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1 Introduction

The development of reliable distributed systems often relies on Byzantine Agreement (BA) [26]. In
this problem, a set of correct processes aim to reach a common decision, despite the presence of
malicious ones. BA has been around for four decades, yet practical use-cases for it in large-scale
systems have emerged only in the last decade. One major application for BA is cryptocurrencies.
For example, Bitcoin [30], the first cryptocurrency, requires a large set of users to agree on the state
of the blockchain. Since Bitcoin is a real currency with real value, the need to protect it against
Byzantine users is crucial. Following Bitcoin, many other blockchains and FinTech platforms have
emerged, e.g., [6,21,30,36]. Consequently, an efficient implementation, in terms of communication,
has become one of the main foci of BA solutions.

It has been shown by Dolev and Reischuk [17] that in deterministic algorithms with n processes,
Ω(n2) word complexity is needed in the worst-case, assuming the number of faulty processes in the
system is f = O(n). The word complexity of a deterministic BA protocol is defined as the number
of words all correct processes send until a decision is reached, where a word is a constant number
of bits (e.g., the size of a PKI signature). Nevertheless, almost all deterministic works incur a word
complexity of at least O(n3) in a synchronous model with n processes, f of which can fail, and the
optimal resilience of n ≥ 2f + 1 [3, 18]. In fact, this gap remained open for 35 years until recently
Momose and Ren [28] solved synchronous BA with optimal resilience with O(n2) words, although
less resilient solutions with O(n2) complexity have been known prior to this result.

Yet synchronous solutions are not robust in large-scale systems, where messages can be delayed
for extensive periods. A more practical approach is to consider the eventual synchrony (ES) model,
where communication is initially asynchronous but eventually becomes synchronous. Eventually,
synchronous algorithms always ensure safety, but their liveness is conditioned on communication
becoming timely. In this model, performance is measured during the synchronous period, and the
optimal resilience is n = 3f+1. Recent works have used threshold cryptography in order to achieve
quadratic complexity in certain optimistic scenarios [2, 6, 22,28,37].

Because attackers may cause communication delays, an even more robust approach is to consider
a fully asynchronous model. But in this model, BA cannot be solved deterministically [20]. Al-
though the complexity lower bound does not apply to randomized algorithms, until fairly recently,
randomized solutions also required (expected) O(n2) word complexity [5, 13,29,33].

A few recent studies have used randomness to circumvent Dolev and Reischuk’s lower bound
and provide BA solutions with sub-quadratic word complexity [2, 6, 16, 21, 23, 25, 30, 31, 35] in all
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three models. There are two approaches to using probability. The first is weakening the problem
guarantees to probabilistic ones. Works in this vein usually utilize committee sampling, assume
an adaptive adversary, and provide probabilistic safety and liveness [16, 21, 23, 30]. The second
considers models in which deterministic BA solutions are possible, and designs protocols where the
expected complexity is sub-quadratic [2,6, 25,31,35]. The latter works are resilient only to a static
adversary whereas the former tolerate a dynamic one.

Each work in the field examines BA through a slightly different lens: BA can be solved in models
varying in their timing assumptions, adversarial behaviors, and properties of their outcomes. This
work overviews the latest results on the subject. We point out common patterns in BA algorithms
and highlight novel techniques. While doing so, we also identify gaps in existing works and raise
open questions for future work. We start by defining the BA problem and describing possible
models in Section 2. In Section 3, we cover works for deterministic BA, and in Section 4 for the
randomized problem. We end with some open questions in Section 5.

2 Models and Definitions

We discuss different variations of the Byzantine Agreement (BA) problem also known as consensus.
In this paper, we use the terms consensus and BA interchangeably. In this problem, a set Π of
n processes attempt to reach a common decision upon one of the values initially suggested by
the processes in Π. Different models affect the problem’s difficulty. The connecting thread of our
discussions is the presence of up to f Byzantine processes in Π. These processes may deviate
arbitrarily from the protocol, possibly being corrupted and controlled by an adversary. Processes
in Π that are not corrupted are called correct processes. Let us define the problem formally.

