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We analyze a family of queueing systems where the interarrival time 71,
between customers # and # + 1 depends on the service time B, of customer 7.
Specifically, we consider cases where the dependency between I,.,, and B, is a
proportionality relation and B, is an exponentially distributed random vari-
able. Such dependencies arise in the context of packet-switched networks that
use rate policing functions to regulate the amount of data that can arrive to a
link within any given time interval. These controls result in significant depen-
dencies between the amount of work brought in by customers/packets and
the time between successive customers. The models developed in the paper
and the associated solutions are, however, of independent interest and are
potentially applicable to other environments.

Several scenarios that consist of adding an independent random variable
to the interarrival time, allowing the proportionality to be random and the com-
bination of the two are considered. In all cases, we provide expressions for the
Laplace-Stieltjes Transform of the waiting time of a customer in the system.
Numerical results are provided and compared to those of an equivalent system
without dependencies.
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1. INTRODUCTION

This paper deals with the analysis of a family of queueing systems, where the
interarrival time between two customers depends on the service time of the first
customer. The motivation for studying these queueing systems originated in the
context of high-speed packet-switched networks. The issue of interest was the
effect of input policing functions that have been proposed to control the flow
of packets in such networks. The basic goal of these policing functions is to
ensure adequate network performance by regulating the amount of data that
can arrive to a link within any given time interval. These controls result in sig-
nificant dependencies between the amount of work brought in by packets and
the time between the arrival of successive packets. Such dependencies have a sig-
nificant impact on system performance {2,5,7,10,14], and the reader is referred
to Fendick, Saksena, and Whitt [10] and Cidon, Guérin, Khamisy, and Sidi [4]
for discussions on this topic and reviews of related works.

Whereas numerous previous papers have studied the effect of many differ-
ent dependencies in queueing systems, very little work seems to have been done
on the type of dependencies that are the focus of this paper. In particular, the
case where the service time of a customer depends on the time since the previ-
ous arrival has been thoroughly studied [4-8,13,14,19,20]. In contrast, this
paper addresses the converse problem where the time to the next arrival depends
on the service time of the arriving customer. To the best of our knowledge, pre-
vious work on this problem has been essentially limited to the study of general
conditions for either stability [21] or finite moments of the busy period [11].

The main contribution of this paper is, therefore, to analyze the waiting
time of a customer in a single-server first in-first out (FIFO) queue, when the
interarrival time 7, ,, between customers n and # + 1 depends on the service
time B, of customer n. Specifically, we consider cases where the dependency
between I,,, and B, is a proportionality relation, and B, is an exponentially
distributed random variable. The solution method is based on the application
of the standard Wiener-Hopf method (e.g., see Kleinrock [17]). However, we
exploit the particular structure of the system to provide a computationally much
more efficient solution than available by applying standard techniques. This
enables us to study a number of configurations that provide useful insight on
the effect of new control mechanisms being used in high-speed networks.

Specifically, some policing functions now used in packet-switched networks
introduce the type proportional dependency already mentioned. For instance,
let us illustrate how a simple spacer controller that is used to limit the peak rate
at which a source can generate data into a network (see Bala, Cidon, and
Sohraby [1], Cidon et al. [3], and Elwalid and Mitra [9]) introduces such depen-
dencies. The enforcement of a maximum rate is achieved by requiring that after
sending a packet of size B a space of duration B/R be inserted before the next
packet can be sent. The rate R is then the maximum allowable rate for the
source. (Note that the existence of a maximum network packet size is assumed
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here.) This rate R is typically equal to the source peak rate but can be set to a
lower value when low-speed links are present in the connection’s path [1,3] or
if the network traffic has to be smoothed [12].

Assuming that the preceding spacer is saturated by a source of rate R whose
traffic is fed to a link of speed C, interarrival and service times at the link are
then proportional with 1,,; = aB, and « = C/R. As shown in Figure 1, which
plots the evolution of the workload at the network link for the extreme case o = 1,
that is, equal source and link rates (stability requires « = 1), the analysis of this
simple case is of little interest. However, there exist a number of extensions to
this basic model that make it nontrivial, although still tractable, and, more
important, useful in modeling actual systems.

The simplest extension consists of adding an independent random variable
to the interarrival time. The presence of such a random component in the inter-
arrival time allows us to model more accurately how the traffic generated bya
spacer controller arrives at an internal network link. First, such a model can
capture the effect of interactions between packets from a given source and other
traffic streams inside the network. In particular, the gaps that the spacer initially
imposes between packets are modified according to the different delays that
consecutive packets observe through the network. The arrival process at a link
can then be modeled as consisting of a deterministic component (the spacing
imposed by the spacer at the network access), to which a random network jit-
ter has been added. Second, the addition of a random component also allows
us to relax the assumption of a saturated spacer queue, because it can be used
to model the time between packets that arrive to the spacer. Finally, another
useful application is when the spacer itself randomizes the gaps between succes-
sive packets. This randomization in the spacer may be useful to avoid correla-
tion between traffic streams of distinct sources. In particular, it helps to prevent
(malicious) sources from harming network performance by cooperating to gen-
erate a large burst of data into the network.

