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Abstract

In recent years we have seen an exponential increase in storage capacity demands, cre-
ating a need for big data storage solutions. Distributed storage is a common approach
to solve this necessity: data is typically stored on various nodes, which are accessed
asynchronously by clients. Such storage systems that support writing values and read-
ing them are commonly referred to as registers. A common requirement of registers is
wait-freedom, meaning that, given enough actions, any client performing an operation
on the register eventually completes it.

Several algorithms for wait-free registers exist: Byzantine fault-tolerant registers
cope with the possibility that some fraction of the nodes might be malicious by repli-
cating data across distinct nodes. Coded storage solutions wish to alleviate the space
cost of replication by having the nodes store code words, rather than entire values.
Other kinds of registers are designed to store values from a large domain, while each of
the nodes is a register whose capacity is limited to storing values from a small domain.

In this research thesis, we point out a somewhat surprising similarity between
non-authenticated Byzantine storage, coded storage, and certain emulations of shared
registers from smaller ones. A common characteristic in all of these is the inability
of reads to safely return a value obtained in a single atomic access to shared storage.
We collectively refer to such systems as disintegrated storage, and show integrated
space lower bounds for asynchronous regular wait-free emulations in all of them. In
a nutshell, if readers are invisible, i.e., their presence is unknown to the writer, then
the storage cost of such systems is inherently exponential in the size of written values;
otherwise, it is at least linear in the number of readers. Our bounds are asymptotically
tight to known algorithms, and thus justify their high costs.

1



Abbreviations
SW — Single Writer
SR — Single Reader
MR — Multiple Readers

Notation
τ — The number of data blocks needed to recover a value
D — The value size
L — The maximal number of data blocks stored in a reader’s

local data
R — The number of readers in systems containing visible readers
O — The set of all objects
n — The number of shared objects, n = |O|
Π — The set of all processes
B — The domain of data blocks
V — The domain of values
N — The set of natural numbers
p.data — The array of blocks locally stored at a process p ∈ Π
o.data — A block stored in the shared object o ∈ O
e.meta — meta-data stored at an entity e
o.ap — An action a performed by process p at object o
A — An algorithm
r — A run
t — A time in a run
tr — The final time in a finite run r
r′ \ r — The suffix of an extension r′ of r that starts at tr
e.data(r, t) —- The set of blocks stored in e.data at time t in a run r
Labels(b) — The set of labels associated with a data block b
WAv — The set of write operations of a value v invoked in runs of

algorithm A
WAV — The set of write operations of values from a set V invoked

in runs of algorithm A
WAV — The set of write operations invoked in runs of algorithm A
〈w, k〉 — The label created by the kth update in a write operation w
S–labels (v, r, t) — The set of labels of value v in shared storage at time t of run r
L–labelsp (v, r, t) — The set of labels of value v in a reader p’s local storage

at time t of run r
All–labelsp (v, r, t) — The set of labels of value v either in shared storage or in a

reader p’s local storage at time t of run r
valuesp (r, t) — The set of values of which a label exists in a reader p’s

local storage at time t of a run r
S–labels (w, r, t) — The set of labels of write w in shared storage at time t of run r
L–labelsp (w, r, t) — The set of labels of write w in a reader p’s local storage

at time t of run r
All–labelsp (w, r, t) — The set of labels of write w either in shared storage or in a

reader p’s local storage at time t of run r
writesp (r, t) — The set of writes of which a label exists in a reader p’s

local storage at time t of a run r
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Chapter 1

Introduction

1.1 Space bounds for encoded, multi-register, and Byzan-
tine storage

In many data sharing solutions, information needs to be read from multiple sources in
order for a single value to be reconstructed. One such example is coded storage, where
multiple storage blocks need to be obtained in order to recover a single value that can
be returned to the application [5, 9, 10, 16, 18, 19, 24, 25]. Another example arises in
shared memory systems, where the granularity of atomic memory operations (such as
load and store) is limited to a single word (e.g., 64 bits) and one wishes to atomically
read and write larger values [24]. A third example is replicating data to overcome
Byzantine faults (without authentication) or data corruption, where a reader expects
to obtain the same block from multiple servers in order to validate it [1, 2, 20].

We refer to such systems collectively as disintegrated storage systems. We show that
the need to read data in multiple storage accesses inherently entails high storage costs:
exponential in the data size if reads do not modify the storage, and otherwise linear
in the number of concurrent reads. This stands in contrast to systems that use non-
Byzantine replication, such as ABD [6], where, although meta-data (e.g., timestamps)
is read from several sources, the recovered value need only be read from a single source.

1.2 Our results

We consider a standard shared storage model (see Chapter 2). We refer to shared
storage locations (representing memory words, disks, servers, etc.) as objects. To
strengthen our lower bounds, we assume that objects are responsive, i.e., do not fail;
the results hold a fortiori if objects can also be unresponsive [20]. Objects support
general read-modify-write operations by asynchronous processes. We study wait-free
emulations of a shared regular register [21].

Chapter 3 formally defines disintegrated storage. We use a notion of blocks, which
are parts of a value kept in storage – code blocks, segments of a longer-than-word
value, or full copies of a replicated value. A key assumption we make is that each
block in the shared storage pertains to a single write operation; a similar assumption
was made in previous studies [11,25]. The disintegration property then stipulates that
a reader must obtain some number τ > 1 of blocks pertaining to a value v before
returning v. For example, τ blocks are needed in τ -out-of-n coded storage, whereas
τ = f + 1 in f -tolerant Byzantine replication, in executions where no object actually
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Invisible Reads Visible Reads

General Case τ + (τ − 1)
⌈

2D−1
L

⌉
τ + (τ − 1) ·min

(⌈
2D−1
L

⌉
, R
)

Common Write
τ · 2D τ + (τ − 1) ·min

(
2D − 1 , R

)
(e.g., coded storage)

Table 1.1: Lower bounds on shared storage space consumption, in units of blocks; D
is the value size, τ > 1 is the number of data blocks required in order to recover a
value, L ≥ 1 is the maximal number of blocks stored in a reader’s local data, and R
the number of readers.

fails. To strengthen our results, we allow the storage to hold unbounded meta-data
(e.g., timestamps), and count only the storage cost for blocks. Note that the need to
obtain τ blocks implies that meta-data cannot be used instead of actual data.

In Chapter 4 we give general lower bounds that apply to all types of disintegrated
storage – replicated, coded, and multi-register. We first consider invisible reads, which
do not modify the shared storage. This is a common paradigm in storage systems and
is often essential where readers outnumber writers and have different permissions. In
this case, even with one reader and one writer, the storage size can be exponential;
specifically, if value sizes are D (taken from a domain of size 2D), then we show a

lower bound of τ + (τ − 1)
⌈

2D−1
L

⌉
shared blocks, where L is the number of blocks in a

reader’s local storage. That is, if the local storage of the reader is not exponential in
the value size, then the shared storage is.

Chapter 5 studies a more restrictive flavor of disintegrated storage, called τ -common
write, where a reader needs to obtain τ blocks produced by the same write(v) oper-
ation in order to return v. In other words, if the reader obtains blocks that originate
from two different writes of the same value, then it cannot recognize that they pertain
to the same value, as is the case when blocks hold parts of a value or code blocks rather
than replicas. In this case, the shared storage cost is high independently of the local
memory size. Specifically, we show a bound of τ · 2D blocks with invisible readers. In
systems that use symmetric coding (i.e., where all blocks are of the same size, namely
at least D/τ bits), this implies a lower bound of D · 2D bits. For a modest value size
of 20 bytes, the bound amounts to 2.66 · 1037 TB, and for 1KB values it is a whopping
1.02 · 102457 TB.

We further consider visible reads, which can modify the objects’ meta-data. In this
case, readers may indicate to the writers that a read is ongoing, and signal to them
which blocks to retain. Using such signals, the exponential bound no longer holds –
there are register emulations that store a constant number of values per reader [2, 5,
13, 17, 24]. We show that such linear growth with the number of readers is inherent.
Our results are summarized in Table 1.1.

These bounds are tight as far as regularity and wait-freedom go: relaxing either
requirement allows circumventing our results [1, 20]. As for storage cost, our lower
bounds are asymptotically tight to known algorithms, whether reads are visible [2, 5,
17,24] or not [7, 16,19,23].

We note that the study of the inherent storage blowup in asynchronous coded
systems has only recently begun [11, 25] and is still in its infancy. In this work, we
point out a somewhat surprising similarity between coded storage and other types of
shared memory/storage, and show unified lower bounds for all of them. Chapter 6
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concludes the thesis and suggests directions for future work.

