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Abstract—In this paper, we model the internal structure of a packet
switching node in a real-time system and characterize the tradeoff be-
tween throughput, delay, and packet loss as a function of the buffer
size, switching speed, etc. We assume a simple shared single path switch
fabric, though the analysis can be generalized to a wider class of switch
fabrics. We show that with a small number of buffers the node will
provide a guaranteed delay bound for high-priority traffic, a low-aver-
age delay for low-prierity traffic, no loss of packets at the input and
low probability of packet loss at output.

I. INTRODUCTION

EAL-TIME traffic is defined to be traffic with a de-

livery time bound. In other words, it is traffic which
loses its value if delayed by more than a certain time.
Examples of such traffic include conversational voice, in-
teractive video, process control, etc. The approach to car-
rying such traffic in most existing communication systems
has been to employ dedicated circuit switched switching
techniques. Conventional wisdom has argued that the no-
dal processing overheads necessary for each packet make
it unsuitable for real-time traffic. One of the first works to
disprove this conventional wisdom was [1], wherein the
basic idea of off-loading the packet switching function
onto high-speed specialized hardware was proposed. This
idea has been developed further by several groups [2]-
[5]. and it is now generally accepted that packet switching
is an attractive approach to the integrated transport of real-
time traffic.

In most real-time packet switching systems, the packet
protocols executed in the intermediate nodes are consid-
erably simplified. This simplification is what enables
hardware implementation. Typically, flow control and er-
ror recovery are performed only at the end-points and the
intermediate node performs only the packet routing func-
tion. A typical example is the PARIS system described in
[3]. The buffering available at the input and output ports
is limited and, if congestion occurs causing the buffers to
be filled up, the packet is simply discarded. Conventional
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congestion control techniques which *‘slow down’’ input
data if queues build up are not employed.

The limited buffering enforces a strict upper bound on
the network delay. This is what ensures real-time delivery
of packets. However, the limited buffering also causes
packet loss, which must be minimized in order to provide
a reasonable quality of service. Since the delays are
bounded, the problem in such a packet switched network
is to maximize throughput while keeping the probability
of packet loss to a reasonable value. This is quite different
from conventional packet switched networks which at-
tempt to maximize throughput subject to constraints on the
delay.

In this paper, we model the internal structure of a packet
switch node in a real-time system and characterize the
tradeoff between throughput and packet loss as a function
of the buffer size, switching speed, etc. Other models [4],
[5] of such nodes have focused on the actual packet
switch fabric, and have attempted to provide a detailed
analysis of the probability of blocking, etc., within the
fabric. In our model, we are mainly interested in the man-
agement and behavior of the input and output packet buff-
ers. We assume a simple shared single path [3], [9] switch
fabric (i.e., ring, star, or bus), though the analysis can be
generalized to a wider class of switch fabrics. We assume
a separate pool of packet buffers at the input and output
of each link.

Our analysis shows that for the input and switch fabric
stages, a very small buffer pool together with standard
buffer management techniques, is sufficient to completely
eliminate packet loss and to guarantee a small bounded
delay. For the output buffers at a node it is not possible
to completely eliminate packet loss, and we examine the
impact of different priority schemes on the packet loss and
delay.

The paper is structured in the following manner. In Sec-
tion II, we present the structure of the packet switch node.
In Section III, we provide the analysis and the numerical
results of the input and switch section and in Section IV,
we provide the analysis and the numerical results of the
output section.

1I. THE NobpeE MODEL

In this section, we describe the various components that
are involved in the transport of packets. We refer to these
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components collectively as the switching subsystem. In
addition to these components, a node will have other com-
ponents (that are not addressed in this study) such as those
that implement network control functions, those that in-
terface with external attachments, etc. ’

The switching subsystem of a node (Fig. 1) is com-
posed of the following three parts.

1) The switching kernel performs the basic switching
function of the transferring packets from input to output.
The input and output adaptors are attached to the switch-
ing kemel.

2) The input adaprors are attached to incoming links.
They receive incoming packets from the link, buffer them
as necessary (in memory on the adaptor) and send them
through the switching kernel.

3) The output adaptors are attached to the outgoing
links. They receive packets from the switching kemel,
buffer them as necessary, and transmit them over the out-
going link.

In the following, we trace the packet path through a
switching node and describe the operation of each of the
switching components in some more detail. A packet ar-
rives over the incoming link as a high-speed serial bit
stream. In our analysis, we assume that packets are of
variable length, typically ranging from 250 to 8000 bits.
The input adaptor first has the job to recognizing the
packet, performing a serial to parallel transfer, and stor-
ing it in its buffers. We assume that all buffers are com-
posed of FIFO queues. Once the input adaptor has stored
a complete packet, it signals the switching kernel that it
wishes to transmit a packet. No further processing is done
at the input adaptor. Specifically, operations such as error
recovery, etc., are assumed to be done on an end-to-end
basis (if needed).

