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Erasure, Capture, and Random Power Level
Selection in Multiple-Access Systems
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Abstract—A communication system with many nodes accessing a
common receiver through a time-slotted shared radio channel is consid-
ered. Ideally, each transmission of a node is heard by the receiver. In
practice, however, due to topological and environmental conditions, the
receiver is prone to fail to hear some or all of the packets transmitted in a
slot. The phenomena of failing to detect any packet is called erasure,
while detecting a single transmission out of many is called caprure.

This paper introduces multiple-access algorithms that handle erasures
as well as captures. The algorithms are evaluated according to the
maximal throughput that they can support for a Poisson arrival process.
An example is given which shows that, in practice, the positive effect of
captures compensates the negative effect of erasures.

In addition, we introduce a new approach to effectively exploit the
capture phenomena. This approach incorporates a random power level
selection scheme that allows each node to randomly choose to transmit in
one of several allowable levels of power. Design issues such as number of
levels, selection schemes, etc., are discussed.

I. INTRODUCTION

THE collision resolution algorithm (CRA) proposed by
Capetanakis [1] and Tsybakov and Mikhailov [8] has been
devised to enable the nodes in a slotted ALOHA type network
to exploit the channel history for resolving collisions among
competing nodes. Originally, in devising the algorithm, it has
been assumed that each slot can be either a) idle slot; no
packet is transmitted or b) success slot; exactly one packet is
transmitted, or ¢) collision slot; two or more packets are
transmitted and none is correctly received. It has been further
assumed that the receiver is able to discriminate between idle,
success, and collision slots, and transmit appropriate feedback
signals, LACK, ACK, and NACK, respectively.

Ideally, when each transmission of a node is heard by the
receiver and when the forward channel is noiseless, the above
feedback signals are always faithful. In practice, however, due
to topological and environmental conditions, the receiver is
prone to fail to hear some or all of the packets transmitted in a
slot. The phenomena of failing to detect any transmission is
called erasure, while detecting a single transmission out of
many is called capture. The reasons for erasures and captures
in practical systems are that mobile users (nodes) may
occasionally be hidden (for example, because of physical
obstacles), or have different distances from the receiver, or
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transmit in different power levels, or because of fading
problems. Note that whenever an erasure occurs, a false
LACK (instead of ACK or NACK) is sent by the receiver, and
whenever a capture occurs an ACK is sent with the identity of
the node that captured the receiver. In addition, due to additive
noises that are intrinsic in any physical radio channel, the
receiver may detect a collision instead of an idle or a success
slot. The latter is referred to as noise error.

Multiple-access algorithms that handle noise errors were
presented in [5], [9] and in [6]. In [5], [9], the proposed
algorithm is based on the tree collision resolution algorithm
(CRA) [1], [8], while that in [6] is based on Gallager’s 0.487
algorithm [4], [10]. Erasures have been handled in [3]. A
deterministic capture model in which the nodes of the network
are divided into priority groups has been studied in [2], [71.

In this paper, we propose and analyze (in Section III) the
performance of tree-like algorithms that can handle erasures,
captures, and noise errors. The algorithms are similar to those
presented in [3]. A remarkable feature of these algorithms is
that they ensure that all packets are eventually transmitted,
including the erased packets, whenever the arrival rate of new
packets to the system is less than the maximal throughput that
the algorithms can support. An example is given which shows
that, in practice, the positive effect of captures compensates
the negative effect of erasures.

As opposed to [2], [7] where capture has been modeled as a
deterministic phenomena, the model for capture used in this
paper is probabilistic and therefore more realistic. This model
motivates a new approach (introduced in Section IV) to
effectively exploit the capture phenomena. This approach
incorporates a random power level selection scheme that
allows each node to randomly choose to transmit in one of
several allowable levels of power. Design issues such as how
many levels should be used, how to select the levels, etc., are
discussed. We show that a throughput as high as 0.592 can be
achieved in a two-power level system.

II. THE MODEL

We consider a communication system that consists of many
nodes (practically infinite number) accessing a common
receiver. The forward channel is assumed to be a time-slotted
radio channel. In a given slot, each node can transmit, at most,
one packet whose duration is one time slot. The beginning ofa
transmission in synchronized with the beginning of a time-slot.
Due to topological and environmental conditions, a packet
might or might not be heard by the common receiver.

During any time-slot one of the following events may occur:
a) idle slot—either none of the nodes of the network is
transmitting or several nodes are transmitting but none of them
is heard by the receiver (erasure). For an idle slot, the receiver
sends a LACK feedback signal that is received by all nodes of
the network. b) Success slot—either a single node is transmit-
ting and being received properly or one node out of several
transmitting nodes is being properly received by the receiver
(capture). For a success slot, the receiver sends an ACK(i)
feedback signal (i is the identity of the node whose packet is
received properly) to all nodes. ¢) Collision slot—either a
number of nodes are transmitting, and at least two of them are
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heard by the receiver, or no node, or a single node is
transmitting but the receiver interprets it as a collision (noise
error). For a collision slot the receiver sends a NACK
feedback signal to all nodes.

