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Abstract
Data sketches are approximate succinct summaries of long
data streams. They are widely used for processing massive
amounts of data and answering statistical queries about it.
Existing libraries producing sketches are very fast, but do
not allow parallelism for creating sketches using multiple
threads or querying them while they are being built. We
present a generic approach to parallelising data sketches ef-
ficiently and allowing them to be queried in real time, while
bounding the error that such parallelism introduces. Utilising
relaxed semantics and the notion of strong linearisability we
prove our algorithm’s correctness and analyse the error it in-
duces in two specific sketches. Our implementation achieves
high scalability while keeping the error small. We have con-
tributed one of our concurrent sketches to the open-source
data sketches library.

1 Introduction
Data sketching algorithms, or sketches for short [15], have
become an indispensable tool for high-speed computations
over massive datasets in recent years. Their applications
include a variety of analytics and machine learning use cases,
e.g., data aggregation [9, 12], graph mining [14], anomaly
(e.g., intrusion) detection [27], real-time data analytics [18],
and online classification [25].
Sketches are designed for stream settings in which each

data item is only processed once. A sketch data structure
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Figure 1. Scalability of DataSketches’ Θ sketch protected by
a lock vs. our concurrent implementation.

is essentially a succinct (sublinear) summary of a stream
that approximates a specific query (unique element count,
quantile values, etc.). The approximation is typically very
accurate – the error drops fast with the stream size [15].
Practical sketch implementations have recently emerged

in toolkits [3] and data analytics platforms (e.g., Power-
Drill [21], Druid [18], Hillview [6], and Presto [2]). However,
these implementations are not thread-safe, allowing neither
parallel data ingestion nor concurrent queries and updates;
concurrent use is prone to exceptions and gross estimation
errors. Applications using these libraries are therefore re-
quired to explicitly protect all sketch API calls by locks [4, 7].

We present a generic approach to parallelising data sketches
efficiently while bounding the error that such a parallelisa-
tion might introduce. Our goal is to enable simultaneous
queries and updates to a sketch from multiple threads. Our
solution is carefully designed to do so without slowing down
operations as a result of synchronisation. This is particularly
challenging because sketch libraries are extremely fast, often
processing tens of millions of updates per second.

We capitalise on the well-known sketchmergeability prop-
erty [15], which enables computing a sketch over a stream
by merging sketches over substreams. Previous works have
exploited this property for distributed stream processing
(e.g., [16, 21]), devising solutions with a sequential bottle-
neck at the merge phase and where queries cannot be served
before all updates complete. In contrast, our method is based
on shared memory and constantly propagates results to a

https://doi.org/10.1145/3332466.3374512
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queryable sketch. We adaptively parallelise stream process-
ing: for small streams, we forgo parallel ingestion as it might
introduce significant errors; but as the stream becomes large,
we process it in parallel using small thread-local sketches
with continuous background propagation of local results to
the common (queryable) sketch.
We instantiate our generic algorithm with two popular

sketches from the open-source Apache DataSketches (Incu-
bating) library [3]: (1) a KMV Θ sketch [12], which estimates
the number of unique elements in a stream; and (2) a Quan-
tiles sketch [9] estimating the stream element with a given
rank. We have contributed the former back to the Apache
DataSketches (Incubating) library [5]. Yet we emphasize that
our design is generic and applicable to additional sketches.

Figure 1 compares the ingestion throughput of our concur-
rent Θ sketch to that of a lock-protected sequential sketch,
on multi-core hardware. As expected, the trivial solution
does not scale whereas our algorithm scales linearly.
Concurrency induces an error, and one of the main chal-

lenges we address is analysing this additional error. To begin
with, our concurrent sketch is a concurrent data structure,
andwe need to specify its semantics.We do so using a flavour
of relaxed consistency similar to [10, 20] that allows opera-
tions to “overtake” some other operations. Thus, a query
may return a result that reflects all but a bounded number
of the updates that precede it. While relaxed semantics were
previously used for data structures such as stacks [20] and
priority queues [11, 23], we believe that they are a natural
fit for data sketches. This is because sketches are typically
used to summarise streams that arise from multiple real-
world sources and are collected over a network with variable
delays, and so even if the sketch ensures strict semantics,
queries might miss some real-world events that occur be-
fore them. Additionally, sketches are inherently approximate.
Relaxing their semantics therefore “makes sense”, as long
as it does not excessively increase the expected error. If a
stream is much longer than the relaxation bound, then in-
deed the error induced by the relaxation is negligible. But
since the error allowed by such a relaxation is additive, in
small streams it may have a large impact. This motivates our
adaptive solution, which forgoes relaxing small streams.
We proceed to show that our algorithm satisfies relaxed

consistency. But this raises a new difficulty: relaxed consis-
tency is defined with regards to a deterministic specifica-
tion, whereas sketches are randomised. We therefore first
de-randomise the sketch’s behaviour by delegating the ran-
dom coin flips to an oracle. We can then relax the resulting
sequential specification. Next, because our concurrent sketch
is used within randomised algorithms, it is not enough to
prove its linearisability. Rather, we prove that our generic
concurrent algorithm instantiated with sequential sketch 𝑆

satisfies strong linearisability [19] with regards to a relaxed
sequential specification of the de-randomised 𝑆 .

We then analyse the error of the relaxed sketches under
random coin flips, with an adversarial scheduler that may
delay operations in a way that maximises the error. We show
that our concurrent Θ sketch’s error is coarsely bounded by
twice that of the corresponding sequential sketch. The error
of the concurrent Quantiles sketch approaches that of the
sequential one as the stream size tends to infinity.

Main contribution In summary, this paper tackles the
problem of concurrent sketches, offers a general efficient
solution for it, and rigorously analyses this solution. While
the paper makes use of many known techniques, it combines
them in a novel way. The main technical challenges we ad-
dress are (1) devising a high-performance generic algorithm
that supports real-time queries concurrently with updates
without inducing an excessive error; (2) proving the relaxed
consistency of the algorithm; and (3) bounding the error
induced by the relaxation in both short and long streams.

The paper proceeds as follows: Section 2 lays out themodel
for our work and Section 3 provides background on sequen-
tial sketches. In Section 4 we formulate a flavour of relaxed
semantics appropriate for data sketches. Section 5 presents
our generic algorithm, and Section 6 analyses error bounds.
Section 7 empirically studies theΘ sketch’s performance and
error with different stream sizes. Finally, Section 8 concludes.
The full paper [24] formally proves strong linearisability of
our generic algorithm, and includes some of the mathemati-
cal derivations used in our analysis.

2 Model
We consider a non-sequentially consistent shared memory
model that enforces program order on all variables and al-
lows definition of atomic variables as in Java [1] and C++ [13].
Practically speaking, reads and writes of atomic variables are
guarded by memory fences, which guarantee that all writes
executed before a write w to an atomic variable are visible
to all reads that follow (on any thread) a read r of the same
atomic variable s.t. r occurs after w.

