
Chicago Journal of Theoretical
Computer Science

The MIT Press

Volume 1996, Article 3
31 October 1996

ISSN 1073–0486. MIT Press Journals, 55 Hayward St., Cambridge, MA
02142 USA; (617)253-2889; journals-orders@mit.edu, journals-info@mit.edu.
Published one article at a time in LATEX source form on the Internet. Pag-
ination varies from copy to copy. For more information and other articles
see:

• http://www-mitpress.mit.edu/jrnls-catalog/chicago.html

• http://www.cs.uchicago.edu/publications/cjtcs/

• gopher.mit.edu

• gopher.cs.uchicago.edu

• anonymous ftp at mitpress.mit.edu

• anonymous ftp at cs.uchicago.edu

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM (Info)

The Chicago Journal of Theoretical Computer Science is abstracted or in-
dexed in Research Alert,R©SciSearch, R©Current ContentsR©/Engineering Com-
puting & Technology, and CompuMath Citation Index. R©

c©1996 The Massachusetts Institute of Technology. Subscribers are licensed
to use journal articles in a variety of ways, limited only as required to insure
fair attribution to authors and the journal, and to prohibit use in a competing
commercial product. See the journal’s World Wide Web site for further
details. Address inquiries to the Subsidiary Rights Manager, MIT Press
Journals; (617)253-2864; journals-rights@mit.edu.

The Chicago Journal of Theoretical Computer Science is a peer-reviewed
scholarly journal in theoretical computer science. The journal is committed
to providing a forum for significant results on theoretical aspects of all topics
in computer science.

Editor in chief: Janos Simon

Consulting editors: Joseph Halpern, Stuart A. Kurtz, Raimund Seidel

Editors: Martin Abadi Greg Frederickson John Mitchell
Pankaj Agarwal Andrew Goldberg Ketan Mulmuley
Eric Allender Georg Gottlob Gil Neiger
Tetsuo Asano Vassos Hadzilacos David Peleg
Laszló Babai Juris Hartmanis Andrew Pitts
Eric Bach Maurice Herlihy James Royer
Stephen Brookes Stephen Homer Alan Selman
Jin-Yi Cai Neil Immerman Nir Shavit
Anne Condon †Paris Kanellakis Eva Tardos
Cynthia Dwork Howard Karloff Sam Toueg
David Eppstein Philip Klein Moshe Vardi
Ronald Fagin Phokion Kolaitis Jennifer Welch
Lance Fortnow Stephen Mahaney Pierre Wolper
Steven Fortune Michael Merritt

Managing editor: Michael J. O’Donnell

Electronic mail: chicago-journal@cs.uchicago.edu

[ii]

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM (Info)

This article is included in the special issue, Selected Papers from PODC 1994,
containing articles based on extended abstracts presented at the 13th Annual
ACM Symposium on Principles of Distrituted Computing, Los Angeles, Cal-
ifornia, August 1994. This special issue was edited by David Peleg.

[iii]

Chicago Journal of Theoretical Computer Science 1996-3

Optimal Virtual Path Layout in ATM
Networks with Shared Routing Table Switches

Ornan Gerstel Israel Cidon Shmuel Zaks

31 October, 1996

Abstract

In this paper we present a new model for routing that occurs inAbstract-1

high-speed ATM networks. Within this model we define a general
routing problem, called a virtual path layout. Given a network of
nodes (switches) and links, one must find a set of paths in the net-
work, termed the virtual path layout, whereby each pair of nodes may
connect using a route that is a concatenation of a small number of
virtual paths and is also short in terms of the network links it tra-
verses. Each such layout implies a utilization of the routing tables in
the network’s nodes. Our goal is to find a layout that minimizes this
utilization, assuming that each such node has a central routing table.
We prove that this problem is NP-complete, and consequently focus
on a simpler problem, in which it is required to connect all nodes to a
single switch. Next, we prove that even this problem is NP-complete,
and restrict some of the assumptions to yield a practical subprob-
lem, for which we present a polynomial-time greedy algorithm that
produces an optimal solution. Finally, we use this restricted problem
as a building block in finding a suboptimal solution to the original
problem. The results exhibit a tradeoff between the performance of a
routing scheme and its resource utilization.

This article contains results that were presented at the 13th Annual ACM
Symposium on Principles of Distributed Computing [GZ94].

1

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM

1 Introduction
1.1 Background
The advent of fiber optic media has dramatically changed classical views on1.1-1

the role and structure of digital communication networks. Specifically, the
sharp distinction (in terms of node hardware architectures, network manage-
ment techniques, routing schemes, and various theoretical aspects) between
telephone networks, cable television networks, and computer networks, has
been replaced by a unified approach. In this integrated approach (termed
B-ISDN), real-time, high-quality video and audio, and very large amounts
of data are integrated into a single digital network that will support nu-
merous applications—ranging from interactive television, video conferencing
systems, and video-phone to distributed virtual reality systems.

While fiber optic cables are capable of transferring very large amounts1.1-2

of data (around 1010 bits per second), the nodes that connect these cables
cannot accommodate this flood of data in software. For this reason, the
routing of data packets, which is traditionally done by the network layer
software, has been moved to special-purpose very fast hardware, a fact that
requires very simple routing algorithms.

The most common solution for this new network architecture is called1.1-3

Asynchronous Transfer Mode (ATM for short), and is thoroughly described
in the literature [ITU90, HH91, LB92, CS94] 1. ATM is based on relatively
small fixed-size packets called cells . Each cell is routed independently, based
on two small routing fields at the cell header, called the virtual channel index
(VCI) and the virtual path index (VPI).

At each intermediate node, these fields serve as indices to two routing1.1-4

tables (the VCI serves as an index to one table, and the VPI to the other),
and the routing is done in accordance with predetermined information from
the appropriate entries (which is entered into the tables during the setup of
connections in the network).

Routing in ATM is hierarchical in the sense that the VCI of a cell is1.1-5

ignored as long as its VPI is not null. This algorithm effectively creates two
types of predetermined simple routes in the network: routes that are based on
VPIs (called virtual paths or VPs), and routes that are based on VCIs (called
virtual channels or VCs). The latter may be viewed as a concatenation of
complete VPs.

1A different approach to fast routing is based on automatic network routing (ANR)
and was implemented in PARIS and plaNET [ACG+90, CG88, CGG+92].

2

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §1.2

VPs and VCs have different roles in the network. While VCs are used for1.1-6

creating connections between two users of the network that wish to commu-
nicate (e.g., a telephone call), VPs have an internal network role (decreasing
the overhead caused by network management activities), and are used for
bundling several VCs that share part of their route.

The VC and VP concepts have been extensively discussed in the com-1.1-7

munications literature; however, to the best of our knowledge, the problem
of how VPs should be laid out in a given communication network has never
been addressed analytically. A few heuristics have been proposed and exper-
imented [ATTD94, HKIT94]. This problem is of practical importance, since
the layout of VPs in a network determines many of the network’s important
performance characteristics, such as the overhead and delay of the setup of
a new VC, the load on the VP routing tables, and various fault-tolerance
qualities.

1.2 Our Work

All of the above calls for a new model—different from the classical model1.2-1

for routing in computer networks—for both describing the network and mea-
suring the performance of algorithms on it. In Section 2 we define a model
for routing in ATM networks, and determine the essential characteristics for
measuring the optimality of a given layout. Using this model, we define the
general layout problem for ATM. We then isolate a simpler case, which can
be viewed as a variant of tree routing (analogous to the way that interval
routing [SK85] is used in classical routing problems), suited for this model.

In Section 3 we prove that even the simpler case is NP-complete, and1.2-2

we therefore restrict ourselves to a subproblem that is general enough for
practical purposes, and present a greedy algorithm that optimally solves the
subproblem for any given tree network. In Section 4 we prove the general
problem to be NP-complete as well, and demonstrate the use of the subprob-
lem as a building block in the solution of the general problem on arbitrary
networks. We conclude in Section 5 by summing up the results in the paper,
and presenting open problems.

We expect our contribution to be three-fold:1.2-3

1. This paper is among the first to analytically address the problem (to-
gether with [CGZ94]). For this reason, we focus on a relatively simple
problem, with a low number of parameters. This is also a first attempt

3

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §1.2

to prove complexity results concerning the problem, and to present an
optimal solution for a special case (the one-to-many layout problem on
trees—see Definition 5).