The model for captures, erasures, and noise errors that we
use is probabilistic. Specifically, when n = 1 nodes transmit,
the probability of erasure is m,, and when n = 2 nodes
transmit, the probability of capture is =, ;. Also, the respective
probabilities of interpreting an idle or a success slot as a
collision are g c and 7;,c. We assume that erasures, captures,
and noise errors are probabilistically independent and that 7, ¢
+ @ < 1n = 2.

One should observe that with this model, although the
receiver broadcasts the same information to all nodes, it may
happen that different nodes will have different knowledge
about what really happened during a particular slot. To see
that, assume that some nodes have transmitted a packet in a
certain slot and were acknowledged by a LACK. Obviously,
these nodes are aware of the error made by the receiver;
however, no other node in the system is. Likewise, when some
node i transmits a packet in a certain slot and is acknowledged
by an ACK(/j) (¢ # j), it is aware of the error made by the
receiver. Subsequently, those nodes whose packets were not
heard by the receiver will be considered to belong to a lapsed
set until they retransmit their packets again.

III. TREE ALGORITHMS

In this section, we introduce tree-based multiple-access
algorithms similar to those of [3] for channels with captures,
erasures, and noise errors. If the channel were free of any kind
of error then the tree CRA is as follows [5]. After a collision,
all nodes involved flip a binary coin; those flipping O
retransmit in the very next slot; those flipping 1 retransmit
immediately after the collision (if any) among those flipping 0
has been resolved; no new packets may be transmitted until
after the initial collision is resolved. It is said that a conflict is
resolved precisely when all nodes of the system become aware
that all initially colliding packets have been successfully
retransmitted. The time elapsed from an initial conflict until it
is resolved is called a conflict-resolution-interval (CRI).

As is well known [5], the presence of noise errors does not
require any changes in the tree CRA. However, if erasures and
captures occur, one should determine the actions taken by
nodes that join the lapsed set because their packets were not
heard by the receiver. We consider two schemes.

a) The Wait Scheme: All nodes that transmit in a given slot
and are not heard by the receiver either due to an erasure or
due to a capture, retransmit at the beginning of the next CRI;

b) The Persist Scheme: All nodes that transmit in a given
slot and are not heard by the receiver, retransmit in the
subsequent slot.

Recall that node i learns about its failure to be heard by the
receiver, by examining the feedback indication; if it transmits
and the feedback indication is a LACK or ACK(/) with j #
i—then node i knows that it has not been heard by the receiver
and therefore it joins the lapsed set.

Regarding the first-time transmission rule, namely, which
packets are transmitted for the first time at the beginning of a
CRI, we adopt the idea proposed in [4], [5] to ‘‘decouple’’ the
transmission times from arrival times. We define an arrival
epoch of length 7 where the ith arrival epoch is the semi-
opened interval (i, (/ + 1)7]. The rule that is used is to
transmit a new packet that arrived during the ith arrival epoch
in the first utilizable slot following the CRI for new packets
that arrived during the / — 1 arrival epoch [S]. Here 7 is a
fixed length epoch adjusted to maximize the achievable
throughput.

Note that in addition to packets that are transmitted for the
first time at the beginning of a CRI (according to the above
rule) some residual packets are also transmitted. For the
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Persist scheme and the Wait scheme, the residual packets are
those packets that join the lapsed set during the last slot and
during all slots of the previous CRI, respectively.

A. Analysis of the Wait and the Persist Schemes

In this section, we analyze the performance of the Wait and
the Persist schemes. Since our main goal is to study the mutual
influence between captures and erasures, and since the
incorporation of noise errors into the analysis is very simple
[3], we assume here that mpc = m ¢ = 0. Our goal in this
section is to determine the maximal output rate (throughput)
attainable with the Wait and the Persist schemes.

In a fashion similar to [3], we introduce the following
definitions: X; is the set of all packets transmitted during the
first time slot of the ith CRI; A; is the set of new packets
transmitted in the first time slot of the ith CRI; Y; is a set
containing the packets that are residual at the end of the ith
CRI. These packets are referred to as the ith residual packets
and are retransmitted at the beginning of the (i + 1)st CRI.
Obviously,

Xi=Ai+ Y. 0

Assuming that {4;, i = 1} is a sequence of i.i.d. random
variables, it is clear that given Y;_,, the random variable Y; is
independent of Y; for j < i — 1. Consequently, {Y;, i = 0}
forms a Markov chain. To proceed, we first need to determine
the transition probabilities of this chain:

p(nZ/n1)=Pr0b {Y,-=n2/Y,~_1=n1}. (2)

To that end, let P,(/) be the probability for / residual
packets at the end of a CRI that started with n packets in its
first time slot, namely P,(/) = Prob {Y; = I/X; = n}. Let
P,y(m) = Prob {A; = m}. Then

P/n)=S Py () Pa(m).

m=0

€)

Let Q;(n) be the probability that i nodes out of # nodes will
flip 0; ie., Qi(n) = (NDpP'(1 — p)"~' where p is the
probability that a node will flip 0. Then we can calculate P,(/)
as follows [see explanation following (5d)]:

Remark: In the following equations, P,(!) = Ofor/ < 0
and for / > n.