1.3 Related work and applicability of our bounds

Several works have studied the space complexity of register emulations. Two recent
works [11, 25] show a dependence between storage cost and the number of writers in
crash-tolerant storage, identifying a trade-off between the cost of replication (f + 1
copies for tolerating f faults) and that of τ -out-of-n coding (linear in the number
of writers). Though they do not explicitly consider disintegrated storage, it is fairly
straightforward to adapt the proof from [25] to derive a lower bound of τW blocks
with W writers. Here we consider the case of single-writer algorithms, where this
bound is trivial. Other papers [3,15] show limitations of multi-writer emulations when
objects do not support atomic read-modify-write, whereas we consider single-writer
emulations that do use read-modify-write.

Chockler et al. [14] define the notion of amnesia for register emulations with an
infinite value domain, which intuitively captures the fact that an algorithm “forgets”
all but a finite number of values written to it. They show that a wait-free regular
emulation tolerating non-authenticated Byzantine faults with invisible readers cannot
be amnesic, but do not show concrete space lower bounds. In this work we consider a
family of disintegrated storage algorithms, with visible and invisible readers, and show
concrete bounds for the different cases; if the size of the value domain is unbounded,
then our invisible reader bounds imply unbounded shared storage.

Disintegrated storage may also correspond to emulations of large registers from
smaller ones, where τ is the size of the big register divided by the size of the smaller one.
Some algorithms in this vein, e.g., [24], indeed have the disintegration property, as the
writer writes τ blocks to a buffer and a reader obtains τ blocks of the same write. These
algorithms are naturally subject to our bounds. Other algorithms, e.g., [12,13,21], do
not satisfy our assumption that each block in the shared storage pertains to a single
write operation, and a reader may return a value based on blocks written by different
write operations. Thus, our bounds do not apply to them. It is worth noting that
these algorithms nevertheless either have readers signal to the writers and use space
linear in the number of readers, or have invisible readers but use space exponential
in the value size. Following an earlier publication of our work in [8], Wei [27] showed
that these costs – either linear in the number of visible readers or exponential in the
value size with invisible ones – are also inherent in emulations of large registers from
smaller ones that do share blocks among writes, albeit do not use meta-data at all.
Several questions remain open in this context: first, Wei’s bound is not applicable
to all types of storage we consider (in particular, Byzantine), and does not apply to
algorithms that use timestamps. Second, we are not familiar with any regular register
emulations where readers write-back data, and it is unclear whether our bound may
be circumvented in this way.

Non-authenticated Byzantine storage algorithms that tolerate f faults need to read
a value f+1 times in order to return it, and are thus τ -disintegrated for τ = f+1. Note
that while our model assumes objects are responsive, it a fortiori applies to scenarios
where objects may be unresponsive. Some algorithms circumvent our bound either
by providing only safe semantics [20, 22], or by forgoing wait-freedom [1]. Others
use channels with unbounded capacity to push data to clients [7, 23] or potentially
unbounded storage with best-effort garbage collection [19].
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As for coded storage, whenever τ blocks are required to reconstruct a value, the
algorithm is τ -disintegrated. And indeed, previous solutions in our model require
unbounded storage or channels [9,10,16,18,19], or retain blocks for concurrent visible
readers, consuming space linear in the number of readers [5]. Our bounds justify these
costs. Our assumption that each block in the shared storage pertains to a single value
is satisfied by almost all coded storage algorithms we are aware of. The only exception
is [26], which indeed circumvents our lower bound but does not conform to regular
register semantics. Other coded storage solutions, e.g., [4], are not subject to our
bound because they may recover a value from a single block.
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Chapter 2

Preliminaries

Shared storage model We consider an asynchronous shared memory system con-
sisting of two types of entities: A finite set O = {o1, . . . , on} of objects comprising
shared storage, and a set Π of processes. Every entity in the system stores data: an
object’s data is a single block from some domain B, whereas a process’ data is an
array of up to L blocks from B. We assume a bound L on the number of blocks in
the data array of each process. In addition, each entity stores potentially unbounded
meta-data, meta. We denote an entity e’s data as e.data and likewise for e.meta. A
system’s storage cost is the number of objects in the shared storage, n.

Objects support atomic get and update actions by processes. We denote by ap
an action a performed by p and by o.ap an ap action applied to o. An o.updatep is an
arbitrary read-modify-write that possibly writes a block from B to o.data and modifies
o.meta, p.meta, and p.data. An o.getp may replace a block in p.data with o.data and
may modify p.meta.

Algorithms, configurations, and runs An algorithm defines the behaviors of
processes as deterministic state machines, where state transitions are associated with
actions. A configuration is a mapping to states (data and meta) from all system
components, i.e., processes and objects. In an initial configuration all components are
in their initial states.

We study algorithms (executed by processes in Π) that emulate a high-level func-
tionality, exposing high-level operations, and performing low-level gets/updates on
objects. We say that high-level operations are invoked and return or respond. Note
that, for simplicity, we model gets and updates as instantaneous actions, because the
objects are assumed to be atomic, and we do not explicitly deal with object failures
in this thesis.

A run of algorithm A is a (finite or infinite) alternating sequence of configurations
and actions, beginning with some initial configuration, such that configuration tran-
sitions occur according to A. Occurrences of actions in a run are called events. The
possible events are high-level operation invocations and responses and get/update oc-
currences. We use the notion of time t during a run r to refer to the configuration
reached after the tth event in r. For a finite run r consisting of t events we define
tr , t. Two operations are concurrent in a run r if both are invoked in r before either
returns. If a process p’s state transition from state S is associated with a low-level
action ap ∈ {getp, updatep}, we say that ap is enabled in S. A run r′ is an extension
of a (finite) run r if r is a prefix of r′; we denote by r′ \ r the suffix of r′ that starts at
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tr. If a high-level operation op has been invoked by process p but has not returned by
time t in a run r, we say that op’s invocation is pending at t in r. We assume that each
process’ first action in a run is an invocation, and a process has at most one pending
invocation at any time.

For e ∈ Π ∪O, we denote by e.data(r, t) the set of distinct blocks stored in e.data
at time t in a run r. Since for an object o, |o.data (r, t)| = 1, we sometimes refer to
o.data (r, t) as the block itself, by slight abuse of notation. We say that p obtains a
block b at time t in a run r, if b /∈ p.data (r, t) and b ∈ p.data (r, t+ 1).

Register emulations We study algorithms that emulate a shared register [21],
which stores a value v from some domain V. We assume that |V| = 2D > 1, i.e.,
values can be represented using D > 0 bits. For simplicity, we assume that each run
begins with a dummy initialization operation that writes the register’s initial value and
does not overlap any operation. The register exposes high-level readp and writep(v)
operations of values v ∈ V to processes p ∈ Π. We consider single-writer (SW) registers
where the application at only one process (the writer) invokes writes, and hence omit
the subscript p from write(v). The remaining R , |Π| − 1 processes are limited to
performing reads, and are referred to as readers. For brevity, we refer to the subse-
quence of a run where a specific invocation of a write(v)/ readp is pending simply as
a write(v)/ readp operation.

We assume that whenever a readp operation is invoked at time t in a run r,
p.data (r, t) is empty. We consider two scenarios: (1) invisible reads, where reads
do not perform updates, and (2) visible reads, where reads may perform updates that
update meta-data (only) in the shared storage. Note that readers do not write actual
data, which is usually the case in regular register emulations, defined below. In a
single-reader (SR) register R = 1, and if R > 1 the register is multi-reader (MR). If
the states of the writer and the objects at the end of a finite run r are equal to their
respective states at the end of a finite run r′, we say that tr and tr′ are indistinguishable
to the writer and objects, and denote: tr ≈w tr′ .

Our safety requirement is regularity [21]: a read rd must return either the value of
the last write w that returns before rd is invoked, or the value of some write that is
concurrent with rd. For liveness, we require wait-freedom, namely that every operation
invoked by a process p returns within a finite number of p’s actions. In other words, if
p is given infinitely many opportunities to perform actions, it completes its operation
regardless of the actions of other processes.
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Chapter 3

Disintegrated storage

As noted above, existing wait-free algorithms of coded and/or Byzantine-fault-tolerant
storage with invisible readers may store all values ever written [7, 9, 11, 16, 18, 19, 23].
This is because if old values are erased, it is possible for a slow reader to never find
sufficiently many blocks of the same value so as to be able to return it. If readers are
visible, then a value per reader is retained. We want to prove that these costs are
inherent. The challenge in proving such space lower bounds is that the aforementioned
algorithms use unbounded timestamps. How can we show a space lower bound if we
want to allow algorithms to use unbounded timestamps? We address this by allowing
meta-data to store timestamps, etc., and by not counting the storage cost for meta-
data. For example, the above algorithms store timestamps in meta-data alongside data
blocks and use them to figure out which data is safe to return, but still need τ actual
blocks/copies of a value in order to return it. Note that for the sake of the lower bound,
we do not restrict how meta-data is used; all we require is that the algorithm read τ
data blocks of the same value (or write), and we do not specify how the algorithm
knows that they pertain to the same value (or write). To formalize the property that
the algorithm returns τ blocks pertaining to the same value or write, we need to track,
for each block in the shared storage, which write produced it. To this end, we define
labels. Labels are only an analysis tool, and do not exist anywhere. In particular, they
are not timestamps, not meta-data, and not explicitly known to the algorithm. As an
external observer, we may add them as abstract state to the blocks, and track how
they change.