Wi(t)

t

Ficure 1. Workload in queue with interarrival time proportional to
service time.
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Another extension of the basic model is to allow the proportionality con-
stant to be itself a random variable. Specifically, we consider cases where the
proportionality factor is randomly chosen from a finite set of values. This al-
lows the modeling of a generalized spacer, where the factor used to compute the
enforced spacing is allowed to vary. For example, the arrival of a high-priority
packet that is sensitive to access delay could be handled by allowing earlier trans-
mission. The interarrival times at the network link would then depend on both
packet priorities and the size of the previous packet. This model has also appli-
cations to other environments, such as manufacturing or repair stations systems.

The organization of the paper is as follows. In Section 2, we introduce the
notations and models studied in the paper. In Section 3, we derive the Laplace-
Stieltjes Transform (LST) W(s) of the waiting time in steady state for the sim-
ple case of deterministic proportional dependencies with an additional, positive,
exponentially distributed and independent jitter. The Appendix shows how this
can be extended to allow for both positive and negative jitters. The case where
the proportionality factor is allowed to be itself a random variable is treated in
Section 4. The analysis of this system requires the use of the spectral analysis
method typical to G/G/1 queues. We provide some numerical examples that
compare the performance of the system with dependencies with an equivalent
system without dependencies. Section 5 covers the addition of a random delay
similar to that of Section 3 to the scenario of Section 4. Finally, Section 6 sum-
marizes the findings of this paper.

2. THE MODEL
2.1. General

We consider queueing systems in which the interarrival time between the nth
and the # + 1st customers (packets) depends on the service time of the nth cus-
tomer. We focus on proportional dependency, which is very natural in packet-
switched networks. Here the interarrival time between two consecutive packets
arriving over a communication link is proportional to the size (in bits) of the
first packet and, consequently, to the time it will take to forward this packet
over the next link. As was previously discussed, this model (interarrival propor-
tional to previous service time) captures the effect of a rate control mechanism
that “spaces” packets apart as a function of their size. In addition to the pro-
portional dependency, it is very helpful to allow the addition of an independent
random component (to the interarrival time) that models a variable delay (jit-
ter) caused by a travel through the network or additional delays between pack-
ets imposed at the source.

In what follows, we describe the three scenarios that are considered in this
paper. The first and the simplest one assumes deterministic proportional depen-
dency with an additive interarrival random delay. The second scenario explores
the effect of random proportional dependency without additive delay. The third
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is a combination of the first and the second scenarios, namely, random propor-
tional dependency with additive interarrival random delay.

Our system consists of a single-server queue with an infinite buffer. The ser-
vice time of the nth packet (n = 1) is denoted by B, and is assumed to be an
independent exponentially distributed random variable (r.v.) with parameter p.
The interarrival time between the nth and the n + Ist packets is denoted by
I,.1. (Without loss of generality, we assume that the first arrival occurs at time
0.) The workload in the system just before the nth packet arrival is a r.v.
denoted by W, with a probability density function (p.d.f.) Jw,(w) and LST
W, (s) =E[e*""]. We also define W(s) = lim,,_,, W, (s) when the limit exists.
The evolution of the workload at arrival epochs is given by

Wy =W, + B, — In+1)+a n=l, (8]

where X * = max(0,X) and W, is usually assumed to be 0. Obviously, W, is
also the waiting time of the nth packet when packets are served according to the
FIFO order.

The evolution described in Eq. (1) is typical to G/G/1 queues and is very
well known [17]. In particular, when B,, I,,,, n = 1, are independent r.v.’s
and B, is exponentially distributed, Eq. (1) describes the evolution of the work-
load in a GI/M/1 system. The feature that characterizes the queueing systems
considered in this paper is that 7, is allowed to depend on B,.