For the Wait scheme:

Py0)=1; Pi0)=1-—~m10; Pi(1)=71 (4a)

Pul)=(1 - Tyg—Tn) 3 Q)

i=0

I
: E P(kYP,_i(I-k) n=2;0=<l=n-2 (4b)
k=0

Pyn=1)=mp,+ (1= Tpo—7n1) 3 QUI{Pi(i=1)

i=0
s Pp_iin—0D)+P(YP,_i(n—1-0)} n=2
(4c)

Py(m) =T+ (1= Tpg— 1) 3 QUDPI()

i=0

« Py_i(n—i) nz=2; 4d)
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For the Persist scheme:

Py0)=1; P(O)=1—m g; P\(1)=m, (5a)

Pu(D=(-Tpo—7,1) 3 Qi)

i=0

!
. E P(K)P,_;i k(l) O0<l<n-2;n=2 (5b)
k=0

P(n-=m, +(1 —my9—m, ) i O:m{P(i-1)

i=0
“ Pyi(n= 1)+ P(i)P,(n—-1)} n=2
(5¢)

Pan)=Tp0+ (1~ Tuo—701) 3 QPI)PA(n) n=2.

i=0

(5d)

The explanation of (4) and (5) is simple. For instance, (4b)
expresses the fact that (for the Wait scheme) a CRI that started
with n transmitted packets ends with / residual packets 0 < /
=< n — 2if: 1) the n packets did not join the lapsed set in the
first slot of the CRI; and 2) after the nodes were split into /
nodes and n — i nodes according to the distribution Q;(n), the
sum of residual packets from the set of / nodes and the set of n
— i nodes should equal /. The reasons for (4c) and (4d) are
similar to that of (4b) except that now a single packet out of n
packets might be captured (with probability ,;) or the n
packets can be erased (with probability =) in the first slot of
the CRI, respectively. The explanation of (5b) is similar. Here
a CRI starts with n = 2 packets andends with0 < / < n — 2
residual packets. Therefore, the first slot of the CRI must be a
conflict slot. Then the nodes are split into sets of i and n — i
nodes. When the CRI of the / nodes ends, any number 0 < k
= i of nodes may belong to the lapsed set. Consequently,
according to the Persist scheme, the second CRI starts with »
— I + k packets, from which exactly / should belong to the
lapsed set at the end. Equations (5c)-(5d) are explained in a
similar manner.

From (4) and (5) the probabilities P,(/)n = 0,1,2, --- 0
= [ < n can be computed recursively. Therefore, using (3),
the steady-state probabilities (Py(k) £ = 0) of the chain {Y;,
= 0} can be computed (assuming that it is ergodic) via

Py (k)= Pr(DNp(k/j) k=0;

E Py(k)=1. (6)
j=0 k=0
The following theorems (whose proofs appear in Appendix A)
state conditions upon w, = w,o + m,; that are sufficient for
the Markov chain {Y;, { = 0} to be ergodic in the Wait
scheme and in the Persist scheme. Note that these conditions
are much more general than the corresponding conditions
stated in [3].

Theorem 1: Let a system operate with the Persist scheme.
Letm, = Wpo + Wy ff7, <1Vn=1landaIM > 1,0 < 7
< 1 such that vn = M holds =,/p(1 — =,) < 7, then the
Markov chain {Y;, i = 0} is ergodic (recall that p is the
probability that a node flips O in the resolution algorithm).

Theorem 2: Let a system operate with the Wait scheme.
Let m, = map + Tl a(n) = Qu(n) + Qu(n) and b(n) =

1 +~n—1/nIlfnr, <1vn = 1and 3IM > 1 such that
vn =z Mholds 7, = (1 — a(n))(1 — b(m)/[a(n) + b(m(1
= a(n))], then the Markov chain {Y;, i = 0} is ergodic.
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In less formal words, Thearems 1 and 2 say that for the
Persist schéme Y; is ergodic if for large n, 7, < p/(1 + p),
ar:;i_ for the Wait scheme Y; is ergodic if for large n, T, <1/
24/n.