Labels We associate each block b in the shared or local storage with a set of labels,
Labels(b), as we now explain. For an algorithm A and v ∈ V, denote by WAv the set
of write(v) operations invoked in runs of A. For V ⊆ V, we denote WAV ,

⋃
v∈V WAv ,

and let WA , WV. For clarity, we omit A when obvious from the context, and refer
simply to Wv, WV , and W. We assume that the kth update event occurring in a
write operation w ∈ W tags the block b it stores (if any) with a unique label 〈w, k〉,
so Labels(b) becomes {〈w, k〉}.

Whereas our assumption that each block in the shared storage pertains to a single
write rules out associating multiple labels with such a block, we do allow the reader’s
meta-data to recall multiple accesses encountering the same block. For example, when
blocks are copies of a replicated value, the reader can store one instance of the value in
local memory and keep a list of the objects where the value was encountered. To this
end, a block in a reader’s data may be tagged with multiple labels: when a reader p
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obtains a block b from an object o at time t in a run r, the block b in p.data (r, t+ 1) is
tagged with Labels(o.data (r, t)); if at time t′ > t p.data still contains b and p performs
an action on an object o′ s.t. o′.data (r, t′) = b and the latter is tagged with label `,
then p adds ` to Labels(b) (regardless of whether b is added to p.data once more).
When all copies of a block are removed from p.data, all its labels are “forgotten”. We
emphasize that labels are not stored anywhere, and are only used for analysis.

We track the labels of a value v ∈ V at time t in a run r using the sets S–labels (v, r, t),
of labels in the shared storage, L–labelsp (v, r, t), of labels in process p’s local storage,
and All–labelsp (v, r, t), a combination of both. Formally,

• S–labels (v, r, t) ,
(⋃

o∈O Labels(o.data (r, t))
)
∩ (Wv × N).

• L–labelsp (v, r, t) ,
(⋃

b∈p.data(r,t) Labels(b)
)
∩ (Wv × N).

• All–labelsp (v, r, t) , L–labelsp (v, r, t) ∪ S–labels (v, r, t).

For a time t in a run r and p ∈ Π, we define valuesp (r, t) , {v ∈ V | L–labelsp (v, r, t) 6=
∅}.

Similarly, we track labels associated with a particular write w ∈ W accessible by
process p ∈ Π at time t in a run r:

• S–labels (w, r, t) ,
(⋃

o∈O Labels(o.data (r, t))
)
∩ ({w} × N).

• L–labelsp (w, r, t) ,
(⋃

b∈p.data(r,t) Labels(b)
)
∩ ({w} × N).

• All–labelsp (w, r, t) , L–labelsp (w, r, t) ∪ S–labels (w, r, t).

We define writesp (r, t) , {w ∈ W | L–labelsp (w, r, t) 6= ∅}. Note that for all
v ∈ V and w ∈ Wv, (1) S–labels (w, r, t) ⊆ S–labels (v, r, t), (2) L–labelsp (w, r, t) ⊆
L–labelsp (v, r, t), and (3) All–labelsp (w, r, t) ⊆ All–labelsp (v, r, t).

Since readers do not write-back:

Observation 1. If the tth event in a run r is of a reader p ∈ Π, then for all
v ∈ V, w ∈ W: All–labelsp (v, r, t) ⊆ All–labelsp (v, r, t− 1) and All–labelsp (w, r, t) ⊆
All–labelsp (w, r, t− 1).

Disintegrated storage Intuitively, in disintegrated storage register emulations, for
a readp to return v, p must encounter τ > 1 blocks corresponding to v that were
produced by separate update events. To formalize this, we use labels:

Definition 2 (τ -disintegrated storage). If a return of v ∈ V by a readp invocation is
enabled at time t in a run r then |L–labelsp (v, r, t)| ≥ τ .

Thus, a reader can only return v if it recalls (in its local memory) obtaining blocks
of v with τ different labels.

A more restrictive case of τ -disintegrated storage occurs when readers cannot iden-
tify whether two blocks pertain to a common value unless they are produced by a
common write that identifies them, e.g., with the same timestamp. This is the case
when value parts or code words, rather than full replicas, are stored in objects.

To capture this case, for a block b ∈
⋃
e∈O∪Π e.data, a value v ∈ V, and a write

w ∈ Wv, if ∃k ∈ N s.t. 〈w, k〉 ∈ Labels(b), we say that w is an origin write of b and v
is an origin value of b. Common write τ -disintegrated storage is then defined:
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Definition 3 (common write τ -disintegrated storage). If a return of v ∈ V by a readp
invocation is enabled at time t in a run r then ∃w ∈Wv : |L–labelsp (w, r, t)| ≥ τ .

Note that we do not further require p.data to actually hold τ blocks with a common
write, because the weaker definition suffices for our lower bounds. For brevity, we
henceforth refer to a common write τ -disintegrated storage algorithm simply as τ -
common write.

Permanence Our lower bounds will all stem, in one way or another, from the ob-
servation that in wait-free disintegrated storage, every run must reach a point after
which some values (and in the case of common write, also some writes) must perma-
nently have a certain number of blocks in the shared storage. This is captured by the
following definition:

Definition 4 (permanence). Consider a finite run r, k ∈ N, a set S ⊆ V, and a set
of readers Θ ⊂ Π. Let z ∈ V ∪W be a value or a write operation. We say that z is
〈k, Θ, S〉-permanent in r if in every finite extension r′ of r s.t. in r′ \ r readers in Θ
do not take actions and writes are limited to values from S, |S–labels (z, r′, tr′)| ≥ k.

Intuitively, this means that the shared storage continues to hold k blocks of z as
long as readers in Θ do not signal to the writer and only values from S are written.
For brevity, when the particular sets S and Θ are not important, we refer to the value
shortly as k-permanent. The observation below follows immediately from the definition
of permanence:

Observation 5. Let v ∈ V, w ∈Wv, k ∈ N, V2 ⊆ V1 ⊆ V, Θ1 ⊆ Θ2 ⊂ Π.

1. If w is 〈k, Θ1, V1〉-permanent in a finite run r then v is 〈k, Θ1, V1〉-permanent
in r.

2. If v is 〈k, Θ1, V1〉-permanent in a finite run r then v is 〈k, Θ2, V2〉-permanent
in all finite extensions r′ of r where in r′ \ r writes are limited to values from
V1 and readers in Θ1 do not take actions.

Since each object holds a single block associated with a single label:

Observation 6. For time t in a run r, the number of objects is: n ≥
∣∣⋃

v∈V S–labels (v, r, t)
∣∣.

Thus, if there are m different k-permanent values in a run, then n ≥ mk. We
observe that with invisible readers, the set Θ is immaterial:

Observation 7. Consider k ∈ N, V ⊆ V, and a finite run r with an invisible reader
p ∈ Π. If z ∈ V ∪W is 〈k, {p}, V 〉-permanent in r then z is 〈k, ∅, V 〉-permanent in
r.

The specific lower bounds for the four scenarios we consider differ in the number
of permanent values/writes and the number of blocks per value/write (k = τ − 1 or
k = τ) we can force the shared storage to retain forever in each case. Interestingly, our
notion of permanence resembles the idea that an algorithm is not amnesic introduced
in [14] (see Section 1.3), but is more fine-grained in specifying the number of permanent
blocks and restricting executions under which they are retained.
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Chapter 4

Lower bounds for disintegrated storage

In this chapter we provide lower bounds on the number of objects required for τ -
disintegrated storage regular wait-free register emulations. Section 4.1 proves two
general properties of regular wait-free τ -disintegrated storage algorithms. We show in
Section 4.2 that with invisible reads, unless the readers’ local storage size is exponen-
tial in D, the storage cost of such emulations is at least exponential in D. Finally,
Section 4.3 shows that if reads are visible, then the storage cost increases linearly with
the number of readers.