2.2. Deterministic Proportional Dependency with Additive Delay

We first characterize the most basic system of deterministic proportional de-
pendency without additive delay. In this system, the interarrival time 7, is
proportional to the previous service time of the nth packet B, with a (fixed)
proportional dependency parameter «, that is, 7, | = «B,. Therefore, the work-
load in the system just before the arrival epochs of packets evolves according to

Wi =W, + (1 —a)B)". 2
The solution of Eq. (2) when n — oo is trivial. We have
0 ifax>l
lim W,=3 W, ifa=1 A
o o ifa<l

because the term (1 — «) B, is always negative, zero, or positive, respectively.
For example, the evolution of a system where o = 1 and W, = 0 is depicted in
Figure 1. Therefore, we introduce the simplest nontrivial system by adding an
independent component to the interarrival time 7, ,, namely, I, = aB, + J,
when J, is an independent r.v. Therefore,

Wi =W, + (1 —a)B, — J)™. @
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It should be clear now that if J, is positive then it must be that o < 1 to avoid
a trivial zero solution in steady state. It is also clear that the system is stable if

E[(l — a)B, — J,] <0. Consequently, if the expected value of J, is 1/6, then
the system is stable if and only if o + /6 > 1.

In Section 3, we analyze the steady-state behavior of the system assuming
that J, is an independent exponentially. distributed r.v. with parameter §. In the
Appendix, we extend the results of Section 3 to the case where J, can also take
negative values.

It is also of interest to explicitly identify the resulting arrival process to this
system. When 1,,,; = aB, + J, is a sum of two independent exponentially dis-
tributed r.v.’s with parameters p/o and 6, respectively, its LST can be expressed
as [(p/a)/(p/o+ 8)]1[6/(6 + 5)] (independent of n). Therefore, the p.d.f. of
Lis fi (1) = [6p/(ad — p)] [e~#/®)' — e %] when p # o6 and 62te ~* otherwise.

2.3. Random Proportional Dependency

Let us reexamine the system without additive delay as described by Eq. (2). To
avoid a trivial solution in the form of Eq. (3), we will assume that the propor-
tionality parameter itself is a r.v. different from a constant, namely,

Wi =W, + (1 —-Q,)B,)" &)

Therefore, I,,, = @, B,, where Q, is a r.v. with a finite support, independent
of any other r.v. in the system. Specifically, we consider the case where Q,, = «;
with probability a; for 1 < i < N + M for some integers N, M = 1. Clearly,

MM g; = 1. Furthermore, it is clear that in order to avoid trivial solutions not
all the «; are greater than or equal to 1 and also not all the «; are equal to or
smaller than 1. Without loss of generality, assume that 1 <a; <o, < -+ < an
and ayy < oy < v - <oy < 1. The stability condition for the system is
E[(1—%,)B,] <0and, therefore, the system is stable if and only if ¥ a,«; > 1.
In Section 4, we analyze the steady-state behavior of this system.

The interarrival time I, is again independent of » and with probability &,
is an exponentially distributed r.v. with parameter u/«;. Therefore, its LST is
DM g (w/ o)/ (n/oy + s)] and its p.d.f. is VM g, (u/o;)e /et

Another possible extension of this model is to assume that the average
service time is also random — for example, with probability a;;Q, = ; and u =
u;—making p itself a r.v. It turns out, however, that this is equivalent to
enlarging the support of the r.v. ©,, as shown in Section 4.

2.4, Random Proportional Dependency with Additive Delay

The third model we consider is simply a combination of the two preceding sce-
narios. Here we have I, = Q, B, + J,, where ©, is a (nonconstant) r.v. and J,
is an additive random jitter to the interarrival period. Hence,

Wi = (W, + (1 - Q,)B, — J)T, ©
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where Q, = «; with probability a; and J, is exponentially distributed with
parameter 6. We will assume the ordering of the various «; as defined in the
previous model. The stability condition here is 3 ¥4 g;«; + u/6 > 1. The anal-
ysis of this system is similar to that of the previous one and is given in Section 5.

The interarrival time I, is again independent of 7 and with probability a; is
a sum of two independent exponentially distributed r.v.’s with parameters pu/«;
and é, respectively. Therefore, its LST is X 755M [(a;u/c;) / (u/o; + 5)1[6/ (8 + 5)]
and its p.d.f. is f; (1) = 2/CMa;[6u/ (08 — p)] [e~#/@) — =311 in case that
p#adforalll =i< N+ M. If for somej (1 <j< N+ M) K = a0, then the
Jth term in the sum is replaced by a;6%re .

3. DETERMINISTIC PROPORTIONAL DEPENDENCY
WITH ADDITIVE DELAY

The analysis of this system is relatively simple. We begin by expressing the LST
W,.1(s) as follows:

Wyyi(s) = E[e st UedBumdnl ™y,
where J, is an exponentially distributed r.v. with parameter 6.
W1 () = E[e S0t (-etusn] '] = f S, (w) dw f pe ™ dy
0 0

wH+(l—a)x L]
. [f de V. oSt (l—a)x—y] dy + f (Se"'sydy]
0 w

+(1—a)x
ud ué
= W, - W, (6
G-t d-w9 " G e+ d=ms VO
n
—_— R 7
Tl A0 )

Rearranging Eq. (7) and letting #n — o, we get

1+ s
(1 +7v8)[1+v(s—8)]

W(s) = W(o), (t))
where y = (1 — a)/p.