2. We believe the problem we focus on is of practical importance in cer-
tain scenarios in ATM networks. In particular, our problem is most
suitable for an environment with short-lived VCs without an a priori
known bandwidth; such environments are expected to be typical for dis-
tributed applications over ATM networks [LPS91]. Even our restricted
(polynomially solvable) problem seems to be useful for client-server
applications over ATM.

3. We present basic techniques for deriving upper and lower bounds on
such problems (exemplified by the tree-routing problem, often used as a
benchmark case study). In particular, the crux of our greedy algorithm
(i.e., the upper bound) is nonintuitive in nature, and was formulated
by the needs of its optimality proof (lower bound).

The present paper is closely related to [CGZ94], in which a similar model1.2-4

is discussed, using a different VP-table load metric (on the edges of the
graph rather than on its nodes). This difference stems from different node
implementations, and seems to have an impact on the complexity of the
problem. In particular, we present here NP-completeness results that we
were unable to derive for the other load metric.

The simpler one-to-many problem on trees is addressed in [CGZ94] as1.2-5

well, using a different technique that is based on dividing the tree into small
subtrees and solving the problem separately in each subtree. This technique
yields a solution that is asymptotically optimal under certain assumptions.
In contrast, the “greedy” technique presented herein provides an optimal
solution for any given tree. Also, the resulting algorithm is much simpler
to implement, and has lower time complexity. Furthermore, while many-
to-many solutions in [CGZ94] yield high VP-table loads, the solution herein
results in much smaller loads, by compromising the efficient utilization of the
physical network (using the concept of a stretch factor).

A related problem is that of keeping small routing tables for routing1.2-6

in conventional computer networks. This problem has been widely stud-
ied [ABLP89, AP92, FJ86, FJ88, KK77, KK80, PU88] and has yielded in-
teresting graph decompositions and structures, but it differs from ours in
some major aspects, which deemed most of these solutions impractical for

4

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §2

our purposes. The main difference stems from the fact that in our case
there is no flexibility as to the routing scheme itself, since this is deter-
mined by the ATM standard [ITU90]. We therefore present a static struc-
ture in the network, while in the conventional model, the exact routing of
a packet may be determined dynamically during the process of its routing
(as in [AP92, ABLP89]), or by information that is based on the name of the
destination (as in [FJ86, FJ88]).

Other differences stem from practical restrictions on the model, in which1.2-7

the routing tables of each node are restricted by the same size, while in some
of the conventional solutions the total (or average) size of the routing tables
is minimized (e.g., [FJ86, FJ88, PU88]).

Our approach resembles some of the above-mentioned techniques in that1.2-8

a simpler tree-routing problem is used as a building block in the general-case
solution (analogous to the way that interval routing on trees [SK85] is used
in some of the routing schemes for arbitrary graphs). We use the techniques
of [AP92] for demonstrating the usage of our tree-routing problem in solving
the general problem.

This paper is an extension of [GZ94].1.2-9

2 The Model

We first define a graph-theoretic model for our problems (for basic terms and2-1

definitions, see [Eve79]). In our model, we have an underlying communication
network that consists of nodes and links between nodes. This network is
modeled by an undirected graph G = (V,E), where V corresponds to the set
of nodes and E to the set of physical links between them.

Due to the routing mechanism in ATM, VPs are unidirectional paths in2-2

the network. However, for connection management reasons [CS94], VPs are
coupled together in pairs of parallel routes in opposite directions, effectively
creating bidirectional paths. For simplicity, we refer in the remainder of the
paper to these bidirectional VPs exclusively.

A virtual path layout is a set of simple bidirectional paths on the given2-3

network, as formalized by the following definition:

Definition 1 Let P(G) be the set of all simple paths in G. A virtual path
layout or VPL is a subset of P(G). Formally, it is convenient to represent a
VPL Ψ by a pair Ψ = (GΨ, I), where GΨ = (V,EΨ) is a “virtual” graph and

5

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §2

I : EΨ→P(G) is a “mapping” function. A “virtual” edge ψ = (a, b) ∈ EΨ

represents a VP between the nodes a and b. The function I(ψ) maps each
virtual edge ψ = (a, b) to its corresponding route in G. We term this path
the induced path of ψ.

For the sake of notational convenience, we refer to a path p ∈ P(G) either
as a set of edges or as a set of nodes.

We extend the definition of I to simple paths in GΨ as follows:2-4

Definition 2 The induced path I(p), for a path p ∈ P(GΨ), where p =
(ψ1, ψ2, . . . , ψk) and ψi ∈ EΨ for every i, is the path obtained by concatenating
the induced paths I(ψi) of all ψis.

Each VP utilizes an entry2 in the routing table of each node that is part of2-5

its path (be it an endpoint or an intermediate node). Since the routing tables
are bounded by the ATM standard to 4,096 entries, this resource should be
carefully allocated in large networks. The following load measure expresses
this utilization, assuming that each node has a central, shared routing table:3

Definition 3 The load L(v) on a node v ∈ V is the number of VPs ψ ∈ EΨ

that include v in their induced paths, namely, L(v) = |{ψ ∈ EΨ | v ∈ I(ψ) }|.
The load definition is extended to a VPL Ψ by L(Ψ) = maxv∈V L(v).

Definition 4 Let µ ∈ R be a real number called the stretch factor. The hop
count Hµ(v, w) for a pair of nodes v, w ∈ V is the minimum k such that:

1. ∃p = (Ψ1,Ψ2, . . . ,Ψk) ∈ P(GΨ), (Ψi ∈ EΨ for every i),

2. ∃x, y ∈ V, ψ1 = (v, x), ψk = (y, w), and

3. the induced path I(p) is at most µ times longer than the shortest path
between v and w in G.

If no such path exists, define Hµ(v, w) = ∞ (this does not necessarily mean
that GΨ is not connected).

2A VP actually uses two entries in each such routing table, for the two unidirectional
VPs from which it is composed, but we neglect this fact, as it exactly doubles the utilization
at any table.

3This alternative is applicable mainly for nodes that are based on shared memory.
Other node architectures are based on a separate processor for each link in the node,
which dictates a separate routing table for each link, and a different load measure.

6

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §2

We distinguish between two problems:2-6

• the general layout problem in which it is required to connect every pair
of nodes in V—we term this access pattern “many-to-many” (m-m for
short), and

• a more restricted access pattern in which it is required to connect all
nodes to a single node (called the root)—we term this access pattern
“one-to-many” (1-m).

The VPL for m-m access is denoted by VPLm-m, while a VPL for 1-m access
is denoted by VPL1-m. Note that VPL1-m differs from broadcasting in that
the data is not distributed from the root to all other nodes in the network,
but rather, it enables separate connections (VCs) from the root to all the
other nodes.

The two problems are formalized by the following definition.2-7

Definition 5 Let h > 0; µ ≥ 1; let G = (V,E) be a given network; and let
r ∈ V . The following two cases correspond to the above-mentioned problems.

• A VPLm-m in G is h-feasible if maxv,w∈V Hµ(v, w) ≤ h.

• A VPL1-m in G is (h, r)-feasible if maxv∈V Hµ(v, r) ≤ h.

The feasibility of a VPL captures the notion of a network that has good2-8

worst-case performance (since h determines the maximum number of VPs
that are needed for the compositions of any VC, and this number is pro-
portional to the time that the creation of that VC takes). We now define
an optimal solution as a solution that does not require much of the network
resources, while maintaining this good performance (the load on a node is
proportional to the required capacity of the VP routing tables, as well as
other resources).

Definition 6 Let h > 0 and µ ≥ 1. A VPLm-m Ψ is h-optimal if it is h-
feasible and its load L(Ψ) is minimal among all other h-feasible VPLs. This
definition is extended in a straightforward manner to the (h, r)-optimality of
a VPL1-m with a root r.

Example 1 Consider the ATM network with VPs in Figure 1, in whichExample 1-1

there are three VCs, one between user x1 and user x2 (we denote it by
VC (x1, x2)), one between y1 and y2, and one between z1 and z2. All VCs

7

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §2

b

c
d

f

virtual path

virtual channel

physical linkg

a
x1
y1
z1

y2

x2

z2
an end userx2

node

e

Figure 1: An example for VP/VC layout

8

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §3

are composed of a concatenation of VPs (e.g., VC (y1, y2) is composed of
VP(a, b) and VP(b, g)).

