
Introducing Speculative Optimizations in Task Dataflow with Language Extensions
and Runtime Support

Nathaniel Azuelos∗, Yoav Etsion∗, Idit Keidar∗, Ayal Zaks∗† and Eduard Ayguadé‡
∗Technion - Israel Institute of Technology
contact author: nazuel@tx.technion.ac.il

†Intel Corp., Haifa, Israel
‡Barcelona Supercomputing Center and Technical University of Catalunya (UPC)

Abstract—We argue that speculation leads to increased
parallelism in the coarse-grain dataflow paradigm. To do so,
we present a framework for adding speculation in a popular
and well-established framework. We specify a limited set of
additions to the OmpSs language and changes required in its
supporting runtime environment. These modifications enable
speculation across the system in a flexible way. We evaluate
our implementation using a simple benchmark leading to a
promising 10% speedup.

I. INTRODUCTION

The dataflow model is emerging as a main contender in
the challenge of parallelism in multi-core and many-core
systems. Indeed, the dataflow model relieves the program-
mer from the burden of managing synchronization explic-
itly, and promotes the use of automatic runtime environ-
ments to schedule execution efficiently. Originally, dataflow
paradigms focused on individual data elements, emulating
hardware design. Recently, the low cost of on-chip memory
coupled with the capacity of high core density lead the
design of dataflow paradigms at coarser grain [1], [2], [3].

The OmpSs (OpenMP SuperScalar) language and related
infrastructure [2] is one prominent example of a coarse-grain
dataflow programming model. OmpSs offers programmers
a compact set of non-intrusive language annotations in the
form of pragmas to embed in standard serial C/C++ code,
similar to OpenMP. Imperative languages such as C/C++ are
ubiquitous, but they dictate the use of control flow which
does not fit naturally within the dataflow paradigm. Indeed,
the interface between control flow and dataflow requires
synchronization, limiting graph exploration and dependence
resolution. We are thus interested in techniques to remove
the synchronization required at control flow points.

Speculation is widely proven to be a profitable approach
for breaking dependences and achieving higher performance.
It allows to jump over synchronization points and removing
serial bottlenecks, thereby increasing parallelism and per-
formance by Amdahl’s law. Branch prediction and value
speculation are two techniques that are used to jump over
synchronization points in branches and loops. iValue pre-
diction has also been briefly studied [4] in the context of
individual variables whose values rarely change.

t a s k o u t p u t (a)
a = F () ;

t a s k o u t p u t (b)
b = G() ;

t a s k w a i t on (a , b)
i f (a>b)

t a s k i n o u t (a)
H(a) ;

e l s e
t a s k i n o u t (a)

J (a) ;
}
t a s k i n p u t (a)

K(a) ;

(a) Code.

t a s k o u t p u t (a)
a = F () ;

t a s k o u t p u t (b)
b = G() ;

t a s k spec on (b) i n o u t
(a) h i n t (true ,
f a l s e)

i f (a>b)
t a s k i n o u t (a)

H(a) ;
e l s e

t a s k i n o u t (a)
J (a) ;

}
t a s k i n p u t (a)

K(a) ;
(b) Adding a hint at the top of the
branch condition.

(c) Branch condition arriving late.
(d) Both speculative paths are exe-
cuted. Both branch sucessors’ codes
are executed. When the condition
arrives, one task is committed and
the other aborted.

Figure 1. Adding hints to the condition produces two versions. When the
parameters to the condition are available, it is evaluated and the data and
computation each option generated is either committed or aborted.

These techniques target individual data elements and
enable improvements at the level of single instructions,
promoting instruction-level parallelism. In contrast, we con-
front the challenge of promoting task-level parallelization
by applying speculation at a coarse grain in the context of
a dynamic dataflow environment.

In this extend abstract we outline how speculation can be
introduced into a dynamic dataflow environment. We then
present our language additions, compiler adaptations and
runtime environment modifications to the well-established
OmpSs framework of dataflow execution. We explain how
input-output relationships can be useful not only for enforc-
ing parallelism and ordering, but also for supporting coarse-
grain speculation.

To this end, we argue that resorting to dynamic redirection
and multiversionning can fit the dataflow model and allow
for simple commit and abort operations. The crux of our
idea lies in leveraging the existing dataflow graph to create
several speculative versions of the data. Figure 1 exemplifies
our approach. On the occurence of a branch, both paths are
executed. The output of each path then passes on its output
data, to different versions of the same symbolic task. We
demonstrate our approach running the Huffman algorithm,
which shows a 10% speedup in performance.

Our main contribution in this paper lies in presenting how
to introduce speculation in a coarse grain dataflow model.
We list as further contributions the choices and design
decisions made implementing our infrastructure, namely:

• Intuitive language extensions to properly and correctly
offer speculation opportunities to the programmer.

• A compiler framework to translate speculation infor-
mation provided by the programmer and pass them on
to the runtime environment.