Note that the stability condition o + u/6 > 1 (or y8 < 1) ensures that the
root of 1 + y(s —é) at s =6 — u/(1 — «) is negative and therefore W(s) in
Eq. (8) is an analytic function for Re(s) > 0, as required.

Applying the normalization condition W (0) = 1, we get W(8) = (1 —y8)(1 + v6)
and, hence,

1 —~6
(I —y0)(1 + ~s) 0
W(s) = =1 -y 4+y6 —— 9
(s) [T (s —95) YO+ s+1—76 )]

Y
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The quantity W(oo) = 1 — v is the probability that the waiting time just prior
to an arrival in steady state is zero. It is easy to invert W(s) and realize that with
probability 1 — 6 the waiting time is zero, and with probability 6 it is exponen-
tially distributed with parameter (1 —v6)/y =[p— (1 —a)d]/(1 — ).

The waiting time in the system in steady state at the arrival instants thus
behaves as the waiting time in an M/M/1 queue with arrival rate 6 and service
rate 1/y = [/ (1 — a)]. However, the arrival rate to the system is actually A =
[#d/(u + «d)] and the service rate is clearly u. Comparing our system with an
M/M/1 system with parameters A, u, we observe that both systems have the
same stability condition. However, in the M/M/1 system, the term that governs
the exponent (with a minus sign) of the p.d.f. is u(1 — [6/(n + «9)]). In our
system, the term is . ([1/(1 — &)] — 6/p), which is larger when the stability con-
dition holds. This implies that the tail probability decreases much faster in our
system when compared to the corresponding M/M/1 system.

An extension to this system where J, can also take negative values (but the
interarrival period is, of course, kept positive) appears in the Appendix.

4. RANDOM PROPORTIONAL DEPENDENCY

The analysis of this system is more involved than the previous one, and we use
the spectral analysis method described in Kleinrock [17]. We begin by rewriting
Eq. (5) as

VVnH = (m + Un)+s

where U, = (1 — Q,)B,, and Q,, is a r.v. that takes the values «; with probabil-
ityaiforISiSN+M, Wherel<oz1<oz2< v <0{Nand0lN+1<OlN+2<
«vv < anyym = 1. Because B, is exponentially distributed, the LST of U, de-
noted by U(s) is given by

N+M

U(s) = )
:; 1 —ys

a;

(10)

where v; = (o; — 1)/p.
Following the “spectrum factorization” approach (see Eqs. (8.35) and (8.36)
in Kleinrock [17]), we need to factor U(s) — 1 as follows:

¥, (s)
v_(s)’

U(s) — 1= 11
where ¥, (s) is an analytic function of s for Re(s) > 0 with no zeros in this
half plane and ¥_(s) is an analytic function of s for Re(s) < D (D is a posi-
tive constant to be determined later) with no zeros in this half plane.

Once we have the preceding factorization, we immediately obtain the LST
of the waiting time, up to a constant (see Eq. (8.41) in Kleinrock [17]), that is,
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L-s
¥, (s) ’

W(s) = 12)

and the constant L is determined from the normalization condition lim,_, W(s)=1.
To form the factorization in Eq. (11), we write

N(s)
(U_(S) —1= ‘W,
where from Eq. (10)
N+M  N+M N+M
N(s) = Z a; H (1 = v;s) — H (1 —;s)
Jj=1 rl;jl i=1
N+M

V(sy= 11 (1 =)
i=1

and we have to study the location of the roots of the polynomials N(s) and
Y(s). Let K be the degree of these polynomials. Then, if ayya # 1 we have
K=N+ M, and if ap,py=1wehave K=N+ M — 1.

From the definition of YV(s), it is easy to see that the roots of this poly-
nomial are y; !, 1 < i< K, and they are all distinct. Furthermore, for 1 <i< N
these roots are positive, whereas for N + 1 < i < K they are negative. In the fol-
lowing theorem, we determine the location of the roots of N(s).

THEOREM 1: If the stability condition holds, that is, 375" a;a; > 1, then N(s)
has N — 1 distinct positive real roots, a single root at s = 0 and K — N distinct
negative real roots.

Proor: For 1 < k < K, define

T =y = —& a3)

O[k—l.