Since the routing of cells from a to b is done on VP(a, b), there is no needExample 1-2

for a separate entry in the VC routing table of c for each such VC, and this
remains true even if there are many VCs that use VP(a, b) as part of their
route. Only at b there is an entry for each of the VCs, since the VP(a, b)
ends there, to determine if the VC continues into VP(b, d) (for VP(x1, x2))
or into VP(b, g) (for VC (y1, y2) and VC (z1, z2)).

Since each VC is composed of complete VPs, there is no way to createExample 1-3

a VC between a and c, despite the fact that the physical network itself is
connected (hence Hµ(a, c) =∞).

Note that if µ < 5
3 , thenHµ(a, e) =∞, since the shortest path dG(a, e) = 3Example 1-4

and the path induced by the VPs (a, b), (b, d), (d, e) ∈ EΨ is of length 5
(since p = ((a, b), (b, d), (d, e)) and I(p) = I((a, b)), I((b, d)), I((d, e)) =
(a, c, b, c, d, e)); If, however, µ > 5

3 , then Hµ(a, e) = 3. As to the load mea-
sure, L(c) = |{(a, b), (b, d), (e, f)}| = 3 and L(d) = |{(b, d), (e, d), (e, f)}| = 3.

3 Tools

Our formulation of the optimal VPL1-m algorithm and its optimality proof3-1

are based on some vector notations, definitions, and properties, which are
presented in this section.

Notation 1 Let V,W ∈ N
h, c ∈ N, and i, j ∈ {1, . . . , h}. We use the

following notations:

• V [i]—the ith element in the vector V ,

• ‖V ‖—the sum of the elements V [i] (since all elements are positive, this
is the L1 norm of the vector, often written ‖V ‖1),
• V [i : j]—the part of the vector from the ith to the jth position (inclusive),

• ~c [1 : i]—the vector (c, . . . , c) of i elements that are equal to c,

• V •W—the concatenation of the vectors V and W ,

• V +W—the vector sum of V and W , and

9

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §3

• V < W—the lexicographic comparison between vectors, using an or-
der in which V [1] is the least-significant component, e.g., (9, 11, 1) <
(2, 12, 1) < (0, 0, 2). The same applies for >, ≤, and ≥.

We shall need the following properties of vectors in N
h.3-2

Lemma 1 Let L, M be vectors in N
h for some h > 1, such that

‖L[1 : h− 1]‖ ≤ 1 and M ≥ L. Then ‖M‖ ≥ ‖L‖.

Proof of Lemma 1 If M ≥ L, then one of the following holds:

Case 1 M [1 : h− 1] ≥ L[1 : h− 1] and M [h] = L[h]: Clearly

‖M [1 : h− 1]‖ ≥ ‖L[1 : h− 1]‖

hence

‖M‖ = ‖M [1 : h− 1]‖ +M [h] ≥ ‖L[1 : h− 1]‖ +M [h] = ‖L‖

Case 2 M [h] > L[h]: Then

‖M‖ ≥M [h] ≥ L[h] + 1 ≥ L[h] + ‖L[1 : h− 1]‖ = ‖L‖

Proof of Lemma 1 2

3-3

Definition 7 A vector L is called k-nontrivial if ‖L[1 : k − 1]‖ ≤ 1 and
‖L[1 : k]‖ > 1. In particular, if L[1] > 1 it is 1-nontrivial, and if ‖L‖ ≤ 1,
then L is ∞-nontrivial. A vector is k(>)-nontrivial if it is x-nontrivial for
some x > k (similar definitions apply for <, ≤, and ≥).

Definition 8 Let S be a sequence of vector pairs in N
h, S = ((Li,Mi))s

i=1.
S is proper if the following properties hold:

P1: Li ≤Mi for every i ∈ {1, . . . , s}, and

P2: if i > j, then there exists k > 0 such that Lj[1 : k] ≥ Li[1 : k], Lj is
k-nontrivial, and Li is k(≥)-nontrivial.

10

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §3

Notation 2 We shall need the following additional vector notations, where
L is an arbitrary vector of length h, S = ((Li,Mi))s

i=1.

• The transformation Ltrans(j) on a vector L is defined by: Ltrans(0) = L,
and Ltrans(j) = ~0[1 : j] • (L[j + 1] + 1) • L[j + 2: h] for j > 0.

• SL = (Li)s
i=1, and SR = (Mi)s

i=1.

• Σ((Li)s
i=1) =

∑s
i=1 Li.

• Let P = (p1, p2, . . . , ps) where 0 ≤ pi ≤ h − 1. Then S trans(P) =
(Ltrans(pi)

i)s
i=1.

Consider a proper sequence S = ((Li,Mi))s
i=1. Clearly Σ(SL) ≤ Σ(SR).3-4

Note that the transformation L
trans(j)
i of a vector in S increases Li lexico-

graphically. So, the sum of the Li vectors, after transforming Ltrans(j)
i , may

become lexicographically larger than the sum of the Mis. That is, in some
cases Σ(Strans((0,...,0,j,0,...,0))

L) > Σ(SR), even though S is proper. To solve this
problem, we first show that if the total sum of values in the Mi vectors
(‖Σ(SR)‖) is less than that of the Li vectors, one of the Lis can indeed
be transformed without violating the overall lexicographic order, that is:
Σ(Strans((0,...,0,j,0,...,0))

L) ≤ Σ(SR).

Lemma 2 Let S = (Li,Mi)s
i=1 be a proper sequence, and let ‖Σ(SR)‖ <

‖Σ(SL)‖. Then there exist integers 0 < p ≤ h − 1 and 0 < k ≤ s such that
Σ(SL) ≤ Σ(SR), where P = 0[k − 1] • p •~0[1 : s− k].

Proof of Lemma 2 Let Lk be the first vector in SL that is p-nontrivial forProof of Lemma 2-1

p < ∞. Such a choice of k exists, since otherwise ‖Σ(SL)‖ ≤ ‖Σ(SR)‖ by
Lemma 1.

Clearly ‖Ltrans(p)
k ‖ < ‖Lk‖. If Lk[p+1: h] < Mk[p+1: h], then Ltrans(p)

k ≤MkProof of Lemma 2-2

and Σ(SL) ≤ Σ(SR), as required by the lemma. Otherwise, if Lk[p+ 1: h] =
Mk[p+ 1: h] (and therefore Ltrans(p)

k > Mk), then two cases are possible:

Case 1 For every j > k, Lj[p+ 1: h] = Mj[p+ 1: h]:
Then ‖Lj‖ ≤ ‖Mj‖ since Lj is p(≥)-nontrivial, and hence L[1 : p],M [1 : p]
satisfy the conditions of Lemma 1. But, since ‖Li‖ ≤ ‖Mi‖ for every i < k,
we have ‖Σ(SL)‖ ≤ ‖Σ(SR)‖, contradicting the conditions of the lemma.

11

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §3

L1 ≤ M1
...

Lk ≤ Mk
...

Lj < Mj
...

Ls ≤ Ms

(a)

→

L1 ≤ M1
...

L
trans(p)
k ? Mk

...
Lj < Mj

...
Ls ≤ Ms

(b)

→

L1 ≤ M1
...

L
trans(p)
k ≤ Mdir

k
...

Lj ≤ M indir
j

...
Ls ≤ Ms

(c)

Figure 2: Transformations in Case 2 of Lemma 2

Case 2 There exists j > k such that Lj[p+ 1: h] < Mj[p+ 1: h]:
We transform the Mk and Mj vectors so as to keep the lexicographic order
in the kth and jth pairs, without changing the sum Σ(SR), thereby proving
the lemma (refer to Figure 2). The transformations are as follows.

Mdir
k = Mj[1 : p] • (Mk[p+ 1] + 1) •Mk[p+ 2: h]

M indir
j = Mk[1 : p] • (Mj[p+ 1]− 1) •Mj[p+ 2: h]

Clearly Mk +Mj = Mdir
k +M indir

j and therefore
∑s

j=1Mj = Σ(SR). It is also
clear that Ltrans(p)

k ≤ Mdir
k . The lexicographic order still holds for the jth

pair (Lj ≤ M indir
j), because Lj[p + 1: h] ≤ M indir

j [p + 1: h] and Lj[1 : p] ≤
Lk[1 : p] ≤Mk[1 : p] = M indir

j [1 : p].

Proof of Lemma 2 2

We now use Lemma 2 repeatedly to show that it is possible to decrease3-5

the total sum of values in all the L vectors (‖Σ(SL)‖) without increasing
their total lexicographic order (Σ(SL)) too much.

