a core it did
not run on. Moreover, it requires allocating and managing large memory space. At the other end,
if the signature is too small and aggregates workloads with different behaviors and performance
attributes into the same group, it also cannot be used for predicting performance. The challenge is
finding the sweet spot between these two opposing requirements.

In Chapter 5, we find a micro-architecture-independent signature structure that enables ef-
ficient aggregation of different workloads into groups and provides a high correlation between
signatures and performance attributes on each core. We then use this structure to create a perfor-
mance predictor.

1.4 Simulator and tools

We use GEM5 [6] to simulate the execution of workloads on our cores. We use ARM ISA with
an O3 processor and GEM5’s classic memory system. We altered the simulator to provide all the

6

information that might be useful to produce micro-architecture-independent signatures as well as
Instructions per Second(IPS), instruction types histograms and other information required for cal-
culating power. Using this simulator, we execute programs from the SPEC2006 benchmark suite
[9], which provides compute-intensive applications from diverse fields. Since programs usually
demonstrate different behaviors during execution2, we generate the information per window of
execution. For power and area estimation we use McPAT [19]. In addition, we have implemented
several Python scripts that aggregate data from GEM5 and McPAT, and produce statistics and data
visualization.

1.5 Summary of contributions

This thesis makes the following contributions:

• We show that having a non-linear set of asymmetric cores might increase power-efficiency.

• We show that micro-architecture-independent signatures can be used to identify workload
behavior in a way that correlates well with power-performance.

• We propose a mechanism for efficient performance prediction based on a signature lookup
table.

2 Sometimes referred to as program-phases or thread-phases.

7

2 Background and related work

Today it is impossible to estimate performance: you have to

measure it. Programming has become an empirical science.

Joshua Bloch, Google Inc., Performance Anxiety: Performance

analysis in the new millennium

The case for ASCMP. Since the rise of general purpose computing on GPUs (GPGPU) in the
mid-2000’s, the case for specialized cores with different ISA was repeatedly made, increasingly
turning into HCMPs that also include DSPs and FPGAs.

Kumar et al. [16] were the first to demonstrate the potential of improving performance using
ACMP. They analyzed the execution of several benchmarks on four different alpha-based cores
scaled from little core to big core. Since then, numerous studies have been conducted on various
aspects of linear ACMPs [23, 17, 10, 2], most of them relying on Pollack’s rule [25] by assuming
that Performance ∝

√
die area.

A variety of ACMP design schemes was suggested: Ipek et al. [12] presented core fusion, a
reconfigurable CMP where several little cores can dynamically morph into a larger core to ac-
commodate workload diversity. Lukefahr et al. [20] proposed Composite Cores, a big.LITTLE-
like architecture that mitigates workload migration penalty by sharing context-related resources
among the cores, thus allowing only one to be active at any time. Rodrigues et al. [28] suggested a
Dynamic Morphing Core (DMC), which enables reconfiguring cores depending on computational
demands. Their baseline configurations included two cores, one with strong integer units and
one with strong floating point capabilities. Several works [36, 37, 21, 27] discussed solutions for
accommodating unpredictable core diversity due to manufacturing variants and errors.

Besides from DMC, which examined two non-linear asymmetric cores, we are not aware of
any previous work that aimed specifically to show the benefit of single-ISA specialized cores
beyond linear diversity. We make this case by implementing ASCMP, executing benchmarks, and
comparing the results to a big.LITTLE platform. Our different core types can be incorporated into
a single die as distinct cores, may share resources like DMC, or execute in a mutually exclusive
fashion like Composite Cores.

8

Workload characterization and micro-architecture-independent signatures. Sherwood et
al. [32] analyzed behavioral changes in programs and demonstrated how different program phases
result in different power-performance. They described a mechanism that identifies a phase based
on the program counter (PC). While their approach works well in the context of one program, our
signature-based mechanism identifies behavioral similarities across multiple workloads.

Hoste and Eeckhout [11] presented a comprehensive study of micro-architecture-independent
workload characterization including possible parameters and calculation mechanisms. In addition,
they compared their method to micro-architecture-dependent methods and showed interesting in-
sights regarding workloads characterization and classification. In our work, we share the notion of
characterizing workloads using micro-architecture-independent parameters. We reduce the prob-
lem from performance reasoning to identifying groups of workloads with similar behaviors and
so our signatures are much more succinct. Also, we focus on parameters and extraction methods
that are feasible to achieve at runtime whereas they extract as much information as they can to
thoroughly analyze the behaviors and corresponding performances.

Performance prediction in asymmetric systems. Kumar et al. [16] proposed a sampling-based
scheduling scheme using four core types. Every so often, the system initiates a sampling phase, in
which the scheduler permutes the assignments of threads to cores. During this period, performance
statistics are gathered. These statistics are then used to create a new assignment, which is then
employed during a longer phase of execution.

Another sampling-based approach argues that greedy algorithms can significantly reduce the
search space. Becchi and Crowley [3] presented a greedy algorithm with individual sampling and
steady phases for each thread. They used two core types (alpha-based EV5 and EV6). Whenever
significant performance reduction is detected, a thread initiates a local sampling phase in which it
migrates among cores, each of which measures its performance. The thread then migrates to the
core that provided the highest performance.

Winter and Albonesi [36], and later on Winter et al. [37], presented comprehensive studies
of sampling-based scheduling algorithms and their tradeoffs, with regard to many core types for
both predictable and unpredictable core diversity, which is a result of manufacturing variants and
errors.

While sampling-based solutions are fast and accurate for a small number of cores (2 - 4), we
aim to handle many cores and core types. Our workload-to-core mapping scheme is based on
exploiting workloads’ behavioral similarities, thus eliminating the need for exhaustive sampling
of all threads on all cores.

Adaptive schedulers based on analytic prediction schemes presented in [15, 1, 33, 34] showed
that hardware-assisted prediction can provide a good compromise between accuracy, adaptation,
and scalability. In these works, scheduling is initially arbitrary. During execution, the core collects
micro-architecture-dependent information. Performance prediction is calculated locally, using an
analytic model. This approach assumes that each core also includes logic that enables selecting

9

the appropriate core type for a given workload behavior. Furthermore, since prediction is done
locally, the logical block that performs the prediction is not aware of the dynamic states of the
other cores. In contrast, our work does take into account the dynamic state of the cores and does
not require cores to predict each other’s performance. Moreover, our prediction mechanism does
not assume any relation between the cores’ micro-architectures; therefore, we can support more
diverse core types.