A thread takes steps according to a deterministic algorithm
defined as a state machine. An execution of an algorithm is
an alternating sequence of steps and states, where each step
follows some thread’s state machine. Algorithms implement
objects supporting operations, such as query and update. An
operation’s execution consists of a series of steps, begin-
ning with an invoke and ending in a response. The history
of an execution 𝜎 , denotedH(𝜎), is its subsequence of op-
eration invoke and response steps. In a sequential history,
each invocation is immediately followed by its response. The
sequential specification (SeqSpec) of an object is its set of
allowed sequential histories.
A linearisation of a concurrent execution 𝜎 is a history

𝐻 ∈SeqSpec such that (1) after adding responses to some
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pending invocations in 𝜎 and removing others, 𝐻 and 𝜎 con-
sist of the same invocations and responses (including parame-
ters) and (2)𝐻 preserves the order between non-overlapping
operations in 𝜎 . Golab et al. [19] have shown that in order
to ensure correct behaviour of randomised algorithms under
concurrency, one has to prove strong linearisability:

Definition 2.1 (Strong linearisability). A function 𝑓 map-
ping executions to histories is prefix preserving if for every
two executions 𝜎, 𝜎 ′ s.t. 𝜎 is a prefix of 𝜎 ′, 𝑓 (𝜎) is a prefix
of 𝑓 (𝜎 ′).

An algorithm 𝐴 is a strongly linearisable implementation
of an object 𝑜 if there is a prefix preserving function 𝑓 that
maps every execution 𝜎 of 𝐴 to a linearisation 𝐻 of 𝜎 .

For example, executions of atomic variables are strongly
linearisable.

3 Background: sequential sketches
A sketch 𝑆 summarises a collection of elements
{ 𝑎1, 𝑎2, . . . , 𝑎𝑛 }, processed in some order given as a stream
𝐴 = 𝑎1, 𝑎2, . . . , 𝑎𝑛 . The desired summary is agnostic to the
processing order, but the underlying data structures may
differ due to the order. Its API is:

𝑆 .init() initialises 𝑆 to summarise the empty stream;
𝑆 .update(𝑎) processes stream element 𝑎;
𝑆 .query(𝑎𝑟𝑔) returns the function estimated by the sketch

over the stream processed thus far, e.g., the number of
unique elements; takes an optional argument, e.g., the
requested quantile.

𝑆 .merge(𝑆 ′) merges sketches 𝑆 and 𝑆 ′ into 𝑆 ; i.e., if 𝑆
initially summarised stream 𝐴 and 𝑆 ′ summarised 𝐴′,
then after this call, 𝑆 summarises the concatenation of
the two, 𝐴| |𝐴′.

Example: Θ sketch Our running example is a Θ sketch
based on the K Minimum Values (KMV) algorithm [12] given
in Algorithm 1 (ignore the last three functions for now). It
maintains a sampleSet and a parameter Θ that determines
which elements are added to the sample set. It uses a random
hash function ℎ whose outputs are uniformly distributed
in the range [0, 1], and Θ is always in the same range. An
incoming stream element is first hashed, and then the hash
is compared to Θ. In case it is smaller, the value is added to
sampleSet. Otherwise, it is ignored.
Because the hash outputs are uniformly distributed, the

expected proportion of values smaller than Θ is Θ. There-
fore, we can estimate the number of unique elements in the
stream by dividing the number of (unique) stored samples
by Θ (assuming that the random hash function is drawn
independently of the stream values).

KMV Θ sketches keep constant-size sample sets: they take
a parameter 𝑘 and keep the 𝑘 smallest hashes seen so far. Θ
is 1 during the first 𝑘 updates, and subsequently it is the hash
of the largest sample in the set. Once the sample set is full,

every update that inserts a new element also removes the
largest one and updates Θ. This is implemented efficiently
using a min-heap. The merge method adds a batch of samples
to sampleSet.

Accuracy Today, sketches are used sequentially, so that
the entire stream is processed and then 𝑆 .query(arg) returns
an estimate of the desired function on the entire stream. Ac-
curacy is defined in one of two ways. One approach analyses
the Relative Standard Error (RSE) of the estimate, formally
defined in the full paper [24], which is the standard error
normalized by the quantity being estimated. For example,
a KMV Θ sketch with 𝑘 samples has an RSE of less than
1/
√
𝑘 − 2 [12].

A probably approximately correct (PAC) sketch provides
a result that estimates the correct result within some error
bound 𝜖 with a failure probability bounded by some parame-
ter 𝛿 . For example, a Quantiles sketch approximates the 𝜙th
quantile of a stream with 𝑛 elements by returning an ele-
ment whose rank is in [(𝜙 − 𝜖)𝑛, (𝜙 + 𝜖)𝑛] with probability
at least 1 − 𝛿 [9].

4 Relaxed consistency for concurrent
sketches

Previous work by Alistarh et al. [10] has presented a formal-
isation for a randomized relaxation of an object. The main
idea is to have the parallel execution approximately simulate
the object’s correct sequential behaviour, with some pro-
vided error distribution. In their framework, one considers
the parallel algorithm and bounds the probability that it in-
duces a large error relative to the deterministic sequential
specification. This approach is not suitable for our analy-
sis, since the sequential object we parallelise (namely the
sketch) is itself randomised. Thus, there are two sources of
error: (1) the approximation error in the sequential sketch
and (2) the additional error induced by the parallelisation.
For the former, we wish to leverage the existing literature
on analysis of sequential sketches. To bound the latter, we
use a different methodology: we first derandomise the se-
quential sketch by delegating its coin flips to an oracle, and
then analyse the relaxation of the (now) deterministic sketch.
Finally, we leverage the sequential sketch analysis to arrive
at a distribution for the returned value of a query.
We adopt a variant of Henzinger et al.’s [20] out-of-order

relaxation, which generalises quasi-linearisabilty [8]. Intu-
itively, this relaxation allows a query to “miss” a bounded
number of updates that precede it. Because a sketch is order
agnostic, we further allow re-ordering of the updates “seen”
by a query.
A relaxed property for an object 𝑜 is an extension of its

sequential specification to allow more behaviours. This re-
quires 𝑜 to have a sequential specification, so we convert
sketches into deterministic objects by capturing their ran-
domness in an external oracle; given the oracle’s output, the
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sketches behave deterministically. For the Θ sketch, the ora-
cle’s output is passed as a hidden variable to 𝑖𝑛𝑖𝑡 , where the
sketch selects the hash function. In the Quantiles sketch, a
coin flip is provided with every update. For a derandomised
sketch, we refer to the set of histories arising in its sequential
executions as SeqSketch, and use SeqSketch as its sequential
specification. We can now define our relaxed semantics:

Definition 4.1 (r-relaxation). A sequential history 𝐻 is an
r-relaxation of a sequential history 𝐻 ′, if 𝐻 is comprised of
all but at most 𝑟 of the invocations in 𝐻 ′ and their responses,
and each invocation in 𝐻 is preceded by all but at most 𝑟
of the invocations that precede the same invocation in 𝐻 ′.
The r-relaxation of SeqSketch is the set of histories that have
r-relaxations in SeqSketch:
𝑆𝑒𝑞𝑆𝑘𝑒𝑡𝑐ℎ𝑟 ≜ {𝐻 ′ |∃𝐻 ∈SeqSketch s.t.𝐻 is an r-relaxation

of 𝐻 ′}.

Note that our formalism slightly differs from that of [20] in
that we start with a serialisation 𝐻 ′ of an object’s execution
that does not meet the sequential specification and then “fix”
it by relaxing it to a history 𝐻 in the sequential specification.
In other words, we relax history 𝐻 ′ by allowing up to 𝑟

updates to “overtake” every query, so the resulting relaxation
𝐻 is in SeqSketch.