The method by which the switching kernel transmits a
packet from the input buffer is, of course, dependent on
its internal structure. In this paper, we assume a single-
path [3], [9] architecture composed of a shared broadcast
medium such as a star, ring, or a bus. (The results can be
generalized to other switching fabrics.) Upon receipt of a
full packet, an input adaptor will seek access to the broad-
cast medium. Only one input adaptor can have access to
the medium at any time. We assume that a central arbi-
trator is responsible for resolving contention for access
among the various input adaptors. The arbitration is pipe-
lined with the transmission of previous packets so that no
separate arbitration delay is experienced. Several arbitra-
tion policies are possible (round robin, fixed priority, etc.)
and in the next section, we shall demonstrate the effect of
the arbitration policy upon the overall performance.

Once the input adaptor has access to the broadcast me-
dium it transmits one or more complete packets. This
transmission is done at the speed of the shared medium
which is typically much faster than the incoming link.
Packets are of variable size, but we do not permit packets
to be fragmented into smaller pieces. This transmission
of a packet as a complete entity has the basic advantage
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Fig. 1. Schematic of internal structure.

of eliminating contention at the output adaptor. In other
words, an output will receive only one packet at a time,
and does not have to consider the possibility of simulta-
neously receiving fragments of packets from two separate
inputs. This simplifies considerably the design and anal-
ysis of the output adaptor.

We assume that the output adaptor for a packet is iden-
tified by an address included in the header of the packet.
All output adaptors receive the packets, but only the adap-
tor identified by the header address copies the packet into
its buffers. Note that this output adaptor address could
either have been in the arriving packet (for example, if
source routing were performed) or could have been gen-
erated by the input adaptor through a table lookup.

The output adaptor performs the inverse operation of
the input adaptor and transmits the packet on the outgoing
serial link. If the buffer space on an adaptor is full, arriv-
ing packets are discarded. As will become apparent from
later sections, the major queueing point in our system is
at the output adaptor. Thus, we investigate the effect of
priorities in reducing delays for delay critical traffic. We
assume two priority classes with two separate pools or
buffers at each output. A nonpreemptive priority is ac-
complished, whereby the buffer for the lower priority class
(Type 2) is served only if the buffer for the higher priority
class (Type 1) is empty.

There are several performance parameters of interest in
the system, among them delay, throughput, packet loss,
etc. In the next two sections, we shall focus on these pa-
rameters. We divide our analysis into two parts. The first
part deals with the input adaptor and the switching kernel.
The second part deals with the queue in the output adaptor
and output link.

III. INPUT AND SWITCH ANALYSIS

This portion of the analysis deals with the packet path
from the time it arrives over an incoming link till it is
placed in the output buffer.

Ideally, a well-designed switching node will have only
a single queueing point in the packet path. This minimizes
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overall delays and permits more efficient buffer manage-
ment. The main result of this section is that if the shared
broadcast medium is ‘‘sufficiently fast’’ and the arbitra-
tion among the adaptors is performed according to a
““fair” policy, packet loss can be completely eliminated
at the input with minimal buffering requirements. Thus,
the delays experienced by a packet in this portion of its
path are bounded by a small value, resulting in effectively
a single queueing point at the output buffer.

The section takes the following form. We first define
various properties of the arbitration policies that we are
considering. We then show, for any policy within a large
class, upper and lower bounds on the amount of buffering
necessary at the input in order to avoid packet loss. We
then focus on a specific round robin policy and prove some
tighter bounds on this policy.

A. Definitions

Fig. 2 shows the system under consideration. The var-
jous input adaptors are attached to the shared broadcast
medium and contend for access when they have one or
more full packets to transmit. The arbitration function de-
termines which adaptor has access.

We make the following definitions and observations re-
garding an arbitration policy.

1) Packer Integrality: A policy is packed integral if it
considers only complete packets. Thus, an adaptor can
ask for access only when it has a complete packet to trans-
mit. Once it has access it must transmit one oOr more com-

plete packets. Packet fragments cannot be transmitted. As

mentioned earlier, packet integrality simplifies the output
buffer management.

2) Exhaustive: A policy is exhaustive if, when an
adaptor is given permission to transmit, it can always
transmit every complete packet in its buffer. Nonexhaus-
tive policies that, say, permit an adaptor to transmit a fixed
number of packets per transmission opportunity are in-
herently unfair when variable size packets are considered.
This is because, adaptors receiving small packets will not
transmit as many bits as adaptors receiving large packets.