Shelepov and Federova [29] and Shelepov et al. [30] proposed profiling threads offline for
generating application signatures that represent thread behavior. An analytic model uses these
signatures to predict the different cores’ runtime performance. This scheme enables workload-to-
core mapping with very little overhead. While this solution scales very well, it does not apply to
applications with high runtime variability due to input variation or behavioral changes. Moreover,
it is based on an analytic model that assumes isolated execution. In our work, we adapt to both
program phase changes and core state changes dynamically. We do share a similar notion of
micro-architecture-independent signatures, but in our scheme, it is used for behavior identification
and not as a base for analytic performance prediction.

10

3 Model

Two elements are needed to form a truth - a fact and an abstraction.

Remy de Gourmont

In this chapter, we explain the model we use throughout this thesis. The remainder of this
chapter is as follows. In Section 3.1, we explain the properties we use to describe workload
behavior. Next, in Section 3.2, we define the core model we use. Since the design space of cores
is huge, we limit ourselves to several simple, configurable parameters and assume the general
structure of the cores remains the same. In Section 3.3 we define and explain our efficiency
metrics.

3.1 Workload properties

In this section, we explain the three main properties we use to classify workload behavior. These
properties are inherent characteristics of the workload, defined only by the executed instructions
and input.

3.1.1 Instruction level parallelism

Instruction Level Parallelism(ILP) is a widely used concept that describes the possibility of execut-
ing instruction belonging to the same sequential workload in parallel. Given an ideal system, with
an infinite number of infinitesimally fast execution units and pipeline components, the number of
instructions that can be executed in parallel defines the ILP of the workload.

Ideally, ILP is defined only by the program and not by its impact on the micro-architecture.
In practice, quantifying ILP is an elusive task. There are some existing schemes for measuring
ILP. Hoste and Eeckhout [11] define the level of ILP by instructions-per-cycle achievable for an
idealized O3 processor (with perfect caches and branch predictor) for window sizes of 32, 64, 128,
and 256 in-flight instructions. This simulation-based method requires a lot of computation. Thus it
is too cumbersome to perform at runtime. Xu et al. [38], detect if ILP is high or low by measuring
effective instructions-per-cycle, which uses micro-architecture-dependent parameters.

11

Instructions can be executed in parallel if they are not data-dependent. If an instruction A
uses data or a register which is created by instruction B, instruction B must be executed before
instruction A; thus we say that A is dependent on B. This is, of course, a transitive relation. If
A is dependent on B and B is dependent on C, then A is dependent on C. The dependency DAG
encapsulates the data dependencies of the program execution. Long paths in the DAG indicate low
ILP and vice-versa. In our work, we build such a DAG during the execution in order to estimate
the level of ILP.

3.1.2 Memory usage pattern

Memory usage pattern has a huge effect on performance. Access to memory external to the core
is slow, contention prone (bus, controller), and expensive energy-wise. Thus, cache utilization is
crucial to system efficiency.

A core can execute the same instructions with different memory addresses (or the same ad-
dresses in a different order) and demonstrate extremely different performance. The frequency,
repetition, pattern, and locality of the memory accesses determine the benefit that can be achieved
by caches. A common micro-architecture-dependent performance measure is the miss/hit ratio of
the cache. A high miss ratio can imply that a bigger cache is needed. It can also indicate that the
program only reads new memory or that the cache uses a bad placement strategy.

A widely used technique to estimate the required cache size is calculating the memory reuse

distance (MRD) [5, 4]. MRD measures the distances (in instructions) between consecutive ac-
cesses to the same memory reference. A low MRD indicates high locality. Since accesses to new
memory (in cache line granularity) always cause a (compulsory) cache miss, these accesses are
counted separately.

3.1.3 Instruction types histogram

Instructions Type Vector (ITV) [14] is a histogram of instruction types executed by the program
in a certain window. In this context, we classify the different ARM instructions into Load (LD),
Store (ST), ALU (integer arithmetic), VFP (vector/floating-point), and control. ITV’s implication
on suitable micro-architectures is (almost) immediate. For example, ITV with a high number of
ALU operations requires faster or multiple ALU units (depending on its ILP). ITV which shows
a large number of memory operations will probably prefer micro-architectures with fast memory
units, a big store/load queue, or a big cache, depending on its MRD and ILP.

3.2 CPU model

In this section, we explain the model of the core used in our experiments and the design space
derived from this model. We use GEM5’s O3 CPU model, which is loosely based on Alpha
21264 [18, 13].

12

Figure 3.1: Core model.
Each functional block has configurable parameters.

Figure 3.1 shows the model of the core. Each block represents a configurable functionality or
resource. Obviously, the core model can be more detailed or abstracted. This level of abstraction
corresponds with the simulator we use and some of its configurable parameters.

There are five stages in the pipeline: fetch, decode, rename, issue-execute-writeback(IEW),
and commit. The O3 model allows instructions to enter the IEW phase in a different order than
that in which they are fetched. This allows effectively higher utilization of the functional units by
executing independent instructions (ILP).

Each stage has a configurable width which defines the number of instructions it is capable of
handling in parallel. The O3 window is the number of instructions the pipe can hold in the reorder

buffer (ROB) and the Load/Store (LS) Queue. The utilization of the ROB depends on the availabil-
ity of physical registers (i.e., physical register file size) and the workload’s level of ILP. The width
of the different stages in the pipe, the sizes of the different queues (load/store/instruction), and
the number and speed of the different functional units – together define the effective instruction
execution frequency with regard to the executed workload.

The following summarizes the various configurable resources and parameters:

1. Stage width – the number of instructions the stage can handle in parallel.

2. Branch predictor (BP) – assists with pre-fetching instructions in case of a branch. Both the
size and type of the branch predictor can be selected.

3. Number of entries in ROB.

4. Number of entries in the LS Queue. LS Queue holds the Load/Store instructions that have
reached the IEW stage. This number determines the O3 window for load/store instructions.

13

5. Number of entries in instruction queue (IQ). IQ stores the issued instructions. Instructions
reaching this stage will be dispatched upon required functional unit availability.

6. Functional units – Each functional unit is responsible for a different operation. The standard
parameters for configuring these are latency and throughput per operation. Each core must
have at least one of each type, to comply with the ISA. Adding more than one of each type
enable executing more instructions of the same kind in parallel. The units we consider are:

SimpleInt – Simple integer operations (such as add/sub).

ComplexInt – Complex integer operations (e.g., div/mult).

FpSimd – Floating point operation and vector-operations.

Load – Loading data from memory or cache into register/s.

Store – Storing data to memory.