4.1 General properties

We first show that because readers must make progress even if the writer stops taking
steps, at least 2τ − 1 blocks are required regardless of the number of readers.

Claim 8. Consider v1, v2 ∈ V and a run r of a wait-free regular τ -disintegrated storage
algorithm with two consecutive responded writes w1 ∈Wv1 followed by w2 ∈Wv2. Let
p ∈ Π be a reader s.t. no readp is pending in r. Then there is a time t between the
returns of w1 and w2 when |S–labels (v1, r, t)| ≥ τ and |S–labels (v2, r, t)| ≥ τ − 1.

Proof. We first argue that at the time ti, i ∈ {1, 2} when wi returns, |S–labels (vi, r, ti)| ≥
τ . Assume the contrary. We build a run r′ identical to r up to ti. In r′, only process p
performs actions after time ti. Next, invoke a readp operation rd. By regularity and
wait-freedom, rd must return vi. Before performing actions on objects, p.data (r′, ti)
is empty, thus, from τ -disintegrated storage, p must encounter at least τ blocks with
an origin value of vi in order to return it. Since no process other than p takes actions,
|S–labels (vi, r

′, t′)| < τ for all t′ ≥ ti onward, so rd cannot find these blocks and does
not return vi, a contradiction. It follows that in r′ at ti, and hence also in r at ti,
|S–labels (vi, r, ti)| ≥ τ .

Next, if at t1, |S–labels (v2, r, t1)| ≥ τ−1 then we are done. Otherwise, observe that
objects are accessed one-at-a-time. Therefore, and since |S–labels (v2, r, t1)| < τ − 1,
there exists a time t between t1 and t2 when |S–labels (v2, r, t)| = τ − 1.

Finally, assume that |S–labels (v1, r, t)| < τ . Build a run r′′ identical to r up to
t, where again only p takes actions after t. As above, it follows by regularity, τ -
disintegrated storage, and p.data (r′′, t) = ∅, that rd never returns, in violation of
wait-freedom. It follows that |S–labels (v1, r

′′, t)| = |S–labels (v1, r, t)| ≥ τ .

The following lemma states that every non-empty set V can be split into two
disjoint subsets, where one contains a value that is (τ − 1)-permanent with respect to
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the other subset. The idea is to show that in the absence of such a value, a reader’s
accesses to the shared storage may be scheduled in a way that prevents the reader from
obtaining τ labels of the same value. The logic of the proof is the following: we restrict
writes to a set of values V , and consider the set S of values with blocks in p.data ∩V .
If no value in S is (τ − 1)-permanent, then we can bring the shared storage to a state
where none of the values in S have τ labels, preventing the reader from obtaining the
τ labels required to return. By regularity, readers cannot return other values. The
formal proof is slightly more subtle, because it needs to consider L–labelsp as well as
labels in the shared storage. It shows that the total number of labels of values in S
(in both the shared and local storage) remains below τ whenever p takes a step.

Lemma 9. Consider a non-empty set of values V ⊆ V, a set of readers Θ ⊂ Π,
a reader p ∈ Π \ Θ, and a finite run r of a wait-free regular τ -disintegrated storage
algorithm. Then there is a subset S ⊆ V of size 1 ≤ |S| ≤ L and an extension r′ of r
where some value v ∈ S is 〈τ − 1, Θ ∪ {p}, V \ S〉-permanent and s.t. in r′ \ r writes
are limited to values from V and readers in Θ do not take steps.

Proof. Assume by contradiction that the lemma does not hold. We construct an
extension r′ of r where a readp operation includes infinitely many actions of p yet does
not return. To this end, we show that the following property holds at specific times in
r′ \ r:

ϕ (r̂, t) , ∀v ∈ valuesp (r̂, t) ∩ V : |All–labelsp (v, r̂, t)| < τ.

First, extend r to r0 by returning any pending readp and write, invoking and
returning a write(v0) for some v0 ∈ V (the operations eventually return, by wait-
freedom), and finally invoking a readp operation rd without allowing it to take actions.
We now prove by induction that for all k ∈ N, there exists an extension r′ of r0 where
(1) ϕ (r′, tr′) holds and in r′ \ r: (2) writes are restricted to values from V , (3) p
performs k actions on objects following rd’s invocation, and (4) rd’s return is not
enabled, and (5) processes in Θ do not take steps.

Base: for k = 0, consider r′ = r0. (3,5) hold trivially. (2) holds since the only
write in r′ \ r is of v0 ∈ V . Since p performs no actions following the invocation of rd,
p.data (r′, tr′) is empty. Therefore, (1) ϕ (r′, tr′) is vacuously true, and L–labelsp (v, r, t)
is empty for all v ∈ V, thus (4) rd’s return is not enabled by τ -disintegrated storage.

Step: assume inductively such an extension r1 of r0 with k ≥ 0 actions performed
by p following rd’s invocation. Since rd cannot return, by wait-freedom, an action ap
is enabled on some object. We construct an extension r2 of r1 by letting ap occur at
time tr1 . We consider two cases:

1. p does not obtain a block with an origin value in V \valuesp (r1, tr1) at ap. Thus
valuesp (r2, tr2) ∩ V ⊆ valuesp (r1, tr1) ∩ V . Then, by Observation 1 and the inductive
hypothesis, (1) ϕ (r2, tr2) holds and thus, by τ -disintegrated storage, rd cannot return
any value v ∈ valuesp (r2, tr2) ∩ V at tr2 . (4) It cannot return any other value in
valuesp (r2, tr2) by regularity, and r2 satisfies the induction hypothesis for k + 1, as
(2,3,5) trivially hold.

2. p obtains a block with origin value u ∈ V \ valuesp (r1, tr1) at time tr1 . Then
|L–labelsp (u, r2, tr2)| = 1. By Observation 1 and the inductive hypothesis, for all
v ∈ valuesp (r2, tr2)\{u}, |L–labelsp (v, r2, tr2)| < τ , and thus rd’s return is not enabled
at time tr2 by τ -disintegrated storage and regularity.

Let S = valuesp (r2, tr2) ∩ V , and note that |S| ≥ 1 (since u ∈ S) and that |S| ≤
|p.data| ≤ L. By the contradicting assumption, u is not 〈τ − 1, Θ ∪ {p}, V \ S〉-permanent
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in r2, thus there exists an extension r3 of r2 s.t. |S–labels (u, r3, tr3)| < τ−1 and in r3\r2

writes are limited to values from V \S and no readers in Θ∪{p} take steps (3,5 hold).
Since p takes no steps in r3\r2, we have that L–labelsp (u, r3, tr3) = L–labelsp (u, r2, tr2),
yielding:

|All–labelsp (u, r3, tr3)| ≤ |L–labelsp (u, r2, tr2)|+ |S–labels (u, r3, tr3)| < 1 + (τ − 1) = τ.
(4.1)

All writes invoked after tr2 are from WV \S (2 holds), and therefore do not produce
new labels associated with values in S. Since no values in S are written after tr1 and
readers’ actions do not affect the sets S–labels, by Observation 1, we have that ∀v ∈ S,
All–labelsp (v, r3, tr3) ⊆ All–labelsp (v, r1, tr1), and since ϕ (r1, tr1) holds (inductively)
and S \ {u} ⊆ valuesp (r1, tr1) ∩ V ,

∀v ∈ S \ {u} : |All–labelsp (v, r3, tr3)| ≤ |All–labelsp (v, r1, tr1)| < τ. (4.2)

From Equations 4.1 and 4.2, and since valuesp (r3, tr3)∩ V = valuesp (r2, tr2)∩ V = S,
we get ϕ (r3, tr3) (1). Since rd′s return was not enabled at time tr2 and it took no
actions since, its return is still not enabled (4), and we are done.

4.2 Invisible reads

We now consider a setting of a single reader and single writer where reads are invisible.
To show the following theorem, we “blow up” the shared storage by repeatedly invoking
Lemma 9, each time adding one more (τ − 1)-permanent value, yielding the following
bound:

Theorem 10. The storage cost of a regular τ -disintegrated storage wait-free SRSW

register emulation where reads are invisible is at least τ + (τ − 1)
⌈

2D−1
L

⌉
blocks.

When readers are invisible, the set Θ is of no significance, so we consider ∅. Given
a set of values V , the value added by Lemma 9 is 〈τ − 1, ∅, V \ S〉-permanent for
a smaller set of values V \ S where |S| ≤ L. Therefore, we can invoke Lemma 9

m =
⌈

2D−1
L

⌉
− 1 times before running out of values, showing the following:

Lemma 11. Let p ∈ Π be an invisible reader. There exist finite runs r0, ..., rm and
sets of values V0 ⊃ V1 ⊃ ... ⊃ Vm and U0 ⊂ U1 ⊂ ... ⊂ Um, such that for all 0 ≤ k ≤ m:

1. |Vk| ≥ 2D − Lk, |Uk| = k, Vk ∩ Uk = ∅, and

2. all elements of Uk are 〈τ − 1, ∅, Vk〉-permanent in rk.