3) Work Conserving: A policy is work conserving if
the shared medium (which we shall refer to as the server)
is never idle if there is a complete packet to transmit at
some input adaptor. This property is guaranteed if the ar-
bitration is pipelined with the previous packet transmis-
sion.

The remainder of the section is devoted to finding
bounds on the amount of buffering necessary at the input
adaptor in order to guarantee no packet loss. This buff-
ering bound, in turn, gives a delay bound. Let S; be the
transmission rate of input line i (in bits/s) and S; be the
rate of the shared medium (again, in bits /s). Also, let §;
= TN, §; be the total of the transmission rates of all input
lines, and let @ = S,/S; be the ratio between the service
rate and the total input rate. Finally, we define P to be the
maximal length of a packet (in bits).

We consider only systems in which @ = 1, i.e., where
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the shared medium is fast enough to support the total rate
of all the incoming links.

B. General Bounds

We now derive some upper and lower bounds on the
buffering necessary at the input adaptor in order to avoid
packet loss for any policy that is work conserving and
packet integral.

Theorem 1: For any arbitration policy that is work con-
serving and packet integral,

1) The total number of bits that are queued in all link
adaptors is bounded by NP.

2) The number of bits queued in adaptor i is bounded

by
a -1+ SI/SL e

Bi = 2, RN N.

Proof: Consider the point in time when the switch
changes from the idle to the busy state. At that point each
link input queue might contain no more than exactly one
packet of the longest length P.

Consequently, the sum of the lengths of all the queues
is bounded by NP. As the server is no longer idle this
number can grow no further, the server will remove bits
from the input buffer set at least as fast as they can be
added by all links combined. Because of this speed ratio.
it is only possible for the total number of bits in the buffer
set to increase when the server is idle (recall that the server
can only idle when no complete packet is present in any
of the link adaptor buffers). It is therefore apparent that
NP is an upper bound (and, since it is achievable, a least
upper bound) for the total number of bits in the buffer set.
This completes the proof of 1).

Let T, be the time between the end of the last idle
period until buffer i is served. We will bound the value of
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Tax- In the period T, the switch will serve exactly Tnax
X §, bits. Consider the time when the switch moves from
the idle state to the busy state. At this time, each link
adaptor can have at most one packet in its input buffer.
This corresponds to a total maximum of NP bits in the
system. Assume that K; bits are contained in the ith buffer
at the beginning of this time interval. In the time interval
Tinax the number of bits transmitted can be no larger than
the number of bits that were present at all other buffers
before the period began plus the number of bits that arrive
to these buffers during the period. Thus, we have

Tmax Ss = NP - K + Tmax(SL - S:) (1)
or
NP - K,’
= —,
max SS - SL + S,'

The number of bits in the ith queue is thus bounded by
the sum of the number of initial bits K; and the number of
bits that arrive to that adaptor until it is being served.

Bi = Ki + TmaxSl
< K(Sx - SL + S,) + NPS, - K,'S,-

(2)

SS - SL + S,'
_ K (S, - §;) + NPS; (3)
S—=-8+S
Since K; = P,
P((S; — S;) + NS;
g < PUS =5 + Ns) “
SS e SL + S[
P((a = 1) + NS;/S,
g < Do 1) ¥ NS/5) (5)
-1+ Si/SL
Equation (5) proves the second part of theorem 1. [ |
Assume that, S; = S; /N, then
P
B (6)

ST-(N=1)/Na

Since B is strictly increasing with N taking N to infinity
makes the bound independent of N.

p<—L
1 -1/«

Theorem 2: For any arbitration policy that is work con-
serving and packet integral, if the input link speeds are
all equal and @ = 1, then the buffering needed to avoid
packet loss is at least 2P (for each link adaptor).

Proof: We will examine the worst case environment
where the speed of the switching node server is just equal
to the sum of the speeds of all the incoming links. This is
as slow as the server can operate and still have a buffer
requirement which is bounded. Next, consider the situa-
tion when the switch changes from the idle to the busy
state at a point when each link input queue contains ex-
actly one packet of the longest length P. Before the last

(7)
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of these N packets is served, all of the others (at least)
comprising a total of (N — 1)P bits, have been served.
While this service is in process, the link adaptor associ-
ated with the last packet can obtain additional input,
whose magnitude, since the adaptor operates at a speed
exactly one Nth of that of the server, may be as large as

(N—-1)P
—

Since one packet of length P existed initially, the required
buffer size B is therefore such that

N-1
B={1+ P.
= 1+ ) (8)
And since
N-—-1
1 = 1
Jim <1 TN > -
it follows that
B = 2P. (9)

C. The Round Robin Exhaustive Policy

In this section, we examine a specific policy (the RR
policy) in some detail. The policy is work conserving,
packet integral and exhaustive. It is based on round robin
scheduling, i.e., the links are arranged in some prear-
ranged cyclic order and all complete packets in a link
adaptor’s input buffer are transmitted before proceeding
to the next link adaptor in the cyclic order. If the last
packet in the adaptor buffer is still incomplete when all
earlier packets in the buffer have been served, the partial
packet is left for the next turn. If a link adaptor does not
have any packets to transmit when its turn arrives, it is
bypassed.