7. Level 1 (L1) instruction cache size.

8. L1 data cache size.

9. Physical Register file size – number of actual hardware registers that can be used.

3.3 Metrics

We measure execution efficiency using two basic elements. E denotes the energy, in Joules,
consumed by the core to execute the workload. D denotes the delay, or time, usually in seconds, it
takes to complete the execution. Efficiency metrics combine both. For example, ED (energy delay
product) gives the same weight for energy efficiency and speed. A higher value of ED means
lower efficiency. In our work, we use the common ED2 efficiency metric – energy delay squared
product, which puts more emphasis on the speed of execution.

To get E and D we measure the following core performance counters:

1. Instructions per Second (IPS) - measures how many instructions reach the commit phase
(i.e., excluding squashed speculative instructions) per cycle multiplied by the frequency
(cycles per second).

2. Power (P) – measures the energy (Joule) per time(seconds) that the core consumes.

We get the E consumed by the workload execution by multiplying P by D.

14

4 The case for ASCMP

In an increasingly divided world, we need a common language.

Prabhu Guptara

General purpose cores, as the name suggests, are designed to do everything. Targeting a core’s
design specifically to handle a particular class of workloads increases its efficiency. In other words,
the narrower the target application is, the more specific the core design can be, and thus more
efficient. Workloads that run on general-purpose cores can be very different from each other.
They differ in the type and number of instructions they run, their order, predictability, memory
access patterns and more.

In principle, each workload can have an optimal core for running it, meaning that in whatever
efficiency measure we choose, this core will provide the most efficient execution. Clearly, it is
not feasible to design a core for each workload. The workloads should instead be classified and
grouped to enable creating a feasible number of cores.

A common conception is that the most important property of a workload is how compute-
heavy versus how memory-heavy it is. A compute-heavy workload performs a lot of arithmetic
operations while accessing relatively small amounts of input data. On the other end of this spec-
trum are memory-heavy workloads, which access a lot of input data relative to the number of
arithmetic calculations they execute. The latter will not be hampered by running on a small core
with less functional/arithmetic units, a simpler pipe, lower frequency (due to i/o latencies), and a
smaller cache.

This conception leads to a linear design space of micro-architectures. Ranging from small
energy-efficient cores to big energy-consuming ones. Nevertheless, there are different kinds of
computations, and not all of them should be treated the same way. Ferdman et al. [8] exemplified
this point as they demonstrated how powerful modern servers are underutilized and energy-wasting
when running emerging scale-out workloads.

In this chapter, we show that using an ASCMP can have significant positive impact on effi-
ciency. Note that in this chapter we ignore the workload-to-core matching problem. We will get
back to this problem in Chapter 5.

15

The remainder of this chapter is as follows. In Section 4.1, we explain the workload properties
we use and how we obtain them. In Section 4.2, we explain our core selection. In Section 4.3, we
demonstrate the benefit that can be achieved using ASCMP by statically assigning benchmarks to
suitable cores. In Section 4.4, we further allow on-the-fly zero-cost migrations to show the benefit
that can be achieved for the tested benchmarks on our selected cores.

4.1 Profiling workloads

We examine inherent workload behavior. Thus, we can not rely on any information besides the
instructions that compose the workload. Moreover, we only use instructions that reach the commit
phase without being squashed due to misspeculation. We have tweaked GEM5 [6] to enable
several capabilities:

1. Obtaining ITV – Collecting executed instructions per type.

2. Obtaining MRD – Measures data locality of the executed code. we use the average and
standard deviation of memory reference access rates and the number of single accesses to
memory locations. Figure 4.1 shows the mechanism we implemented for extracting these

Figure 4.1: MRD extraction mechanism.

parameters. During a window of execution, each memory reference (read or write operation)
updates its corresponding cell in the hash-table. The average and standard deviation are
calculated for all table elements larger than 1 in order to detect recurring accesses. The
number of single references is counted separately. We ignore address bits from the same
cache line (CLb in Figure 4.1), thus, storing memory references in cache-line granularity.
Although the cache line size is a part of the micro-architecture, a reasonable design choice

16

Constants: N – window size, M – Number of architectural registers
Input: inst – list of all instructions in a window
Result: Average instruction dependency chain
R←{0xM} // keeps dependency chain length per register
G←{0xN} // keeps dependency chain per instruction
for i to N do

longest = max(R[s]|s ∈ inst.src∪{0})
for d in inst[i].dst do

R[d] = longest +1
end
G[i] = longest

end
Output: Average of G

Algorithm 1: Calcuating AIDC

for ACMP is using the same cache line size for all cores1. Since access to different cache
lines is what determines memory usage and performance, this optimization allows major
reduction of the hash table size without losing valuable information.

3. Average instruction dependency chain (AIDC) length –

For the purpose of calculating AIDC length, we refer to instructions as a tuple of (source

(src) registers, destination (dst) registers). The registers are the architectural registers de-
fined by ISA. We measure the AIDC for blocks of 256 instructions. We do so by keeping
track of the dependency chain length for each architectural register. The dependency chain
length for each instruction is the maximum dependency length of src registers. Algorithm 1
shows our implementation in pseudo-code. Array R represents the dependency chain length
for each one of the architectural registers. At the beginning of the window, R is initialized
to all zeros. For each instruction, the algorithm finds the src register with the longest depen-
dency chain, it then updates R at the dst register with the length of that dependency chain
incremented by 1. If there is no source register (e.g., constant assignment or load instruc-
tion), R[dst] is updated to 1. The dependency chain length in R at index dst is also stored in
G at index i, representing the length of dependency chain for instruction i. At the end of the
execution window, the algorithm returns the average of G, which is our AIDC value.

We have compiled the SPEC2006 benchmarks using ARMv7 cross compiler with full opti-
mizations, auto-vectorize compilation flags, and full NEON support.

We first ran the benchmarks using standard core model for 3.5 billion instruction. We have
collected our ITV, MRD, and AIDC of each one of the 22 benchmarks. The results are shown in
4.1.