Therefore, PI>F2> ves >FN>0>PN+1>FN+2> >FK'
Computing the polynomial N(s) at s =T, we obtain for 1 < k< K

K K Fk
N(Ty) = a [T (I—Yirk)ZakH (1—F>- (14)

oy’ oy ’
The quantity NN(T'y) is positive because I > 'y > O forany 1 = i < N — 1.
The quantity N(I'y_;) is negative as 1 — I'y/T'y_, is the only negative term
in the preceding product. In fact, the sign of N(I',) for 1 < k < Nis (—1)V*
and therefore N(I'y), N(Tn_1),- .., N(I';) have alternating signs. Similarly,
N(I'ny1) is positive because I'; < Ty, < 0 for any N + 2 < i < K. Again,
we see that the sign of N(I) for N+ 1 < k < K is (—1)*"™*! and therefore
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N(TN11), N(Tvpa), . . ., N(Ix) have alternating signs. Consequently, there are
at least NV — 1 distinct positive real roots, one root at s = 0, and at least K —
N — 1 distinct negative real roots.

Because both N(I'y,;) and N(T'y) are positive and N(0) = 0, it is clear
that the additional real root of N(s) is either between 'y, ; and 0 or between
0 and I'y. This is true because JN(s) is a polynomial of degree K. The location
of that additional root is determined by computing the derivative of JN(s) with
respect to s at s = 0:

doJ\((S) N+M N+M  N+M N+M
g =X v— 204 2 vi=- 2 ¢lg—1)>0,
A) 5=0 i=1 =1 i=1 J=1
I#j

where the last inequality follows from the stability condition X" a;a; > 1.

Because the derivative is positive and I'y,.; > 0, the additional root must be
between I'y,; and 0 and therefore JN(s) has K — N negative roots and N — 1
positive roots that were already proven to be real and distinct. This completes
the proof of Theorem 1. [ ]

Let the distinct roots of JN(s) be denoted by 0,0, ..., 0k, with g, > 0, >
-+« > ox and o, = 0. Note that from the proof of Theorem 1 we know that
I'i>0;>T;, for 1 =i=<K— 1. Therefore, 0;v, # 1 for 1 =i,j < K.

From Theorem 1, we conclude that U (s) — 1 can be factorized as stated in
Eq. (11) with

K
H (s — o)
Vi (s) =~ :
II A =vs)
i=N+1
N
H (1 —v;s)
‘I’_(S) - _ i=1

(ff o) (1 =)

Because v, < 0 and 0; < 0 for N+ 1 < i < K, it follows that ¥ (s) is analytic

for Re(s) > 0 and has no zeros in this half plane, as required. Similarly, because

yi>0forl<i<Nando;>0for1<ji<N-1,it follows that ¥_(s) is ana-

lytic for Re(s) < y~' and has no zeros in this half plane (so D = y5' in this case).
Using Eq. (12), we obtain

K

L I (I =7is)

Wy =
H (s —0y)

I=N+1
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and from the normalization condition we have that L = [T ., (—0;). Note
that L is also the probability that an arriving packet need not queue. In sum-
mary, the LST A (s) of the waiting time is given by

( ﬁ (—m))( ﬁ (1—%-5))

i=N+1 I=N+1

W(s) = as)

K
H (s —01)
i=N+1
Note that it is very easy to invert the preceding LST to obtain the distribu-
tion of the waiting time. Taking the nth derivative of W(s) with respect to s at
s =0, we obtain the nth moment of the waiting time. In particular, the expected
waiting time is given by

K
EWl= 2 (vi—oa '),

i=N+1

and the second moment is given by

K K K K
EW*1 = 3 > (vvy— (0;0)™) =2 33 67" 3 (vi—oh).
I=N+1 j=N+1 =N =N+

i

Then, the variance is obtained from the standard formula,
Var(W) = E[W?] — (E[W])? (16)

Remark 1: The computational effort in determining the LST of W(s) lies in the
determination of the roots o;, N + 1 < i < K. However, because each root is
known to be real and because we know that I'y, | < ony; <0andT; < o; < T,
for N+ 2 < i< K, itis very easy to determine the roots with any simple search
procedure.

Remark 2: The preceding analysis does not depend on the values of «; and p
separately but on the values and the sign of the parameters v; = (a; — 1)/p.
Consequently, it is easy to generalize our system to the case where p itselfisar.v.
and with probability a;; it takes the value pu; whereas Q, takes the value «;. This
is equivalent to the case where with probability a;; we define v; = (o; — 1)/p;
and adjust Eq. (10) such that the sum is taken over all values Yij-

Remark 3: Let W £ lim,_,, W,, U 2 lim,_,, U,. For a G/G/1 system with
o = 1 (but remaining strictly less than 1, preserving stability), one can show that
(see Kingman [15]),

an

PriW=w] =1 —exp{zE[U] ]

e ”