Proof. By induction. Base: r0 is the empty run, V0 = V and U0 = ∅. Assume
inductively that the lemma holds for k < m. Since m < 2D−1

L , we get: |Vk| >
2D − L2D−1

L = 1. Since Vk is non-empty and |∅| < R, by Lemma 9 there exist an
extension rk+1 of rk where writes in rk+1 \ rk are limited to values from Vk, a set
S ⊂ Vk, 1 ≤ |S| ≤ L, and a value v ∈ S that is 〈τ − 1, {p}, Vk \ S〉-permanent in
rk+1.

Let Vk+1 = Vk \ S and Uk+1 = Uk ∪ {v}. Note that, because Vk ∩ Uk = ∅ and v ∈
S ⊂ Vk, we get that Vk+1 ∩Uk+1 = ∅ and |Uk+1| = |Uk|+ 1 = k+ 1. Since 1 ≤ |S| ≤ L
we have that Vk ⊃ Vk+1 and |Vk+1| = |Vk| − |S| ≥ 2D − L(k + 1). By the inductive
assumption and Observation 5, all values in Uk are 〈τ − 1, ∅, Vk+1〉-permanent in rk+1.
By Observation 7, v is also 〈τ − 1, ∅, Vk+1〉-permanent in rk+1 and we are done.
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Our bound combines the 2τ−1 blocks of Claim 8 with the (τ−1)m from Lemma 11:

Proof (Theorem 10). Consider an invisible reader p ∈ Π and construct rm, Vm, and
Um as in Lemma 11. Note that Vm contains at least two distinct values that are not
in Um, since Vm ∩ Um = ∅ and |Vm| ≥ 2D − Lm > 2D − L2D−1

L = 1. Extend rm to
rm+1 by invoking and returning write(v) and write(v′) for v, v′ ∈ Vm.

By Claim 8, there is a time t ≥ trm in rm+1 when there are 2τ − 1 blocks in the
shared storage with origin values of v or v′. In addition, by Lemma 11, Um consists
of m values that are 〈τ − 1, ∅, Vm〉-permanent in rm, and since writes in rm+1 \ rm
are of values from Vm, the values in Um remain 〈τ − 1, ∅, Vm〉-permanent in rm+1. By
Observation 6:

n ≥ 2τ − 1 + (τ − 1)m = τ + (τ − 1)(m+ 1) = τ + (τ − 1)

⌈
2D − 1

L

⌉
.

4.3 Visible reads

We now consider systems where readers may write meta-data in the shared storage.
We use a similar technique as in Lemma 11, except that due to readers’ updates, the
indistinguishability argument can no longer be used. Instead, we invoke a new reader
for each extension, and therefore the number of runs might be limited by the number
of readers, R:

Theorem 12. The storage cost of a regular τ -disintegrated storage wait-free MRSW

register emulation with R readers is at least τ + (τ − 1) ·min
(⌈

2D−1
L

⌉
, R
)

blocks.

To achieve this bound, we use Lemma 9 again to constructN = min
(⌈

2D−1
L

⌉
, R
)
−

1 extensions of the empty run (note that it does not assume invisible reads).

Lemma 13. There exist finite runs r0, ..., rN , sets of values V0 ⊃ V1 ⊃ ... ⊃ VN and
U0 ⊂ U1 ⊂ ... ⊂ UN , and sets of readers Θ0 ⊂ Θ1 ⊂ ... ⊂ ΘN , such that for all
0 ≤ k ≤ N :

1. |Vk| ≥ 2D − Lk, |Uk| = |Θk| = k, Vk ∩ Uk = ∅, and

2. all elements of Uk are 〈τ − 1, Θk, Vk〉-permanent in rk.

Proof. By induction. Base: r0 is the empty run, V0 = V, Θ0 = U0 = ∅. Assume
inductively such rk, Vk, Uk, and Θk for k < N , and construct rk+1 as follows: since

R−|Θk| > 0, there is a reader p ∈ Π\Θk. Since N < 2D−1
L , we get |Vk| > 2D−LN > 1.

Therefore, by Lemma 9, there exist an extension rk+1 of rk where in rk+1 \ rk writes
are limited to values from Vk and readers in Θk do not take steps, a set S ⊆ Vk,
1 ≤ |S| ≤ L, and a value v ∈ S that is 〈τ − 1, Θk ∪ {p}, Vk \ S〉-permanent in rk+1.

Let Vk+1 = Vk \ S and Uk+1 = Uk ∪ {v}. Note that, because Vk ∩ Uk = ∅ and
v ∈ S ⊂ Vk, it follows that Vk+1 ∩ Uk+1 = ∅ and |Uk+1| = k + 1. Furthermore,
since 1 ≤ |S| ≤ L, we get: Vk ⊃ Vk+1 and |Vk+1| ≥ |Vk| − |S| ≥ 2D − L(k + 1).
Finally, let Θk+1 = Θk ∪ {p}. By the inductive assumption and Observation 5,
all values in Uk are 〈τ − 1, Θk+1, Vk+1〉-permanent in rk+1, and so all of Uk+1 is
〈τ − 1, Θk+1, Vk+1〉-permanent in rk+1, as needed.
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From Lemma 13, in rN there is a set of N (τ − 1)-permanent values, inducing a
cost of (τ − 1)N . We use Claim 8 to increase the bound by 2τ − 1 additional blocks.

Proof (Theorem 12). Construct rN , VN , UN , and ΘN as in Lemma 13. Note that,
since R−N ≥ 1, there exists p ∈ Π \ΘN . Since VN ∩UN = ∅ and |VN | ≥ 2D −LN >

2D−L2D−1
L = 1, VN \UN contains at least two values. Extend rN to rN+1 by invoking

and returning write(v) and write(v′) for v, v′ ∈ VN \ UN .
By Claim 8, there is a time t ≥ trN in rN+1 when there are 2τ − 1 blocks in the

shared storage with origin values of v or v′. UN consists of N additional values that are
〈τ − 1, ΘN , VN 〉-permanent in rN , and since in rN+1\rN writes are of values from VN
and no reader in ΘN takes steps, the values in UN remain 〈τ − 1, ΘN , VN 〉-permanent
in rN+1. By Observation 6, the storage cost is:

n ≥ 2τ − 1 + (τ − 1)N = τ + (τ − 1)(N + 1) = τ + (τ − 1) ·min

(⌈
2D − 1

L

⌉
, R

)
.
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Chapter 5

Lower bounds for common write disintegrated

storage

While the results of the previous chapter hold a fortiori for τ -common write algorithms,
for this case we are able to show stronger results, independent of the local storage
size. Intuitively, this is because readers can no longer reuse blocks they obtained from
previous writes of the same value, and so we can prolong the execution that blows
up the shared storage by rewriting values. Section 5.1 proves a general attribute of
τ -common write algorithms. We show in Section 5.2 that even with a single reader
(and a single writer), if reads are invisible, then the required storage cost is at least
τ · 2D. In Section 5.3 we prove a bound for visible reads.

5.1 General observation

In this section we define a property that is a special case of k-permanence, which
additionally requires that the set of labels associated with a write does not change.

Definition 14 (Constancy). Consider a finite run r, k ∈ N, a set S ⊆ V, and a set of
readers Θ ⊂ Π. We say that a write w ∈W is 〈k, Θ, S〉-constant in r if in every finite
extension r′ of r s.t. in r′ \ r readers in Θ do not take actions and writes are limited
to values from S, S–labels (w, r′, tr′) = S–labels (w, r, tr) and |S–labels (w, r′, tr′)| = k.

Similarly to Observation 7, it can be shown that:

Observation 15. Consider V ⊆ V, k ∈ N, and a finite run r with an invisible reader
p ∈ Π. If w ∈W is 〈k, {p}, V 〉-constant in r then w is 〈k, ∅, V 〉-constant in r.

We next prove a stronger variant of Lemma 9 that allows us to add a permanent
write to the shared storage while some set C ⊆W of writes are constant. Note that
since the number of writes of a value v is infinite and the number of constant writes
in a finite run is finite, for any non-empty V ⊆ V, WV \ C is non-empty.