To continue with the analysis, let the average length (in
slots) of a CRI that started with 7 new packets and k residual
packets be denoted by L, where n = m + k. Then

For the Wait scheme:

L0=L|=1; (7a)

Li=1+(~Tpo=m0) S QL+ L,_) n=2. (7b)

i=0

For the Persist scheme:

L0=L1 = 1; (Sa)
L,=1+(1- Tno— 7rn,l) 2 Qi(n)
i=0
. [L1+§’: Pi(j)Ln_H_j:I n=2. (8b)
Jj=0

The reason for (7b) is that in case of an erasure or a capture,
the CRI reduces to a single idle or successful slot, respec-
tively. If a collision occurs, the 7 nodes are split into i and # —
i nodes according to the distribution Q;(#71). Consequently, we
would have two sub CRI’s with average lengths L; and L,_;.
The reason for (8b) is similar except that in the Persist scheme,
with probability P,(/) (0 = j =< i) the second sub CRI will
start with n — i + j packets.

From (7) and (8), the quantities L, n = 0 can be computed
recursively. Assuming that the chain {Y;, i = 0} is ergodic,
the maximum output rate (throughput) possible with the
algorithm is given by

T E[A]

®

-

i > L+ kPa(m) Py(k)

0 k=0

where E[A] = oo mPay(m).

In the following we will assume that packets arrive to the
system according to a Poisson process with rate \ (packets/
slot). Each time a CRI is started, a new epoch of length 7 (in
slots) is chosen, so that P4(m) = (A\)"e >/m! m = 0.

If A < T'then the system would be stable. We notice that the
attainable throughput 7" depends on both the epoch length 7
and on the coin flipping probability p. These two parameters
can be optimized so that the attainable throughput would be
maximized. In the following, we will use p = 0.5, and in each
case we maximize T over the parameter x = Ar. Let x* be the
optimal parameter namely the optimal average number of new
packets that are transmitted (for the first time) at the beginning
of a CRI, and let 7* be the maximal attainable throughput.
Then for each A < T*, 7% = x*/\ is used.

B. Numerical Results

In this section, we describe the results that correspond to the
following three cases:

D mpp=nn=1,2,3; m,0=0n>3; Tp1=0n>2;
2) myo=0nz1; m, ;=7 n=2,3; m,,=0n>3;
3) mpo=mp =7 n=2,3; mo=m, =0n>3; TIQ=T.

Case 1) corresponds to partial erasure without capture, Case
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2) to partial capture without erasure, and Case 3) to partial
capture and erasure (note that by Theorems 1 and 2, the
Markov chain {Y;, i = 0} is ergodic in all these cases). The
results for the Wait and Persist schemes for these cases are
depicted in Fig. 1 (we use p = 0.5 as the probability for 0).In
all cases, we observe that the Wait scheme is better than the
Persist scheme. Consider Case 1) first. The reason that the
Wait scheme is better is that with this scheme, those packets
that are erased during a CRI are accumulated and sent at the
beginning of the next CRI, thus increasing the number of
packets transmitted at the beginning of a CRI, and thus
reducing the erasure probability at the beginning of a CRI.
With the Persist scheme, on the other hand, the erased packets
are retransmitted again immediately when erased, thus in-
creasing the number of collisions and erasures in a CRIL In
Case 2), we see that the differences between the two schemes
are smaller (percentage-wise). The reason is that reducing the
probability of a capture at the beginning of a CRI (this is what
happens with the Wait scheme) is bad since capture has
positive effects on the attainable throughput. Still the fact that
the average length of a CRI is increased (in the Persist scheme)
is dominant and therefore the Wait scheme is better. For Case
3) the explanations are similar.

Without erasures and captures, it is known that the optimal
average number of new packets transmitted at the beginning of
a CRI is x* = 1.15. In all the above cases, x* decreases as «
increases. However, in Case 1), x* decreases to very small
values when 7 is large, while in Case 2) the decrease is very
moderate so that x* remains between 1.15 and 1. Finally, we
note that when both erasures and captures are present [Case
3)], they compensate each other. This phenomena will be
observed in the next example, too.

C. The Obstacle Model

The numerical results presented above were for a rather
artificial set of erasure and capture probabilities. In this
section, we present a model in which the capture and erasure
probabilities are more realistic, and see how the Persist and the
Wait schemes perform in practical situations.

As before, all nodes access a common receiver. We assume
that the nodes are mobile and are near an obstacle (e.g., a
wall, high mountain, or deep valley) which prevents the
receiver from hearing the transmissions of nodes that are
behind it.

When no nodes are behind the obstacle, then each feedback
signal transmitted by the receiver is correct. However, if all
transmitting nodes are “‘invisible’” to the receiver, then it will
interpret the slot as an idle slot, even if it is actually a success
or a collision slot. If all transmitting nodes, except one, are
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behind the obstacle, then only that single node will be received
correctly, i.e., it will capture the channel. If two or more
transmitting nodes are visible to the receiver, then a collision
slot is observed.