Lemma 3 Let S = ((Li,Mi))s
i=1 be a proper sequence. Then there exists a

vector of integers P = (p1, p2, . . . , ps) such that the following conditions hold:
12

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §4

1. 0 ≤ pi ≤ h− 1 for every i,

2. Σ(S trans(P)
L) ≤ Σ(SR), and

3. ‖Σ(S trans(P)
L)‖ ≤ ‖Σ(SR)‖.

Proof of Lemma 3 Starting with P = (0, . . . , 0), we gradually increaseProof of Lemma 3-1

the coordinates of P until Condition 3 holds, while preserving Condition 2.
Note that for the initial P = (0, . . . , 0), Condition 2 holds: Σ(Strans(P)

L) =
Σ(SL) ≤ Σ(SR) (the left equality holds by definition of Ltrans(0)

i , and the right
inequality is due to Property P1 for each pair in S). The transformations
implied by the changes in P may, however, violate P1 (i.e., Ltrans(pi)

i may
become lexicographically greater than Mi). In order to avoid such violations
(and thereby preserve Condition 2), we use Lemma 2.

In this process, we have advanced toward satisfying Condition 3, sinceProof of Lemma 3-2

now ‖Ltrans(pi)
i ‖ ≤ ‖Mi‖, while this did not necessarily hold for ‖Li‖ and

‖Mi‖. Before the next change in P , S must be rearranged to remain proper.
To this end, the vectors in S need to be transformed as in Lemma 2 to
maintain Property P1. In addition, they may need to be reordered so as to
keep Property P2. However, these changes do not alter Σ(SR).

Since ‖Σ(SL)‖ decreases each time Lemma 2 is applied, after a finiteProof of Lemma 3-3

number of applications of Lemma 2, it will become smaller than ‖Σ(SR)‖.
Proof of Lemma 3 2

4 The VPL1-m Problem

In this section we discuss the VPL1-m problem on tree networks. Our main4-1

result is an optimal polynomial algorithm for this case and its proof of op-
timality, based on tools from the previous section. Before going into the
details, we mention that this problem is hard for general topologies, assum-
ing an unbounded stretch factor (i.e., µ = ∞). In other words, given the
following decision problem:

Problem: The Optimal VPL1-m problem (OPT-VPL1-m).

Instance: An undirected graphG = (V,E), a node r ∈ V , integers L, h > 0.

Question: Assuming µ =∞, does there exist Ψ, an (h, r)-feasible VPL1-m

on G such that L(Ψ) ≤ L?
13

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §4.1

→
root

sink

source

edge, capacity 1

edge, capacity L

edge, capacity ∞

Figure 3: Transforming the VPL1-m problem into a flow problemWe prove that OPT-VPL1-m is NP-complete. The details of the proof4-2

may be found in Appendix A.1.

Observation 1 It is interesting to note that the variant of OPT-VPL1-m

problem with fixed h = 1 can be solved polynomially. This is done by the
transformation depicted in Figure 3, which transforms the (undirected) graph
of the VPL1-m problem into a (directed) flow problem. Each undirected edge
is replaced by five edges and two new nodes, where the edge between these
new nodes is restricted to a capacity of L, and the other edges do not have
capacity restrictions. A new source node is added and connected to all the
original nodes except the root r by edges of capacity 1. The original root node
is defined as the sink.

We now present a polynomial-time optimal solution for VPL1-m, assum-4-3

ing µ = 1 and a tree network. These restrictions still allow a variety of
applications for the problem. In particular, this restricted VPL1-m problem
is used as a building block for solving the VPLm-m problem. In addition, it
has practical applications of its own, in the field of client-server applications
over ATM [LPS91]. The problem also serves as a sufficiently complex case to
allow for a presentation of nontrivial upper and lower bound results, using
techniques which we expect to be basic in similar future studies.

14

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §4.1

4.1 The Algorithm

We devise a greedy algorithm that produces an optimal VPL1-m for any tree.4.1-1

This algorithm is an iterative process in which the minimal load is guessed by
the main procedure, which calls the find layout procedure with the guessed
load as a parameter. The find layout procedure tries to construct a layout
under the given load constraint, and informs the main if the guess enabled
the construction of the layout. Using this information, main increases or
decreases its guess, until it achieves a minimal guess for which find layout
succeeds. Let vectarray represent the type array[V (T)] of N

h.

0. procedure main(h : N, T : tree, root : V (T))

1. var L1, L2: vectarray

2. find Lmax ∈ {1, . . . , |V (T)|} such that

3. find layout(h, T, root,Lmax, L1) = success and

4. find layout(h, T, root,Lmax − 1, L2) = failure

5. construct layout(root, L1)

6. end procedure main

In the find layout procedure, we view the tree T as rooted at root. The4.1-2

procedure starts from the leaves of the tree and advances toward the root.
For each node v it maintains the number of VPs that go through v (and
contribute to its load). This number is kept in a vector Lv ∈ N

h, where
Lv[1] holds the number of VPs that serve only as a first hop from some
descendant, and Lv[i] holds the number of VPs that are an ith hop4 for some
descendant x, but not an (i+ 1)th hop for any descendant.

Specifically, find layout creates a first-hop VP for each leaf (at line 4).4.1-3

At an internal node v, the vector Lv, of VPs is equal to the vector sum of
all the VPs that arrive at it from all its sons, plus one additional first-hop
VP from v toward the root (at line 14). If this vector is too big (i.e., ‖Lv‖
exceeds the current load constraint at line 15), then the VPs that go through
v are reduced by stopping some of them at the sons of v (hence turning the
VP that starts at that son from a first-hop VP to an (i + 1)th hop VP), by
applying the transformation in Figure 4 (at lines 16–21).

4The shortest path, in terms of VPs, from x toward the root includes the VP as the
ith VP from it.

15

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §4.1

0. function find layout(h : N, root : V (T), Lmax : N, var L : vectarray)

1. returns {success, failure}
2. (Lv indicates the entry of L indexed by v)

3. for all w ∈ V (T)

4. if w is a leaf then Lw ← (1, 0, . . . , 0)

5. else Lw ← UNDEFINED

6. end if

7. end for

8. loop forever outer

9. if v = root then return success end if

10. find v ∈ V (T) such that

11. Lv = UNDEFINED and

12. for all x ∈ Sons(v), Lx 6= UNDEFINED

13. loop forever inner

14. Lv ← ∑
s∈Sons(v) Ls + (1, 0, . . . , 0)

15. if ‖Lv‖ ≤ Lmax then exit loop inner end if

16. find s ∈ Sons(v), i ∈ {1, . . . , h− 1} such that

17. ‖Ls[1 : i]‖ > 1 and

18. for all s′ ∈ Sons(v) \ {s}, Ls[1 : i] ≥ Ls′ [1 : i] (lexicographic)

19. for all s′ ∈ Sons(v), ‖Ls′ [1 : i− 1]‖ ≤ 1

20. if no such i, s exist then return failure end if

21. Ls ← ~0[1 : i] • (Ls[i+ 1] + 1) • Ls[i+ 2: h]

(transform Ls to Ltrans(i+1)
s)

22. end loop inner

23. end loop outer

24. end function find layout

16

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §4.2

→

j = 1 j = i+ 1

j ≤ i

j > i
j ≤ i

j > i

Son

Overloaded
node

Figure 4: The transformation on an overloaded node v: Lv → Ltrans(i+1)
v

A partial intuition behind this transformation is that it is better to stop4.1-4

VPs that serve as a jth hop for the lowest possible j, as this does not increase
the vector Lv too much in its lexicographic order. A part of this transforma-
tion is, however, nonintuitive, and stems directly from needs of the proof of
optimality.

The main procedure relies on construct layout for the actual creation4.1-5

of the VPL1-m from the set of vectors in L. This procedure is activated
for a node v and recursively creates VPs for all the nodes in the subtree
rooted at v. The code of construct layout is straightforward, yet lengthy and
involved, and is omitted in this paper. For similar reasons, we also omit the
proof of correctness of the algorithm. Similar code and proofs may be found
in [Ger95].