Figure 2. 𝐻 is a 1-relaxation of 𝐻 ′.

An example is given in Figure 2, where 𝐻 is a 1-relaxation
of history𝐻 ′. Both𝐻 and𝐻 ′ are sequential, as the operations
don’t overlap.
The impact of the 𝑟 -relaxation on the sketch’s error de-

pends on the adversary, which may select up to 𝑟 updates
to hide from every query. There exist two adversary mod-
els: A weak adversary decides which 𝑟 operations to omit
from every query without observing the coin flips. A strong
adversary may select which updates to hide after learning
the coin flips. Neither adversary sees the protocol’s internal
state, however both know the algorithm and see the input.
As the strong adversary knows the coin flips, it can then
extrapolate the state; the weak adversary, on the other hand,
cannot.

5 Generic concurrent sketch algorithm
We now present our generic concurrent algorithm. The al-
gorithm uses, as a building block, an existing (non-parallel)
sketch. To this end, we extend the standard sketch interface
in Section 5.1, making it usable within our generic frame-
work. Our algorithm is adaptive – it serialises ingestion in
small streams and parallelises it in large ones. For clarity of

presentation, we present in Section 5.2 the parallel phase of
the algorithm, which provides relaxed semantics appropriate
for large streams; in the full paper [24] we prove that it is
strongly linearisable with respect to an 𝑟 -relaxation of the
sequential sketch with which it is instantiated. Section 5.3
then discusses the adaptation for small streams.

5.1 Composable sketches
In order to be able to build upon an existing sketch S, we first
extend it to support a limited form of concurrency. Sketches
that support this extension are called composable.
A composable sketch has to allow concurrency between

merges and queries. To this end, we add a snapshot API that
can run concurrently with merge and obtains a queryable
copy of the sketch. The sequential specification of this oper-
ation is as follows:

𝑆 .snapshot() returns a copy 𝑆 ′ of 𝑆 such that immedi-
ately after 𝑆 ′ is returned, 𝑆 .query(𝑎𝑟𝑔) = 𝑆 ′.query(𝑎𝑟𝑔)
for every possible 𝑎𝑟𝑔.

A composable sketch needs to allow concurrency only
between snapshots and other snapshot andmerge operations,
and we require that such concurrent executions be strongly
linearisable. Our Θ sketch, shown below, simply accesses an
atomic variable that holds the query result. In other sketches
snapshots can be achieved efficiently by a double collect of
the relevant state.

Pre-filtering When multiple sketches are used in a multi-
threaded algorithm, we can optimise them by sharing “hints”
about the processed data. This is useful when the stream
sketching function depends on the processed stream pre-
fix. For example, we explain below how Θ sketches sharing
a common value of Θ can sample fewer updates. Another
example is reservoir sampling [26]. To support this optimi-
sation, we add the following two APIs:

𝑆 .calcHint() returns a value ℎ ≠ 0 to be used as a hint.
𝑆 .shouldAdd(ℎ, 𝑎) given a hint ℎ, filters out updates

that do not affect the sketch’s state.
Formally, the semantics of these APIs are defined using the
notion of summary: (1) When a sketch is initialised, we say
that its state (or simply the sketch) summarises the empty
history, and similarly, the empty stream; we refer to the
sketch as empty. (2) After we apply a sequential history

𝐻 = 𝑆.𝑢𝑝𝑑𝑎𝑡𝑒 (𝑎1), 𝑆 .𝑟𝑒𝑠𝑝 (𝑎1), . . . 𝑆 .𝑢𝑝𝑑𝑎𝑡𝑒 (𝑎𝑛), 𝑆 .𝑟𝑒𝑠𝑝 (𝑎𝑛)
to a sketch 𝑆 , we say that 𝑆 summarises history 𝐻 , and, sim-
ilarly, summarises the stream 𝑎1, . . . , 𝑎𝑛 . Given a sketch 𝑆

that summarises a stream 𝐴, if shouldAdd(𝑆.𝑐𝑎𝑙𝑐𝐻𝑖𝑛𝑡 (), 𝑎)
returns false then for every streams 𝐵1, 𝐵2 and sketch 𝑆 ′ that
summarises 𝐴| |𝐵1 | |𝑎 | |𝐵2, 𝑆 ′ also summarises 𝐴| |𝐵1 | |𝐵2.

These APIs do not need to support concurrency, and may
be trivially implemented by always returning 𝑡𝑟𝑢𝑒 . Note that
𝑆 .shouldAdd is a static function that does not depend on the
current state of 𝑆 .
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ComposableΘ sketch We add the three additional APIs to
Algorithm 1. The snapshot method copies est. Note that the
result of a merge is only visible after writing to est, because
it is the only variable accessed by the query. As est is an
atomic variable, the requirement on snapshot and merge is
met. To minimise the number of updates, calcHint returns Θ
and shouldAdd checks if ℎ(𝑎) < Θ, which is safe because the
value ofΘ in sketch 𝑆 is monotonically decreasing. Therefore,
if ℎ(𝑎) ≥ Θ then ℎ(𝑎) will never enter the sampleSet.

Algorithm 1 Composable Θ sketch.
1: variables
2: sampleSet, init 𝑘 1’s ⊲ samples
3: Θ, init 1 ⊲ threshold
4: atomic est, init 0 ⊲ estimate
5: ℎ, init random uniform hash function
6: procedureqery(arg)
7: return 𝑒𝑠𝑡

8: procedure update(arg)
9: if ℎ(arg) ≥ Θ then return
10: add ℎ(arg) to sampleSet
11: keep 𝑘 smallest samples in sampleSet
12: Θ←𝑚𝑎𝑥 (𝑠𝑎𝑚𝑝𝑙𝑒𝑆𝑒𝑡)
13: est ← (|sampleSet| − 1) / Θ
14: procedure merge(S)
15: sampleSet← merge sampleSet and 𝑆 .sampleSet
16: keep 𝑘 smallest values in sampleSet
17: Θ←𝑚𝑎𝑥 (sampleSet)
18: est ← (|sampleSet| − 1) / Θ
19: procedure snapshot
20: 𝑙𝑜𝑐𝑎𝑙𝐶𝑜𝑝𝑦 ← 𝑒𝑚𝑝𝑡𝑦𝑠𝑘𝑒𝑡𝑐ℎ

21: 𝑙𝑜𝑐𝑎𝑙𝐶𝑜𝑝𝑦.est ← est
22: return 𝑙𝑜𝑐𝑎𝑙𝐶𝑜𝑝𝑦

23: procedure calcHint
24: return Θ
25: procedure shouldAdd(H, arg)
26: return ℎ(arg) < 𝐻

5.2 Generic algorithm
To simplify the presentation and proof, we first discuss an
unoptimised version of our generic concurrent algorithm (Al-
gorithm 2 without the gray lines) called ParSketch, and later
an optimised version of the same algorithm (Algorithm 2
including the gray lines and excluding underscored line 124).
The algorithm is instantiated by a composable sketch

and sequential sketches. It uses multiple threads to pro-
cess incoming stream elements and services queries at any
time during the sketch’s construction. Specifically, it uses 𝑁
worker threads, 𝑡1, . . . , 𝑡𝑁 , each of which samples stream ele-
ments into a local sketch 𝑙𝑜𝑐𝑎𝑙𝑆𝑖 , and a propagator thread 𝑡0
that merges local sketches into a shared composable sketch
𝑔𝑙𝑜𝑏𝑎𝑙𝑆 . Although the local sketch resides in shared memory,
it is updated exclusively by its owner update thread 𝑡𝑖 and
read exclusively by 𝑡0. Moreover, updates and reads do not

happen in parallel, and so cache invalidations are minimised.
The global sketch is updated only by 𝑡0 and read by query
threads. We allow an unbounded number of query threads.