Let p, be the probability of a transmitting node being behind
the obstacle and thus failing to be heard by the receiver. The
capture and erasure probabilities are therefore as follows:

Tno=D% n=1 (10a)

Tpa=npt~'(1-p,) n=z=2. (10b)
Using these values for w,o and m,, the analysis presented in
Section III-A can be applied. Note that in the obstacle model,
both the erasure and the capture probabilities decrease
exponentially in the number of transmitting nodes, so by
Theorems 1 and 2, the Markov chain {Y;, i = 0} is ergodic in
this case.

We will examine the following three cases: 1) the *‘capture
only,”” inwhich m,o = 0n = 1w,y = np? (1 — po)n = 2;
2) the “‘erasure only,”” in which m,0 = pin = 15y = On
= 2; 3) the “‘capture and erasure’’ (the practical case), in
which (10) holds. The performance of the system in these
three cases is depicted in Figs. 2 and 3 for the Wait and Persist
schemes, respectively.

Case 1): The interesting phenomenon here is the peak in the
graphs. The reason for this peak is as follows. The most
significant contribution (due to captures) to the throughput
belongs to captures happening in slots with small number of
transmissions, since m,; has relatively high values then. It is
easy to see that m,, reaches a maximum when p, = (n — 1)/
n. Therefore, forn = 2 p, = 0.5 and forn = 3 p, = 0.667.
Consequently, the peak occurs between these values of p,.

Case 2): The behavior here is similar to that depicted in Fig.
1.

Case 3): With both captures and erasures, we observe an
interesting behavior. The channel throughput decreases as the
single node ‘‘invisibility’’> probability increases—but this is
happening in a very moderate fashion! We conclude that in
practical systems the positive effect of captures compensates
the negative effect of erasures in such a way that the channel is
immunized against drastic changes in its maximal attainable
throughput!

We observe from the graphs that the maximal attainable
throughput decreases almost linearly in the Wait scheme,
while it decreases for low p, values and becomes almost
constant for values exceeding 0.4 in the Persist scheme; i.e.,
in the Persist scheme, the capture, and erasure effects balance
each other almost perfectly.
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A point that deserves explanation is the fact that for p.
values beyond 0.7, the Persist scheme performs better than the
Wait scheme, even though the Wait scheme is superior for
either capture only or erasure only. The reason is that the Wait
scheme is more sensitive to the amount of packets transmitted
at the beginning of a CRI than the Persist scheme. Recall that
in each point of the graphs in Figs. 2 and 3, the optimal epoch
(alternatively, the optimal number of new packets transmitted
at the beginning of a CRI x*) is chosen. When both capture
and erasure are present and the Wait scheme is used, the
optimal epoch (for the combined effects) chosen at the
beginning of a CRI causes the capture effect to contribute less
to the overall throughput than in the optimal case (for capture
only), and thus, despite its superiority in the capture alone and
erasure alone, operating under both phenomena it becomes
inferior. The Persist scheme, on the other hand, is less
sensitive to the fact that different epochs are used when there is
only capture, only erasure or both are present. In any case, the
differences between the two schemes are minor.

1V. RANDOM POWER LEVEL SELECTION

Obviously, the capture effect is a positive phenomenon.
With the obstacle model, the capture was caused by geographi-
cal and environmental conditions which could not be con-
trolled. An attempt to control the capture phenomenon has
been suggested in [2], [7] using a model that consists of
dominant and nondominant nodes and assuming that only
dominant nodes can capture the channel. From the perform-
ance aspect, capture does contribute to the throughput, but the
model lacks the ‘‘fairness’’ element because only the group of
dominant nodes is given the privilege of capturing the channel.

In this section, we introduce and analyze a new method to
exploit the capture effect in order to increase the system
efficiency by proposing a new random power level selection
scheme that ensures that every node in the system will be able
to capture the channel with a positive probability. Moreover,
since all nodes of the system perform the same scheme, it is
fair in the sense that all nodes have the same chances to
capture the channel.

We assume a radio network with nodes that are capable of
transmitting in one of / power levels L; < Ly< --- < Ljat
any slot. With the random power level selection scheme, when
it should transmit (according to the multiple-access algorithm
that is used), a node (randomty) selects to transmit in one of
the / allowable power levels. We denote by P, 1 < k < [the
probability that a node will select level k for transmission. A
node i captures the channel if its transmission power is C (C
> 1) times greater than the sum of the power of all other
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transmitting nodes (C is some constant), namely if

LzCY L.
JEN
J#i

(11)

(N is the set of all nodes that transmit in a given slot). Note
that (11) assumes that all nodes have equal distances from the
receiver. For different distances the condition for capture of
the channel by node i will be

L; L;

==C % 2

Ri JEN Rj
J#i

(12)

where R, is the distance of node i from the receiver. There is
no essential difference between the two conditions (11) and
(12) because in the latter case, an ‘‘effective power’’ I:i can be
defined, with I; = L,-/Rf, and thus, (12) can be simplified to
(11). Therefore, we will use (11) as the condition for capture.
The constant C will be referred to as Capture Factor. '

When the random power levél selection scheme is applied,
one can use either the Wait scheme, in which the lapsed set
members are waiting for the first slot of the next CRI in order
to retransmit, or the Persist scheme, in which the lapsed set
members retransmit in the time slot immediately following the
one in which they were not heard by the receiver. We shall
consider here only the Wait scheme. As we are interested in
understanding the behavior of the random power level
selection scheme, we assume no erasures in the system, i.e.,
mao = 0 n = 1. There is no difficulty in incorporating
erasures into the model later.