1 See “A tale of impossible bug: big.LITTLE and caching”, https://news.ycombinator.com/item?id=12481700.

17

Table 4.1: Benchmark behaviors

ITV MRD Single AIDC
LD% ST% ALU% VFP% CTRL% AVG Ref AVG

bzip2 22 6 58 0 12 45.69 20 3.58
gcc 15 3 61 1 18 41.91 7 3.22
mcf 22 12 49 0 14 61.27 6 3.22

hmmer 33 18 42 1 3 62.77 1 2.14
sjeng 22 5 57 0 14 50.35 12 2.60

libquantum 4 3 65 8 17 18.80 0 3.80
h264ref 38 10 46 0 4 74.59 7 3.05
gromacs 21 9 53 0 15 46.14 17 2.31
omnetpp 23 9 50 2 13 26.57 11 4.63

astar 36 8 46 0 9 60.04 13 3.31
bwaves 31 5 36 20 6 60.58 0 1.72

milc 31 11 11 42 2 35.83 0 1.73
zeusmp 11 7 26 52 2 35.67 5 2.15

cactusADM 37 19 6 36 0 20.43 0 1.08
leslie3d 13 5 32 39 9 96.89 0 1.82
namd 19 4 35 32 6 33.47 0 2.36
dealII 20 2 53 8 14 69.04 2 3.39
soplex 22 7 55 1 11 16.27 11 4.01

calculix 14 7 50 13 13 51.91 2 2.89
GemsFDTD 16 5 39 28 11 53.97 0 2.77

tonto 27 7 47 9 8 40.62 4 2.41
lbm 24 11 14 49 1 33.52 0 1.00

4.2 Selecting cores

Each member of the ITV affects the performance requirements of the corresponding functional
unit. The MRD AVG has a direct effect on the cache size; the AIDC has a direct effect on the
width and O3 window of the suggested core.

Using GEM5, McPAT, and a self-implemented analysis tool, we have explored several different
core configurations. Table 4.2 shows the configurations we have selected.

Small is expected to handle i/o and memory heavy workloads efficiently. It has small caches,
small branch predictor, and a minimum number of functional units. Big is a balanced core which
performs all tasks with reasonable efficiency. Wide/Int has a wide pipe, big data cache and the high
number of integer functional units. Suitable workloads are ones with high ILP and a high number
of integer operations. Narrow/VFP has a narrow pipe and two vector/SIMD/FP units. Suitable
workloads are ones with a high number of vector operations. Narrow/Int has a narrow pipe and
runs at high frequency. This core is suitable for workloads with low ILP and a high number of
integer operations. Control has a big instructions Cache and a Huge BP. This core is expected to
execute control-heavy (a lot of conditions, branches, etc.) workloads efficiently.

18

Table 4.2: Core configurations

Small Wide/Int Narrow/VFP Narrow/Int Control Big
ICache 24k 32k 32k 32k 64k 32k
DCache 24k 64k 64k 32k 32k 48l

BP Small Med Med Big Huge Med
Alu Simple 1 6 2 3 4 3

Alu Complex 1 2 1 1 1 1
Mem 1 3 2 2 3 3

Simd FP 1 1 2 2 1 1
Width 1 5 2 2 4 3
Freq 1Ghz 2Ghz 2Ghz 2.4Ghz 1.8Ghz 2Ghz

Core Area 1.15mm 1.27mm 1.28mm 1.2mm 1.23mm 1.23mm

4.3 Results: static assignment

We demonstrate the improvement potential of ASCMP by assigning benchmarks to suitable cores.
We use four of the six core types: Wide/Int, Narrow/VFP, Narrow/Int, and Big. Control and Small
are omitted since both of them are efficient in small portions of each one of the benchmarks.

Figure 4.2: The average performance over all benchmarks on each core type.
All bars are normalized to Big.

Figure 4.2 shows the performance average over all benchmarks on each core for energy, delay,
and ED2. We can see that on average, all three specialized cores perform worse than Big for ED2

metric. The Narrow architectures show better energy consumption, whereas Wide/int shows the
worst delay and energy. Big is the best when averaging over all benchmarks, both in delay and
ED2.

19

Figure 4.3: Performance under static assignment of different benchmarks to all core
types.

All bars are normalized to Big. The best performing core is encircled.

Figure 4.3 shows per benchmark results. The core achieving the best ED2 per benchmark is
marked by a black circle. Here, we see a different picture. Big, which has the best ED2 in the
average case, is not the best in any particular benchmark. In other words, Big is a “jack-of-all-
trades but a master of none”.

In zeusmp and lbm, which are vector-operation-heavy (52% and 49% respectively) we see that
the best core is Narrow/VFP. Big’s performance is almost 35% worse, and Wide/Int core is almost
3x worse than Narrow/VFP.

For omnetpp and soplex, Narrow/int is the best core, while others perform between 1.2x to 5x
worse. As we can see in Table 4.1, both have relatively high values of AIDC which, indicates low
ILP.

20

Figure 4.4: Improvement over Big, dynamic vs. static assignment.

In the bottom row, bzip2 and hmmer show mild performance gain vs. Big (10%-20%) when
executed on Wide/Int.

4.4 Results: dynamic assignment

We now further allow on-the-fly migration of workloads between cores. For this purpose, we have
generated an optimal execution per benchmark, where each portion of the workload is executed
on the most suitable core, selected from our six core described in Table 4.2.

Figure 4.4 shows improvements of ED2 in percentages over the static scheduling for the test
cases from the previous section. As shown in the graph, most of the benchmarks show mild
improvement, indicating the benchmark behavior does not change often. But a few, most notably
bzip2, do improve substantially.

We take a closer look at the two extremes: omnetpp which show almost no improvement, and
bzip2 which show almost 15% with migrations and less than 5% without migrations.

Figure 4.5 shows performance over time for all cores running omnetpp. As seen in the graph,

21

the behavior is constant throughout the whole benchmark (except for initialization), and Nar-
row/Int is the most suitable core from beginning to end.

Figure 4.5: omnetpp execution on all cores.

In contrast, Figure 4.6 shows that bzip2 repeatedly transitions between behaviors, and the most
suitable core alternates between Narrow/Int, Wide/Int, and Big core.

Figure 4.6: bzip2 execution on all cores.

To complete the picture, Figure 4.4 provides all tested benchmarks’ potential improvements
using ASCMP with prefect scheduling. The improvement over using Big ranges between 2% and
37%, with an average of 13%.

22

Figure 4.7: Improvement over Big with a perfect scheduler, for all benchmarks.

23

5 History-based prediction using sig-
natures

I know whatever it is

I’ve not seen one before

But here comes another one

And here comes a bunch of ’em

Monty Python, Here Comes Another One

In this chapter, we create a method for predicting performance based on previous experience
of executing workloads with similar behaviors. We use workloads’ behavioral properties defined
in the previous chapter as candidates for elements in micro-architecture-independent signatures
that represent behaviors. We use these signatures for online performance prediction.

The remainder of this chapter proceeds as follows. In Section 5.1, we define basic concepts and
discuss workload similarities. Following that, in Section 5.2, we describe the process we use for
building a micro-architecture-independent signature based on behavioral properties. In Section 5.3
we describe our predictor implementation. Finally, in Section 5.4 we test our prediction scheme.

5.1 Workload similarities

A core can run multiple programs concurrently. OS processes are one abstraction for handling such
concurrency; virtualization is another. In our work, we use the term process to describe instruc-
tions belonging to the same context from the core’s perspective. For example, multiple threads
belonging to the same process (e.g., using POSIX threads library without multicore support) are
considered sequential even through threads context-switch.