Definition 1 (Byzantine Agreement). In Byzantine Agreement, each correct process pi ∈ Π pro-
poses an input value vi and decides on an output value decisioni s.t. the following properties hold:

Validity If all correct processes propose the same value v, then all correct processes decide v.

Agreement No two correct processes decide differently.

Termination Every correct process eventually decides.

Slight changes to the definition above give rise to several variations of the problem, applicable
to different settings and areas of interest. For example, the problem as defined above does not
make any assumption on processes’ input values, and is known as multi-value BA. If we were to
require that vi is a binary value, the problem would be binary BA. The validity condition specified
above is known as strong unanimity, and it might be more suitable for binary BA (since there are
only two possible values).

For multi-value BA, a validity condition named external validity was proposed by Cachin et
al. [12]. In this condition, there is some global predicate validate(v) ∈ {true, false} that can be com-
puted locally. If a correct process decides a value v, then validate(v) = true. The external validity
condition is more suitable for multi-value BA, and is used in recent multi-value BA algorithms such
as [4, 12, 37]. An example for external validity applicability can be found in various blockchains,
where the predicate is verifying that the decided blocks meet the criteria of an eligible block to be
included in the blockchain (valid signatures on the transactions, no double-spend, etc.). We note
that the Dolev-Reischuk lower bound [17] does not apply to the external validity BA variant, and
to the best of our knowledge, no similar lower bound was proven for this case.
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Definition 1 introduces deterministic BA, which requires that the properties hold in all runs
of the protocol. In contrast, in randomized BA, one or more of the properties is ensured only
with high probability (WHP). In some cases, randomized BA requires deterministic validity and
agreement while allowing termination with probability 1. Other works [16, 21, 23] solve BA with
high probability, where all properties are assured with high probability.

Timing assumptions The BA problem(s) can be examined under different timing assumptions.
In a synchronous network, there is a bound δ on the time it takes a message to reach its destination.
In the asynchronous model, we assume nothing about communication times, so message delays are
unbounded. Eventual synchrony is a middle ground where the system first behaves asynchronously,
and eventually becomes synchronous. The asynchronous period is unbounded but it is guaranteed
that at some point in time, called the Global Stabilization Time (GST), the system becomes stable.

Adversary models The adversary may corrupt up to f processes in the system. It is known
that to solve BA in a synchronous model with strong unanimity, n must be at least 2f + 1. Under
eventual synchrony, the condition is stronger, and n ≥ 3f + 1 is required [19].

The number of Byzantine processes corrupted by the adversary, known as the resilience of the
protocol, is not the only concern for the protocol designer. Another important aspect is when and
how the adversary controls them. We distinguish between a static adversary and an adaptive one.
The static adversary decides which processes to corrupt before the execution begins, without prior
knowledge of processes’ initial values or coin flips. An adaptive adversary, on the other hand, can
corrupt processes at any time, as long as it does not corrupt more than the threshold f .

Getting into a higher resolution, we can also examine the information available to the adver-
sary while it makes its decisions and its power to prevent information flow in the system. In a
synchronous model, one considers “after-the-fact” removals [1]. An adversary that is capable of
after-the-fact removals can first observe messages sent by processes and then remove these messages
from the network by corrupting their senders. It was shown that no after-the-fact removals are
required for achieving sub-quadratic word complexity [1]. The idea of preventing the adversary
from “front running” messages sent by processes before corrupting their senders can also be for-
mulated in the asynchronous model. It can be assumed either explicitly [16] or implicitly by using
a separate key to encrypt each message and atomically deleting the key upon sending a message
signed by it [9, 21]. Additionally, one can use the notion of causality to define a delayed-adaptive
adversary [16]. This adversary can use the contents of a message m sent by a correct process for
scheduling a message m′ only if m causally precedes m′.