• A set of runtime environment modifications and addi-
tions to implement efficient speculative execution.

• A flexible and extendable runtime environment design
so as to allow for ruther speculation techniques than
those currently implemented.

II. BACKGROUND

A. The OmpSs Language

The OmpSs programming standard defines additions to
the OpenMP standard to enable a dataflow representation
in C and C++ programs. It makes use of pragmas that
define tasks with a set of input, output and inout parameters.
Typically, a task is described by its input and output and
inout sensitivity lists as such:

pragma omp t a s k i n p u t (a1 , a2 , . . .) i n o u t (b)
o u t p u t (c1 , c2 , . . .)

Although variable names are given as arguments to these
lists, the dependence information is evaluated at task creation
time. In other words, dependences between objects created
or modified at runtime are inferred at runtime as well.

The OmpSs language fundamentally supports an acceler-
ator model of computation. A main thread runs through the
code until it discovers a graph node description. It builds the
graph node before passing it on to the runtime environment.
When the task’s inputs are available, the runtime environ-
ment passes it on to a scheduler that in turn assigns it to an
available core.

At every nesting hierarchy level, a small table is kept
that keeps in store the list of variables active in the system.
Variables are represented in the table according to the
address of their data, whether in the stack or heap. To each
variable is associated the last graph node to write to it. When
the code represented by a graph node completes, it removes
itself as las writer. A graph node with no associated last
writers found is considered free of the described dependence.

Graph nodes typically go through a lifecycle of
• birth, when dependence relations are established
• wait state, where each predecessor graph element no-

tifies it of completion until
• dispatch where the code block is passed on to a

scheduler, and
• completion, when the code completes and successor

graph nodes are notified.

III. ADDING SPECULATION

Let us quickly go over the two speculation techniques
we present in this paper before describing how to best
implement it in the system.

A. Branch Prediction

Branch prediction is a well-known technique to imporve
performance by speculatively computing the most likely
outcome of a branch. In case of misprediction, the system
must revert to its original state. The main advantages of
this technique is the overlap between the computation of
the condition and the code that follows it.

In Figure 1b, we show how the programmer passes on
information to the system about the likely outcome of the
branch using the ‘hint’ keyword. We rely on the fact that
tasks are self-contained and do not influence variables other
than those of their output lists. As such, keeping different
copies of the output permits us to run more than one branch
option, and possibly several (as in switch-case statements).

Figure 1d shows how in the example, both possible paths
are executed. Further, the task that follows the branch is also
executed using the output of each speculative version. When
task G completes, it triggers the system to verify which
branch path is the valid one. The valid path is committed
and the invalid one aborted, deleting the data it created.

B. Value Prediction

We implement value prediction, following an approach we
presented in earlier work [3]. One use of value prediction
occurs when some value is iteratively refined; in such

t a s k o u t p u t (a)
a = i n i t a () ;

f o r (i < N) {
t a s k i n p u t (a)

a= F (a) ;
}
t a s k i n p u t (a)

G(a)

(a) Code. (b) Filtering without speculation.

t a s k o u t p u t (a)
a = i n i t a () ;

t a s k s p e c o u t (a)
f o r (i < N) {

t a s k i n p u t (a)
a= F (a) ;

t a s k n o t i f y ()
}

compare (a) func
t a s k i n p u t (a)

G(a)

(c) Code. (d) Filtering without speculation.

Figure 2. Speculating on an iterative filter coefficient computation.

cases, it allows programmers to ‘perforate’ the loop [5]
speculatively and compute subsequent stages based on the
result of early iterations. A tolerance measure is provided to
verify the reliability of the approximation.

Another use of value prediction is one where some
information is retrieved from a large data set. In these cases,
communication latencies force the system to synchronize on
the last read operation to compute this information and pass
it to subsequent stages of the algorithm.

Figure 2a shows an iterative computation, where succes-
sive iterations of the loop feed one another, updating the
same variable a. The final version of a is passed to task G.
However, passing earlier versions of a to outside the loop
allows for G to be computed earlier, as shown in Figure 2c.
These earlier versions can be compared between them at the
output of the loop variable F or G, or any successive task.
In our example, all speculation attempts fail, showing that
even in this case, the final result is obtained at the same time
as in the original version.

IV. DESIGN DECISIONS AND CHALLENGES

Several modifications must be made to the NANOS run-
time environment to realize the ideas we propose in this
position paper. We propose to augment the NANOS runtime
environment with the following features:

• dynamic pointer redirection for easy commit of
specative tasks;

• plural speculation to allow multiple instances of the
same task to coexist;

• versionning of data elements for concurrency and
rollback; and

• pipeline forwarding of speculative data through series
of tasks.