Recall that U £ B — I, where B, I are the generic r.v.’s of the service time and the
interarrival time, respectively. Denote by W the generic r.v. of the waiting
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time in an equivalent GI/G/1 system (in which the r.v.’s B and [ are indepen-
dent). From Eq. (17), W <, W (where A <, B means that A4 is stochastically
smaller than B) if and only if E[B-I] — E[B]E[I] = 0. That is, in heavy traf-
fic, the waiting time in a G/G/1 system with service and interarrival times
positively correlated is stochastically smaller than in the equivalent GI/G/1
system. We conjecture that this fact holds not only in heavy traffic but for any
load. For our system with random proportional dependency, we have E[B-I] —
E[BlE[Il = (1/u*)2K , a;a;, and in the following numerical examples we
show that the average and the variance of the waiting time in the equivalent
GI/M/1 system are smaller than in our system for all considered loads.

An upper bound on the average wait for a GI/G/1 system was developed
in Kingman [16]. Using the same techniques, we obtain an upper bound for a
G/G/1 system (and, hence, for our system with random proportional depen-
dency). We have

K
a;(1 —oy)?
E[W] =< Var(W) = ’§ i

==z < .
vl 2p 25 ai(e — 1)
i=1

(18)

The following lower bound on the average wait was developed in King-
man [16]:

K
Z a;(1 — o;)?
2 .
E{W] = EWOTI" i . (19)
—2E[U] K
13 Z a;(c; — 1)

i=1

Another lower bound on the average wait for our system can be obtained using
similar techniques as exercise 2.8 in Kleinrock [18]
Var(W) E[U]

E[W] = 2ET0] — —an+1

K K
Zai(l —oy)? Zai(ai_ 1)
i=1 i=1
= s + » —ay+1 20)
2 Z ai(o; — 1)

i=1

and for small o, this is a tight bound (see Eq. (18)).

In Figures 2-5, we depict the average and the variance of the waiting time
of a system with random proportional dependency. For comparison purposes,
we also depict the same quantities in an equivalent GI/M/1 system in which the
service time is exponentially distributed with parameter x, and the interarrival
times are independent and sampled from a probability distribution whose LST
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is A(s) = DNIM g, o /‘XH Namely, with probability «;, the interarrival time
is exponentially distributed with parameter u/o;. Recall that the analysis of this
GI/M/1 system requires the determination of a single root between 0 and 1 of
the equation s = A(pu — ws). In all figures, we consider a system with N =3,
M=2andag,=02,1<i<S5.

In Figures 2 and 3, we use o; = 1.4, o, = 1.6, oy = 0.1, and o5 = 0.2, and
we depict the average and the variance of the waiting time versus the largest
proportional parameter o;. As expected, both quantities are decreasing with
increasing o5. In Figures 4 and 5, we keep 21" g;«; constant. In particular,
we use oo = 1.2, o, = 1.3, and o, = 0.1, and o3 + o is kept constant. The aver-
age and the variance of the waiting time are depicted as a function of the larg-
est proportional parameter «. It is interesting to note that, although «s + o5
is kept constant, both the average and the variance increase with increasing «;
(and decreasing «s). This implies that decreasing «s has a more pronounced
effect on the performance of the queueing system. The reason is that increas-
ing o and decreasing «s while keeping their sum constant increases the vari-
ability of the arrival process and, hence, increases the average and the variance
of the waiting time, as shown in Figures 4 and 5.

In all cases, we observe that the equivalent GI/M/1 system exhibits much
larger averages and variances of the waiting time. This implies that correlations

25 T
20} Equivalent GI/M/1 System i
E Proportional Dependency
=
g st il
E
<
z
g of ]
<
[~
75}
>
<
S5t i
0

LARGEST PROPORTIONAL PARAMETER

FIGURE 2. Average waiting time versus largest preportional parameter:
=02, 1<i<5a,=14,a, =16, ay =0.2, a5 =0.1.
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100
90t "- :
80 e Equivalent GI/M/1 System

Proportional Dependency

60+

S0F

30¢

VARIANCE OF WAITING TIME

201

2 4 6 8 10 12
LARGEST PROPORTIONAL PARAMETER

FIGURE 3. Variance of waiting time versus largest proportional param-
eter: ¢, =02, 1 <i<5a; =14, ap, = 1.6, 0, = 0.2, s = 0.1.