The same process can go through phases of execution in which it performs different tasks.
Thus, its behavior can change over time [31]. Our terminology of a workload behavior classifica-
tion corresponds with the program phase concept in [7], but our detection scheme is not dependent

24

on performance or instructions working set. Our classification and detection rely on changes in
the workload behavior.

Roughly speaking, we say that workloads’ behaviors are similar if their interaction with the
cores is similar. By interaction, we mean executed instructions (histogram and order), working
data set, resource dependencies, etc.

We denote by BV our behavior vector, which is composed of some measurable characteristics
of a workload in a given window of execution. To be able to find similarities among workloads run-
ning on different cores, it is crucial to select BV elements that are micro-architecture-independent
(similar to architectural signatures in [30]). Also, these elements should have a meaningful impact
on performance, i.e., workloads with similar BVs should demonstrate similar performance when
executing on a particular core.

Although we aim to create micro-architecture-independent signatures, in order to classify and
group workloads that resemble each other we have to make some reasonable assumptions regard-
ing the micro-architecture. For example, when categorizing instruction into types, we assume
that executions of ADD and SUB instructions result in very similar operations by the core, and
therefore are performance-equal, so we can use one counter to measure both.

5.2 Building the signature

In this section, we describe the process we used to reach a practical micro-architecture-independent
signature. The main requirements are that workloads that share a signature, i.e., belong to the same
behavioral similarity group, will have similar performance characteristics on all cores. The goal
is to find a signature structure that is both accurate and usable, so we able to predict performance
accurately based on the history of workloads that share the same signature.

We have used our altered version of GEM5 to produce the elements we use as candidates for
the signature, namely, ITV, MRD, and AIDC. We have executed all the benchmarks described in
Table 4.1 on all cores in Table 4.2, collected our signature candidates, raw IPS, and average power
per window of execution, which we set to 25K.

The signature space includes a coefficient and number of bits (bit-width) for each of the prop-
erties we capture in the execution phase. Using an automated script, we performed an educated
search within the signature space and gave a score to each of the signature structures. The pro-
cess was to generate random bit-widths and coefficients within reasonable limits and check the
following:

1. Accuracy: Let M be a set of collected 〈σ ,x〉 pairs where σ is a signature and x is an ED2

measurement for a workload with signature σ . We denote by M(σ)
∆
= {x|〈σ ,x〉 ∈M}. For

a signature σ , denote x̄σ the average of all measurements in M(σ):

x̄σ

∆
=

∑x∈M(σ) x
|M(σ)|

.

25

We then define the average error and accuracy as follows:

Avg.Error ∆
=

∑〈σ ,x〉∈M |(x− x̄σ)|
|M|

; and

Accuracy ∆
= 100 · (1−Avg.Error).

2. Usability is the percentage of the signatures shared among multiple benchmarks.

3. Size is the overall bit count of the signature.

The signature structure score is computed as score = Usability·Accuracy2

Size . We run the script several
times, each time limiting the search space according to the limits of the few a best results of
previous iteration. The best signature structure we reached, as shown in Figure 5.1 is composed
of the following:

• 2 bits for memory operations (coef=142);

• 1 bit for int operations (coef=78);

• 1 bit for SimdFP instructions (coef = 173);

• 2 bits for control instructions (coef = 67);

• 1 bit for MRD number of references (coef = 160);

• 3 bits for MRD average distance (coef = 200); and

• 1 bit for AIDC average distance (coef = 440).

This 11-bit signature strucutre has an Accuracy of 95.55% and a Usability of 83%.

Figure 5.1: signature structure.

26

5.3 The predictor

The predictor works as part of an ASCMP platform in which each core periodically provides
a measured pair 〈σ ,x〉, where σ is a signature generated by our signature generation scheme
described in Section 5.2 and x is an ED2 measurement for the given window.

The predictor maintains two data structures: LEARN contains the last measurement x obtained
for each core c and signature σ . PRED maps a signature σ to the highest performing core for σ .

The predictor reacts to prediction requests by the cores. For each incoming pair 〈σ ,x〉, the
predictor first tries to find σ in PRED. In case it is found (i.e., predictor hit), the predictor returns
PRED[σ]. In case of σ is not in PRED (i.e., predictor miss), the predictor stores the 〈σ ,x〉 pair in
LEARN. In case LEARN already contains an entry for each core in the system, the predictor adds
an entry σ → C to PRED, where C is the core providing the highest performance for σ among
the entries in LEARN. In case LEARN does not contain an entry for each core in the system, the
predictor returns an arbitrary core that was not yet recorded in LEARN for the given σ . There is
no limit on the number of signatures that are stored in LEARN, but any signature that was sampled
on all cores is garbage-collected and a corresponding entry is created in PRED.

5.4 Experiment

We now implement a simplified predictor. The predictor acquires the prediction data by executing
a training set of benchmarks on all cores in a training phase. We set the execution window to 25K
instructions.

We use our collected signatures and performance data obtained in Section 5.2 for a training
subset of 16 benchmarks: astar, mcf, libquantom, h264ref, bwaves, milc, gromacs, cactusADM,
leslie3d, namd, dealII, calculix, gemsFDTD, sjeng, tonto, and gcc. Each of the benchmarks is
executed on each of the cores in our ASCMP, storing the power and IPS parameters per each
signature in our predictor data structure. The number of recognized signatures at the end of the
training was 576, covering 28% of the 211 signature space. There were no apparent redundant bits
(i.e., bits that had constant value throughout the training).

Following that, we used the trained predictor to run each of the remaining benchmarks on its
own: zeusmp, lbm, omnetpp, soplex, bzip2, and hmmer. We did not update the trained predictor
between executions.

Throughout this chapter, we assume the migration penalty is 1000 cycles. This correspond
to hardware-based migrations or core reconfiguration models [28, 20]. We note that in case of
operating system involvement, where the penalty can be much higher, a different granularity of
behavior sampling (i.e., execution window size) should be used.

We do not simulate a multi-core environment using GEM5 or execute the benchmarks concur-
rently. Rather, we emulate running each of the benchmarks individually on a six-core system as

27

described in Table 4.2. This execution model is applicable in various architectures, e.g., Composite
Cores [20].

Our migration decision algorithm is simple; if the predictor returns the highest score to the
same core for four execution windows in a row (a total of 100K instructions), we migrate the
workload to that core. In case of a predictor miss, the workload is assigned immediately to the
core suggested by the predictor. This is done in order to shorten new signature learning phase in
operational mode.