Lemma 16. Consider a non-empty set of values V ⊆ V, a set of readers Θ ⊂ Π, a
reader p ∈ Π\Θ, and a finite run r of a wait-free regular τ -common write algorithm. Let
C be a set of writes that are 〈τ − 1, Θ, V 〉-constant in r. Then there is an extension
r′ of r where some w ∈ WV \ C returns and is 〈τ − 1, Θ ∪ {p}, V 〉-permanent, and
s.t. in r′ \ r writes are limited to WV and readers in Θ do not take actions.
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Proof. Assume by way of contradiction that the lemma does not hold. We build an
extension r′ of r where a readp operation performs infinitely many actions of p yet
does not return. To this end, we show that the following property holds at specific
times in r′ \ r:

ψ (r̂, t) , ∀w ∈ writesp (r̂, t) ∩WV : |All–labelsp (w, r̂, t)| < τ.

Note that, by definitions of τ -common write and of All–labels, whenever ψ (r′, t) holds,
no pending readp invocation can return a value v ∈ valuesp (r′, t) ∩ V .

First, extend r to r0 by returning any pending readp and write, invoking and
returning a write(v0) for some v0 ∈ V (the operations eventually return, by wait-
freedom), and finally invoking a readp operation rd without allowing it to take actions.
We now prove by induction that for all k ∈ N, there exists an extension r′ of r0 where
(1) ψ (r′, tr′) holds, (2) no write is pending at tr′ , and in r′\r: (3) writes are restricted
to WV , (4) p performs k actions on objects after invoking rd, (5) rd’s return is not
enabled, and (6) processes in Θ do not take steps.

Base: for k = 0, consider r′ = r0. (2,4,6) hold trivially. (3) holds since the
only write in r′ \ r is w0 ∈ WV . Since p performs no actions following the invo-
cation of rd, p.data (r′, tr′) is empty. Therefore, (1) ψ (r′, tr′) is vacuously true, and
L–labelsp (w, r′, tr′) is empty for all w ∈ WV, thus (5) rd’s return is not enabled by
τ -common write.

Step: assume inductively such an extension r1 of r0 with k ≥ 0 actions by p
following rd’s invocation. Since rd cannot return, by wait-freedom, an action ap is
enabled on some object. We construct an extension r2 of r1 by letting ap occur at time
tr1 . We then consider three cases:

1. p does not obtain a block with an origin write in WV \ writesp (r1, tr1) at ap.
Thus (writesp (r2, tr2) ∩WV ) ⊆ (writesp (r1, tr1) ∩WV ). Then, by Observation 1 and
the inductive hypothesis, (1) ψ (r2, tr2) holds and thus, by τ -common write, rd cannot
return any value v ∈ valuesp (r2, tr2) ∩ V at tr2 . (5) It cannot return any other value
in valuesp (r2, tr2) by regularity, and r2 satisfies the induction hypothesis for k + 1 as
(2,3,4,6) trivially hold.

2. p obtains a block with origin write w′ ∈ C ∩ WV \ writesp (r1, tr1) at ap.
Then |L–labelsp (w′, r1, tr1)| = 0. Since w′ is 〈τ − 1, Θ, V 〉-constant in r and in
r1 \ r writes are restricted to WV and processes in Θ do not take steps (induc-
tively), then by definition of constancy, |S–labels (w′, r1, tr1)| = τ − 1. By Observa-
tion 1, for all w ∈ writesp (r2, tr2)∩WV : All–labelsp (w, r2, tr2) ⊆ All–labelsp (w, r1, tr1).
Therefore |All–labelsp (w′, r2, tr2)| ≤ |L–labelsp (w′, r1, tr1)| + |S–labels (w′, r1, tr1)| =
τ − 1. Together with the inductive hypothesis, ∀w ∈ writesp (r2, tr2) ∩WV \ {w′},
|All–labelsp (w, r2, tr2)| ≤ |All–labelsp (w, r1, tr1)| < τ ; ψ (r2, tr2) follows, thus (5) fol-
lows, and (2,3,4,6) trivially hold.

3. p obtains a block with origin write w′ ∈WV \(writesp (r1, tr1) ∪ C) at ap. Then
|L–labelsp (w′, r2, tr2)| = 1 and the number of labels of other writes in writesp (r2, tr2)
does not increase following ap, thus rd’s return is not enabled at tr2 by τ -common
write and regularity.

By the contradicting assumption, w′ is not 〈τ − 1, Θ ∪ {p}, V 〉-permanent in r2,
thus there is an extension r3 of r2 s.t. |S–labels (w′, r3, tr3)| < τ−1 and in r3\r2 writes
are limited to WV and no readers in Θ ∪ {p} take steps. We further extend r3 to r4

by letting any pending write return (2,3,4,6 hold).
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Let S = writesp (r2, tr2)∩WV . Since every w ∈ S returns before tr2 by the inductive
assumption, the writes in r4 \ r2 do not produce new labels associated with w. Since
readers do not affect the sets S–labels, it follows that ∀w ∈ S : S–labels (w, r4, tr4) ⊆
S–labels (w, r3, tr3) ⊆ S–labels (w, r2, tr2). Next, p takes no steps in r4 \ r2 (4 holds),
thus ∀w ∈ S : L–labelsp (w′, r4, tr4) = L–labelsp (w′, r2, tr2). It follows that:∣∣All–labelsp

(
w′, r4, tr4

)∣∣ ≤ ∣∣L–labelsp
(
w′, r2, tr2

)∣∣+∣∣S–labels
(
w′, r3, tr3

)∣∣ < 1+(τ−1) = τ.
(5.1)

Moreover, by Observation 1 and the inductive assumption that ψ (r1, tr1) holds,

∀w ∈ S \ {w′} : |All–labelsp (w, r4, tr4)| ≤ |All–labelsp (w, r1, tr1)| < τ. (5.2)

From Equations 5.1 and 5.2, and since writesp (r4, tr4) ∩WV = writesp (r2, tr2) ∩
WV = S, we get (1) ψ (r4, tr4). Since rd′s return is not enabled at tr2 and p took no
actions since, its return is not enabled anywhere in r4 \ r1 (5), and we are done.

5.2 Invisible reads

We prove the following theorem by constructing a run with an exponential number of
τ -permanent values. The idea is to show that if there is a value in the domain for which
there is no τ -permanent write, then infinitely many writes remain (τ − 1)-constant,
which is of course impossible.

Theorem 17. The storage cost of a regular τ -common write wait-free SRSW register
emulation where reads are invisible is at least τ · 2D blocks.

Lemma 18. Consider a non-empty set of values V ⊆ V and a finite run r. Let C be
a set of writes that are 〈τ − 1, ∅, V 〉-constant in r. Then there exists an extension
r′ of r where writes in r′ \ r are limited to WV , and some w ∈ WV \ C is either
〈τ − 1, ∅, V 〉-constant or 〈τ, ∅, V 〉-permanent in r′.

Proof. Let p ∈ Π be a reader. By Lemma 16, there is an extension r′ of r where writes
in r′\r are limited to WV and some w ∈WV \C returns and is 〈τ − 1, {p}, V 〉-permanent.
By Observation 7, if w is 〈τ, {p}, V 〉-permanent in r′, then w is 〈τ, ∅, V 〉-permanent
in r′ and the lemma follows. Otherwise, there exists an extension r′′ of r′ where in
r′′ \ r′ writes are limited to WV and p takes no steps, and |S–labels (w, r′′, tr′′)| < τ .
Since w is 〈τ − 1, {p}, V 〉-permanent in r′, |S–labels (w, r′′, tr′′)| = τ − 1.

We show that w is 〈τ − 1, ∅, V 〉-constant in r′′. Consider an extension r′′′ of r′′

where writes are limited to values from V and p takes no steps in r′′′ \ r′′. Since
w has already returned by time tr′′ , no new blocks with an origin write of w can
be added to the shared storage in r′′′ after tr′′ . It follows that S–labels (w, r′′′, tr′′′) ⊆
S–labels (w, r′′, tr′′). However, since w is 〈τ − 1, {p}, V 〉-permanent in r′, and in r′′′\r′
writes are limited WV and p takes no steps, then |S–labels (w, r′′′, tr′′′)| ≥ τ − 1 =
|S–labels (w, r′′, tr′′)|. It follows that S–labels (w, r′′′, tr′′′) = S–labels (w, r′′, tr′′). Thus,
w is 〈τ − 1, {p}, V 〉-constant in r′′. The lemma follows from Observation 15.