50 T
a5k Equivalent GUM/1 System i
a0t Proportional Dependency |

o |

30F R

20f :

15} :

AVERAGE WAITING TIME
[
W
1

O i L . i . " L i .
1.6 1.7 1.8 1.9 2 2.1 2.2 23 24 25 2.6

LARGEST PROPORTIONAL PARAMETER

FIGURE 4. Average waiting time versus largest proportional parameter:
;=02 1si=<5a =12,a,=13, ay =0.1, a3 + as = 2.6.
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2000

ool Equivalent GI/M/1 System

1600+ . Proportional Dependency
1400} _
1200} | _
1000} e -
800 | —

600+ y

VARIANCE OF WAITING TIME

400

o

q.6 1.7 1.8 1:9 2 2.1 22 23 24 2.5 2.6

LARGEST PROPORTIONAL PARAMETER

FIGURE 5. Variance of waiting time versus largest proportional param-
eter: 4, =02, 1 <i<50,=12,0,=13, ay = 0.1, a5 + a5 = 2.6.

between service times and interarrival times have a smoothing effect on the sys-
tem. This has also been observed in Cidon et al. {4], Conolly [5], Conolly and
Choo [6], and Conolly and Hadidi [7,8] for different types of correlations.

5. RANDOM PROPORTIONAL DEPENDENCY WITH ADDITIVE DELAY

We now combine the two models of Sections 3 and 4. As before, we start by
rewriting Eq. (6) as

Woir = Wa + U™,

where U, = (1 — Q,)B, — J,,, Q, is defined in Section 4, and J, is an indepen-
dent exponentially distributed r.v. with parameter 6. The LST of U,,, denoted
by U(s), is given in this case by (recall that y; = (a; — 1)/u)

N+M

1) a;
U(s) = L. 21
(s) 5—s Z]] T 21

We now need to factorize U(s) — 1 as in Eq. (11) and then to obtain the
LST of the waiting time as in Eq. (12). To that end, we write

N(s)

U(s) — 1 = Vo)
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where, from Eq. (21),

N+M  N+M N+M

N(s)=6 2, a; [T (1 —7is) — (6 —9) H (I = :s),

Jj=1 i=1
i+

N+M

V(s)=(6—-s) [T (A -9,
i=1

and we have to study the location of the roots of the polynomials JN(s) and
A (s). Let K be the degree of these polynomials. Then, if oy # 1, we have
K=N+M+1, and if apyp, =1 we have K =N+ M.

From the definition of 9/(s), it is easy to see that the roots of this poly-
nomial are y;7!, 1 </ < K — 1, and 6. Furthermore, for 1 < i < N, the roots
v ! are positive, whereas for N+ 1 <i < K — 1, the roots v; ! are negative.
The root at 6 is also positive. In the following theorem, we determine the loca-
tion of the roots of N(s).

TuEOREM 2: If the stability condition holds, that is, Y35 a;o; + p/6 > 1, then
N(s) has N distinct positive real roots, a single root at s =0, and K — N dis-
tinct negative real roots.

Proor: We can apply exactly the same technique as in the proof of Theorem 1 to
show the existence of at least N — 1 distinct positive real roots, a single root at
s =0, and at least K — N — 2 distinct negative real roots of the polynomial JN(s)
because the last term of JN(s) becomes zero when s = Ty (recall that T, = v;').
Similarly, the location of another negative real root between I'y,; and 0 can be
proved because the derivative of N(s) is positive at s = 0 when the stability con-
dition holds. Therefore, we only need to show that there exists another positive
root of N(s), which is different from the ones found before. Recall that the sign
of N(I'y) is (—=1)V=*for 1 < k < N. This is true here because the sign of N(I';) is
only determined by the sign of the first term of N (s) (X7 ;6 TIEEL; (1 —v;5))
because the last term ((8 —s)IT75Y (1 —v:5)) vamshes at all these points. There-
fore, the sign of N(T;) (where T'; is the largest) is (—1)™~!. Now, we will ex-
plore the sign of N(s) as s > oo. By rewriting JN{s) as

N+M N+M )
N = T (1—5)[s—5+2 ;9
Jj=1

=1 r - ;S

it becomes clear that the sign of N(s) as s — o is (—1)" because T'; = 0 for
N+l<si<K-1landI;>0for1 =i=<N. Therefore, there must be another
positive real root of JN(s) between I'; and oo. There is only one root in this
region because the total number of roots of N(s} is K. |

Let the distinct roots of JN(s) be denoted by a,,05,. . .,0x, with 6, > 0, >
. > gx and on,4; = 0. Note that from the proof of Theorem 2 we know that
oyviElforl=<ij=KkK
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From Theorem 2, we conclude that U (s) — 1 can be factorized as stated in
Eq. (11) with

K
‘ H (s —0y)
Vi(s) = e
II a—-vs
I=N+1
N
(6 =) II (0 =:s)
‘I’A(S) - _ =1

(fi ) (fe=)