4.2 Proof of Optimality

We prove the solution that find layout produces is optimal for every given tree4.2-1

and h, thereby implicitly proving a lower bound for the VPL1-m problem. The
main lemma is Lemma 6, in which the solution {Lv | v ∈ V } of find layout

17

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §4.2

is compared to an arbitrary minimal solution with a vector representation
{Mv | v ∈ V }. To this end, we first prove (in Lemma 5) that every minimal
solution indeed has a vector representation with some desired properties. In
this representation, ‖Wv‖ is the load on node v. Using the tools in Section 3,
in particular Lemma 3, we prove (by induction) that at every node v, Lv ≤
Mv and ‖Lv‖ ≤ ‖Mv‖, thereby proving that the solution of find layout has
minimal load (and is thus optimal). The simple case for the proof is when
v is not overloaded, in which case Lv =

∑
s∈Sons(v) Ls + (1, 0, . . . , 0), and

the inductive claim easily follows, assuming it holds for each son of v. For
an overloaded node, the load vectors of the sons are arranged in the order
that they are chosen by find layout at lines 15–16. This order is reflected
by Property P2 of a proper sequence (see Definition 8). Then, they are
lexicographically compared to the respective M vectors.

Thus, before applying transformations on any son of v, we have Li ≤Mi,4.2-2

i = 1, . . . , s. Using Lemma 3, we show that after several transformations the
total load at v, ‖Σ(SL)‖, decreases at least to the level of the given optimal
solution (‖Σ(SR)‖), while maintaining its property of being lexicographically
minimal.

The above sketch is formalized as follows.4.2-3

Definition 9 Let ~(ψ) denote the maximal hop count for which ψ serves
from some node to the root (this is the value j = i + 1 assigned to the VP
starting at the son in Figure 4.

Definition 10 Given h > 0, a VPL1-m is (h, r)-minimal if it is (h, r)-feasible
and the deletion of a VP ψ ∈ EΨ yields a VPL1-m that is not (h, r)-feasible.

Lemma 4 In a minimal VPL1-m, there exists a unique VP ψv for every node
v that starts at v toward the root.

Proof of Lemma 4 Assuming two such VPs ψ1 and ψ2 exist in a minimal
VPL1-m, consider the paths pi (i = 1, 2) from v to the root that start with
ψi. Without loss of generality, p1 is not longer than p2 (in terms of VP-
hops). Therefore, we can remove ψ2 from the VPL1-m without damaging its
feasibility, contradicting the minimality assumption.

Proof of Lemma 4 2

Note that the previous lemma implies that the virtual graph GΨ of a4.2-4

minimal VPL1-m on a tree, is a tree as well.
18

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §4.2

Lemma 5 Given h > 0, let T be a tree rooted at r. Every (h, r)-minimal
VPL1-m on T can be represented by a set of vectors

{
Mv ∈ N

h | v ∈ V (T)
}
,

such that for every node v, the following conditions hold:

1. L(v) = ‖Mv‖,
2. if v is a leaf then Mv = (1, 0, . . . , 0), and

3. Mv ≥ ∑
s∈Sons(v)Ms + (1, 0, . . . , 0).

Proof of Lemma 5 Let Tv denote the set of nodes in the subtree below v.
Define Mv for a node v by

Mv[i] = |{ψ ∈ EΨ | v ∈ ψ ∧ ~(ψ) = i }|

Condition 2 is trivially satisfied. Condition 1 is satisfied since each VP that
includes the node v contributes one to a singleMv[i] (according to the value of
~(ψ)), hence L(v) = ‖Mv‖. To prove Condition 3, let ψv be the VP starting
at v. Note that if H(ψv) = 1 then no VP stops at v, and every VP that loads
a son of v loads v as well, which has an additional load incurred by ψv, hence
Mv =

∑
s∈Sons(v)Ms + (1, 0, . . . , 0). If H(ψv) = i > 1 then a VP ψ that stops

at v has H(ψ) ≤ i − 1, hence Mv[i : h] =
∑

s∈Sons(v)Ms[i : h] + (1, 0, . . . , 0)
and Mv >

∑
s∈Sons(v)Ms + (1, 0, . . . , 0).

Proof of Lemma 5 2

Lemma 6 Given h > 0, if there exists an (h, r)-feasible VPL1-m Ψ with
L(Ψ) ≤ X for some X > 0 with a vector representation {Mv | v ∈ V (T) },
then for every node v 6= r the following holds:

• If Lmax = X then find layout does not return failure while handling
v, and

• the vector Lv produced by find layout satisfies Lv ≤Mv.

Proof of Lemma 6 We use induction on the height H of the subtrees of T .Proof of Lemma 6-1

Basis. For a tree of height H = 0 (i.e., a leaf), it is clear that Lv = Mv =Proof of Lemma 6-2

(1, 0, . . . , 0).

19

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §4.2

Induction step. Assume that the claim holds for subtrees of height atProof of Lemma 6-3

most H − 1, and let v be a node such that Tv is of height H. By the
induction hypothesis, find layout does not return failure for every son s of
v and Ls ≤Ms. Let L′

v =
∑

s∈Sons(v) Ls + (1, 0, . . . , 0).
If ‖L′

v‖ ≤ X then find layout will continue all VPs through v (no transfor-Proof of Lemma 6-4

mations are performed), in which case, (1) it does not return failure while
handling v, and (2) the vector Lv = L′

v ≤
∑

s∈Sons(v)Ms + (1, 0, . . . , 0) ≤Mv.
The case when ‖L′

v‖ > X is proven as follows. Arrange the load vectorsProof of Lemma 6-5

of the sons of v in the order they are chosen at lines 16–19 (which is the order
determined by Property P2 of Definition 8), and add a pair of (1, 0, . . . , 0)
vectors to this sequence. The sequence that includes these load vectors and
the corresponding M vectors is proper.

(1, 0, . . . , 0) ≤ (1, 0, . . . , 0)
L1 ≤ M1

L2 ≤ M2
...

Ls ≤ Ms

By Lemma 3, there exists a vector P = (p1, . . . , ps) of integers 0 ≤ pi ≤Proof of Lemma 6-6

h − 1 such that Σ(Strans(P)
L) ≤ Σ(SR) and ‖Σ(Strans(P)

L)‖ ≤ ‖Σ(SR)‖. Note
that Σ(Strans(P)

L) is the value of the vector Lv after some finite number of
iterations in the internal loop of find layout for node v. The only way that
find layout may return failure is if no son that satisfies the conditions
of lines 16–19 is found. In this case, all sons s have ‖Ls[1 : h − 1]‖ ≤ 1.
By Lemma 1, ‖Ls‖ ≤ ‖Ms‖ and hence X < ‖L′

v‖ ≤ ‖Σ(SR)‖—which is
a contradiction to the feasibility of the given solution, since by Lemma 5
‖Σ((RS))‖ ≤ ‖Mv‖. Therefore we get Σ((LS)trans(P)) ≤ X and find layout
finishes handling v without returning failure with Lv ≤Mv.

Proof of Lemma 6 2

The theorem that concludes the proof is:4.2-5

Theorem 1 Given h > 0, the main procedure finds an (h, r)-optimal VPL1-m

for any given tree T with N nodes rooted at r, in O(hN log2N) time.

20

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §5

Proof of Theorem 1 By Lemma 6, find layout will successfully handle eachProof of Theorem 1-1

son of r if Lmax implies a feasible solution.
It remains to show that find layout does not fail for the root r. This proofProof of Theorem 1-2

is identical to the induction step of Lemma 6, except that the (1, 0, . . . , 0)
vectors are not added as part of the list (since no new VP starts at the root
r). Hence, Lemma 3 is applied on the load vectors Li produced by find layout
for the sons of r and on the load vectors Mi for those sons in some other
VPL1-m.

Therefore, find layout will return success after handling the root (atProof of Theorem 1-3

line 9). It also returns a feasible layout that obeys Lmax. Since main finds
the minimal value for Lmax for which find layout returns success, it returns
the optimal VPL1-m.

As to the time complexity of this algorithm, the search for the optimalProof of Theorem 1-4

Lmax, done by main, involves log2N steps (by means of a binary search in
the range 1, . . . , N for Lmax). In each such step, find layout is activated and
scans the tree bottom up, during which time each node v is chosen once (at
line 10) as the current node. Each node may also be chosen up to h times (at
line 16) as a son to be transformed, since each transformation of Lv increases
the number of zeros in it by at least one, and Lv has h values.

Proof of Theorem 1 2

The above algorithm does not imply a numerical bound of the load in-4.2-6

curred by the layout; however, using a result from [CGZ94], it is easy to
derive such a bound.

Lemma 7 For every tree network T , the VPL1-m produced by main obeys
L(Ψ) ≤ hN

1
h .

Proof of Lemma 7 Since main produces an optimal layout, it produces a
better layout than the one suggested by [CGZ94] for which the load obeys
L(Ψ) ≤ hN

1
h .