Table 5.1 summarizes our prediction behavior. To all benchmarks but lbm, training was suf-
ficient, showing a low number of misses. For lbm, the predictor suffers from extremely high
miss rate and a large number of migrations, indicating high learning penalty and rapid changes of
behaviors.

Figure 5.2 compares perfect assignment presented in the last chapter with the emulated pre-
dictor, by showing the percentage of improvement in ED2. When comparing lbm predictor per-
formance to perfect, we see significant degradation, which corresponds to the high miss rate. The
rest of the benchmark shows a very close performance of our predictor to a perfect one.

Table 5.1: Learning predictor hits, misses and migrations.

Hits Miss Num Migrations
bzip2 142823 1 1312

omnetpp 143061 5 40
zeusmp 143427 94 359
soplex 148118 143 784
hmmer 154371 0 328

lbm 158743 1046 4509

The results for the six benchmark using the trained predictor range between 12.5% and 33.8%
with an average of 22.2%.

28

Figure 5.2: Performance improvements over Big – Perfect vs. Predictor.

29

6 Conclusion

Making the simple complicated is commonplace; making the complicated simple,

awesomely simple, that’s creativity.

Charles Mingus

In this thesis, we have argued that using a linear set of cores, ranging from little to big, limits
the potential of ACMPs. We have suggested using specialized cores which comply to the same ISA
to achieve higher power efficiency. To manage the complexity of running diverse workloads on di-
verse cores, we have created a mechanism, based on sampling and micro-architecture-independent
signatures. We have shown that due to a high correlation between workloads that share signatures
and their performances, we can group different workloads into similarity groups and build a reli-
able history-based performance predictor.

We evaluated our proposed system using the GEM5 architectural simulator. We altered GEM5
so it provides all the information we need to produce micro-architecture-independent signatures as
well as IPS, instruction histograms, and other information that is required for calculating power.
For power and area estimation we used McPAT. We have executed the SPEC2006 CPU benchmark
suite, which provides compute-intensive applications from diverse fields.

Our ideal system, which consists of six cores with perfect assignment and zero migration cost,
shows up to 37% power-performance gain with 13% on average for the SPEC2006 benchmarks in
comparison to big.LITTLE based ACMP.

Our proposed predictor, using an 11-bit signature structure shows an average prediction error
of less than 4.5%. The same system with a trained history-based predictor, with a migration
penalty of 1000 cycles, shows up to 33.8% power-performance gain with 22.2% on average for a
subset of six benchmarks selected from SPEC2006 suite.

30

References

[1] Arunachalam Annamalai, Rance Rodrigues, Israel Koren, and Sandip Kundu. An opportunis-
tic prediction-based thread scheduling to maximize throughput/watt in amps. In Proceedings

of the 22nd international conference on Parallel architectures and compilation techniques,
pages 63–72. IEEE Press, 2013.

[2] Saisanthosh Balakrishnan, Ravi Rajwar, Mike Upton, and Konrad Lai. The impact of per-
formance asymmetry in emerging multicore architectures. In Computer Architecture, 2005.

ISCA’05. Proceedings. 32nd International Symposium on, pages 506–517. IEEE, 2005.

[3] Michela Becchi and Patrick Crowley. Dynamic thread assignment on heterogeneous multi-
processor architectures. In Proceedings of the 3rd conference on Computing frontiers, pages
29–40. ACM, 2006.

[4] Erik Berg and Erik Hagersten. Statcache: a probabilistic approach to efficient and accu-
rate data locality analysis. In Performance Analysis of Systems and Software, 2004 IEEE

International Symposium on-ISPASS, pages 20–27. IEEE, 2004.

[5] Kristof Beyls and Erik DHollander. Reuse distance as a metric for cache behavior. In Pro-

ceedings of the IASTED Conference on Parallel and Distributed Computing and systems,
volume 14, pages 350–360, 2001.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti, et al.
The gem5 simulator. ACM SIGARCH Computer Architecture News, 39(2):1–7, 2011.

[7] Ashutosh S Dhodapkar and James E Smith. Comparing program phase detection techniques.
In Proceedings of the 36th annual IEEE/ACM International Symposium on Microarchitec-

ture, page 217. IEEE Computer Society, 2003.

[8] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Alisafaee,
Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, and Babak

31

Falsafi. Clearing the clouds: a study of emerging scale-out workloads on modern hardware.
In ACM SIGPLAN Notices, volume 47, pages 37–48. ACM, 2012.

[9] John L Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer Archi-

tecture News, 34(4):1–17, 2006.

[10] Mark D Hill and Michael R Marty. Amdahl’s law in the multicore era. Computer, 41(7),
2008.

[11] Kenneth Hoste and Lieven Eeckhout. Microarchitecture-independent workload characteri-
zation. IEEE Micro, 27(3), 2007.

[12] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F Martinez. Core fusion: accommo-
dating software diversity in chip multiprocessors. In ACM SIGARCH Computer Architecture

News, volume 35, pages 186–197. ACM, 2007.

[13] Richard E Kessler, Edward J McLellan, and David A Webb. The alpha 21264 microprocessor
architecture. In Computer Design: VLSI in Computers and Processors, 1998. ICCD’98.

Proceedings. International Conference on, pages 90–95. IEEE, 1998.

[14] Omer Khan and Sandip Kundu. A self-adaptive scheduler for asymmetric multi-cores. In
Proceedings of the 20th symposium on Great lakes symposium on VLSI, pages 397–400.
ACM, 2010.

[15] David Koufaty, Dheeraj Reddy, and Scott Hahn. Bias scheduling in heterogeneous multi-core
architectures. In Proceedings of the 5th European conference on Computer systems, pages
125–138. ACM, 2010.

[16] Rakesh Kumar, Keith I Farkas, Norman P Jouppi, Parthasarathy Ranganathan, and Dean M
Tullsen. Single-isa heterogeneous multi-core architectures: The potential for proces-
sor power reduction. In Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual

IEEE/ACM International Symposium on, pages 81–92. IEEE, 2003.

[17] Rakesh Kumar, Dean M Tullsen, Norman P Jouppi, and Parthasarathy Ranganathan. Hetero-
geneous chip multiprocessors. Computer, 38(11):32–38, 2005.

[18] Daniel Leibholz and Rahul Razdan. The alpha 21264: A 500 mhz out-of-order execution
microprocessor. In Compcon’97. Proceedings, IEEE, pages 28–36. IEEE, 1997.

[19] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and Norman P
Jouppi. Mcpat: an integrated power, area, and timing modeling framework for multicore and

32

manycore architectures. In Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM

International Symposium on, pages 469–480. IEEE, 2009.