Resilience The resilience is the upper bound on the number of Byzantine processes in which the
problem is still solvable. In eventual synchrony and asynchronous networks, the optimal resilience
is f < n/3, independent of the validity conditions or the adversarial model described above. In the
synchrony model, optimal resilience with strong unanimity is f < n/2 [28]. With external validity,
the optimal resilience in synchronous networks is f < n.

Complexity of Byzantine agreement The way we measure complexity depends on the timing
assumptions.

Synchrony Under synchrony assumptions, the worst-case word complexity is defined as the max-
imum number of words all the correct processes send under any possible adversarial behavior
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Figure 1: Illustration of the gap between existing BA protocols in the eventual synchrony and
synchrony models and the known lower bound.

allowed by the model. This is counted from the beginning of the run and until the last correct
process reaches a decision.

Eventual synchrony In the eventual synchrony model, the definition is usually identical to the
above, except that the number of words is measured from GST and until a decision is reached.
Sometimes, the complexity is defined by observing synchronous runs.

Asynchrony Since asynchronous deterministic consensus is not achievable even in the presence of
at least one failure, there is no way to bound the worst-case complexity. Instead, we consider
the expected complexity. The expectation is over the distribution of randomness used to solve
BA with probability 1, assuming that the adversary takes the actions that lead to the worst
complexity under this distribution.

3 Deterministic Consensus

In deterministic consensus protocols, the liveness property, i.e., the property that all processes even-
tually decide, is guaranteed. The seminal result of FLP [20] showed that deterministic consensus
under asynchrony assumptions in the presence of at least one faulty process cannot be achieved.
Thus, deterministic consensus protocols assume either a completely synchronous network during
the entire run, or they assume sufficiently long times in which the network is synchronous, that are
used to make progress in the consensus protocol.

In recent years, an increasing number of works such as [2, 6, 22, 28, 37] have used threshold
cryptography to reduce the word complexity of BA protocols. This approach works as follows: A
K-of-n threshold signature is used to create a signature on some message m. Each of the n processes
has a secret key, which it uses to create a unique share of the signature. Any K shares can be
combined into a valid cryptographic signature on m. Each individual share and the combined
signature consist of a single word. In BA protocols, usually all parties send a share of a message m
to a process p, and once p has K shares (usually K = f + 1 or K = 2f + 1), it combines them into
a signature and sends it to all processes. Thus, p can prove that a certain threshold of processes
signed m with only O(n) complexity.
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Dolev and Reischuk proved in the early 1980s [17] that the lower bound for BA in the worst-case
is at least Ω(n2) messages per decision. To the best of our knowledge, until recently no deterministic
BA protocol in the synchronous model or the eventual synchronous model met this lower bound
with optimal resilience.

Recently, Momose and Ren [28] showed a protocol for BA with strong unanimity with O(n2)
worst-case word complexity in the synchronous model with optimal resilience. Their protocol is
based on threshold cryptography and ideas from [8], which also solves the problem with O(n2) com-
munication complexity but for f < n/3, i.e., sub-optimal resilience. While there are synchronous
BA protocols with external validity such as [3], to the best of our knowledge, there is no known
protocol with the same resilience or better and O(n2) message complexity for solving BA with
external validity.

In the eventually synchronous model, recent works such as Tendermint [25], Casper [11], and
HotStuff [37] solve BA in O(n) word complexity in optimistic scenarios, sometimes called the
“happy path”. In the worst-case, HotStuff requires O(n3) communication (after GST). Specifically,
HotStuff’s complexity is O(n) whenever all correct processes are synchronized to the same round
and follow a correct leader in this round. Achieving this is known as the round synchronization
problem [32]. In HotStuff, the details of the round synchronization are abstracted away into a
module named a Pacemaker, whose implementation is left unspecified. LibraBFT [6], which is
based on HotStuff, implements the Pacemaker with cubic complexity in the worst-case.