The equations describing the system behavior are identical
to those presented in Section III. We only need to specify the
set of m, ;. For the random power level selection scheme, we
have for n = 2:

{

n—1 n—1-—n;_
W"’1=i=§:2 g:.n<ni—1>< ni_» 1>

n,

n—l-ni_y =" —m T s
P; P% (13a
< n, > g j(139)

where P; is the probability for a single node to select to
transmit in power level L,~(E§=1 P; = 1), n; is the number of
nodes that select to transmit in power level L;, / is the number
of plausible levels in the system and for / = 2

i-1
ce, My, )i Y, m=n—l;
j=1

Sp,i= {(ni—u ni_y,

i-1
E nijSL,-/C} . (13b)

J=1

The set S, in (13b) contains all the possible permutations
for which a single node at level i captures the channel when n
nodes are transmitting and in (13a) we sum the corresponding
probabilities over all these permutations and over all levels.

When applying the random power level selection scheme,
some questions arise, among them: a) What is the effect of a
limited power range? b) How many levels should one assign
for a given power range? c) What is the optimal probability
distribution for the level selection algorithm? We address these
questions below.

Let us first examine the simple model of two transmission
levels L, and Ly, We consider three cases: 1) Ly, >
CLw; 2) C = 10; 3) C = 5. In Cases 2) and 3), we use Lo
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= 1 and Lyg = 5. The results are depicted in Fig. 4 and we
see that they are almost indistinguishable. Case 1) is identical
to the “‘capture alone’’ case in the obstacle model because the
probability for transmitting in the low power level, is playing
p.’s role in this last case. In Cases 2) and 3), we have 7,; = 0
n = C. Cases 2) and 3) correspond to ‘‘truncated’’ versions of
the ‘‘capture alone’’ model, and the results are almost
identical to Case 1). The reason is that the probability of
transmission of more than three packets in a slot is fairly
small. Consequently, the differences between the C’s, which
come into effect in (quite rare) slots containing more than five
packets are negligible.

We now turn to examine a case in which several power
levels are condensed in a limited predetermined power range.
We assume that the random selection is uniform, i.e., P; = 1/
I1 =i=< [l Weuse C = 10 and assume that the levels are
allocated in such a way that each level is R times greater than
its predecessor, namely L; = L; ;R 2 < i < /. Without loss
of generality, we take L, = 1. As we shall see later, this
allocation of levels is very close to optimal.

Fig. 5 describes numerical results for these cases. The x
axis is the total power range in decibels. [L[db] = 20 log;o
(L)]. for an / level model, the (x, y) point in Fig. 5 states that
in case R = 10¥@-D). p. = 1/] the maximal attainable
throughput is y. We have examined the cases of 2-6
transmission levels and 24 to 80 dB total power range.

Examining Fig. 5 reveals the following. For a given number of
power levels, the maximal attainable throughput increases
moderately until a point where the ratio between two levels
exceeds C. At that point, since a capture becomes much more
probable, we observe a drastic increase in the maximal
attainable throughput. Thus, the throughput increase for three
levels occurs when the three levels are spaced in such a way
that the ratio between every adjacent level pairs exceeds the
capture factor (10 in our case—that corresponds to 40 dB
points in the graph).

Similarly, a six-level system exhibits a sharp throughput
increase when the power ratio between two adjacent levels
exceeds /10, namely the power ratio between level i and level
i — 2 exceeds the capture factor. (An additional increase of
the maximal throughput will occur, when the ratio between
two adjacent levels will exceed the capture factor—this will
necessitate a 100 dB power range.)

It can be concluded from the graph that in practice, when
the power range does not exceed 40 dB, a two-level system
will optimally exploit the capture effect. Similarly, in the
range between 40-60 dB three levels are optimal and between
50-80 dB four levels are optimal. Increasing the number of
levels in a given power range will yield lower maximal
throughput. The reason is that too many levels cause numerous
combinations that inhibit capture situations; (for instance, a
pair of nodes transmitting in two adjacent levels with a ratio
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smaller than C). On the other hand, using too few levels will
prevent exploitation of the capture effect to its full extent.
Obviously, if we could expand the fotal power range, the
optimal number of levels would become bigger.