[20] Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Faissal M Sleiman, Ronald Dres-
linski, Thomas F Wenisch, and Scott Mahlke. Composite cores: Pushing heterogeneity into
a core. In Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 317–328. IEEE Computer Society, 2012.

[21] Jason Mars and Lingjia Tang. Whare-map: heterogeneity in homogeneous warehouse-scale
computers. In ACM SIGARCH Computer Architecture News, volume 41, pages 619–630.
ACM, 2013.

[22] MediaTek. MediaTek CorePilotTM - Heterogeneous Multi-Processing Technology, 2013.
URL http://cdn-cw.mediatek.com/WhitePapers/MediaTek_CorePilot.pdf.

[23] Tomer Y Morad, Uri C Weiser, A Kolodnyt, Mateo Valero, and Eduard Ayguade. Perfor-
mance, power efficiency and scalability of asymmetric cluster chip multiprocessors. IEEE

Computer Architecture Letters, 5(1):14–17, 2006.

[24] Peter Greenhalgh, ARM. Big. LITTLE Processing with ARM Cortex-A15 & Cortex-A7,
2011.

[25] Fred J Pollack. New microarchitecture challenges in the coming generations of cmos process
technologies (keynote address). In Proceedings of the 32nd annual ACM/IEEE international

symposium on Microarchitecture, page 2. IEEE Computer Society, 1999.

[26] Qualcomm. Snapdragon S4 Processors: System on Chip Solutions for a New

Mobile Age, 2012. URL https://developer.qualcomm.com/download/

qusnapdragons4whitepaperfnlrev6.pdf.

[27] Krishna K Rangan, Michael D Powell, Gu-Yeon Wei, and David Brooks. Achieving uniform
performance and maximizing throughput in the presence of heterogeneity. In High Perfor-

mance Computer Architecture (HPCA), 2011 IEEE 17th International Symposium on, pages
3–14. IEEE, 2011.

[28] Rance Rodrigues, Arunachalam Annamalai, Israel Koren, and Sandip Kundu. Improving
performance per watt of asymmetric multi-core processors via online program phase classi-
fication and adaptive core morphing. ACM Transactions on Design Automation of Electronic

Systems (TODAES), 18(1):5, 2013.

33

http://cdn-cw.mediatek.com/WhitePapers/MediaTek_CorePilot.pdf
https://developer.qualcomm.com/download/qusnapdragons4whitepaperfnlrev6.pdf
https://developer.qualcomm.com/download/qusnapdragons4whitepaperfnlrev6.pdf

[29] Daniel Shelepov and Alexandra Fedorova. Scheduling on heterogeneous multicore proces-
sors using architectural signatures. In Proceedings of the Workshop on the Interaction be-

tween Operating Systems and Computer Architecture, 2008.

[30] Daniel Shelepov, Juan Carlos Saez Alcaide, Stacey Jeffery, Alexandra Fedorova, Nestor
Perez, Zhi Feng Huang, Sergey Blagodurov, and Viren Kumar. Hass: a scheduler for hetero-
geneous multicore systems. ACM SIGOPS Operating Systems Review, 43(2):66–75, 2009.

[31] Timothy Sherwood and Brad Calder. Time varying behavior of programs, 1999.

[32] Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and Brad Calder. Dis-
covering and exploiting program phases. Micro, IEEE, 23(6):84–93, 2003.

[33] Sadagopan Srinivasan, Ravishankar Iyer, Li Zhao, and Ramesh Illikkal. Heteroscouts: hard-
ware assist for os scheduling in heterogeneous cmps. In Proceedings of the ACM SIGMET-

RICS joint international conference on Measurement and modeling of computer systems,
pages 149–150. ACM, 2011.

[34] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel Emer.
Scheduling heterogeneous multi-cores through performance impact estimation (pie). In Pro-

ceedings of the 39th International Symposium on Computer Architecture, pages 213–224.
IEEE Press, 2012.

[35] Uri Weiser. Vlsi architecture design:asymmetric platform approach. Retrieved from
http://eecourses.technion.ac.il/046853/lectures/Winter2010/03 VLSI Asymmetric Platform
approach 2011.pdf, 2011.

[36] Jonathan A Winter and David H Albonesi. Scheduling algorithms for unpredictably het-
erogeneous cmp architectures. In Dependable Systems and Networks With FTCS and DCC,

2008. DSN 2008. IEEE International Conference on, pages 42–51. IEEE, 2008.

[37] Jonathan A Winter, David H Albonesi, and Christine A Shoemaker. Scalable thread schedul-
ing and global power management for heterogeneous many-core architectures. In Proceed-

ings of the 19th international conference on Parallel architectures and compilation tech-

niques, pages 29–40. ACM, 2010.

[38] Shikang Xu, Israel Koren, and CM Krishna. Improving processor lifespan and energy con-
sumption using dvfs based on ilp monitoring. In Green Computing Conference and Sustain-

able Computing Conference (IGSC), 2015 Sixth International, pages 1–6. IEEE, 2015.

34

מבנה החתימה צריך להיות קטן מספיק)מבחינת מספר ביטים(כדי לאפשר מנגנון אפקטיבי, ולהשתמש

רק במאפיינים שאפשרי והגיוני להפיק בזמן ריצה. בנוסף, החתימה צריכה למלא שתי דרישות שלעיתים

 מנוגדות זו לזו:

החתימה צריכה להיות גמישה מספיק כדי לבטא התנהגויות שונות ולספק תאימות גבוהה –דיוק .1

 בין החתימה לבין מאפייני הביצועים ביחידות העיבוד השונות.

החתימה צריך להיות קטנה מספיק כדי לאפשר קיטלוג של תוכנות שונות –יכולת אגרגציה .2

 לאותה קבוצה.

תגר של מציאת עמק השווה בין שתי דרישות מנוגדות אלו ויוצרים בתזה זו, אנו מתמודדים עם הא

 חתימה שהיא גם הגיונית למימוש וגם פרקטית לשימוש.

. אנו משתמשים בסט פקודות של GEM5את המערכת בעזרת סימולטור ארכיטקטוני שנקרא בוחניםאנו

ARM במעבד ,out-of-order ובמערכת הזיכרון הקלאסית. אנו משנים אתGEM5 כך שיפיק את המידע

לו אנו זקוקים כדי לייצר את החתימות, ואת מאפייני הביצועים)פקודות בשנייה(ומאפיינים נוספים

. McPATלחשב שטח והספק אנו משתמשים בכלי נוסף הנקרא על מנתהנדרשים כדי לחשב הספק.

אשר SPEC-CPU-2006 benchmark suiteהתוכניות שבהן אנו משתמשים לשם בחינת התזה הן מחבילת

 מספקת תוכניות מרובות חישובים מתחומים שונים.