After 𝑏 updates are added to 𝑙𝑜𝑐𝑎𝑙𝑆𝑖 , 𝑡𝑖 signals to the prop-
agator to merge it with the shared sketch. It synchronises
with 𝑡0 using a single atomic variable 𝑝𝑟𝑜𝑝𝑖 , which 𝑡𝑖 sets to 0.
Because 𝑝𝑟𝑜𝑝𝑖 is atomic, the memory model guarantees that
all preceding updates to 𝑡𝑖 ’s local sketch are visible to the
background thread once 𝑝𝑟𝑜𝑝𝑖 ’s update is. This signalling is
relatively expensive (involving a memory fence), but we do
it only once per 𝑏 items retained in the local sketch.
After signalling to 𝑡0, 𝑡𝑖 waits until 𝑝𝑟𝑜𝑝𝑖 ≠ 0 (line 125);

this indicates that the propagation has completed, and 𝑡𝑖 can
reuse its local sketch. Thread 𝑡0 piggybacks the hint H it
obtains from the global sketch on 𝑝𝑟𝑜𝑝𝑖 , and so there is no
need for further synchronisation in order to pass the hint.
Before updating the local sketch, 𝑡𝑖 invokes shouldAdd

to check whether it needs to process a or not. For exam-
ple, the Θ sketch discards updates whose hashes are greater
than the current value of Θ. The global thread passes the
global sketch’s value of Θ to the update threads, pruning up-
dates that would end up being discarded during propagation.
This significantly reduces the frequency of propagations and
associated memory fences.
Query threads use the snapshot method, which can be

safely run concurrently with merge, hence there is no need
to synchronise between the query threads and 𝑡0. The fresh-
ness of the query is governed by the 𝑟 -relaxation. In the full
paper [24], we prove Lemma 1 below, asserting that the re-
laxation is 𝑁𝑏. This may seem straightforward as 𝑁𝑏 is the
combined size of the local sketches. Nevertheless, proving
this is not trivial because the local sketches pre-filter many
additional updates, which, as noted above, is instrumental
for performance.

Lemma1. 𝑃𝑎𝑟𝑆𝑘𝑒𝑡𝑐ℎ instantiated with 𝑆𝑒𝑞𝑆𝑘𝑒𝑡𝑐ℎ is strongly
linearisable with regards to 𝑆𝑒𝑞𝑆𝑘𝑒𝑡𝑐ℎ𝑁𝑏 .

A limitation of ParSketch is that update threads are idle
while waiting for the propagator to execute the merge. This
may be inefficient, especially if a single propagator iterates
through many local sketches. Algorithm 2 with the gray
lines included and the underlined line omitted presents the
optimised OptParSketch algorithm, which improves thread
utilisation via double buffering.

In OptParSketch, 𝑙𝑜𝑐𝑎𝑙𝑆𝑖 is an array of two sketches. When
𝑡𝑖 is ready to propogate 𝑙𝑜𝑐𝑎𝑙𝑆𝑖 [𝑐𝑢𝑟𝑖 ], it flips the 𝑐𝑢𝑟𝑖 bit
denoting which sketch it is currently working on (line 126),
and immediately sets 𝑝𝑟𝑜𝑝𝑖 to 0 (line 129) in order to allow
the propagator to take the information from the other one.
It then starts digesting updates in a fresh sketch.
In the full paper [24] we prove the correctness of the

optimised algorithm by simulating𝑁 threads ofOptParSketch
using 2𝑁 threads running ParSketch. We do this by showing
a simulation relation [22]. We use forward simulation (with
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Algorithm 2 Optimised generic concurrent algorithm.
101: variables
102: composable sketch globalS, init empty
103: constant 𝑏 ⊲ relaxation is 2𝑁𝑏

104: for each update thread 𝑡𝑖 , 0 ≤ 𝑖 ≤ 𝑁

105: sketch localS𝑖 [2], init empty
106: int cur𝑖 , init 0
107: int 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑖 , init 0
108: int hint𝑖 , init 1
109: int atomic 𝑝𝑟𝑜𝑝𝑖 , init 1
110: procedure propagator
111: while true do
112: for all thread 𝑡𝑖 s.t. 𝑝𝑟𝑜𝑝𝑖 = 0 do
113: 𝑔𝑙𝑜𝑏𝑎𝑙𝑆 .𝑚𝑒𝑟𝑔𝑒 (𝑙𝑜𝑐𝑎𝑙𝑆𝑖 [1-𝑐𝑢𝑟𝑖 ])
114: 𝑙𝑜𝑐𝑎𝑙𝑆𝑖 [1-𝑐𝑢𝑟𝑖 ]←empty sketch
115: 𝑝𝑟𝑜𝑝𝑖 ← 𝑔𝑙𝑜𝑏𝑎𝑙𝑆 .𝑐𝑎𝑙𝑐𝐻𝑖𝑛𝑡 ()
116: procedure qery(arg)
117: 𝑙𝑜𝑐𝑎𝑙𝐶𝑜𝑝𝑦 ← 𝑔𝑙𝑜𝑏𝑎𝑙𝑆 .𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 (𝑙𝑜𝑐𝑎𝑙𝐶𝑜𝑝𝑦)
118: return 𝑙𝑜𝑐𝑎𝑙𝐶𝑜𝑝𝑦.𝑞𝑢𝑒𝑟𝑦 (𝑎𝑟𝑔)
119: procedure update𝑖 (𝑎)
120: if ¬shouldAdd(hint𝑖 , 𝑎) then return
121: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑖 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑖 + 1
122: 𝑙𝑜𝑐𝑎𝑙𝑆𝑖 [𝑐𝑢𝑟𝑖 ].𝑢𝑝𝑑𝑎𝑡𝑒 (𝑎)
123: if 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑖 = 𝑏 then
124: 𝑝𝑟𝑜𝑝𝑖 ← 0 ⊲ In non-optimised version
125: wait until 𝑝𝑟𝑜𝑝𝑖 ≠ 0
126: 𝑐𝑢𝑟𝑖 ← 1 − 𝑐𝑢𝑟𝑖
127: hint𝑖 ← 𝑝𝑟𝑜𝑝𝑖
128: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑖 ← 0
129: 𝑝𝑟𝑜𝑝𝑖 ← 0 ⊲ In optimised version

no prophecy variables), ensuring strong linearisability. We
conclude the following theorem:

Theorem 1. OptParSketch instantiated with 𝑆𝑒𝑞𝑆𝑘𝑒𝑡𝑐ℎ is
strongly linearisable with regards to SeqSketch2𝑁𝑏 .

