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Abstract
Most of the web traffic today uses theHyperText Trans-

fer Protocol(HTTP), withTransmission Control Protocol
(TCP) as the underlying transport protocol. Unfortu-
nately, TCP is poorly suited for the short conversations
that comprise a significant component of web traffic. The
overhead of setting up and tearing down TCP state amor-
tizes poorly for these small connections. Moreover, emer-
ging modern web server systems employ HTTPredirection
for server load-balancing and content distribution; such
schemes require setting up (and tearing down) multiple
TCP connections for servicing a single client request.

We have designed and analyzed a hybrid scheme to ad-
dress these issues. The scheme uses either TCP, or theUser
Datagram Protocol(UDP) as the underlying transport pro-
tocol for carrying web traffic. UDP is used for short trans-
fers (including HTTP redirection), while TCP is used for
all other transfers. In this manner, we avoid the extra TCP
overhead for short connections, but still benefit from the re-
liable delivery and congestion control that TCP provides.
We ran trace-based simulations to quantify the effects of
various network parameters (i.e., packet loss rates) on the
performance of the hybrid scheme. We observed perfor-
mance gains exceeding 20-25% with HTTP/1.1-style per-
sistent connections, and over 40-50% without persistent
connections. These gains can be improved with further
performance optimizations that we describe.

1 Introduction
As theWorld Wide Web(WWW) and other Internet ap-

plications, such as real-time audio and video become more
and more popular, both the Internet itself and the most pop-
ular sites are suffering from severe congestion. This con-
gestion is perceived by users as service delays at best, and
as a lack of service at worst.

Many web sites today use a variety of approaches, in-
cluding server and content replication and distribution, to
improve service latency and reliability. Current HTTP
redirectionsolutions require tearing down and setting up
multiple TCP connections. The redirection operation it-
self is a short lived HTTP connection. Several commercial
products such as the BrightTiger1 use HTTP redirection
for content distribution at the added expense of setting up
multiple TCP connections.

This paper takes a different approach and tackles the
problem at its roots. Today, web services usually use a sin-
gle transport protocol, namely TCP, for all traffic; dynami-
cally selecting the underlying transport protocol (e.g., TCP
or UDP) can substantially improve service latency and re-
duce network traffic and server load.

This hybrid TCP-UDP scheme combines the best of
both worlds: for short transactions it benefits from state-
less UDP’s low overheads; on the other hand, for large data
transfers, it obtains the desired reliability, resequencing,
and congestion control from TCP. The hybrid scheme is at-
tractive because it only requires application-level changes,
while the operating system kernel code can remain un-
changed. Finally, the scheme is incrementally deployable
in the current Internet and is fully compatible with the in-
stalled base.

Previous research investigated the cost of high TCP
overhead for small connections.TCP for Transactions
(T/TCP) [1] was developed as a transport protocol for re-
quest/reply type message passing protocols. For web traf-
fic, T/TCP behavior and performance should be similar to
that of persistent-HTTP: the first connection between a pair
of hosts requires a three-way handshake while successive
connections avoid this overhead. Heidemann et al. [4] re-
lies entirely on using UDP augmented with adaptive re-

1http://www.brighttiger.com/



transmission and congestion control mechanisms, thereby
mimicking the behavior of TCP [6]. The disadvantage of
such a scheme is that we need to develop yet another com-
plex protocol with reliability, resequencing and congestion
avoidance, duplicating the long tedious process of TCP de-
velopment.

2 Background
HTTP defines a request/reply protocol, where client ap-

plications can request data from servers by providing a
Universal Resource Locator(URL). HTTP is used to ad-
dress many different types of resources, including text, im-
age, audio, video, executable files, index search results,
and database query results.
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Figure 1: HTTP GET request and reply over TCP.

Figure 1 illustrates a typical packet exchange for an
HTTP GET request between a client and a server. In
Figure 1, only two packets seem to beuseful(i.e., carry-
ing data): one is the HTTP GET request, and the other
one the HTTP reply. All other packets represent TCP over-
head. Under the HTTP protocol Version 1.0, each transfer
requires a separate TCP connection. HTTP Version 1.1 in-
troducedpersistent HTTP connectionsto address this prob-
lem.