A recent work by Naor and Keidar [32], which is based on [31], uses randomization to solve round
synchronization with expected O(n) word complexity in the ES setting under a static adversary.
By combining this protocol with HotStuff, BA can be solved with expected O(n) in the average
case, but with O(n3) word complexity in the worst-case. It is still unknown if in the ES model
under an adaptive adversary, BA can be solved with O(n2) word complexity in the worst-case.

The gap between known results and the lower bound for deterministic BA is illustrated in
Figure 1.

4 Randomized Consensus

In randomized BA algorithms, the execution depends on local coin tosses at processes. While a
simple local coin is a basic building block used in traditional works [7,10], simply tossing coins may
result in an exponential expected time to reach agreement. A more efficient approach is to utilize
some sort of local randomness in order to create a shared coin. Processes communicate with each
other to try to agree on the coin toss, and the coin has some well-defined success rate [13, 14, 21,
24,33], namely a positive probability for all to agree on a random bit.

In previous sections, we mentioned Dolev and Reischuk’s renowned lower bound, which indicates
the necessity of quadratic communication [17] in deterministic settings. Can we do better by using
randomized algorithms? The answer depends on the adversary. First, if we assume an adaptive
adversary that is capable of after-the-fact removal, the answer is no. Abraham et al. [1] recently
extended the classic bound and proved that any randomized BA protocol under such an adversary
must incur quadratic communication in expectation. Furthermore, a number of works [1,9,34] have
proved that for subquadratic BA some form of setup assumption is required.

On the other hand, some algorithms that assume a restricted adversary and trusted setup do
break the barrier of quadratic communication, solving binary BA. A common way of reducing
algorithms’ communication complexity is using committee sampling. With this technique, each
step of the protocol is executed by a subset of the processes. That is, a process that is sampled
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to a committee related to a specific message sends it, whereas a process that is not sampled does
nothing. In the presence of an adaptive adversary, we must ensure that the sampling for each
committee cannot be anticipated by the adversary. To this end, committees are independent of
each other, and messages are sent to all processes.

The first sub-quadratic algorithm was introduced by King and Saia [23] in the full information
synchronous model, where there are no restrictions on the adversary’s computational power. While
they manage to achieve Õ(n

√
n) word complexity, their work achieves very low resilience (n >

400f).
By using cryptographic abstractions and assuming a computationally bounded adversary, it

is possible to achieve both high resilience and low communication complexity. This has been
done by using verifiable random functions (VRFs) [27] to elect committees via a procedure known
as cryptographic sortition [21]. A VRF is a pseudorandom function that provides a proof of its
correct computation. Based on a local VRF computation, processes can choose committee members
without communicating with each other. Each process runs a local procedure, independent of other
processes, which checks whether it is elected. If selected, it is provided with a proof that can be
used as a certificate to others. The unpredictability of the selection is a protective measure against
an adaptive adversary that seeks to corrupt the elected members.

An adversary can identify correct processes that participate in a committee once they send
messages. An unrestricted adaptive adversary can then corrupt a committee member and schedule
a new message to arrive before the message which was sent before the corruption. We recall that
this scenario can be prevented by an explicit assumption [16], or implicitly in the so-called erasure
model [9, 21], where correct processes are able to securely erase secret keys from memory. This
matches the no after-the-fact lower bound in [1], as the adversary cannot conceal messages sent by
processes that were not corrupted at the time of the sending.

Algorand [21] first defined and used cryptographic sortition. It solves BA WHP with sub-
quadratic communication and a near-optimal resilience of f = (13 − ε)n, assuming a trusted public
key infrastructure (PKI) in the erasure model and using VRFs to sample committees. Their initial
work was presented in a synchronous model, and was followed by a solution assuming eventual
synchrony [15]. In both cases, they rely on the timing assumption to make progress. Specifically,
their shared coin implementation is based on the idea that every value sent by a correct process
reaches all processes in the system before a timeout signals the end of a “round”. This is clearly
not the case in asynchronous settings.