5.3 Adapting to small streams
By Theorem 1, a query can miss up to 𝑟 updates. For small
streams, the error induced by this can be very large. For ex-
ample, the sequential Θ sketch answers queries with perfect
accuracy in streams with up to 𝑘 unique elements, but if
𝑘 < 𝑟 , the relaxation can miss all updates. In other words,
while the additive error is guaranteed to be bounded by 𝑟 ,
the relative error can be infinite.

To rectify this, we implement eager propagation for small
streams, whereby update threads propagate updates immedi-
ately to the shared sketch instead of buffering them. Note that
during the eager phase, updates are processed sequentially.
Support for eager propagation can be added to Algorithm 2
by initialising 𝑏 to 1 and having the propagator thread raise
it to the desired buffer size once the stream exceeds some
pre-defined length. The error analysis of the next section
can be used to determine the adaptation point.

6 Deriving error bounds
Section 6.1 discusses the error introduced to the expected
estimation and RSE of the KMV Θ sketch. Section 6.2 analy-
ses the PAC Quantiles sketch. The full paper [24] contains
mathematical derivations used throughout this section.

6.1 Θ error bounds
We bound the error introduced by an 𝑟 -relaxation of the Θ
sketch. Given Theorem 1, the optimised concurrent sketch’s
error is bounded by the relaxation’s error bound for 𝑟 =

2𝑁𝑏. We consider strong and weak adversaries,A𝑠 andA𝑤 ,
resp. For the strong adversary we are able to show only
numerical results, whereas for the weak one we show closed-
form bounds. The results are summarised in Table 1. Our
analysis relies on known results from order statistics [17]. It
focuses on long streams, and assumes 𝑛 > 𝑘 + 𝑟 .

We would like to analyse the distribution of the 𝑘𝑡ℎ largest
element in the stream that the relaxed sketch processes, as
this determines the result returned by the algorithm. We can-
not use order statistics to analyse this because the adversary
alters the stream and so the stream seen by the algorithm
is not random. However, the stream of hashed unique ele-
ments seen by the adversary is random. Furthermore, if the
adversary hides from the algorithm 𝑗 elements smaller than
Θ, then the 𝑘𝑡ℎ largest element in the stream seen by the
sketch is the (𝑘 + 𝑗)𝑡ℎ largest element in the original stream
seen by the adversary. This element is a random variable and
therefore we can apply order statistics to it.

We thus model the hashed unique elements in the stream
𝐴 processed before a given query as a set of 𝑛 labelled iid ran-
dom variables 𝐴1, . . . , 𝐴𝑛 , taken uniformly from the interval
[0, 1]. Note that 𝐴 is the stream observed by the reference
sequential sketch, and also by adversary that hides up to 𝑟 el-
ements from the relaxed sketch. Let𝑀(𝑖) be the 𝑖𝑡ℎ minimum
value among the 𝑛 random variables 𝐴1, . . . , 𝐴𝑛 .

Let 𝑒𝑠𝑡 (𝑥) ≜ 𝑘−1
𝑥

be the estimate computation with a
given 𝑥 = Θ (line 18 of Algorithm 1). The sequential (non-
relaxed) sketch returns 𝑒 = 𝑒𝑠𝑡 (𝑀(𝑘) ). It has been shown
that the sketch is unbiased [12], i.e., 𝐸 [𝑒] = 𝑛 the number of
unique elements, and 𝑅𝑆𝐸 [𝑒] ≤ 1√

𝑘−2
. The Relative Standard

Mean Error (RSME) is the error relative to the mean, formally
defined in the full paper [24]. Because this sketch is unbiased,
RSE[𝑒] =RSME[𝑒].

In a relaxed history, the adversary chooses up to 𝑟 variables
to hide from the given query so as to maximise its error. It can
also re-order elements, but the state of aΘ sketch after a set of
updates is independent of their processing order. Let𝑀𝑟

(𝑖) be
the 𝑖𝑡ℎ minimum value among the hashes seen by the query,
i.e., arising in updates that precede the query in the relaxed
history. The value of Θ is𝑀𝑟

(𝑘) , which is equal to𝑀(𝑘+𝑗) for
some 0 ≤ 𝑗 ≤ 𝑟 . We do not know if the adversary can actually
control 𝑗 , but we know that it can impact it, and so for our
error analysis, we consider strictly stronger adversaries – we
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Sequential sketch Strong adversary A𝑠 Weak adversary A𝑤

Closed-form Numerical Numerical Closed-form
Expectation 𝑛 215 215 · 0.995 𝑛 𝑘−1

𝑘+𝑟−1
RSE ≤ 1√

𝑘−2
≤ 3.1% ≤ 3.8% ≤ 2 1√

𝑘−2
Table 1. Analysis of Θ sketch with numerical values for 𝑟 = 8, 𝑘 = 210, 𝑛 = 215.

allow both the weak and the strong adversaries to choose
the number of hidden elements 𝑗 . Our error analysis gives
an upper bound on the error induced by our adversaries.
Note that the strong adversary can choose 𝑗 based on the
coin flips, while the weak adversary cannot, and therefore
chooses the same 𝑗 in all runs. In the full paper [24] we show
that the largest error is always obtained either for 𝑗 = 0 or
for 𝑗 = 𝑟 .

Given an adversary A that induces an approximation 𝑒A ,
in the full paper [24] we prove the following bound:

RSE[𝑒A] ≤
√

𝜎2 (𝑒A)
𝑛2

+
√
(𝐸 [𝑒A] − 𝑛)2

𝑛2
.

Strong adversary A𝑠 The strong adversary knows the
coin flips in advance, and thus chooses 𝑗 to be 𝑔(0, 𝑟 ), where
𝑔 is the choice that maximises the error:

𝑔( 𝑗1, 𝑗2) ≜ argmax
𝑗 ∈{ 𝑗1, 𝑗2 }

| 𝑘 − 1
𝑀(𝑘+𝑗)

− 𝑛 |.

In Figure 3 we plot the regions where 𝑔 equals 0 and 𝑔

equals 𝑟 , based on their possible combinations of values. The
estimate induced by A𝑠 is 𝑒A𝑠

≜ 𝑘−1
𝑀(𝑘+𝑔 (0,𝑟 ) )

. The expecta-
tion and standard error of 𝑒A𝑠

are calculated by integrating
over the gray areas in Figure 3 using their joint probability
function from order statistics. In the full paper [24] we give
the formulas for the expected estimate and its RSE bound,
resp. We do not have closed-form bounds for these equations.
Example numerical results are shown in Table 1.

WeakadversaryA𝑤 Not knowing the coin flips,A𝑤 chooses
𝑗 that maximises the expected error for a random hash func-
tion: 𝐸 [𝑛 − 𝑒𝑠𝑡 (𝑀𝑟

(𝑘) )] = 𝐸 [𝑛 − 𝑒𝑠𝑡 (𝑀(𝑘+𝑗) )] = 𝑛 − 𝑛 𝑘−1
𝑘+𝑗−1 .

Figure 3. Areas of 𝑀(𝑘) and 𝑀(𝑘+𝑟 ) . In the dark gray A𝑠

induces Θ = 𝑀(𝑘+𝑟 ) , and in the light gray, Θ = 𝑀(𝑘) . The
white area is not feasible.