One may expect that all pages for a web site (i.e., with
a common server identifier) reside on the same server.
For example, the URLshttp://www.sunlabs.com/
people/index.html and the URLhttp://www.

sunlabs.com/research/index.html share the
server identifierwww.sunlabs.com and we may ex-
pect that both URLs will be fetched from the same web
server. In practice, many web sites are set up to use
different servers for different URLs. In the example
described above, the first URL may be served by the
serverwww.people.sunlabs.com while the second
is served bywww.research.sunlabs.com . We call
this approachheterogeneous content provisioning.

The HTTP REDIRECT mechanism is used to support
heterogeneous content. HTTP server A hands off HTTP re-
quests from clients to server B by sending a REDIRECT as
a response to an HTTP GET request. Note that the HTTP
REDIRECT is part of a short HTTP transfer. Using TCP
for an HTTP request–HTTP REDIRECT pair requires at
least 7 packets (usually 9-10 packets), while two packets
suffice if UDP is used as the underlying transport protocol.

3 Design
A good solution for reducing the TCP overhead for

small connections should have the following characteris-
tics: transparency to users, backward compatibility, oppor-
tunity for incremental deployment, and low runtime over-
head in space and time (if any).
3.1 Proposal: Hybrid TCP-UDP Transport

One approach is to use UDP instead of TCP as the trans-
port protocol for HTTP traffic. However, in the presence of
unreliable network layer communications, reliability ser-
vices and congestion management need to be added to
UDP to make this a viable proposal. We decided against
putting such functionality into UDP.

Instead, we use a hybrid approach where short connec-
tions are served using UDP and large connections use TCP
as its transport protocol. In this manner, the TCP over-
head for short connections is avoided, but the benefits from
TCP’s well tuned timers, retransmission, congestion con-
trol, and error recovery mechanisms are preserved. In this
scheme, clients first attempt to use UDP as their transport
protocol, and fall back to using TCP, if UDP turns out to
be the wrong choice for the requested URL. The fall back
mechanism provides the following guarantees:

� If any of the initial UDP packets are lost, the loss is
gracefully handled by switching to TCP.

� If the contacted HTTP server does not implement the
hybrid scheme, the client will re-try with TCP.

Figure 2 presents this algorithm in more detail. Ahybrid
capable HTTP client sends the HTTP GET request using
UDP as the underlying transport protocol. The client starts
a timer at the time the request is sent.

When the server processes the client’s request, it can
choose from one of the following alternatives:
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Figure 2: Algorithm executed at HTTP client application
to receive HTTP service over either TCP or UDP.

1. If the response is small enough (say, it fits into one
datagram), the server returns it using UDP. Small web
pages and most cache validation and HTTP REDI-
RECT responses fall into this category.

2. The server can ask the client to re-try using TCP if
the reply is too large to fit into a single UDP packet.
At this time, the server can also ask the client to try
a different URL. This approach is useful if the server
generated the reply dynamically and attempts to avoid
generating the reply a second time for the subsequent
re-try with TCP. This extension can be implemented
with a new HTTP return code.

At the client side, one of the following three events can
happen:

� The client gets a response from the server. If the reply
contains the desired HTTP reply, the client processes
the data. If the server asks the client to re-try (a dif-
ferent URL and/or using TCP), the client does so.

� If the server does not handle HTTP packets sent over
UDP, the client may get an ICMP (Internet Control
Message Protocol[9]) error message (destination un-
reachable/protocol unreachable). In this case, the
client should re-try using TCP.

� If the timer expires, the client should re-try with TCP.

Figure 3 illustrates the packet exchange in case the
timer expires. This time-out feature provides reliabil-
ity and backwards compatibility with servers that do not
use the hybrid TCP-UDP scheme. We recommend that
this timeout interval be set the same as the corresponding
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Figure 3: Implicit fall back from UDP to TCP. One of the
UDP request/response packets got lost or the server is not
UDP capable.

TCP initial timeout interval. As the upgraded clients can
work work with servers that do not implement the hybrid
scheme, this fall-back mechanism supports gradual, incre-
mental deployment in the Internet.

Figure 4 demonstrates the packet exchange where the
server requests the client to resend the HTTP request over
TCP.

For heterogeneous content, our hybrid scheme offers a
new mechanism to redirect requests; this new mechanism
is transparent to clients. When the HTTP server receives
an HTTP request over UDP, the request can be forwarded
and served by another server without further client involve-
ment. The server that sends the HTTP response must mas-
querade as the first server, or the client would not accept
the HTTP reply. It is interesting to see that we can forward
a single HTTP request through a chain of servers before we
find one that can respond to the client, and it would still be
completely transparent to the clients.