Claim 19. Consider a finite run r and a non-empty V ⊆ V. Then there is an extension
r′ of r s.t. writes in r′\r are limited to WV , and some w ∈WV is 〈τ, ∅, V 〉-permanent
in r′.
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Proof. Consider an algorithm with storage cost n, and let m = dn/(τ − 1)e+1. Assume
by contradiction that the claim does not hold. We get a contradiction by constructing
m + 1 extensions of r; r0, ..., rm with sets of writes C0 ⊂ C1 ⊂ · · · ⊂ Cm ⊆ WV s.t.
for all 0 ≤ k ≤ m:

1. writes in rk \ r are limited to WV , and

2. Ck is a set of k writes that are 〈τ − 1, ∅, V 〉-constant in rk.

Note that in rm,
⌈

n
τ−1

⌉
+ 1 writes are 〈τ − 1, ∅, V 〉-constant, implying a storage cost

greater than n by Observation 6, a contradiction.
The construction is by induction. The base case vacuously holds for r0 = r, C0 = ∅.

Assume inductively that such rk and Ck exist for k < m. By Lemma 18 there ex-
ists an extension rk+1 of rk where some w ∈ WV \ Ck is either 〈τ, ∅, V 〉-permanent
or 〈τ − 1, ∅, V 〉-constant, and writes in rk+1 \ rk are limited to WV . Since all
writes in Ck are 〈τ − 1, ∅, V 〉-constant in rk they are also 〈τ − 1, ∅, V 〉-constant
in rk+1. By the contracting assumption, w is not 〈τ, ∅, V 〉-permanent in rk+1 hence
is 〈τ − 1, ∅, V 〉-constant in the run. Let Ck+1 , Ck ∪ {w}. Therefore |Ck+1| = k + 1
and all writes in Ck+1 are 〈τ − 1, ∅, V 〉-constant in rk+1, as needed.

We are now ready to prove our lower bound of τ · 2D blocks:

Proof (Theorem 17). We show that there exist 2D + 1 finite runs r0, r1, . . . , r2D and
sets of values V0 ⊃ V1 ⊃ · · · ⊃ V2D and U0 ⊂ U1 ⊂ · · · ⊂ U2D , such that for all
0 ≤ k ≤ 2D:

1. |Vk| = 2D − k, |Uk| = k, Vk ∩ Uk = ∅, and

2. all elements of Uk are 〈τ, ∅, Vk〉-permanent in rk.

By induction. Base: r0 is the empty run, V0 = V, U0 = ∅. Assume inductively
that there exist such rk, Vk, and Uk for k < 2D, and construct rk+1 as follows: first,
because |Vk| = 2D − k > 0, by Claim 19 there is an extension rk+1 of rk where writes
in rk+1 \ rk are limited to WVk and some w ∈WVk is 〈τ, ∅, Vk〉-permanent.

Consider the value v ∈ Vk written by w. By Observation 5, v is 〈τ, ∅, Vk〉-permanent
in rk+1. Setting Vk+1 , Vk \ {v}, we have that |Vk+1| = |Vk| − 1 = 2D − (k + 1). Fur-
ther let Uk+1 = Uk ∪ {v}. Note that, because Vk ∩ Uk = ∅, we get v /∈ Uk and
hence Vk+1 ∩ Uk+1 = ∅ and |Uk+1| = |Uk| + 1 = k + 1. Since Vk ⊃ Vk+1, then v is
〈τ, ∅, Vk+1〉-permanent. Additionally, writes in rk+1 \ rk are from WVk , thus by the
inductive assumption and Observation 5, values in Uk are 〈τ, ∅, Vk+1〉-permanent in
rk+1, and so all of Uk+1 are 〈τ, ∅, Vk+1〉-permanent in rk+1.

Finally, U2D holds 2D values that are 〈τ, ∅, ∅〉-permanent in r2D . By Observation 6:

n ≥ τ · 2D.

5.3 Visible reads

To prove a lower bound on the cost of systems with visible reads, we create a similar
construction, except that the number of extensions might be limited by the number of
readers, R. Instead, the bound depends on min

(
2D − 1 , R

)
:
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Theorem 20. The storage cost of a regular τ -common write wait-free MRSW register
emulation is at least τ + (τ − 1) ·min

(
2D − 1 , R

)
blocks.

Let N = min
(
2D − 1 , R

)
− 1. We build a run with N (τ − 1)-permanent values:

Lemma 21. There exist finite runs r0, r1, . . . , rN , sets of values V0 ⊃ V1 ⊃ ... ⊃ VN
and U0 ⊂ U1 ⊂ ... ⊂ UN , and sets of readers Θ0 ⊂ Θ1 ⊂ ... ⊂ ΘN , s.t. for all
0 ≤ k ≤ N :

1. |Vk| = 2D − k, |Uk| = |Θk| = k, Vk ∩ Uk = ∅, and

2. all elements of Uk are 〈τ − 1, Θk, Vk〉-permanent in rk.

Proof. By induction. Base: r0 is the empty run, V0 = V, Θ0 = U0 = ∅. Assume
inductively such rk, Vk, Uk, and Θk for k < N , and construct rk+1 as follows: since
R − |Θk| > 1, there is a reader p ∈ Π \Θk. Moreover, |Vk| > 2D −N > 0. Therefore,
by Lemma 16, there is an extension rk+1 of rk where writes in rk+1 \ rk are limited
to WVk , readers in Θk do not take steps in rk+1 \ rk, and some w ∈ WVk returns and
is 〈τ − 1, Θk ∪ {p}, Vk〉-permanent in rk+1.

Let Θk+1 = Θk∪{p}, and consider the value v ∈ Vk written by w. By Observation 5,
v is 〈τ − 1, Θk+1, Vk〉-permanent. Let Vk+1 = Vk \ {v}, then |Vk+1| = 2D − (k + 1).
Further let Uk+1 = Uk ∪ {v}. Since Vk ∩ Uk = ∅, we get that Vk+1 ∩ Uk+1 = ∅ and
|Uk+1| = k + 1.

Since Vk ⊃ Vk+1, v is 〈τ − 1, Θk+1, Vk+1〉-permanent. In addition, in rk+1 \ rk
writes are limited to WVk and readers in Θk do not take steps, and since Θk ⊂
Θk+1, then by the inductive assumption and Observation 5, all values in Uk are
〈τ − 1, Θk+1, Vk+1〉-permanent. Therefore, all elements of Uk+1 are 〈τ − 1, Θk+1, Vk+1〉-permanent
in rk+1, as needed.

From Lemma 21, in rN there is a set of N (τ − 1)-permanent values, inducing a
cost of (τ − 1)N . We use Claim 8 to increase the bound by 2τ − 1 additional blocks.

Proof (Theorem 20). Construct rN , VN , UN , and ΘN as in Lemma 21. Note that,
since R − N ≥ 1, there is a reader p ∈ Π \ ΘN . Since VN ∩ UN = ∅ and |VN | =
2D −N = 2D − (min

(
2D − 1 , R

)
− 1) ≥ 2, the set VN contains two values, and they

are not in UN . Extend rN to rN+1 by invoking and returning write(v) and write(v′)
for v, v′ ∈ VN .

By Claim 8, there is a time t ≥ trN in rN+1 when there are 2τ−1 blocks in the shared
storage with origin values of v or v′. In addition, UN consists of N values that are
〈τ − 1, ΘN , VN 〉-permanent in rN , and since in rN+1\rN writes are of values from VN
and no reader in ΘN takes steps, the values in UN remain 〈τ − 1, ΘN , VN 〉-permanent
in rN+1. By Observation 6, the storage cost amounts to at least:

n ≥ 2τ − 1 + (τ − 1)N = τ + (τ − 1)(N + 1) = τ + (τ − 1) ·min
(
2D − 1 , R

)
.
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Chapter 6

Discussion

We have shown lower bounds on the space complexity of regular wait-free τ -disintegrated
storage algorithms. Although our bounds are stated in terms of blocks, there are sce-
narios where they entail concrete bounds in terms of bits. In replication, each block
stores an entire value, and so the block sizes are D bits and τ ≥ f + 1. Other ap-
plications use symmetric coding where all blocks are of equal size. Using a simple
pigeonhole argument, it can be shown that in τ -disintegrated storage emulations that
use symmetric coding and that are not (τ + 1)-disintegrated, the size of blocks is at
least D/τ bits, yielding bounds of D ·2D and D+D τ−1

τ ·min
(
2D − 1 , R

)
with invisible

and visible readers, respectively.
Our lower bounds for the common write case explain, for the first time, why pre-

vious coded storage algorithms have either had the readers write or consumed expo-
nential (or even unbounded) space. Similarly, they establish why previous emulations
of large registers from smaller ones have either had the readers write, had the writer
share blocks among different writes, or consumed exponential space.