We also checked the influence on the maximal attainable
throughput of choosing the levels according to a nonuniform
probability distribution. We observed that the distribution that
yields the maximal attainable throughput is the one that
degenerates an over-dense model to a model in which the
spacing is such that the number of capture positions is
maximal. (Thus, the six-level model, in which the ratio
between every two adjacent levels is V10, degenerates to a
three-level model by giving an equal probability for being in
an odd level, and a zero probability for the even levels, or vice
versa.) If we fix the number of levels and require that the
power of level i will be C times the power of level i — 1, then
we found that a uniform distribution is preferred.

To understand the effect of various power levels allocations
within a prescribed power range, we investigated in more
details the case of three (equally likely to be chosen) levels. In
this case L; = 1, L is the maximal allowable power and one
has only to allocate L,. Table I contains a summary of the
results for two cases (L3 = 256 and L; = 625) when C = 10.
We present only L, levels for which significant changes occur
in the throughput. As we observe, the original allocation
(same ratio between adjacent levels) which is L, = 16 when
L; = 256 is only 2 percent worse than the optimal allocation
(L, = 10.01). When L; = 625, the difference between L, =
25 (original) and L, = 20.01 (optimal) is only 0.5 percent.

Finally, we also designed access algorithms for the random
power level selection environment, that utilize the modifica-
tion suggested by Massey [5] (that in absence of capture,
yields throughput of 0.468). The goal was to obtain higher
throughput for this environment. The analysis of the al-
gorithms (Wait and Persist) is similar to the analysis presented
in Section III. For the case of two levels, when Ly, > CLy,y,
the Wait scheme yields the maximum throughput—0.592
(compared to 0.557 when the algorithm of Section III is used).
In both cases, we optimized over the parameters of the
algorithms, namely, the epoch length 7, the coin flipping
probability p, and the probability of choosing one of the power
levels. Note that in presence of noise errors, algorithms that
are based on Massey’s modification may lead to deadlocks [5].
The same can occur if erasures are present and the Wait
scheme is employed. The algorithms of Section III do not
require any changes if noise errors are present, and the Wait
scheme can be used there even in the presence of erasures.

V. SUMMARY

In this work, we presented tree-based collision resolution
algorithms that are capable of handling captures and erasures.
Two schemes, the Wait scheme and the Persist scheme, have
been suggested and analyzed. From our analysis, we conclude
that the Wait scheme is better.

In addition, we proposed a method, the random power level
selection scheme, for initiating captures in order to increase
the maximum possible utilization of the channel. In this
method, a node transmits in one of several allowable transmis-
sion levels. We stated the conditions for captures and gave the
rules for how to choose the number of levels, how to select the
levels, etc.

APPENDIX

To prove Theorem 1, we need the following two Lemmas
where we assume that the Persist scheme is used.

Lemma a): Assume that Mo < 1 ¥n = 1. Further assume
that 3IM, > 1,0 =< £ < 1 such that vn = M, holds o/ (1 —
o)l — Qu(n) — Qu(n)] < £. Then 38 (0 < B < 1) such
that P,(n) = Bvn = 1.
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TABLE 1
L = 256 L =625
3 3
L Throughput L Throughput
2 2
1 0.551 10 0.551
8 0.550 11 0.607
10 0.548 19 0.606
10.01 0.604 20.01 0.617
12.8 0.59% 20.8 0.616
16 0.591 25 0.614
20.01 0.599 30.05 0.615
25.6 0.581 31.23 0.610
30.01 0.529 31.47 0.600

Proof: Itis easy to see thatif m, 0 < 1 vn = 1 then P,(n)
< 1vn = 1. Let us choose 8 < 1 as follows: 3 = max
[maxlsisMi_l {P,(l)}, £]. Then P,,(n) =< Bforn < M, — 1.
By induction, for n = M, we have

Py(m) =g+ (1 = Ty g— T, ) P(m) S QUMP(i)

i=0

=0+ (1= 7n0) [Pf,(n) Qy (1) + Py (1) Qo(n)

+Py(n) 2 Q,-(n)ﬁ] (A1)
i=1
= 7y,0+ (1= T 0)Pr(m){ (1) + Qo(r)
+B[1 — Qn(n) ~ Qo(m]}. (A2)
Hence,
P(n)< Tn0
1= (1= m,0){ (1) + Qo(n) + B[1 — O, (1) — Qo(m)]}
=B+(1-0)
- T =B =, 0)[1 — Qu(n) — Qy(n)]
Tn0+ (1= BY1— 7, 0)[1 = Qu(n) — Qy(m)]
=B+(1-p)
o E=8)0 =m0l = Qn(n) — Qo(m)] -
Tp,0 T (1= B)(1 = 7w, 0)[1 = Qn(n) — Qo(n)]
(A3)

Remarks: (A1) follows from the induction hypothesis; (A2)
follows since Pf,(n) = P,(n); (A3) follows from the condition
upon 7, and from the fact that £ < S.