The use of UDP makes this optimization possible with-
out any kernel-level changes in the server operating sys-
tems. This scheme can be used to improve web cache val-
idation, robust anycasting, and transparent proxies.

Furthermore, we can use HTTP proxies to incremen-
tally deploy the hybrid TCP-UDP scheme without modify-
ing the installed client browsers (please see [2] for details).

The hybrid TCP-UDP scheme improves the utility of
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Figure 4: Explicit fall back from UDP to TCP. Server is
UDP capable, but the requested resource warrants use of
TCP.

HTTP for all three entities involved in HTTP transfers:
clients, servers, and the network. The scheme achieves

� reduced browsing latency for clients because latency
introduced by the 3-way handshake for TCP connec-
tion establishment is avoided,

� reduced load for servers because fewer TCP connec-
tions are set-up, maintained, torn down, and because
fewer packets are processed, and

� reduced network traffic because fewer TCP control
packets are needed.

4 Performance Evaluation
In this section, we quantify the gains obtained by using

the hybrid TCP-UDP scheme; our analysis concentrates on
answering the following questions:

� How do the use of persistent HTTP and the choice
of connection parameters (e.g., max keep-alive time,
number of concurrent connections) affect the savings
resulting from the use of the hybrid scheme?

� How do other network-related parameters, including
network loss rates and MTU size affect the savings?

� How are these savings then affected by various pa-
rameter choices for the hybrid TCP-UDP scheme, as
described in Section 4.2? We are especially interested
in the max-udpparameter - UDP is used only when
the HTTP response is small enough to fit withinmax-
udppackets.

Answering these questions, the following sections
present the results from several simulations on our C++/Tcl
based simulator. Our goal was to make the experiments
realistic so that the results obtained can be transposed to
implementations. For this reason, we decided against us-
ing synthetic workloads. Instead, we relied on HTTP trace
data to drive our simulations. This trace data consists of 18
days’ worth of HTTP traces gathered from U.C. Berkeley’s
Home IP service [3] and of traffic traces obtained within
Sun Microsystems’ internal network. The traffic for port
80 (HTTP) was recorded. All other protocols (or ports)
were excluded from these traces. The traces [3] amounted
to 9 million connections over 18 days, thereby providing
us with about 500K HTTP transfers per day.

To get an initial feeling for the relevance of the approach
we first derived some basic statistics from the traces. First,
we derived the Cumulative Distribution Function (CDF)
of the size of the replied data in the servers’ response.
A curve-fitting experiment indicated that a shifted expo-
nential distribution of the type1� exp[�:00035(x� 80)]
(wherex is the reply size in bytes, and 80 is the size of
the shortest reply) provides a very close approximation, in
particular for response sizes smaller than 4KBytes. These
data are depicted in Figure 5. A noteworthy result of this
distribution is that approximately 40% of the replies would
fit into a single 1500 Byte packet. These results are in line
with those reported in [5].
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Figure 5: CDF of reply size

We also examined the statistics of HTTP transactions
with respect to persistence. Figures 6 and 7 depict the his-
togram and CDF of the HTTP transactions that took place
over the entire measurement period. Noteworthy here is
the dominance of the occasional transaction. For exam-
ple, 88% of the source destination pairs conducted 40 or
fewer transactions over the entire period and 98% con-



ducted fewer than 100 transactions. Examining the inter-
arrival times of these pairs reveals that these transactions
where randomly distributed over the entire measurement
period.
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Figure 6: Histogram of transaction densities
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Figure 7: CDF of transaction densities

These results are very encouraging. They indicate that
for a vast majority of the transactions persistence would
not help because the underlying TCP connection would not
stay open long enough to allow its reuse. Therefore, most
connections would have to be reestablished, and, given the
distribution of the reply size, most connections would com-
plete with a very small number of reply packets.

With these encouraging initial results we conducted
more elaborate experiments testing the approach under a
variety of parameter changes as indicated above.

4.1 Evaluation Metrics
The following metrics are used for the performance

evaluation:

Number of bytes/packets transferredThis metric cap-
tures the network load, as well as one aspect of the
load on the servers and the clients.

Browsing latency This metric captures the performance
as observed by the clients.

Number of connections set upThis metric captures one
aspect of the load on the servers (extra work re-
quired to set up and maintain TCP connection state, as
well as extra cost in searchingProcess Control Block
(PCB) lists).