סט יחידות העיבוד שאנו בוחנים, במודל ביצוע אופטימלי וללא עלויות הגירת תהליכים מראה שיפור

 תוכניות שנבחנו. 22עבור 13%וממוצע של 37%ביצועים של עד

תוכניות, במודל שבו 16וסף לחזאי שאומן על המערכת שאנו בוחנים, המורכבת מסט יחידות העיבוד בנ

וממוצע של 33.8%מחזורי שעון, מראה שיפור ביצועים של עד 1000עלות הגירת התהליכים היא

 לשש תוכניות שנבחנו. 22.2%

 תרומות התזה:

 אנו מראים ששימוש במעבדים "מומחים" משפר ביצועים. .1

ורה יכולות לזהות התנהגות של תוכניות ארכיטקט-אנו מראים שחתימות שאינן תלויות מיקרו .2

 ולתת אינדיקציה טובה לביצועים עבור תוכניות שחולקות אותה חתימה.

 אנו מציעים שיטה לחיזוי ביצועים שמבוססת על היסטוריה של תוכניות דומות. .3

 תקציר

נימי במסגרת מחקר זה נבחנה האפשרות לשילוב מספר יחידות עיבוד בעלות ממשק זהה ומימוש פ

 שונה.

מולטי מעבדים הטרוגניים מכילים מספר סוגים של יחידות עיבוד על שביב אחד. כל יחידת עיבוד עובדת

מעבד הטרוגני, -. מולטי מעבד אסימטרי הוא מולטימגוונים ביצועיםומספקת יכולות ולכן בצורה שונה

 (.ISAשבו כל יחידות העיבוד תואמות לאותו סט פקודות)

מולטי מעבדים אסימטריים משפרים ביצועים על ידי הרצת תוכניות על יחידות עיבוד מתאימות. התאמה

של תוכניות ליחידות עיבוד, כאשר התנהגות התוכניות משתנה, היא אתגר. פתרונות מעשיים עד כה

ות בהספק, הניחו, שניתן לסדר את יחידות העיבוד על פי חוזק: מיחידות ביצוע קטנות ופשוטות, שחוסכ

ועד ליחידות ביצוע גדולות ומורכבות, שמיועדות לתוכניות מרובות חישובים. גישה זו מאפשרת התאמה

 יחסית פשוטה בין תוכנית ליחידת עיבוד.

-Apple A10, Nvidia Kalתופסות נתח שוק עצום) ARMשל big.LITTLEבעוד שארכיטקטורות מבוססות

el, Qualcomm Krait, Samsung Exynos, MediaTek CorePilot, Hauwei Kirin ואחרים(, התעשייה עדיין ,

נמנעת ממערכות אסימטריות מגוונות יותר. אחת הסיבות היא ההנחה הגורסת כי החישוב הנוסף

 שיידרש לניהול מערכות כאלה הוא גדול.

ת הפוטנציאל של בתזה זו, אנו טוענים שהגבלת מרחב התכן לסידור לינארי)מקטן עד גדול(מגביל א

מעבדים אסימטריים. אנו בוחנים את הרעיון של שימוש במספר מעבדים "מומחים" בשביל להשיג -מולטי

מעבדים אסימטריים לינאריים. המוטיבציה לשימוש במעבדים -ביצועים טובים יותר מאשר מולטי

ן להגיע לביצועים "מומחים" נובעת מהעובדה שככל שהתכן ממוקד יותר עבור תוכנית מסוימת, כך נית

 טובים יותר, להספק נמוך יותר ולשטח קטן יותר.

מעבדים אסימטריים מגוונים הוא משימה מורכבת. על מנת -ניהול ביצוע של תוכנות מגוונות במולטי

לבצע משימה זו ביעילות יש צורך במנגנון, שיחזה ביצועים ויתאים את התוכניות למעבדים המתאימים.

ציעים טבלת חיפוש מבוססת היסטוריה, שיכולה לחלוק מידע בין יחידות העיבוד לשם מטרה זו, אנו מ

-תלויות במיקרו ןיחידות העיבוד מפיקה חתימות שאינהשונות. בזמן הרצת תוכנית כל אחת מ

ארכיטקטורה ודוגמת את ביצועי יחידת העיבוד המתאימים לחתימה. החתימה נבנית מנתונים הקשורים

השפעת התוכנית על יחידת העיבוד. לדוגמה, היסטוגרמת פקודות ודפוס גישה לתוכנית בלבד, ולא מ

לזיכרון הם תכונות של התוכנית. החטאות זיכרון מטמון אינן תכונות של התוכנית. בכך שאנו משתמשים

ארכיטקטורה בלבד, אנו מבטיחים שלכל תוכנית תהיה אותה חתימה בלי -בנתונים שאינם תלויים במיקרו

 יחידת העיבוד שמבצעת אותה תוכנית.שום קשר ל

החתימה נוצרת למטרת אפיון ביצועים עבור כל יחידת עיבוד, כאשר תוכניות שחולקות אותה חתימה

צפויות להראות ביצועים דומים כאשר הן מבוצעות על אותה יחידת עיבוד. באופן זה מערכת ניהול

מראה התנהגות מסוימת, לתוכנית אחרת הביצוע מנצלת דמיון על מנת לחזות ביצועים של תוכנית ה

 המראה התנהגות דומה.

המחקר נעשה בהנחיית פרופסור עדית קידר בפקלוטה להנדסת

 חשמל בטכניון.

ניצול דמיון בין התנהגות תהליכים לשם החלטות

השמה במערכות אסימטריות מגוונות מרובות

 מעבדים

 חיבור על מחקר לשם מילוי חלקי של הדרישות לקבלת התואר

 מגיסטר למדעים בהנדסת חשמל

 דני שקט

 מכון טכנולוגי לישראל –הוגש לסנט הטכניון

 2018רואר פבתשע"ח, חיפה, אדרב

ניצול דמיון בין התנהגות תהליכים

לשם החלטות השמה במערכות

אסימטריות מגוונות מרובות

 מעבדים

 דני שקט

	List of Figures
	List of Tables
	Introduction
	Asymmetric CMP
	A case for specialized cores
	Predicting performance via micro-architecture-independent signatures
	Simulator and tools
	Summary of contributions

	Background and related work
	Model
	Workload properties
	Instruction level parallelism
	Memory usage pattern
	Instruction types histogram

	CPU model
	Metrics

	The case for ASCMP
	Profiling workloads
	Selecting cores
	Results: static assignment
	Results: dynamic assignment

	History-based prediction using signatures
	Workload similarities
	Building the signature
	The predictor
	Experiment

	Conclusion
	References