From the Lemma above it follows that:

Corollary 1): Under the assumption of Lemma a) aM, > 1
such that 7 | Qu(m)P;(i) + QOn(n) < 1 Vvn = M,.

Let J, be the average number of residual packets at the end
of a CRI that starts with conflict multiplicity #. We now prove
the following lemma.

Lemma b): Let m, = my0 + wn. Assume that 7, < 1 vn
= 1. Further assume that 3M; > 1,0 < 5 < 1 such that vn
= M, holds n,/p(1 — 7,) < 5. Then 3o (0 < o < 1) such
that J, < anvn = 1.

Proof:Itiseasytoseethatifm, < 1vn = 1thenJ, < n
vn = 1. Let us choose @ < 1 as follows: @ = max
[maxy<;<m,-1} {Ji/i}, n] where M, = max (M,, M3). Then J,
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<= anforn = M, — 1. By induction, for n = M,, we have Remarks: (A4) follows from the induction hypothesis; (A5)

Jn=nmp o+ (=D my 1+ (1= Tp0~7,1) D) Qi(n)

Y Pik) sk
k=0

snm,+(1-m,) l:i

i=0

i=0

QMPG) T, + 3 Oiln)

i=0

i—1
) Pi(k)Jn—i+k] '
k=0

snw,+(1—-7,) I:J,,

3 QP

i=0

+o E 0i(n) 21 Pi(k)(n—i+ k)]

i=0 k=0

=R7,+ (1 - 7rn) {Jn

ra Y 0m{di-

i=0

=nm,+ (1 —7,) [J,,

3 0 Pi)

i=0

i+n[l —Pi(i)]}}

3 Q) Pii) +an(l - p)

i=0

—an S QP +ady Q) +a S Q,-<n)J,]

i=0

=nn,+(1—1,) [Jn

i=0

{aQn m+3 Qi(n)P,-(i)}

i=0

ran(l-p)-an 3 QWP () +a* 3 Q,-(n)i]

i=0 i=0

=nr,+ (1~ ) [Jn

ran(—-p)—an'S QmP(i)+a*{np—nQa(m)}

{aQ,,(n) > Qi(n)Pi(i)}

i=0

i=0

Hence,

In

follows by applying the induction hypothesis again; (A6)
follows from the above corollary; (A7) follows from the
condition upon w, and from the fact that n < «.

The proof of Theorem 1 now follows from the above
Lemma and using Lemma 2 in the Appendix of {3].

To prove Theorem 2, we need the following lemma where
we assume that the Wait scheme is used.

Lemma c): Let m, = w,0 + a1, a(n) = Qu(n) + Qu(n)
and b(n) = V1 + vn — 1/n. Assume that r, < 1 vn = 1.
Further assume that 3M > 1 such that vz = M holds 7, < (1
— am)(1 — b(n))/[a(n) + b(n)(1 — a(n))]. Then 3 (¢ >
O)suchthat J, = n — avnvn = 1.

Proof: Itis easy tosee thatif v, < 1 vn = 1thenJ, < n
vn = 1. Letus choose o > 0 as follows: & = miny<;<p—; {(
— J)/N i}. Then J, = n — avnforn < M — 1. By
induction, for n = M, we have

Jn=nmpo+(n— Dy 1+ (A —mpo=m,1) D, QWi+ J,-i]

i=0

(Ad)

=nw,+(1-m,) {a(ft)-1n+§1 Qi(n)[~]i+-,n——i]}

i=1

<nm,+(1—-m,) {a(n).],, + ’S:l Qi(n)[n—~ oaVi—avn= i]}
i=1
(A8)
=nw,+(1-7,) {a(n)J,, +n(1 —a(n))

-« 2_) Qi(”)Vn+2\/i(n—i)}

<nw, :(1 —T,) {a(n)J,, +n(l —a(n))

—Oan+2\/n—1(1—a(’1))} . (A9)
(AS) Hence,

1—-m,)1- b

— o/ L)~ alm)) -
1—(1=m,)a(n)

Remarks: (A8) follows from the induction hypothesis; (A9)

follows since i(n — i) is minimized when i = 1 when 1 < i
] = n - 1; (A10) follows from the condition upon .

Ju=n

(A10)

The proof of Theorem 2 now follows from the above
Lemma and using Lemma 3 in the Appendix of [3] (with
arbitrary §* < o0).

nw,+ (1 —m,) [an(l -p)—an EH; Q,-(n)P;(i)+a2{np—nQ,,(n)}]

< =0 = (A6)
1-1-m,) Oth(”)'*'E Q:(myP;(i)
» i=0 .
—an+n(l —a) ”_”_O‘p(lﬂf”) _
1-(1-m,) Oth(”)+E O:(mPi(i)
| i=0 _

<ant np(1—a)(1 —m,)(n— ) <an A7)

1-(1-7,) [aQ,,(n)-+ > Qi(n)Pi(i)]
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