Algorand’s shared coin implementation is quite simple and based on VRF values. A simplified
pseudo-code of it appears in Algorithm 1. In their coin, every process broadcasts a pseudo-random
value originated at a VRF output. At the end of the communication round, the minimum value
is evaluated. The chosen random bit is the minimum value’s least significant bit. Whenever the
minimum value is sent by a correct process, all processes receive it and result in the same coin toss.
Since the VRFs are pseudo-random and verified, there is a probability of at least 2

3 that a correct
process holds the minimum value and all correct processes obtain the same bit.

Recently, the quadratic barrier was broken also for the asynchronous case. Cohen et al. [16]
have solved BA WHP in a model that assumes a trusted PKI and a delayed-adaptive adversary
that cannot “front run” messages sent by processes before corrupting their sender. A simplified
pseudo-code of their shared coin appears in Algorithm 2. With no timing assumptions, the task
of handling dynamically selected committees is more difficult and the notion of “timeout” loses
its meaning. Instead, they condition the protocol’s progress on a predefined parameter W . They
present sufficient conditions on sampling, which ensure safety and liveness with high probability.
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Algorithm 1 Algorand’s Shared Coin Framework - coin toss in round r
1: vmin ←∞
2: vi ← VRFi(r)
3: send vi to all processes
4: wait until timeout
5: for all vj received in round r do
6: vmin ← min{vmin, vj}
7: return LSB(vmin)

Specifically, the conditions ensure that waiting for W messages allows progress WHP. Because
the adversary can create disagreement by hiding messages of correct processes from each other,
achieving a positive success rate is more challenging. It requires an additional communication
round for “boosting” the presence of the values. In addition, their shared coin algorithm restricts
the protocol’s resilience to n ≈ 4.5f . We note that the delayed adaptiveness of the adversary
is necessary to ensure that it cannot discover who holds the global minimum before scheduling
the messages. Without it, the adversary would be able to hide the minimum from some correct
processes, creating disagreement.

Algorithm 2 Cohen et al.’s Shared Coin Framework - coin toss in round r
1: vmin ←∞
2: vi ← VRFi(r)
3: send vi to all processes
4: wait until receiving W messages
5: for all vj received in the W messages do
6: vmin ← min{vmin, vj}
7: send vmin to all processes
8: wait until receiving W messages
9: for all vj received in the W messages do

10: vmin ← min{vmin, vj}
11: return LSB(vmin)

Blum et al. [9] have presented an algorithm that solves asynchronous BA with near-optimal
resilience. Compared to Cohen et al., they strengthen the adversary, removing the delayed adap-
tiveness requirement, but also the trusted setup phase. Their trusted dealer fixes committees’
members and coin tosses in advance. Furthermore, it distributes the tosses to the members before
the execution starts using secret sharing. As in Algorand, they also work in the erasure model.
Algorithm 3 presents a simplified pseudo-code of their shared coin.

Algorithm 3 Blum et al.’s Shared Coin Framework - coin toss in round r

1: send predefined round r share to all processes
2: return constructed predefined round r secret
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5 Open Questions

While in recent years there are significant improvements in the word complexity of Byzantine
agreement, we identify some still unanswered questions:

• Is there a lower bound on the number of messages or signatures for BA with external validity,
similar to Dolev-Reischuk’s [17] Ω(n2) lower bound?

• In the synchronous model, is there a multi-value BA protocol with external validity that has
O(n2) word complexity in the worst-case?

• In the eventual synchrony setting, is there any BA protocol (binary or multi-value) that has
O(n2) word complexity in the worst-case?

• Can sub-quadratic BA be solved with deterministic guarantees for some of the properties,
specifically safety ones, while others hold WHP?

• In the asynchronous settings, is there a sub-quadratic multi-value BA protocol?

• Whilst existing asynchronous sub-quadratic BA protocols rely on guarantees that hold whp
provided that the protocol is run a constant number of times, is it possible to design asyn-
chronous sub-quadratic SMR?
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