The choice of our third metric, number of connections
set up, was motivated by the following reasons. Our packet
traces were HTTP logs. It was impossible for us to obtain
the inter-packet traffic patterns that are needed for the first
two metrics. Furthermore, the number of connections is
the appropriate metric for evaluating HTTP redirection (as
well as cache validation). These requests, and the corre-
sponding responses, tend to be small enough to fit into the
minimum-MTU IP packets2. Also, this metric is linked to
the other two metrics. If each HTTP transfer requires a
new TCP connection, more bytes/packets will be seen on
the network (connection setup and teardown packets) and
clients will observe extra latency (due to connection setup
delays as well as slow-start latency).

We convert this metric to a unitless ratio (fraction
of connections saved) by performing each experiment
twice. If an instance requires 100 distinct TCP con-
nections under the current system, and it requires only
80 distinct TCP connections under the proposed hybrid
TCP-UDP scheme, we obtain the resulting fraction of
(100� 80)=100 = 20%.

4.2 Experiments
We performed many sets of experiments, each time

varying one of four workload parameters:

Persist This parameter describes the fraction of requests
from the clients that support persistent HTTP. The
parameter value ranges from 0.0 to 100.0 - a value
of 70.0 implies that 70% of requests originate from
clients that support persistent HTTP.

Loss-rate This parameter describes the fraction of pack-
ets that are lost in transit. The parameter value ranges
from 0.0 to 1.0 - a value of 0.10 implies that with

2The Internet Protocol requires the underlying network to support IP
packets at least as large as 576 bytes ([8,x3:1]).



10% probability a packet will be dropped in the net-
work. For these simulations, we assumed that packet
losses are independent (not bursty - zero correlation).
This is a pessimistic assumption because it overstates
the number of connections that will lose at least one
packet, thereby diminishing the overall benefits of the
hybrid TCP-UDP scheme.

Max-udp This parameter controls the server policy for
choosing between use of UDP and TCP in the hybrid
TCP-UDP scheme. A value of max-udp=4 implies
the server will try to use UDP for all conversations
where it can send the entire data in up to 4 packets.
Otherwise, it directs the client to use TCP.

MTU This parameter describes theMaximum Transmis-
sion Unit(MTU) for packets in the network. An MTU
size of 1460 implies that the network MTU allows
for up to 1460 bytes payload (packet size minus TCP
header, IP header, and link-level headers). We assume
that the end hosts send MTU-sized packets whenever
possible. The larger the MTU, the more likely it is that
the hybrid TCP-UDP scheme would avoid setting up
a TCP connection (we avoid a TCP connection when
HTTP data size is less than MTU� max-udp, and the
network does not lose any of these packets).

In our simulations, we included further parameters for
controlling the behavior of persistent HTTP. A keep-alive
parameter was set to 60.0, meaning that a persistent HTTP
connection would be closed after 60 seconds of inactiv-
ity. Also, a max-connect parameter was set to 1024. Thus,
the server will only support 1024 concurrently active con-
nections. Inactive connections were closed according to a
Least Recently Used(LRU) policy.
4.3 Results

The simulation results were reasonably similar for the
various traffic traces. For all graphs in this Section, the
x-axis quantifies the varied parameter (e.g., loss rate) and
the y-axis quantifies the evaluation metric (e.g., fractions
of connections saved, expressed as a percentage). Due to
space limitations, we only describe the results of two sets
of experiments; please see [2] for more simulation results,
as well as expanded discussion of the design issues.

Loss Rate and Max-Udp

The graph in Figure 8 shows the effect of the network
packet loss rate and the setting of max-udp parameter in
the server on the overall performance of the hybrid TCP-
UDP scheme. For this experiment, we assumed an MTU of
1460 bytes, as well as full persistence (a very conservative
assumption), i.e., all clients support persistent HTTP, and
all requests are multiplexed on existing TCP connections
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Figure 8: Effect of loss rate and max-udp parameter

wherever possible. As the graph shows, with the very con-
servative policy of setting max-udp value to 1 (use UDP
only if all data from server fits into one packet), the hy-
brid scheme gains as much as 18%-19% with the typi-
cal (around 1%) loss rate observed in many intranets, as
well as on the Internet. Even with very high packet losses
(around 10% loss rate), the hybrid scheme outperform the
traditional mode by 12%-13%. The graph also depicts
the additional benefits that using a higher max-udp value
would provide: up to 85% improvement over the current
schemes. Even with a max-udp setting of 4 to 10, we can
expect to see benefits of 35% to 66%, even under the as-
sumption that persistent HTTP is used exclusively.