Proof of Lemma 7 2

5 The VPLm-m Problem

In this section we use the algorithm for VPL1-m to solve VPLm-m, exempli-5-1

fying our motivation for the definition of VPL1-m. But first we note that the
21

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §5.1

VPLm-m problem is a hard problem as well, by proving it is NP-complete for
any odd hop count. The details of the proof may be found in Appendix A.2.

5.1 A Solution for General Graphs

We now present a suboptimal construction scheme, based on a technique of5.1-1

[AP92], for the construction of “regional routing schemes” (used for regular
routing problems).

The scheme is based on a clustering technique, which yields connected5.1-2

overlapping subgraphs of a given graph, such that each pair of nodes with
distance less than a given integer δ may be found together in at least one
cluster. In each cluster we choose a center (i.e., the node that is closest to
all the other nodes of the cluster), construct a breadth-first search tree to
the center, and connect all the other nodes of the cluster to it by a VPL1-m

with µ = 1 and h′ = h
2 (using the greedy algorithm of the previous section).

Clearly, every pair of nodes whose distance is less than δ may be connected
using no more than h hops via the pivot of their common cluster.

We repeat this scheme for increasing parameter δ (until the algorithm5.1-3

yields one cluster that includes the whole network). To minimize the stretch
factor µ, each pair is connected using the VPL1-m of the smallest common
cluster. Refer to Figure 5 for a graphic demonstration of this scheme.

We now present a precise definition of the above scheme. These definitions5.1-4

are based on [AP92].

Definition 11 The j-neighborhood of a node v ∈ V is defined as

Nj(v) = {w | dG(v, w) ≤ j }

The radius of a node wrt a graph is defined by

Rad(v,G) = max
w∈V

dG(v, w)

The radius of a graph is defined by

Rad(G) = min
v∈V

Rad(v,G)

A center of a graph is a node for which Rad(v,G) = Rad(G).

22

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §5.1

chosen route

shortest route

pivot

cluster

Figure 5: VPLm-m on a general graph

Definition 12 Given a set of nodes C ⊆ V , let G(C) denote the subgraph
induced by C in G. A cluster is a subset C of nodes such that G(C) is
connected. We use Rad(v, C) as a shorthand for Rad(v,G(C)). A cover is a
collection of clusters C = {Ci | 1 ≤ i ≤ δ } such that

⋃
iCi = V . Extend the

definitions of radius by Rad(C) = maxi Rad(Ci). For a node v let ∆(C, v)
denote the number of occurrences of v in the clusters Ci. The maximum
degree of a cover C is defined as ∆(C) = maxv∈V ∆(C, v). Given two covers
C = {Ci | 1 ≤ i ≤ δ } and T = {Ti | 1 ≤ i ≤ k } we say that T subsumes C
if for every Ci ∈ C there exists a Tj ∈ T such that Ci ⊆ Tj.

We rely on the following theorem:5.1-5

Theorem 2 ([AP92]) Given a graph G, a cover C, and an integer k ≥ 1,
it is possible to construct a cover T that satisfies the following properties:

1. T subsumes C,
2. Rad(T) ≤ (2k − 1)Rad(C), and

3. ∆(T) = O(k |C|1/k).

23

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §5.1

Intuitively, this theorem states that the graph can be divided into overlapping
clusters, with three important properties:

1. For each node v there is a cluster that includes v, and all its δ-neighborhood
(recall that δ is a parameter of the algorithm).

2. The distance between every pair of nodes in each cluster is not more
than (2k − 1)δ.

3. Each node is included in not-too-many clusters (i.e., O(kN1/k)).

Our construction is based on the routing scheme from [AP92], combined5.1-6

with the usage of VPL1-m for trees. We first present a scheme that depends
on a parameter δ, and then tune the scheme by choosing δ. The scheme
connects pairs of nodes with a distance not exceeding δ.

0. function general vpl(G : network, δ, k : N) (δ, k > 0)

1. returns VPLm-m

2. C ← {Nδ(v) | v ∈ V (G) }
3. Construct T as in Theorem 2

4. Select a center c in each Ti

5. Construct a VPL1-m in each Ti to the center with h′ = h
2

6. return the union of all the above VPL1-ms

7. end function general vpl

Lemma 8 Let v, w be a pair of nodes such that dG(v, w) ≤ δ and let the
stretch factor be µ = 8k. Then the number of hops between v and w is
Hµ(v, w) ≤ h in the VPLm-m produced by algorithm general vpl .

Proof of Lemma 8 Clearly, v ∈ Nδ(w), and there exists a cluster Ti ∈ TProof of Lemma 8-1

that includes Nδ(w). The route chosen for v, w will use the VPL1-m in Ti by
going from v to the root of the VPL1-m (using a shortest route) and from
there to w; denote the total length of it by X. This route is composed of no
more than h VPs. Note that the distance to the center in Nδ(w) is no more
than δ, and by Property 2 of T we have:

X ≤ 2Rad(T) ≤ 2(2k − 1)Rad(C) = 2(2k − 1)δ < 4kδ

24

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §6

Now suppose that dG(v, w) ≥ δ
2 , then the stretch factor satisfies µ ≤Proof of Lemma 8-2

4kδ
δ/2 = 8k.

Proof of Lemma 8 2

Lemma 9 Let Ψ be the VPLm-m produced by algorithm general vpl . Then,
its maximum load satisfies

L(Ψ) = O(khN
1
k
+ 2

h)

Proof of Lemma 9 By Theorem 2, each node is shared by at most ∆(T) =Proof of Lemma 9-1

O(k |C|1/k) clusters. On the other hand, using Lemma 7, the load on a node
caused by a single VPL1-m is L(Ψ1−m) ≤ h

2N
2/h, and since |C| ≤ N we get

L(Ψ) = O(hN
2
hkN

1
k) = O(khN

1
k
+ 2

h)

Proof of Lemma 9 2

So far, we have assumed that the distance between v and w is not lessProof of Lemma 9-2

than δ
2 . To achieve this, we apply the entire scheme for increasing values

of δ. We start with δ = 2 and at the ith round take δ = 2i. Clearly, this
process completes in log2N rounds. To ensure that the assumption used for
the calculation of the stretch factor holds, we choose the VPL1-m to connect
v and w in the smallest cluster that includes both nodes. If we take δ = 2i for
an i that satisfies 2i−1 ≤ d(v, w) ≤ 2i, then we have δ

2 ≤ d(v, w) as assumed
earlier. This process multiplies the load by a factor of log2N , so we have

L(Ψ) = O(kh logNN
1
k
+ 2

h)

The following theorem summarizes the characteristics of the above descrip-
tion:

Theorem 3 Given an arbitrary network G with N nodes, and k, h > 1, the
above scheme yields an h-feasible VPLm-m with stretch factor µ ≤ 8k and
load L(Ψ) = O(kh logNN

1
k
+ 2

h).

25

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §A.1

6 Summary

In this paper we presented a model and a class of problems for designing the6-1

layout of virtual paths in a given ATM network to be used for general-purpose
connection routing. We first defined the characteristics that are important for
such a layout, the VPLm-m problem, and the simpler VPL1-m problem. Next,
we showed that both problems are NP-complete, but presented an optimal
construction scheme for a more limited variant of the VPL1-m (namely, with
stretch factor µ = 1 and assuming a tree network). We then demonstrated
how this limited problem can serve as a building block for a suboptimal
solution of a VPLm-m (in which µ > 1).

We believe that our approach quite accurately models certain routing6-2

problems in ATM networks, including the optimality criterion. We expect
this work to motivate further work in finding better schemes for general
networks, in extending the existing schemes for supporting fault tolerance
in the network, and in extending the characteristics of a good layout to the
case when some statistics regarding the volume and bandwidth of connections
between every pair of nodes is known.

7 Acknowledgment

We would like to thank the managing editor of this journal, Mike O’Donnell,
and the copy editor, Lisa Clark, for their very thorough and involved work
in improving the presentation of this paper.

A Appendix

A.1 NP-Completeness Result for the VPL1-m Problem

Recalling the problem statement in Section 4, we now prove that the OPT-A.1-1

VPL1-m problem is NP-complete (if the stretch factor is unbounded).

Theorem 4 OPT-VPL1-m is NP-complete.