Obviously this is maximised for 𝑗 = 𝑟 . The orange curve in
Figure 4 depicts the distribution of 𝑒A𝑤

, and the distribution
of 𝑒 is shown in blue.
In the full paper [24], we show that the RSE is bounded

by
√

1
𝑘−2 +

𝑟
𝑘−2 for Â𝑤 , and therefore so is that ofA𝑤 . Thus,

whenever 𝑟 is at most
√
𝑘 − 2, the RSE of the relaxedΘ sketch

is coarsely bounded by twice that of the sequential one. And
in case 𝑘 ≫ 𝑟 , the addition to the 𝑅𝑆𝐸 is negligible.

6.2 Quantiles error bounds
We now analyse the error for any implementation of the
sequential Quantiles sketch, provided that the sketch is PAC,
meaning that a query for quantile 𝜙 returns an element
whose rank is between (𝜙 −𝜖)𝑛 and (𝜙 +𝜖)𝑛 with probability
at least 1 − 𝛿 for some parameters 𝜖 and 𝛿 . We show that the
𝑟 -relaxation of such a sketch returns an element whose rank
is in the range (𝜙 ± 𝜖𝑟 )𝑛 with probability at least 1 − 𝛿 for
𝜖𝑟 = 𝜖 − 𝑟𝜖

𝑛
+ 𝑟

𝑛
.

Although the desired summary is order agnostic here too,
Quantiles sketch implementations (e.g., [9]) are sensitive to
the processing order. In this case, advanced knowledge of
the coin flips can increase the error already in the sequential
sketch. Therefore, we do not consider a strong adversary,
but rather discuss only the weak one. Note that the weak
adversary attempts to maximise 𝜖𝑟 .

Consider an adversary that knows 𝜙 and chooses to hide 𝑖
elements below the 𝜙 quantile and 𝑗 elements above it, such
that 0 ≤ 𝑖 + 𝑗 ≤ 𝑟 . The rank of the element returned by the
query among the 𝑛 − (𝑖 + 𝑗) remaining elements is in the
range 𝜙 (𝑛 − (𝑖 + 𝑗)) ± 𝜖 (𝑛 − (𝑖 + 𝑗)). There are 𝑖 elements
below this quantile that are missed, and therefore its rank in

Figure 4. Distribution of estimators 𝑒 and 𝑒A𝑤
. The RSE of

𝑒A𝑤
with regards to 𝑛 is bounded by the relative bias plus

the RMSE of 𝑒A𝑤
.
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the original stream is in the range:

[(𝜙 − 𝜖) (𝑛 − (𝑖 + 𝑗)) + 𝑖, (𝜙 + 𝜖) (𝑛 − (𝑖 + 𝑗)) + 𝑖] . (1)

This can be rewritten as:
[𝜙𝑛 − (𝜙 𝑗 − (1 − 𝜙)𝑖 + 𝜖 (𝑛 − (𝑖 + 𝑗))),
𝜙𝑛 + ((1 − 𝜙)𝑖 − 𝜙 𝑗 + 𝜖 (𝑛 − (𝑖 + 𝑗)))] (2)

In the full paper [24], we show that the 𝑟 -relaxed sketch
returns an element whose rank is between (𝜙 − 𝜖𝑟 )𝑛 and
(𝜙 +𝜖𝑟 )𝑛 with probability at least 1−𝛿 , where 𝜖𝑟 = 𝜖 − 𝑟𝜖

𝑛
+ 𝑟

𝑛
.

Thus the impact of the relaxation diminishes as 𝑛 grows.

7 Θ sketch evaluation
This section presents an evaluation of an implementation
of our algorithm for the Θ sketch. Section 7.1 presents the
methodology for the analysis. Section 7.2 shows the results
under different workloads and scenarios. Finally, Section 7.3
discusses the tradeoff between accuracy and throughput.

7.1 Setup and methodology
Our implementation [5] extends the code in Apache DataS-
ketches (Incubating) [3], a Java open-source library of sto-
chastic streaming algorithms. The Θ sketch there differs
slightly from the KMV Θ sketch we used as a running exam-
ple, and is based on a HeapQuickSelectSketch family. In this
version, the sketch stores between 𝑘 and 2𝑘 items, whilst
keeping Θ as the 𝑘 th largest value. When the sketch is full,
it is sorted and the largest 𝑘 values are discarded.

Concurrent Θ sketch is generally available in the Apache
DataSketches (Incubating) library since V0.13.0. The sequen-
tial implementation and the sketch at the core of the global
sketch in the concurrent implementation are the both
HeapQuickSelectSketch, which is the default sketch family.

As explained in Section 5.3, we implement a limit for eager
propagation as a function of the configurable error parameter
𝑒 ; the function we use is 2/𝑒2. The local sketches define 𝑏 as
a function of 𝑘 , 𝑒 , and 𝑁 (the number of writer threads). The
error induced by the relaxation does not exceed 𝑒 , and thus
the total error is bounded by max{𝑒 + 1√

𝑘
, 2√

𝑘
}.

Eager propagation, as described in the pseudo-code, re-
quires context switches incurring a high overhead. In the
implementation, either the local thread itself executes every
update to the global sketch (equivalent to a buffer size of 1)
or lazily delegates updates to a background thread. While the
sketch is in eager propagation mode, the global sketch is pro-
tected by a shared boolean flag. When the sketch switches
to estimate mode it is guaranteed that no eager propaga-
tion gets through; instead local threads pass the buffer via
lazy propagation. This implementation ensures that: (a) local
threads avoid costly context switches when the sketch is
small, and (b) lazy propagation by a background thread is
done without synchronisation.

Unless otherwise stated, sketches are configured with 𝑘 =

4096, and 𝑒 = 0.04; thus the exact limit is 2/𝑒2 = 1250, and

𝑏 is set (by the implementation) to a value between 1 and 5
to accommodate the error bound. Our first set of tests run
on a 12-core Intel Xeon E5-2620 machine – this machine
is similar to that which is used by production servers. For
the scalability evaluation (shown in the introduction) we
use a 32-core Intel Xeon E5-4650 to get a large number of
threads. Both machines have hyper-threading disabled, as it
introduces non-monotonic effects among threads sharing a
core.
We focus on two workloads: (1) write-only – updating a

sketch with a stream of unique values; (2) mixed read-write
workload – updating a sketch with background reads query-
ing the number of unique values in the stream. Background
reads refer to dedicated threads that occasionally (with 1ms
pauses) execute a query. These workloads were chosen to
simulate read-world scenarios where updates are constantly
streaming from a feed or multiple feeds, while queries arrive
at a lower rate.
To run the experiments we employ a multi-thread exten-

sion of the characterization framework. This is the Apache
DataSketch evaluation benchmark suite, which measures
both the speed and accuracy of the sketch.

For measuring write throughput, the sketch is fed with a
continuous data stream. The size of the stream varies from 1
to 8M unique values. For each size 𝑥 we measure the time 𝑡
it takes to feed the sketch 𝑥 unique values, and present it in
term of throughput (𝑥/𝑡 ). To minimise measurement noise,
each point on the graph represents an average of many trials.
The number of trials is very high (218) for points at the low
end of the graph. It gradually decreases as the size of the
sketch increases. At the high end (at 8M values per trial) the
number of trials is 16. This is because smaller stream sizes
tend to suffer more from measurement noise.
The accuracy of a concurrent Θ sketch is measured only

in a single-thread environment. As in the performance eval-
uations, the 𝑥-axis represents the number of unique values
fed into the sketch by a single writing thread. For each size 𝑥 ,
one trial logs the estimation result after feeding 𝑥 unique val-
ues to the sketch. In addition, it logs the Relative Error (RE)
of the estimate, where RE = MeasuredValue/TrueValue − 1.
This trial is repeated 4K times, logging all estimation and RE
results. The curves depict the mean and some quantiles of
the distributions of error measured at each 𝑥-axis point on
the graph, including the median. This type of graph is called
a “pitchfork”.