As the RR policy is a work conserving policy, it is ap-
parent from Theorem 1 that NP is an upper bound on the
total number of bits in all link adaptor buffers. When a
particular link queue is served, the only bits remaining
after service is completed can be those of an incomplete
packet, and the length of that queue is therefore less than
P. This bound remains valid as long as the server idle.
The size of this adaptor queue, just before it is served in
the next turn, will thus be less than P plus the maximum
length to which a queue can grow between two successive
service turns. When the link is being served the length of
its queune decreases and all full packets are served. At the
end of the service there will be again less than P bits in
its buffer. If the amount by which a queue may grow be-
tween two successive service turns can be bounded, then
an upper bound on the length of the queue is obtained.

Assume that a specific link adaptor (without loss of
generality, we shall say link number N) has just com-
pleted service or that the system has just transited from
idle to busy. We will call the time it takes until the system
serves link N again to be an iteration. We will bound the
length of a single iteration, i.e., the time it takes to serve
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links 1 through N — 1 before link N can be served. The
results are proven for a system with all link speeds equal.
The results for different link speeds are similar but the
bookkeeping involved in their derivation is more com-
plex. These results are summarized at the end of this sec-
tion.

Assume that at the beginning of the iteration, there are
K,i=12, , N bits buffered at the ith link. Define
X as the maximal amount by which the Nth queue may
grow during this iteration.

Lemma 1: If the RR policy is employed and the number

of bits queued at adaptor i, i = 1, 2, , N at the be-
ginning of the iteration is K;, then
1 N-1 1 N-—n
+ .
X =Ky Nan21K< Na—1>

Proof: Define the maximum time it takes for the sys-
tem to serve all links up to (including) link n < N as T,.
It is clear that the number of bits that might be buffered
at the Nth queue are the sum of the initial number of bits
Ky plus the number of bits that can arrive to that link over
a time period of Ty_ .

We define S; to be the link speed in the system (S, =
S./N).Definey = 8,/S;=1/aN,and B = 1/(1 — 7).
We start by computing 7;. The maximum time it takes to
completely serve queue 1 is the time it takes to transmit
the initial K, bits plus the time it takes to transmit the bits
that have arrived during the initial period of transmission
plus those bits that have arrived during the second trans-
mission, etc. For the worst case, we assume that the link
is always receiving at the full speed.

K K /(S\ K /SY  K/[/S\
T=—+—(=)+—\(=) +=(=) +
PSS <S> S; \Ss S, \S,

K (S K[ 1\ _K
"Ssn§o<ss>”ss<1—v>’ss6'

To calculate 7, have to add to T the time it takes to serve
the second queue. In order to do so, we have to add the
initial number of bits K, to the maximal number of bits
that may join this queue during the time interval T;.

BN\ < (S K,
B < : S: > "1210 <Ss> <T1 Ss > 6

K] o] K’)
—_— - + — .
s, g s, B

(10)

(11)

Similarly,
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And finally,

Evoi\ =
Ty-y = <TN—1 + A.S,' 1) IEJO’Y
Ky ove1 | Ko v Ky_y
= —-—— — .+ . +
SSB SSB s, B
N-1
—E 2 KN (13)

The total number of bits in the Nth queue can be expressed
as Ky + S;T,_,, which is the initial number of bits in the
queue plus those bits that can join the queue during the
first iteration. This serves as an upper bound to the queue
length at the end of the iteration when the distribution of

bits at all adaptors is given by K;, Ky, = - -, Ky.
N-1
S,
X=Ky+ ITy_,S = KN+-§ Z K,BN-"
N—1 1 \N-T
=Ky+vy 2 K<———> . (14a)
n=1 1 - Y
Using @ = 1 /Ny
1 N—1 N—-n
=Ky+— 2 K[ 1+ . (14b
X =Ky Noa n=1 "< No — 1> (14b)
E

This completes the proof of lemma 1.
Theorem 3: Under the RR policy for any N the maxi-
mal number of bits that may be queued in any adaptor is

bounded by
1/
B, = P<e + 1>.
04

Proof: The bound By is derived by dividing the total
NP bits into K, - -+, Ky such that X is maximized.