Proof of Theorem 4 Clearly OPT-VPL1-m is in NP. To show NP-Proof of Theorem 4-1

completeness, we reduce it to:

Problem: The disjoint connecting paths problem (ND40) [GJ79].
26

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §A.1

= =
v

cv

v

A limiter λp(v)

p

p−1 bv
1 ...bv

n−3

a1

ap

p

v

w

v

w

b
a1
1

b
a1
n−2

b
ap
n−2

An extender εp(v, w)

b
ap
1

a2
b
a2
1

b
a2
n−2

Figure 6: The limiter and extender components

Instance: An undirected graph G = (V,E), collection of disjoint pairs of
nodes (s1, t1), (s2, t2), . . . , (sk, tk).

Question: Does G contain k mutually node-disjoint paths, one connecting
si and ti for each i ∈ {1, . . . , k}?

Given an instance of ND40, let n = |V |. Define the following components
(see Figure 6):

Extender (εp(v, w)): This component extends a path that goes through v
and w in V to include p additional hops. It is composed of a path
of p nodes a1, . . . , ap, each of which is connected to n − 2 new nodes
bai
1 , . . . , b

ai
n−2. In addition, v is connected to a1 and w to ap. In the case

when p = 0, the extender reduces to an edge (v, w).

Limiter (λp(v)): This component limits the path from its head v to the
root, to include no more than h− p hops. It also limits the number of
VPs that may go through v. The limiter is constructed by connecting
n − 3 new nodes (bv1, . . . , b

v
n−3) to v, adding yet another new node cv,

and connecting v and cv by εp−1(v, cv).

Let U = V \ {t1, t2, . . . , tk}, let L = n, and h = k+2. Consider the following
transformation of G to G′ (see Figure 7, in which the extender is drawn as a
rectangle and the limiter as a triangle):

27

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §A.1

• Initially define G′ as G.

• Add a new node r to G′.

• Add a limiter λ1(v) to every node v ∈ U .

• Add an extender εh−1(v, r) for every node v ∈ U .

• Add an extender εh−i+1(si, r) to every si, i ∈ {1, . . . , k}.
• Add a limiter λi(ti) to every ti, i ∈ {1, . . . , k}.
• Add a node di and an edge (di, ti) to every ti, i ∈ {1, . . . , k}.
We prove that OPT-VPL1-m replies True on G′ with r as the root iffProof of Theorem 4-2

ND40 replies True on G. In the proofs we use the following terminology:

• A node v with L(v) = L is called saturated .

• A route from v to r is said to go via a node y if the route includes two
VPs that are concatenated in y.

• A route from v to r is said to go through y if y is included in one of the
VPs that form the route.

• In a minimal VPL, the (single) VP that starts at a node v and is used
(as a first VP) in the path to r is called the VP from v.

Lemma 10 The limiter and extender have the following properties:

1. Given a node v with a limiter λp(v), the route from v to r is no more
than h− p hops.

2. Given a node v with a limiter λp(v), then the VPs that include v are
from v itself and from its limiter, plus at most one additional VP.

3. Given two nodes v, w with a limiter λq(v) and an extender εp(v, w),
then a route through v and w includes at least p − 1 complete VPs
(excluding the VPs that go through v and w).

Proof of Lemma 10 We divide the proof into the three cases:

28

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §A.1

h−1

h−1 h−2
h−1

h−3 1
h−1

1 2 h− 2

1v

1 1

r

d1 t1 d2 t2 dk
tk

s1 s2 sk

1

Figure 7: The transformed graph G′

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §A.1

Case 1 Since cv is connected to a node a1 of an extender in λp(v), its VP
can either end at a1 or continue (toward v). If it continues, then the VP
from a1 must also go through a2 (there is no other way to connect r), and
L(a2) > L. Therefore it stops at a1. From similar considerations, the VP
from a2 stops at a3 and finally, the VP from ap stops at v, otherwise, there
are two VPs that must go through some node u ∈ U and hence more than
k VPs that go through some si, causing L(si) > L for some si. Therefore, v
must connect r using h− p hops or less (the case when p = 1 is trivial).

Case 2 Every VP from bv in λp(v) goes through v, plus one VP from v and
one from ap, a total of L−3+1+1 = L−1, leaving one extra VP through v.

Case 3 The proof resembles the one of Case 1, with the difference that the
VP from a1 does not go through v because if it does, v is saturated, and no
other VP can go through v.

Proof of Lemma 10 2

Proof of Theorem 4-3

Proposition 1 In every VPL1-m on G′, the load on every node v ∈ U is
composed of one VP from v, one VP that includes v from the L− 2 nodes in
ε1(v), and no more than one additional VP, which we term the extra VP of
v. In every tf i, the load is composed of the same VPs and one VP from di,
hence with no extra VP.

Lemma 11 If there exists a solution for OPT-VPL1-m on G′, then there are
k disjoint paths in G between every si and ti.

Proof of Lemma 11 By the previous Lemma, the route from tk includesProof of Lemma 11-1

no more than two VPs. This route cannot go through any εh−1(v, r), and it
cannot go through si, i 6= k because of the εh−i+1(si, r) which adds at least
k + 2 − (k + 1) + 1 − 1 = 1 VPs in the route from si to r (by Lemma 10),
excluding the VP to r and the VP from tk through si (a total of three VPs).
Therefore, the route from tk goes through sk.

From similar considerations, the route from tk−1 cannot go through si,Proof of Lemma 11-2

for i < k − 1. Also, it cannot go through sk, since the extra VP of sk was
used by the route from tk. And by repeating this argument, the route from
ti goes through si. Note that this route is composed of a single VP (that

30

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §A.2

includes both ti and si), because λi(ti) and εh−i+1(si, r) use h− 1 VPs. Also
note that each of these paths is node disjoint (since every intermediate node
has only one extra VP), and that a path from ti does not go through tj, since
every tj is already saturated (because of dj).

Proof of Lemma 11 2

Lemma 12 If there are k disjoint paths between si and ti respectively, then
there exists a solution for OPT-VPL1-m on G′ with L = n, h = k + 2.

Proof of Lemma 12 Build a VPL1-m in the following manner:

• Create a VP between every bvi and v.

• Create a VP between every v ∈ U to a1 in εh−1(v, r), and a VP between
every ap in εp(x, r) to r (for every x for which such an extender exists).

• Connect cv to a1 of the extender in every λp(v) by a VP, and ap to v.

• Create a VP between every ai to ai+1 in every extender (if p = 0 in
εp(u, v) then connect u and v by a VP).

• Connect di to ti for every i ∈ {1, . . . , k}.
• Connect every ti to a1 in εp(si, r) using the path obtained by ND40

through si (as indicated by the dotted lines in Figure 7).

It is easy to verify that L(Ψ) ≤ L.

Proof of Lemma 12 2

By Lemma 11, if there exists a VPL1-m on G′, then there exist k disjointProof of Theorem 4-4

paths from si to ti in G. By Lemma 12, if there are k such paths, then there
is a VPL1-m on G′, hence our transformation is correct.

Proof of Theorem 4 2

31

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §A.2

A.2 NP-Completeness Result for the VPLm-m Prob-
lem

The proof that the VPLm-m problem is NP-complete is based on the followingA.2-1

NP-complete problem.

Problem: The Symmetric Forwarding Index Problem (SFI) [Saa93].

Instance: An undirected graph G = (V,E), an integer k > 0.

Question: Does there exist a set R of
(|V |

2

)
undirected paths in G such that

for every pair x, y ∈ V there exists a path in R whose endpoints are x
and y, and the number of paths in R that go through any node v, for
which v is not an endpoint, does not exceed k?

The VPLm-m problem is formalized as the following decision problem.A.2-2

Problem: The optimal h-hop VPLm-m problem (OPT-VPLm-m(h)).

Instance: An undirected graph G = (V,E), an integer L > 0.

Question: Assuming µ =∞, does there exist an h-feasible VPLm-m, Ψ, on
G such that L(Ψ) ≤ L?

We first reduce the OPT-VPLm-m (1) problem to SFI, and then reduceA.2-3

OPT-VPLm-m (h + 2) to OPT-VPLm-m (h) for every h, by this proving
that OPT-VPLm-m(h) is NP-complete for every odd h. A proof that OPT-
VPLm-m(2) is NP-complete would suffice to extend this result to every h > 0.

Lemma 13 OPT-VPLm-m(1) is NP-complete.

Proof of Lemma 13 Given an instance of SFI, we define an instance of
OPT-VPLm-m (1) with the same graph G and L = k + |V | − 1. This proof
is simple, since the only difference between the problems is that in SFI a
path is not considered part of the “load” on the endpoint nodes, while in
OPT-VPLm-m(1) it is considered as part of the load. However, since there
are n − 1 paths in R for which a given node is an endpoint, the load limit
must be increased by |V | − 1.