7.2 Results
Accuracy results Our first set of tests runs on a 12-core
Intel Xeon E5-2620machine. The accuracy results for the con-
current Θ sketch without eager propagation are presented
in Figure 5a. There are two interesting phenomena worth
noting. First, it is interesting to see empirical evaluation
reflecting the theoretical analysis presented in Section 6.1,
where the pitchfork is distorted towards underestimating
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the number of unique values. Specifically, the mean relative
error is smaller than 0 (showing a tendency towards under-
estimating), and the relative error in all measured quantiles
tends to be smaller than the relative error of the sequential
implementation.

Second, when the stream size is less than 2𝑘 ,Θ = 1 and the
estimation is the number of values propagated to the global
sketch. If we forgo eager propagation, the number of values
in the global sketch depends on the delay in propagation.
The smaller the sketch, the more significant the impact of
the delay, and the mean error reaches as high as 94% (the
error in the figure is capped at 10%). As the number of prop-
agated values approaches 2𝑘 , the delay in propagation is
less significant, and the mean error decreases. This exces-
sive error is remedied by the eager propagation mechanism.
The maximum error allowed by the system is passed as a
parameter to the concurrent sketch, and the global sketch
uses eager propagation to stay within the allowed error limit.
Figure 5b depicts the accuracy results when applying eager
propagation. The figures are similar when the sketch begins
lazy propagation, and the error stays within the 0.04 limit as
long as eager propagation is used.

Write-only workload Figure 6a presents throughput mea-
surements for a write-only workload. The results are shown
in loglog scale. Figure 6b zooms-in on the throughput of
large streams.
When considering large stream sizes, the concurrent im-

plementation scales with the number of threads, peaking
at almost 300M operations per second with 12 threads. The
performance of the lock-based implementation, on the other
hand, degrades as the contention on the lock increases. Its
peak performance is 25M operations per second with a sin-
gle thread. Namely, with a single thread, the concurrent Θ
sketch outperforms the lock-based implementation by 12x,
and with 12 threads by more than 45x.

For small streams, wrapping a single thread with a lock is
the most efficient method. Once the stream contains more
than 200K unique values, using a concurrent sketch with 4
or more local threads is more efficient. The crossing point
where a single local buffer is faster than the lock-based im-
plementation is around 700K unique values.

Mixed workload Figure 7 presents the throughput mea-
surements of a mixed read-write workload. We compare runs
with a single updating thread and 2 updating threads (and 10
background reader threads). Although we see similar trends
as in the write-only workload, the effect of background read-
ers is more pronounced in the lock-based implementation
than in the concurrent one; this is expected as the reader
threads compete for the same lock as the writers. The peak
throughput of a single writer thread in the concurrent imple-
mentation is 55M ops/sec both with and without background
readers. The peak throughput of a single writer thread in
the lock-based implementation degrades from 25M ops/sec

without background reads to 23M ops/sec with them; this is
an almost 10% slowdown in performance. Recall that in this
scenario reads are infrequent, and so the degradation is not
dramatic.

Scalability results To provide a better scalability analysis,
we aim to maximize the number of threads working on the
sketch. Therefore, we run this test on a larger machine – we
use a 32-core Xeon E5-4650 processors. We ran an update-
only workload in which a sketch is built from a very large
stream, repeating each test 16 times.
In Figure 1 (in the introduction) we compare the scala-

bility of our concurrent Θ sketch and the original sketch
wrapped with a read/write lock in an update-only workload,
for 𝑏 = 1 and 𝑘 = 4096. As expected, the lock-based se-
quential sketch does not scale, and in fact it performs worse
when accessed concurrently by many threads. In contrast,
our sketch achieves almost perfect scalability. Θ quickly be-
comes small enough to allow filtering out most of the updates
and so the local buffers fill up slowly.

7.3 Accuracy-throughput tradeoff
The speedup achieved by eager propagation in small streams
is presented in Figure 8. This is an additional advantage of
eager propagation in small streams, beyond the accuracy
benefit reported in Figure 5. The improvement is as high as
84x for tiny sketches, and tapers off as the sketch grows. The
slowdown in performance when the sketch size exceeds 2𝑘
can be explained by the reduction in the local buffer size
(from 𝑏 = 16 to 𝑏 = 5), needed in order to accommodate for
the required error bound.

Next we discuss the impact of 𝑘 . One way to increase the
throughput of the concurrent Θ sketch is by increasing the
size of the global sketch, namely increasing 𝑘 . On the other
hand, this change also increases the error of the estimate.
Table 2 presents the tradeoffs between performance and ac-
curacy. Specifically, it presents the crossing-point, namely
the smallest stream size for which the concurrent implemen-
tation outperforms the lock-based implementation (both run-
ning a single thread). It further presents the maximum values
(across all stream sizes) of the median error and 99th per-
centile error for a variety of 𝑘 values. The table shows that
as the sketch promises a smaller error (by using a larger 𝑘),
a larger stream size is needed to justify using the concurrent
sketch with all its overhead.

thpt crossing point mean error error 𝑄 = 0.99
𝑘 = 256 15,000 0.16 0.27
𝑘 = 1024 100,000 0.05 0.13
𝑘 = 4096 700,000 0.03 0.05
Table 2. Performance vs accuracy as a function of 𝑘 .



PPoPP ’20, February 22–26, 2020, San Diego, CA, USA A. Rinberg et al.

num uniques

RS
E

-0.1

-0.05

0

0.05

1 19 41 91 197 431 939
2048

4467
9742

21247
46341

101070
220436

480774

1048576

MeanRelErr
Q(.00135)
Q(.02275)
Q(.15866)
Q(.5)
Q(.84134)
Q(.97725)
Q(.99865)

(a) No eager propagation (𝑒 = 1.0)

num uniques

RS
E

-0.075

-0.05

-0.025

0

0.025

0.05

1 20 45 103 235 535
1218

2774
6317

14387
32768

74632
169979

387141
881744
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Figure 5. Concurrent Θ measured quantiles vs RSE, 𝑘 = 4096.

(a) Throughput, loglog scale (b) Zooming-in on large sketches
Figure 6.Write-only workload, 𝑘 = 4096, 𝑒 = 0.04.
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Figure 7. Mixed workloads: writers with background reads,
𝑘 = 4096, 𝑒 = 0.04.

8 Conclusions
Sketches are widely used by a range of applications to pro-
cess massive data streams and answer queries about them.
Library functions producing sketches are optimised to be
extremely fast, often digesting tens of millions of stream
elements per second. We presented a generic algorithm for
parallelising such sketches and serving queries in real-time;
the algorithm is strongly linearisable with regards to re-
laxed semantics. We showed that the error bounds of two
representative sketches, Θ and Quantiles, do not increase
drastically with such a relaxation. We also implemented and
evaluated the solution, showed it to be scalable and accurate,
and integrated it into the open-source Apache DataSketches
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Figure 8. Throughput speedup of eager (𝑒 = 0.04) vs no-
eager (𝑒 = 1.0) propagation, 𝑘 = 4096.