Using Eq. (12), we obtain

K
L 4 II (A=)
W(s) = — , (22)
I (s—a)
i=N-+2

and from the normalization condition we have that L = IIX ., (—0;). Note
that L is also the probability that an arriving packet need not queue, In sum-
mary, the LST W(s) of the waiting time is given by

( ﬁ (—m))( ﬁ (1—%5)>

I=N+2 i=N+1

W(s) =

— @3)
II (s—a)
i=N+2
Note that this expression is very similar to Eq. (15) except that the locations of
the roots ¢; will be different in this case.
Taking the corresponding derivatives, we obtain the expected waiting time

K
EWl=vv1 2 (vi—oih)

I=N+2
and the second moment
" K K K K
EW?l= > 3 (vv—(go)™)=2 3 o! > (yi—oh
I=N+2 j=N+2 i=N+2 I=N+2

JFE

K
~2yni1 2y (vi—oh).
I=N+2
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6. SUMMARY

This paper presents the analysis of the customer waiting time in systems where
the interarrival time I, , between customers # and #n + 1 depends on the service
time B,, of customer »n through a proportionality relation and B, is an exponen-
tially distributed r.v. We considered different scenarios of increasing complex-
ity and provided efficient computational methods for their analysis. The general
conclusion, which confirms the initial intuition, is that such correlations have
a smoothing effect on the behavior of the queueing systems and emphasizes the
general consensus that independence assumptions are usually pessimistic in prac-
tical environments.

Our motivation for investigating such systems originated from rate control
policies that are popular in new high-speed network architectures. However, the
models developed in the paper and the associated solutions are of general inter-
est and potentially applicable to other environments. Extensions of these mod-
els to service times with general distributions and for proportional parameters
that are continuous random variables are currently under study.
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APPENDIX: PROPORTIONAL
DEPENDENCY WITH ADDITIVE
AND SUBTRACTIVE DELAY

In this Appendix, we extend the results of Section 3 to the case where the packet delay
jitter caused by previous traveling through the network can take both positive and neg-
ative values. This means that packets can arrive sooner or later than expected based only
on the service time. However, because most networks preserve a first-come first-served
ordering, we do not allow the interarrival time to be negative. Because in our case [, =
aB, + J,, the LST 9, (s) can be expressed as

_ _ ++
C‘W,,H(S):E[e S[Wy+Bp—(aBa+Jy) 7] ]’

where « < 1 and J, is a random variable to be defined. As long as J, takes only positive
values, the term (B, + J,) is always positive and, hence, is identical to (aB, + J)t.
Here we allow J, to take also negative values (but I, is kept nonnegative). To that
end, we assume that with probability @ J, is an additive exponentially distributed r.v.
(denoted by J,) with parameter & (as in Section 3) and with probability (1 — @) a sub-
tractive exponentially distributed r.v. with parameter » (denoted by J.). Note that be-
cause o < 1 then [W, + B, — (aB, — J,)*1* = [W, + B, — (aB, — J,)*1. Hence,

W, (s) = aE[e—SIWnJr(l—a)Brfn]*] +(1 - a)E[e*S[Wn*—Br(aBn—J_ﬂ)*]]’ (24)

o

e rpim et ) = [ gy [ e d
0 0

ax 3
. [f Ve—uyefs[w+(l~a)x+y] dy+f Vefuy—s(w—kx) dy:l’
0

ox

= aie W, (s) — i W, (5)
T ) (p+d—a)s) (v+s)(p+rvats)
+— W, (s)

ptvat+s

_ us(l+ys)+v(p+rvo+s)
T (v s)(p+rva+s)(1+7s)

Wy (s), (25)

where v = (1 — a)/p.
Applying Egs. (25) and (7) in Eq. (24) and letting n — o0, we get

as ab

W= oar5 VO T Gy T

(s)

+(1—a) us(l + ys) +v(u+ va +5) aw(s). 26)
v+ s)(p + voo + 5)(1 + ys)




INTERARRIVAL TIMES PROPORTIONAL TO SERVICE TIMES 107

Rearranging Eq. (26) and applying the normalization condition (W (0) = 1), we get

W (%)

Wis)= 1++6

alp+v—yur+s)(1+ys)
alp(l=8y—yr)+r] =81 —a+ry(1—yw)] + [1+y(ap—5+ v +yur)ls+y2s?
with

(1 +48)[—8(1 —a) + au — adyu + av — dyv — ayur + 6y2ur]
alp+ v —ypv) '

W(6) =

@7

The stability condition is derived from E[B, — (aB, — J,)"]1 <Oandisy — ad +

(I —a)(1/v—p/[v(p+ ra)]) <O0. It can be verified that this condition is equivalent to
W(8) > 0.