Proof of Lemma 13 2

32

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM §A.2

Lemma 14 OPT-VPLm-m(h + 2) is NP-complete if OPT-VPLm-m(h) is
NP-complete.

Proof of Lemma 14 Let a graph G = (V,E) and L > 0 be an instance ofProof of Lemma 14-1

OPT-VPLm-m (h), with |V | = n. Construct a graph G′ = (V ′, E ′) by initially
taking G′ as G and then connecting M = nL new nodes {wi

v}Mi=1 to every
node v ∈ V .

We show that there exists a solution Ψ to OPT-VPLm-m(h) on G withProof of Lemma 14-2

load L(Ψ) ≤ L iff there is a solution Ψ′ to OPT-VPLm-m(h + 2) on G′ with
load L(Ψ) ≤ L′ = L + M . Assume Ψ is a solution Ψ to OPT-VPLm-m(h),
and add VPs from every wi

v to v. The resulting VPL Ψ′ is a solution to
OPT-VPLm-m (h + 2) since the distance in Ψ between every pair of nodes
a, b ∈ V satisfiesHµ(a, b) ≤ h, and therefore the distance in Ψ′ between every
wi

a and wj
b obeys Hµ(wi

a, w
j
b) ≤ h+ 2, and Hµ(a, wi

b) ≤ h+ 1. Since the load
in Ψ is bounded by L at each node, the load in Ψ′ is clearly bounded by L′.

On the other hand, if there exists a solution Ψ′ to OPT-VPLm-m(h + 2)Proof of Lemma 14-3

on G′ then two cases are possible:

Case 1 For every a, b ∈ V in Ψ′ Hµ(a, b) ≤ h. In this case, we may takeProof of Lemma 14-4

the VPs whose endpoints are in V as a solution Ψ to the OPT-VPLm-m(h)
problem. It is clear that Ψ uses only nodes from G (a simple path from a
to b cannot include any wi

x), and that the solution is h-feasible. To show
that L(Ψ) ≤ L, note that each node in x ∈ V has at least load M from its
neighbors wi

x. This leaves only L for VPs between nodes in V .

Case 2 Otherwise, there exists a pair of nodes a, b ∈ V for whichProof of Lemma 14-5

Hµ(a, b) > h in Ψ′. Regard the sets of nodes Wa = {wa | 1 ≤ i ≤M }
and Wb = {wi

b | 1 ≤ i ≤M }. If there exists a pair of nodes xa ∈ Wa,
xb ∈ Wb which are included only in the VPs (xa, a), (xb, b) ∈ EΨ, then the
path between xa and xb must include the path between a and b, and hence
Hµ(xa, xb) = Hµ(a, b) + 2 > h + 2—a contradiction. For this reason, either
all nodes in Wa or all nodes in Wb (without loss of generality, assume it is
Wa) are included in VPs that include also a neighbor of a. By the pigeonhole
principle, there exists some neighbor c ∈ V that is included in at least M

n

such VPs. Now, since every node wj
c adds to the load on c as well, we get

L(c) ≥M + M
n
> M + L = L′—a contradiction.

Note that if there exists a VP (wi
a, w

j
c) in Ψ′, which is considered in theProof of Lemma 14-6

second component of the above sum (i.e., as a VP from wj
c), there must be

33

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM (Ref)

another VP from wj
c that contributes to the first component of this sum as

well, since (wi
a, w

j
c) is part of the path from wi

a to some node xb in Wb.

Proof of Lemma 14 2

Theorem 5 OPT-VPLm-m (h) is NP-complete for every odd h > 0.

Proof of Theorem 5 The proof follows directly from the previous two lem-
mata by induction on h.

Proof of Theorem 5 2

Acknowledgement of support: Part of Ornan Gerstel’s work was done
while he was with the Computer Science Department, Technion, Haifa 32000,
Israel. Part of Israel Cidon’s work was done while he was with Sun Microsys-
tems Labs, 2550 Garcia Avenue, Mountain View, CA 94043.

References

[ABLP89] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Compact dis-
tributed data structures for adaptive routing. In 21st Symposium
on Theory of Computing, pages 479–489, 1989.

[ACG+90] B. Awerbuch, I. Cidon, I. Gopal, M. Kaplan, and S. Kutten.
Distributed control for PARIS. In 9th Annual ACM Symposium
on Principles of Distributed Computing, pages 145–160, 1990.

[AP92] B. Awerbuch and D. Peleg. Routing with polynomial
communication-space tradeoff. SIAM Journal on Discrete Math,
5(2):151–162, May 1992.

[ATTD94] S. Ahn, R. P. Tsang, S. R. Tong, and D. H. C. Du. Virtual path
layout design on ATM networks. In IEEE Infocom ’94, pages
192–200, 1994.

[CG88] I. Cidon and I. Gopal. PARIS: An approach to integrated high-
speed networks. International Journal of Digital and Analog Ca-
bled Systems, 1(2):77–86, April–June 1988.

34

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM (Ref)

[CGG+92] I. Cidon, I. Gopal, P. M. Gopal, J. Janniello, and M. Kaplan. The
plaNET/ORBIT high speed network. IBM Research Report RC
18270, IBM Research Division, Watson Research Center, August
1992.

[CGZ94] I. Cidon, O. Gerstel, and S. Zaks. A scalable approach to rout-
ing in ATM networks. In G. Tel and P. M. B. Vitányi, edi-
tors, The 8th International Workshop on Distributed Algorithms
(LNCS 857), pages 209–222, Terschelling, The Netherlands, Oc-
tober 1994. Springer-Verlag. To appear in IEEE/ACM Transac-
tions on Networking.

[CS94] R. Cohen and A. Segall. Connection management and rerouting
in ATM networks. In IEEE Infocom’94, pages 184–191, 1994.

[Eve79] S. Even. Graph Algorithms. Computer Science Press, 1979.

[FJ86] G. N. Frederickson and R. Janardan. Separator-based strategies
for efficient message routing. In 27th Symposium on Foundations
of Computer Science, pages 428–437, 1986.

[FJ88] G. N. Frederickson and R. Janardan. Designing networks with
compact routing tables. Algorithmica, 3:171–190, 1988.

[Ger95] O. Gerstel. Virtual Path Design in ATM Networks. PhD thesis,
Technion, Israel Institute of Technology, December 1995.

[GJ79] M. R. Garey and D. S Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman and
Co., 1979.

[GZ94] O. Gerstel and S. Zaks. The virtual path layout problem in fast
networks. In The 13th Annual ACM Symposium on Principles of
Distributed Computing, pages 235–243, Los Angeles, CA, August
1994.

[HH91] R. Händler and M. N. Huber. Integrated Broadband Networks:
An Introduction to ATM-Based Networks. Addison-Wesley, 1991.

[HKIT94] H. Hadama, R. Kawamura, T. Izaki, and I. Tokizawa. Direct
virtual path configuration in large-scale ATM networks. In IEEE
Infocom’94, pages 201–207, 1994.

35

Chicago Journal of Theoretical Computer Science 1996-3

Gerstel, Cidon, Zaks Optimal Virtual Path Layout in ATM (Ref)

[ITU90] ITU recommendation. I series (B-ISDN), Blue Book, November
1990.

[KK77] L. Kleinrock and F. Kamoun. Hierarchical routing for large net-
works; preformance evaluation and optimization. Computer Net-
works, 1:155–174, 1977.

[KK80] L. Kleinrock and F. Kamoun. Optimal clustering structures for
hierarchical topological design of large computer networks. Net-
works, 10:221–248, 1980.

[LB92] J. Y. Le Boudec. The asynchronous transfer mode: a tutorial.
Computer Networks and ISDN Systems, 24:279–309, 1992.

[LPS91] T. F. La Porta and M. Schwarz. Architectures, features, and
implementation of high-speed transport protocols. IEEE Com-
munications Magazine, pages 14–22, May 1991.

[PU88] D. Peleg and E. Upfal. A tradeoff between space and efficiency
for routing tables. In 20th Symposium on Theory of Computing,
pages 43–52, 1988.

[Saa93] R. Saad. Complexity of the forwarding index problem. SIAM
Journal on Discrete Math, 6(3):418–427, 1993.

[SK85] N. Santoro and R. Khatib. Labelling and implicit routing in
networks. The Computer Journal, 28:5–8, 1985.

36

Chicago Journal of Theoretical Computer Science 1996-3