(Incubating) library. While we analysed only two sketches,
future work may leverage our framework for other sketches.
Furthermore, it would be interesting to investigate additional
uses of the hint, for example, in order to dynamically adapt
the size of the local buffers and respective relaxation error.
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A Artifact Appendix
A.1 Abstract
The artifact contains all the JARs of version 0.12 of the DataS-
ketches library, before it moved into Apache (Incubating),
as well as configurations and shell scripts to run our tests.
It can support the results found in the evaluated section of
our PPoPP’2020 paper Fast Concurrent Data Sketches. To
validate the results, run the test scripts and check the results
piped in the according text output files.

A.2 Artifact check-list (meta-information)
• Algorithm: Θ Sketch
• Program: Java code
• Compilation: JDK 8, and each package is compiled us-
ing maven
• Binary: Java executables
• Run-time environment: Java
• Hardware: Ubuntu on 12 core server and 32 core server
with hyperthreading disabled
• Metrics: Throughput and accuracy
• Output: Runtime throughputs, and runtime accuracy
• How much time is needed to prepare workflow (ap-
proximately)?: Using precomipled packages, none.
• How much time is needed to complete experiments
(approximately)?: Many hours
• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache License
2.0

A.3 Description
A.3.1 How delivered
We have provided all the JAR files we used for running our tests,
along with scripts. Meanwhile, the project has migrated to the
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Apache DataSketches (Incubating) library, which is an open source
project under Apache License 2.0, and is hosted with code, API
specifications, build instructions, and design documentations on
Github.

A.3.2 Hardware dependencies
Our tests require a 12-core Intel Xeon E5-2620 machine, and four
Intel Xeon E5-4650 processors, each with 8 cores. Hyper-threading
is disabled on both machines..

A.3.3 Software dependencies
Building and running the JAR files requires JDK 8; the files don’t
compile otherwise. To use the automated scripts, we require python3
and git to be installed. The Apache DataSketches (Incubating) li-
brary has been tested on Ubuntu 12.04/14.04, and is expected to
run correctly under other Linux distributions.

A.4 Installation
First, clone the repository:

$ git clone https://github.com/ArikRinberg/
FastConcurrentDataSketchesArtifact

We have provided the necessary JAR files for recreating our experi-
ment in the repository.

A.5 Experiment workflow
1. After cloning the repository:

$ cd FastConcurrentDataSketchesArtifact

In the current working directory, there should be the follow-
ing JAR files:
• memory-0.12.1.jar
• sketches-core-0.12.1-SNAPSHOT.jar
• characterization-0.1.0-SNAPSHOT.jar

2. Next, run the tests:

$ python3 run_test.py TEST

Where TEST is one of the following: figure_1, figure_6_a,
figure_6_b, figure_7, figure_8, figure_9, or table_2.

3. The results of each test will be in txt files in the current
working directory, either SpeedProfile or AccuracyProfile:

SpeedProfile: The txt file contains three columns: InU – the
number of unique items (the 𝑥 axis of most graphs), Trials
– the number of trials for this run, nS/u – nano seconds
per update. The 𝑦 axis of the throughput graphs is given as
updates per second, therefore a conversion is needed.

AccuracyProfile: The txt file contains the columns corre-
sponding to the figure legend, where InU is the number of
unique items. And, for example, 𝑄 (.5) corresponds to the
50𝑡ℎ precentile.

A.6 Figure creation
The test outputs will be in the form of txt files output to the cur-
rent working directory. To create the graphs, we have provided

scripts that extract the data from these files. The following scripts
correspond to the following figures:
• Figure 1 – parseFigure1.py
• Figure 5 – parseAccuracy.py
• All other figures – parseThroughput.py

To use the figures, pass the txt output files to the corresponding
script.

A.7 Experiment customization
Each curve in each experiment is customised in the corresponding
configure file. The main customisations for the conf files are:
• Trials_lgMinU /Trials_lgMaxU:Range of number of unique
numbers over which to run the test.
• LgK: Log size of the global sketch.
• CONCURRENT_THETA_localLgK: Log size of the local
sketch.
• CONCURRENT_THETA_maxConcurrencyError:Max-
imum error due to concurrency. For non-eager tests, set to
1.
• CONCURRENT_THETA_numWriters:Number ofwriter
threads.
• CONCURRENT_THETA_numReaders:Number of back-
ground reader threads. For our mixed workload, we used 10
reader threads.
• CONCURRENT_THETA_ThreadSafe: Is true if the test
should use the concurrent implementation, false if the test
should use a lock-based implementation.

A.8 Working with source files
Alternatively, follow the build instructions on Apache DataSketches
(Incubating) apache page (https://datasketches.apache.org/), in or-
der to building the above mentioned JAR files, now called:
• incubator-datasketches-java (https://github.com/apache/incubator-
datasketches-java)
• incubator-datasketches-memory (https://github.com/apache/
incubator-datasketches-memory)
• incubator-datasketches-characterization (https://github.com/
apache/incubator-datasketches-characterization)

The version number of incubator-datasketches-java and incubator-
datasketches-memory must comply with the version numbers re-
quired by incubator-datasketches-characterization. The characteri-
zation JAR file is an unsupported open-source code base, and does
not pretend to have the same level of quality as the primary reposi-
tories. These characterization tests are often long running (some
can run for days) and very resource intensive, which makes them
unsuitable for including in unit tests. The code in this repository
are some of the test suites we use to create some of the plots on our
website and provide evidence for our speed and accuracy claims.
Alternatively, the datasketches-memory and datasketches-java re-
leases are provided fromMaven Central using the Nexus Repository
Manager. Go to repository.apache.org and search for "datasketches".

For convenience we have included these repositories as modules
in our main repository along with specific branches and commit
id’s that are known to compile. To compile the jar files:
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$ git clone https://github.com/ArikRinberg/
FastConcurrentDataSketchesArtifact

$ cd FastConcurrentDataSketchesArtifact
$ source customCompile.sh

The shell script takes care of initialising the submodules, building
the source files, and copying the correct JAR files to the current
directory.

Workflow for custom JAR files.
1. After cloning the repository:

$ cd FastConcurrentDataSketchesArtifact

In the current working directory, there should be the follow-
ing JAR files:

• datasketches-memory-1.1.0-incubating.jar
• datasketches-java-1.1.0-incubating.jar
• datasketches-characterization-1.0.0-incubating-SNAPSHOT.jar

2. For each .conf file in the conf_files folder, the following line
must be altered:
From: JobProfile=
com.yahoo.sketches.characterization.uniquecount.TEST
To: JobProfile=
org.apache.datasketches.characterization.theta.concurrent.TEST
Where TEST is either ConcurrentThetaAccuracyProfile or
ConcurrentThetaMultithreadedSpeedProfile.

3. Finally, the following line must be altered in run_test.py:
From: CMD=
‘java -cp "./*" com.yahoo.sketches.characterization.Job ’
To: CMD=‘java -cp "./*" org.apache.datasketches.Job ’

4. The tests can now be run as explained in Item 3.
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