By = {x}. (15a)

From (14b), since 8 = 1 + 1/Nee — 1 > 1, it is clear
that X is increased by moving one or more bits from Kj to
K;aslong as i < j < N. This is since K is multiplied by
gN-i > N, Consequently, we have

B0=

max
KnsP.EN_ | Kas NP

max
Kn= P.Ki+Knv= NP

{KN+5—1V<1 +Nal_ 1>N~1}. (15b)

In order to complete the bound we just have to divide the
NP bits between the first and the Nth queue such that K,
< Pand Ky + K, = NP. Ky = P as long as the coeffi-
cient of X, in (15b) is less then 1. It is easy to see that
since @ = 1

L o <1l B
aN No — 1 N N -1 - N

(16)
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Clearly, since e < 3, for any N = 3 the coefficient of K
in (15b) is less then 1. From (15b), equality holds for N
= 2. Consequently, in the worst case there are P bits in
the last queue and (N — 1) P is the first for all N. There-

fore,
N-1
(N-1)P 1
4 — ] + (17
Na — 1 (17)
B, is always increasing with N, therefore, for all N's

1' P+M 1+__1__an
ot N No — 1

1 N—~1
=P[1+ Lim (1+ .
< ,.l“;< Na-1> >

The evaluation of this limit is simplified by a change of
variables. Let us set aN — 1 = aM so that N = M +

1/a. Then
1 N-1
1+ = ¢!/,
N-'c:< ozN s l> ¢

By <

(18)

(19)

lim

To conclude, substituting the result of (19) back into (18), .

the upper bound is

1/
By = P<e + 1>.
o

This completes the proof of Theorem 3. ||

We now return to improving still further the upper
bound B, of Theorem 3. To facilitate the presentation, we
consider only the case where o = 1, i.e., the switch speed
is equal to the sum of the link speeds. However, the same
approach can be carried also for any o > 1.

The calculations up to now have estimated a first-order
upper bound on the maximal number of bits that can be
stored at any queue. To calculate this bound, we have
used a worst case scenario where (N — 1) P bits are stored
in the first queue. However, once a new upper ‘bound B;
is found, we can use this upper bound to tighten the pos-
sible worst case scenario.

(20)

i max
KN<P.EN_ Ko <NP.KysBun=12,-+-.N

{x}.

This leads to a sequence of upper bounds each of which
improves the previous one. We focus on systems with N
= 4sincefor N=1,2,3 from(17) By = (N — 1)P and
thus the bound of Theorem 3 cannot be further improved.
In addition, we try to get a simpler view of the bounds by
exploring their asymptotic behavior as N — oo,

Theorem 4: For the RR discipline under the condition
of theorem 3 and for o = 1, the maximal number of bits
that may be queuned in any adaptor is bounded by 3.3502P.

Proof: We turn to the basic equation (14b). By let-

ting & = 1
N-n
> .(21)

Using the same rationale by which a maximal number of

Bj+1 =

N-1

1
2 K1+
n=1 " N—l

1
X=KN+‘_
N
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bits was placed in the first queue to derive By, we now
place B, bits in the first queue, the second queue, efc.,
until the smallest number k&, 1s reached such that ky B, <
(N — 1)p. Queues k; + 1 through N — 1 contain no bits,
and queue N contains P bits.

These conditions lead to the establishment of a new up-
per bound B; < B,. B, can in turn be used to generate a
succeeding upper bound B, < B;, and so on. A monoton-
ically decreasing sequence of upper bounds is thus gen-
erated, which, being bounded from below (for example,
by 0), must converge to a final bound B, which is a least
upper bound with respect to this sequence of upper bounds
for the RR policy as formulated under Theorem 4.

Let B; be the jth upper bound in the sequence, ex-
pressed in bits.

Let /; be the smallest integer such that B;; = (N —
1)P.

Queues 1 through /; — 1 will thus have B, bits each, but
queue /; may have some number of bits less than B;. We
now add an additional number of bits §; to queue [;, an
amount just sufficient so that queue /; too has B; bits.
Then

(N+ 1P b
e
B,

i)

L
J Bj

It might be conjectured that the fact that these addi-
tional bit distributions may differ from a total of (N —
1) P because of the ; factors could cause a greater number
of bits to be served, casting doubt on whether the se-
quence {B,} is indeed monotonically decreasing. How-
ever, it will be seen in the calculation that the term g; is
not significant for large values N. From (21) by setting K,
= B;n < I;, we get

(22)

B ) N-n
Bj+1=P+Nn§]<1+N_1> (23)
By using 8 = (1 + 1/N — 1), we get
N-— -
By =P+BJ6N li:g_l;- (24)
Since 1 — 87! = 1/N, we get
Bi., =P+ BBN (1 -8, (25)
Using (22)
Bjy, =P + BAN"'(1 ~ g DP/BgTu/EY - (26)
By taking N to infinity, we get
B,y =P + Be(l — e™'¥). (27)

Equation (27) thus provides a simple recursive relation for
B;., in terms of B; and P. To eliminate P from this
expression, it is only necessary to define a sequence of

coefficients

¢ =2 (28)
P
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Equation (27) is then transformed to

Cr=1+ Ge(1—e/9). (29)
Using the recursion relation of (21) and by letting both
sides of the equation to go to infinity we get

C=1+Ce(l —e™ /) (30)

or
C(1—e+ecV9)—1=0. (31)

It is possible to compute the convergence value C from
(31) by numerically solving the nonlinear equation.