Our work leaves several open questions. First, when replication is used as a means
to overcome Byzantine faults or data corruption, our results suggest that there might
be an interesting trade-off between the shared storage cost and the size of local memory
at the readers, and a possible advantage to systems that apply replication rather than
error correction codes: we have shown that, with invisible readers, the former require
Ω(2D/L) blocks, rather than the Ω(2D) blocks needed by the latter. Whether there are
algorithms that achieve this lower cost remains an open question. Second, it is unclear
how the bounds would be affected by removing our assumption that each block in
the shared storage pertains to a single write. Wei [27] has provided a partial answer
to this question by showing that similar bounds hold without this assumption, but
only in the case of emulating large registers from smaller ones without meta-data at
all. Similarly, it would be interesting to study whether allowing readers to write data
(and not only signals) impacts the storage cost. Finally, future work may consider
additional sub-classes of disintegrated storage, e.g., with unresponsive objects, and
show that additional costs are incurred in these cases.
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Marko Vukolić. Powerstore: proofs of writing for efficient and robust storage. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communica-
tions security, pages 285–298. ACM, 2013.

[17] Dan Dobre, Matthias Majuntke, and Neeraj Suri. On the time-complexity of
robust and amnesic storage. In International Conference On Principles Of Dis-
tributed Systems, pages 197–216. Springer, 2008.

[18] Partha Dutta, Rachid Guerraoui, and Ron R. Levy. Optimistic erasure-coded
distributed storage. In Proceedings of the 22nd International Symposium on Dis-
tributed Computing, DISC ’08, pages 182–196, Berlin, Heidelberg, 2008. Springer-
Verlag.

[19] Garth R Goodson, Jay J Wylie, Gregory R Ganger, and Michael K Reiter. Effi-
cient byzantine-tolerant erasure-coded storage. In Dependable Systems and Net-
works, 2004 International Conference on, pages 135–144. IEEE, 2004.

[20] Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant wait-free
shared objects. Journal of the ACM (JACM), 45(3):451–500, 1998.

[21] Leslie Lamport. On interprocess communication. Distributed computing, 1(2):86–
101, 1986.

[22] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed com-
puting, 11(4):203–213, 1998.

[23] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal byzantine
storage. In International Symposium on Distributed Computing, pages 311–325.
Springer, 2002.

24



[24] Gary L Peterson. Concurrent reading while writing. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 5(1):46–55, 1983.

[25] Alexander Spiegelman, Yuval Cassuto, Gregory Chockler, and Idit Keidar. Space
bounds for reliable storage: Fundamental limits of coding. In Proceedings of the
2016 ACM Symposium on Principles of Distributed Computing, PODC ’16, pages
249–258, New York, NY, USA, 2016. ACM.

[26] Zhiying Wang and Viveck R. Cadambe. On multi-version coding for distributed
storage. In Communication, Control, and Computing (Allerton), 2014 52nd An-
nual Allerton Conference on, pages 569–575. IEEE, 2014.

[27] Yuanhao Wei. Space complexity of implementing large shared registers. arXiv
preprint arXiv:1808.00481, 2018.

25



i 
 

 תקציר

 

, של מידע שנים האחרונות ניכרת גדילה אקספוננציאלית בביקוש לנפח אחסוןב
. גישה רווחת מתמיד הפכו לנחוצים( Big Data)ובכך פתרונות אחסון עבור נתוני עתק 

מידע לרוב מאוחסן על  אחסון מבוזר. במערכות שכאלו,מערכות של הינה  לפתרון צורך זה
מסוג זה פני צמתים רבים אשר אליהם ניגשים לקוחות באופן אסינכרוני. מערכות אחסון 

"רגיסטרים" על פי רוב. דרישה שכיחה  ותקריאתם נקראבאשר תומכות בכתיבת ערכים וו
, שמשמעותה כי, בהינתן די פעולות, כל (Wait-Freedomהמתנה )-חוסר מרגיסטרים הינה

בנוסף, הואיל  אותו בסופו של דבר.קריאה לרגיסטר יסיים או  בצע תהליך כתיבהלקוח שמ
להגדיר מהי ההתנהגות  זמנית, נדרש-ולקוחות ניגשים לרגיסטר ומבצעים בו פעולות בו

הרצויה מהמערכת כאשר מבוצעות בה מספר פעולות במקביל. הגדרה רווחת שאנו 
, ועיקרה הוא שערך שנקרא (Regularity)מתמקדים בה במחקר זה נקראת רגולריות 

 ,מהרגיסטר נדרש להיות הערך האחרון שנכתב לרגיסטר לפני תחילת הקריאה ממנו, או
 ערך כלשהו שנכתב לרגיסטר בזמן שהקריאה התבצעה. ,לחילופין

-חסרירגולריים ורגיסטרים  המממשיםקיימים בספרות אלגוריתמים רבים 
 (Byzantine fault-tolerant registers)קלות ביזנטיות המתנה: רגיסטרים חסינים בפני ת

. מתמודדים עם האפשרות שחלק מן הצמתים עלולים להיות זדונייםהינם רגיסטרים ש
אלגוריתמים על ידי שכפול מידע על פני צמתים שונים.  מערכות מסוג זה פותרות את הבעיה

יועדים להקל את סיבוכיות מה ,(Coded storageפתרונות של אחסון מקודד )אחרים הינם 
המקום הגבוהה שעולה משכפול מידע, באמצעות אחסון של מילות קוד בצמתים, במקום 

. קיימים סוגי רגיסטרים נוספים שמטרתם שמירת בכל הצמתים ערכים שלמיםשמירת 
ערכים מתחום ערכים גדול, כאשר הצמתים עצמם הינם רגיסטרים בעלי קיבולת שמוגבלת 

 קטן.לערכים מתחום 
אחסון חסין בפני תקלות  מערכות במחקר זה אנו מצביעים על דמיון מפתיע בין

אחסון מקודד מערכות לבין (, של המידע ואותנטיקציהשל הלקוחות ביזנטיות )ללא אימות 
על ידי רגיסטרים אשר ממומשות אמולציות מסוימות של רגיסטרים משותפים לבין ו

לפתרונות הללו היא חוסר היכולת של קריאה להחזיר ערך בבטחה קטנים. תכונה משותפת 
, אלא נדרשות מספר גישות לצמתים שונים על לאחר גישה אטומית יחידה לצמת משותף

אחסון מערכות בהכללה . אנו קוראים למערכות מסוג זה מנת להבטיח החזרת ערך חוקי
 .(Disintegrated Storage)חלקי 

על פי סוג המידע הנשמר בכל צומת. אם לקוח חלקי  ניתן לסווג מערכות אחסון
קורא מידע מצומת ומסוגל לשייך אותו למידע שנוצר בכתיבה אחרת )כמו במקרה שבצומת 

. אחרת, אם ערך משותףנשמר עותק של הערך(, אנו נאמר שזו מערכת אחסון חלקי בעלת 
נקרא למערכות אלו  לקוח לא מסוגל לזהות ששתי יחידות מידע משויכות לאותו ערך, אזי

. מאפיין נוסף של מערכות אחסון חלקי הינו כתיבה משותפתמערכות אחסון חלקי בעלות 
, קרי הנוכחות נראה-בלתיסוג הלקוחות הקוראים של המערכת: לקוח קורא יכול להיות 

, ואז הלקוח נראה. לחילופין, הלקוח הקורא יכול להיות שלהם אינה ידועה ללקוח הכותב
 הכותב מודע לקיומם.

חשוב של מערכות מחשב בכלל ושל פתרונות אחסון בפרט הינו סיבוכיות קריטריון 
 המקום של המערכת, קרי כמה זיכרון ו/או שטח אחסון הפתרון מצריך. בעבודה זו אנו

המקום של מערכות אסינכרוניות,  סיבוכיות ם תחתונים אחודים עבורמראים חסמי
. אנו מוכיחים כי במקרה שהלקוחות חלקיובעלות אחסון המתנה -חסרות, רגולריות

סיבוכיות המקום של מערכות כאלו הינה אקספוננציאלית  ,נראים-הקוראים הינם בלתי
בגודל של הערכים הנכתבים, באופן אינהרנטי. במקרה שהלקוחות הקוראים נראים ללקוח 

, אנו מראים שסיבוכיות המקום היא לכל הפחות לינארית במספר הלקוחות הכותב
הקוראים. החסמים הללו הינם הדוקים באופן אסימפטוטי לסיבוכיות המקום של 
אלגוריתמים קיימים, ובכך אנו מצדיקים את עלויות האחסון הגבוהות של אלגוריתמים 

.אלו
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לקבלת התואר שות על מחקר לשם מילוי חלקי של הדריחיבור 
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