Persistent HTTP and Loss Rate

The graphs in Figures 9 and 10 show the effect of
persistent-HTTP and network packet loss rates on the over-
all performance of the hybrid TCP-UDP scheme. The max-
udp parameter is set to the value 1 in Figure 9 and the
value 4 in Figure 10; the MTU remains 1460 bytes. We
performed this experiment to evaluate the performance in
the presence of heterogeneous clients (some support per-
sistent HTTP, others do not), as well as to see the effect
of the max-udp parameter in this system. As both fig-
ures show, the performance is dominated by the presence
of non-persistent clients - even with 80% persistence (i.e.,
only 20% do not support persistence), the results are close
to the performance with zero persistence. As expected, the
results are a lot better for max-udp of 4 (as compared to
max-udp value of 1). As Figure 9 shows, with max-udp set
to 1 and with zero persistence, the hybrid scheme provides
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Figure 9: Persistence and loss rate (a)

a gain of 25%-40% over the traditional schemes, depend-
ing on the overall packet loss rate. The gains decrease very
slightly as the persistence parameter increases to well be-
yond 80%. Even in the presence of 90% to full persistence,
the hybrid scheme provides performance gains of 15% to
30%, except when the packet loss rate goes up to 20% (i.e.,
pathological conditions). With the max-udp set to 4, the
performance gains tend to be around 70% for moderate loss
rates, decreasing to around 60% for 70%-80% persistence.
Even with 10% packet loss rate, the hybrid scheme gains
around 40% at 80% persistence.

4.4 Summary of Simulation Results
The hybrid TCP-UDP scheme provides significant per-

formance gains over the traditional use of TCP as the only
transport protocol for HTTP traffic. We observed per-
formance gains exceeding 20-25% with persistent HTTP
clients, and over 40-50% with clients without persistent
HTTP.

In heterogeneous environments, the system perfor-
mance was dominated by the presence of non-persistent
clients. Even with 70% to 80% persistence, the perfor-
mance gains of the hybrid scheme were close to that of a
system with zero persistence.

The hybrid TCP-UDP scheme’s performance gains
were reduced somewhat by network packet losses, but the
gains remained significant even under pathological net-
work behavior (10% to 20% packet loss rate).

It is beneficial to try sending more than 1 packet via
UDP, especially if the network MTU is small (around 500
bytes). However, we must appropriately consider and
trade-off the increased likelihood of network congestion
due to the increase in the max-udp parameter.
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5 Conclusions and Outlook
This paper introduced and analyzed a hybrid TCP-UDP

transport layer scheme for HTTP. The hybrid TCP-UDP
scheme combines the low cost of using UDP with the high
reliability and congestion control features of TCP. It ben-
efits from the low overhead of using UDP for short trans-
fers, and for large transfers, it is able to use TCP for reli-
able delivery and good congestion behavior. Our simula-
tion experiments verified these gains. We observed perfor-
mance gains exceeding 25% with persistent HTTP clients,
and over 50% for clients without persistent HTTP, even
in the presence of high network packet losses. The per-
formance gains for mixed environments (i.e., clients using
persistent HTTP, as well as traditional HTTP) were similar
to those of a system where no clients used persistent HTTP.
The hybrid scheme is attractive because it only requires
application-level changes, while the operating system ker-
nel code can remain unchanged. Finally, the scheme is in-
crementally deployable in the current Internet and it is fully
compatible with the deployed base.

We are currently exploring some promising optimiza-
tions to further improve system performance. First, the
clients can use some heuristics to guess (on a per-transfer
or per-session basis) if they can use UDP for success-
ful transmission. For example, the clients can keep track
of whether the server supports the hybrid scheme at all,
or predict the file size based on the size of the (expired)
cached copy of a previously retrieved version, or assume
that the Postscript and PDF files tend to be large, while
README files tend to be small. Second, the servers can
adapt the max-udp parameter based on the observed net-
work loss rates. Third, the clients can avoid redundant data



retransmissions by using sub-ranges appropriately.
We also expect that further performance gains can be

observed, if recent trends in web traffic continue. The
increasing use of style sheets will lead to smaller HTTP
transfers, and so will the increasing use of cache valida-
tion and HTTP redirection. The performance gains can be
further increased by setting the server policy to use UDP
more aggressively (for example, when the data can fit into
4 packets, analogous to some recent proposals to increase
the initial TCP window size[7]).
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