C = lim {C;} = 3.3501. (32)
jme
This completes the proof of Theorem 4. |

The last Theorem of this section bounds the number of
buffers for the case of different link speeds. The method
of proving this bound is similar to the way we derived the
first bound for the symmetrical case (for j = 0). One can
improve the bound by employing similar techniques used
for the symmetrical case.

Theorem 5: Under the RR policy and with N links of
speeds S, S5, * * +, Sy, the maximal number of bits that
may be queued by the Nth adaptor is bounded by B" where

11 (1 =)

Where v; = S;/S,.
Proof: We define 8; = 1/(1 — ;). Following (10),
it is clear that

K
T, =< B (33)
s
Following (11)-(13), we get
N-1 g N-1
Ty = n =1 Bi- (34)
j=1 Sg i=j

o

The number of bits that can be accumulated at the Nth

adaptor is thus
N—1 g N-1

> = I 8.

XN = KN + SNTN—-I = KN + SN
j=1 SS i=j

(35)
Since, for all k, 8; > 1, it is clear that X, always increases
by moving one or more bits from K; to K; as long as i <
j < N. Consequently, we have
N-1
K
max =1 II G;-

{Kn<=P.Ky+ Kn < NPKn+ SN} S;g i=1

Since Ky < P and K; = NP we have

BY = (36)

N=1
B < P<l + Nyy I_Il B,->. (37)

Since B; = 1/(1 =~ «;), this proves Theorem 5. E
The above results provide bounds on buffering for the
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Fig. 3. Input buffering bounds.

INPUT DELAY BOUND

0.8
L

0.6

0.4

DELAY IN MILLISECONDS

ARBITRARY

0.2

ROUND ROBIN

1.0 1.2 1.4 1.6 1.8 PRy
NORMALIZED SWITCH SPEED (ALPHA)

Fig. 4. Input delay bounds.

RR and an arbitrary work conserving policy. We note that
a simple application of Little’s Theorem [6] can give the
corresponding bounds on delay. For input adaptor i, if the
buffer bound is B and the line speed is S;, the correspond-
ing delay bound is B/S;.

In the following, we provide some numerical results on
the delay and buffering bounds for the symmetrical case.
We also compare the bounds on the RR policy to the
bounds on an arbitrary work conserving policy.

D. Numerical Results

Fig. 3 plots the bound on the input buffer size (in max-
imum size packets) against o (as defined in Section I1I).
We compare the RR policy and an arbitrary work con-
serving, packet integral policy. We assume that N is large
and use the asymptotic results of Section III. As can be
seen, the differences are substantial at low values of a.
For a 100 Mbit /s link, and for 8 Kbits maximum packet
size, the corresponding input delay bound is plotted in
Fig. 4. Again, for low o the differences are large. Notice
that for the RR policy, even with o = 1 the delays are of
the order of a few microseconds.
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IV. OuTpPuT ANALYSIS

At the output it is not possible to provide a bound or
the buffering and guarantee no packet loss. This is be-
cause the rate of the outgoing link is typically not ade-
quate to serve the maximum rate of packets arriving to it
from the switching kernel. We therefore rely on proba-
bilistic arguments.

To facilitate the analysis of the system, we employ a
queueing model that has worse performance than the ac-
tual system. However, it is exact enough for most pur-
poses and approximates quite well the behavior of the real
system. We base our model on a M /M /1 queue with two
types of traffic with a nonpreemptive priority given to type
1 over type 2. These two types may correspond to, for
example, real-time traffic and delayable traffic.

The exponential service assumption is reasonable as we
permit the transmission of variable size packets through
the node. However, if voice traffic using a constant packet
size dominated, then the exponential model is more of an
approximation. It is a pessimistic approximation since it
is well known that the M/D/1 system outperforms the

M /M /1 system [6]. The Poisson arrival assumption used .

by our model is also a pessimistic assumption since real
time traffic is typically periodic. Moreover, part of the
traffic is already ordered, in sequence, over the incoming
links. It is demonstrated in [7]. that the performance of a
deterministic server with periodic arrivals is better than
with Poisson arrivals. However, the M /D /1 serves as a
good approximation when the number of calls is large.