Dynamic redirection simplifies the commit-abort mecha-
nisms required by speculation. Every data element created
on a speculative basis is allocated from the heap. A commit
operation then simply reduces to assigning a value to a
pointer. An abort becomes a deallocation operation on the
data elements speculatively created. In certain cases, we
also allow a copy-on-commit mechanism where the result is
copied from its temporary location to its originally intended
one. The redirection process requires that the actual address
of an input be pulled from the dependency graph rather
than used as is. This makes sure that a redirected variable’s
address is used, as opposed to the original one. However,
special precautions must be taken if several variables point
to the same data. For the time being, we leave this hazard
as a warning to the programmer.

We implement redirection using the table of active vari-
ables described previously. We leverage the existance of
this table to turn it into an address translation table. Every
speculative instsance of the variable is stored in the table.
There is no fear that a normally variable written to in
different places will pass along an incorrect version along
its use-def chain, since each task outputing speculative
data uniquely identifies the speculative computation. It is
this identification mechanism that is used to look up the
translation table.

Speculation can often occur along several paths. We
choose to allow plural speculation, where the same symbolic
task runs several concurrent instances of itself based on dif-
ferent inputs. The outputs of these tasks represent different
versions of the same semantic data. Multi-versionning has
several advantages in a speculative context. In the context
of branch prediction, it allows the possibility of computing
both options rather than just one. For value prediction, it
allows different predictions to be alive at the same time.
This can be particularly useful in solution-space exploration
benchmarks, where iterative searches could be performed
speculatively, thus searching concurrently several solutions
in parallel.

An important question in speculation is the extent to
which speculative data is propagated. We argue that one
important purpose of speculation is not only to avoid waiting
on a control-flow condition, but also to bypass sequential
bottlenecks in order to reach a more parallel region of the
application. Therefore, the output of speculative tasks must
continue to feed tasks further down the pipeline. In fact,
we rely on this idea to justify value speculation. On the
other hand, in order to protect code areas with side-effects,
it is desirable to allow the programmer to specify tasks
that are not allowed to be speculative. We can thus avoid
writing speculative data to disk by placing barriers to the
propagation of speculative data.

Memory must be allocated from the heap every time a
speculative task is run. This can be a concern as the program-
mer might define an output on the stack, and deallocating
it will cause an error. The compiler should identify such
cases and replace all dependencies subject to speculation
with heap elements.

There is no need to re-create the dependency graph even
if parts of it will be executed several times by different
speculation threads. To all extents and purposes, the same
graph will be executed no matter if parts of it are speculative
or run several times. Speculative instances must run several
different and independent code blocks that produce and
possibly consume different data elements.

A tracking mechanism of speculative instances is neces-
sary in order to track speculative elements, such as data,
graph nodes and active code blocks. We therefore add spec-
ulation tracking objects that follow the different elements
consequent to a speculation instance. In case of a commit
or abort, these objects take care of deleting or approving all
the elements they track.

V. PRELIMINARY RESULTS

We have implemented a speculative version of the paral-
lel Huffman algorithm. The algorithmm originally requires
building a histogram measuring the frequency of every
bytein a data file to build from it a tree representing the
optimal compression code. Once the tree is built, the data is
compressed on its basis starting from the first element. We

use value specualtion to evaluate the graph based on a prefix
of the data, enabling compression at an earlier stage. We ran
experiments on a simple machine using only four threads.
We see a performance increase of about 10% using this
technique when reading files from a cold cache. This clearly
shows the benefit of overlapping early communication with
computation.

VI. CONCLUSION

In conclusion, we have presented how enabling specula-
tion in coarse-grain dataflow leads to a big potential incrase
in performance. We have shown how simple language addi-
tions can allow the programmer to make use of speculation.
On the back-end, we have outlined the methods required
to implement the rutime support for specuative execution.
Finally, we presented early results from benchmarks show-
ing a good performance speedup using our technique and
infrastructure.

REFERENCES

[1] C. Kyriacou, P. Evripidou, and P. Trancoso, “Data-driven
multithreading using conventional microprocessors,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 17, no. 10,
pp. 1176–1188, 2006.

[2] A. DURAN, E. AYGUADÉ, R. BADIA, J. LABARTA,
L. MARTINELL, X. MARTORELL, and J. PLANAS,
“Ompss: A proposal for programming heterogeneous multi-
core architectures,” Parallel Processing Letters, vol. 21, no. 2,
pp. 173–193, 2011.

[3] N. Azuelos, I. Keidar, and A. Zaks, “Tolerant value spec-
ulation in coarse-grain streaming computations,” in Parallel
& Distributed Processing Symposium (IPDPS), 2011 IEEE
International. IEEE, 2011, pp. 490–501.

[4] F. Gabbay and A. Mendelson, “Can program profiling support
value prediction?” in Thirtieth Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 1997. Proceedings.,
1997, pp. 270–280.

[5] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and
M. Rinard, “Managing performance vs. accuracy trade-offs
with loop perforation,” in Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on
Foundations of software engineering. ACM, 2011, pp. 124–
134.