Thus, the underlying queueing model for the output
buffers is that of a single server system (the output link)
with two arrival streams (Type 1 and Type 2) where one
stream (the Type 1) has nonpreemptive priority over the
other stream (the Type 2). Let the arrivals of packets of
both the Type 2 and Type 1 traffic be Poisson with rates
A; and A,, respectively. Let the transmission time of a
packet be exponentially distributed with mean 1/u. Let
b1 &N /p oy B Ny /pand p £ o, + .

In this section, we compute the fraction of lost packets
of each type, due to the finite number of output buffers
available for the packets at the node. The finite number
of buffers then provides a bound on the delay at the output
link. The ‘‘brute-force’ approach for solving this prob-
lem is presented in the Appendix. This approach requires
the solution of 2 finite, but rather large system of linear
equations (2(M + 1) (N + 1) — 1 equations where M
and N are the maximum number of packets of Type 1 and
Type 2, respectively, that a node can accommodate). If
M and N are too large, the brute-force approach becomes
impractical. We therefore introduce a simple computa-
tional method that yields both upper bounds on and ap-
proximations for the loss probabilities. The method is
based on computing the occupancy probabilities of a Sys-
tem that has an infinite number of buffers.

We start with the following.

Let N be a random variable that represents the number
of packets in a queueing system in steady state. Let g, =
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Prob(N = n), n =0, 1,2 -+ and let G(Z) be the
generating function of the number of packets

=]

G(Z) = Zo 8. 2"

n=

|1z] < 1. (38)

Assume that G(Z) is given by the quotient of two func-
tions A(Z) and B(Z)

A(Z)
Z) = ——=
and assume that the coefficients q;, b;, i = 1,2, -+ . n

of the Taylor expansion are known for both A(Z) and
B(Z)

A(Z) = 2 a7 B(Z)= T bz (40)
Then, if by > 0 it is easy to see that g,, n = 0, 1,2, - - -

are computed via the following recursion:

n—1
8o = aO/bO; &n T <an - i§0 bn—igi>/b0

n=20,1,2,---. (41)
Therefore, in order to compute g, for some n, we only
need to be able to compute @;, b;, i = 0, 1, - - - , N,

namely, to determine the first n + 1 coefficients of the
Taylor series of A(Z) and B(Z) in (40). In the sequel,
we show how to compute these coefficients (again in a
recursive manner) for a nonpriority queueing system that
has an infinite number of buffers.

A. High-Prioriry Packets

From [8] we have that the generating function of the
occupancy probabilities of high-priority packets in a non-
preemptive queueing system with infinite buffers is

poli + M(1 = 2)] +

G(Z)=(1 = pZ)[p+ N1 = Z))] )
where py = 1 — p; — p,. So in this case,
ag =po(p + N) + N a1 = ~Npg; =0 iz2
bo=p+ N by=—p(n+N) =N
by =Npy; bi=0 i3 (43)

and now we apply recursion (41) to obtain g,, the steady-
state probability of having » high-priority customers.
B. Low-Prioriry Packets

From [8] we have that the generating function of the
occupancy probabilities of low-priority packets in a non-
preemptive queueing system with infinite buffers is

pol M+ M1 —Z) + p — pa(Z)]
(1 = 2) + 1] [1 - alZ) ~ paZ]

G(z) = (44a)
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where

1
CY(Z)='2';(,LL+>\1+>\2_)\QZ

N+ N = MZ) - Ahp). (44b)

If we expfess G(Z) as a quotient A(Z)/B(Z), then we
have

A(Z) =py B(Z)=1-a(Z) - pZ (45)

and in order to use the recursive method of (41) we have
to compute g;, b;, i = 0, 1.2, - -+, n. To that end, we
first expand B(Z) = Vg + N+ N = MZ) — 4hpas
a Taylor series B(Z) = L, 8;Z" and determine §;, i =
0,1,2, - - -, n We do this again in a recursive manner
by using the relation

2

© 2
<.§) Bizi> =(p+ N+ N = NZ) —dnp (46)

Consequently, we find

Bo = ‘/(# + N+ )\2)2 — 4N\

CM(p N+ A2)
Bo

B =

i—1
2 BBy
j=1

Bi=——2—ﬁo‘— i =

N - B
26

Bzz 3’41'.'

(47)

Therefore, the expansion of a(Z) = i, o;Z' is given
by

050=§1;(/~L+ Mt N—B) o= “2_10\2 + B1);
a,-=—%i=2,3,---. (48)
Therefore, the a;’s are given by
ag = po( N + N + u — pag); a = —po( N + pey):
a; = popoy; Iz 2 (49)
and the b;’s are given by b, = Tj_g b] b?_;, i = 0 where
bi=N+p bl=—=\; bl =0 i=22 (50a)
Bf=1—ap bl = —a — py bi=—-qo iz2
(50b)

and now we apply recursion (41) to obtain g,, the steady-
state probabilities of having »n low-priority packets in the
system.

C. Approximation

From the probability distribution for the infinite buffer
case, we can come up with an approximation for the finite
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LOSS PROBABIUTY OF PRIORITY 1

80

NUMBER OF BUFFERS
Fig. 5. Loss probability of priority 1.

buffer case. One simple approximation for the loss prob-
abilities of the two types of traffic in a system that can
contain at most M high-priority and N low-priority packets
is given by

high
phigh M
loss — M
high
2 ghe
m=0
and
low
PlOW — gN
loss ™ N
low
&n
n=0

where ghe" (glo%y are the occupancy probabilities of the

high (low) priority packets.

This approximation was compared to the exact result
given in the Appendix for small systems and the corre-
spondence was very good.

D. Numerical Results

The results are computed using the approximation of
this section.

Fig. 5 shows the probability of packet loss for priority
1 as a function of the amount of buffering (for type 1
packets) in the output adaptor. This is plotted for different
values of p. The buffering is measured in terms of the
number of average size of packets that the output adaptor
can hold. As can be seen, loss probabilities of less than
10™* can be easily achieved. For the same parameters.
Fig. 6 shows the probability of packet loss for priority 2.

Fig. 7 shows the corresponding delay bounds (for prior-
ity 1 traffic) for different output link speeds. Here. the
probability of a packet loss is fixed at 107*. The results
are for 1000 bit average sized packets. As can be seen.
sub millisecond bounds are easily achievable at T3 (45
mbits /s) speeds or higher. For the same parameters, Fig.
8 shows the average delay for priority 2.
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Fig. 6. Loss probability of priority 2.
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V. SUMMARY

We have modeled the internal structure of a high-speed
packet switching node and have identified the main
queueing components in such a system. For the input and
the switch fabric stages we have showed that, for a single-
path switching system with a round robin exhaustive pol-
icy, if the switch is at least as fast as the sum of the input
rates there is no loss at the input. We have derived tight
bounds on the size of the input buffers required for such

loss-less operation. :
For the output buffers it is not possible to eliminate

packet loss completely. However, for the type of systems
that we consider under realistic speeds and link utiliza-
tions, one can achijeve very low loss probabilities (less
than 10™%) with a very small delay bound (less than 1 ms).
These results demonstrate the feasibility of operating a
real-time system with a pure packet switching transmis-

sion.

APPENDIX

Let @ = )\1/( )\1 + )\2) and:
P, = probability that no packets are in the system.

P\, m.n = probability that a priority 1 packet is in ser-
vice and that m priority 1 and n priority 2 packets are in
the system (including service); Pioo = P,.

Py m.n = probability that a priority 2 packet is in ser-
vice and that m priority 1 and n priority 2 packets are in
the system (including service); Ps 0.0 £ .

Then the equations that describe the steady-state behav-
ior of a nonpreemptive queueing system that can contain
at most M priority 1 and N priority 2 packets are given by

P10+ Pyoy = pP
P1Po+ Pioo+ Py =(1+p)P
PPy + Priy + Pogy = (1 + p)Pyy,
P1Pim-1,0 * Pimyio + Popy = (1 + P)P1mo
2=m=sM-1
P1Pry-10+ Popy = (1 + py) Py
P2P0n-1 + Piiny+ Prgnyr = (I + )Py,
2=n=N-1
PrPron—1 + Priy= (14 p)Pyyn
P2P1n—1 + Prog+ Poyey = (1 + PP 1.
l=sn=N-1
P2Py i n-1 + Pray = (1 + P1)Py N
PrPom-11 = (1 +p)Pyyy 1 =m=< M-
PiPry-1n = (1 + )Py 1=ms M- 1
PiPym—tn t P2Pim et F Pl + Py
=(1+p)Pip, lSn<=N-1;2<m=<M-1
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p1Pisi—1n + P2Pipn—1 + Pamnsr = (1 + 02)Piyn
l=n=N-1

p1Pymorn + P2Pimn-1 F Pimsin = (1 + p1)Prmw
2=m=M-1

p1Pim—tin + P2Prmn—1 = (1 + p)Pomn
2=sn=N-Lls=msM-1

P1Poyi—1n + 22Posgn—1 = (1 + 02) P
2=n=<N-1

p1Pom-in + P2Prmn—1 = (1 + p1)Pomn

l=m=<M-1

M
2
m=0n

z

0 (Pl.m.n + P2.m,n) = 1.

Once the above 2(M + 1)(N + 1) — 1 equations are

solved, the loss probability of priority 1 packets is given

by
N
PRE = ’E;O (Pisn + Poan)

and the loss probability of priority 2 packets is given by

M
Pty = 2 (Pimn + Ponn)-
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