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Abstract

The delivery of large files to individual users, such as video on demand or application programs to the envisioned

network computers is expected by many to be one of the main tasks of broadband communication networks. This

requires high bandwidth capacity as well as fast and dense storage servers. This motivates multimedia service providers

to optimize the delivery network, as well as the electronic content allocation.

A hierarchical architecture for the distribution of multimedia content was introduced by Nussbaumer, Patel, Schaffa,

and Sterbenz (INFOCOM 94). They addressed the trade-off between bandwidth and storage requirements that results

from the placement of the content servers in the hierarchy tree. They presented a centralized algorithm to compute the

best level of the hierarchy for the server location to minimize the combined cost of communication and storage.

In this work, we solve a general case where servers can be placed at different levels of the hierarchy. We develop a

distributed optimal location algorithm that requires small nodal memory capacity and computational power. Previous

results for related problems for caching system design are of higher complexity. Previous results for related classic

operations research problems are limited to centralized algorithms, based on linear programming, that are not easy to

convert into distributed algorithms. Instead, to obtain our results, we observed that the use of dynamic programming

naturally lends itself to a distributed implementation.

For the specific problem at hand, we also managed to find a natural function (a generalization of the problem) that

simplifies the combination operation used in the design of a dynamic program.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Over the next few years, a tremendous devel-
opment in multimedia services is expected. The

future broadband network is expected to support
multimedia services to mobile devices, homes and
to workplaces through XDSL, cable, and wireless
network providers. Extensive research on the trans-
port of multimedia traffic through communication
networks has been conducted in recent years for the
communication network and server performance
[3,5–8,10,12–15,19,21]. Media providers that op-
erate on-line are trying to minimize the operational
cost of their distribution services. These include
distribution of application code and data to
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network computers, computation services via Ap-
plication Service Provider (ASP model), video on
demand (VOD), network Web caching, and Stor-
age Service Providers (SSP).

A hierarchical architecture for providing such
multimedia content was introduced by Nussbau-
mer et al. [20]. They also introduced the trade-off
between bandwidth and storage requirements re-
sulted from the placement of the content servers in
the hierarchy tree. They computed the best level
of the hierarchy for the server location that mini-
mize the combined cost of communication and
storage, i.e., the cost of storage within servers
combined with the cost of transferring information
among and between servers to end-users. The ex-
pected competition among multimedia providers,
may benefit the ones that can provide these services
at the expected quality of service at the lowest price.
For example, in the case of VOD, the servers can be
owned or leased by the VOD providers. In either
case, the provider pays for the storage of video
copies in the servers and for the use of communi-
cation links for transferring information over the
network to the content consumers. The problem of
the VOD provider is to manage the storage of video
copies within the servers, such that the overall
(communication and storage) cost is minimized.
The question is: how many copies should be allo-
cated from each video and at which servers?

One abstraction of this problem [20] is as fol-
lows. Consider a graph whose nodes are servers of
the distribution network and whose links are the
communication links connecting them. Each node
represents a server that may or may not contain
multimedia programs. Consider a user attached to
a given node that requests a particular program.
The program is transferred to that end user over
the network. Two extreme solutions come to mind
when attempting to minimize the storage and
communication cost. If the communication cost
is negligible, the best solution is to have a single
server (at a root) that stores all the video content
and all the users are served directly from it. On the
other hand, if storage cost in a server is negligible,
the best solution is to copy all the content to all the
servers which are the closest to the users. In other
cases these two extreme solutions are not optimal
and the optimal solution is to place the electronic

content at several places in the network so that an
optimal trade-off is achieved.

Note that our model assumes that users access
the content on-demand. Therefore, in general, it is
impossible to combine media transmissions (even
of the same program), from the same server to any
two different users. This is due to the fact that the
users may start viewing the program (or access an
application or file) at different times, or apply
different controls over it. Since we assume that
non-server nodes cannot store (or cache) content,
when the second user accesses it, a second trans-
mission from the server must start anew even if the
previous user is still downloading a parts of the
same content. The case that transmission can be
combined for a video service (e.g. by requesting
users to wait until they can be combined) was
studied, e.g. in [18].

Similar models with different applications and
variations have already been dealt with in the
operations research and computer science areas.
For example, the ‘‘multi-copy file allocation’’ [1]
(NP-complete on a general graph) was explored in
the context of theoretical computer science. The
‘‘uncapacitated plant location’’ [2,4] was investi-
gated in the context of operations research. There
are several other problems from operations re-
search which can be mapped into networking, such
as the p-median problem and the medi-centers
problem [4,11].

In this work, we present a distributed algorithm
for solving electronic content allocation over a
(directed) distribution tree. This algorithm mini-
mizes the overall cost (storage and communica-
tion) of the media provider. In a previous solution
for a distribution of VOD over a tree [9,20] only a
limited solution was considered. It was assumed
that all the servers must be placed at the same
depth on the tree. The solution was, therefore,
limited to finding the optimal depth (which in turn
dictated the number and locations of all servers).
Our work allows optimal solution in which any
number of servers to reside at different levels of the
tree. Our cost model is also a generalization of the
cost in [20]: we allow different costs at different
servers for storing the same object.

In the classical operations research setting for
similar problems (there is no previous solution for
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the directed tree problem) the solutions are cen-
tralized algorithms, based on linear programming,
that are hard to convert into distributed algo-
rithms. This seems to be adequate when dealing
with trucks and roads. When dealing with com-
munication networks, however, distributed algo-
rithms are highly desirable. This is true in
particular when all nodes are storage servers and
files can be allocated there on demand. In this
work we observe that the use of dynamic pro-
gramming is natural for extending the algorithm
towards distributed implementation.

Generally, in dynamic programming over a
tree, results for some function computed for chil-
dren nodes are combined to recursively yield the
next result for the parent node. While it is not
obvious how to combine the children results for
any arbitrary function, we managed to find such
function for the problem at hand.

Our algorithm can also be used as a centralized
algorithm with sequential time complexity of
OðdNÞ for locating objects of one type (where d is
the depth of the tree and N is the number of nodes;
since d < N the complexity is also O(N 2)). (It is
conceivable that the algorithm of [2], with a higher
complexity for undirected trees, can be ‘‘mas-
saged’’ to yield a sequential time complexity sim-
ilar to our centralized version for the directed
case.) When the algorithm is used as a distributed
algorithm, the message complexity is OðNÞ, the bit
complexity is Oðd logCOST NÞ, and the time
complexity is OðdÞ. (The value of COST is the
largest cost reported by a child to its parent.)

Interesting and different abstractions of related
problems were made in [22,23]. They assume that
the number of servers, t, is known in advance. The
functions they optimize are the times of delivery to
the users (measured by the distance in hops from
the server), versus the network capacity used. The
problem dealt with in the current paper seems, at
first glance, to be harder, since we do not know t,
but rather compute the best t from the storage cost.
One conclusion that may be derived from the cur-
rent paper is that our problem is, probably, not
harder, since the computational time complexities
of the algorithms of [22,23] are higher (and depend
also on t). In [22] they also analyze the more
complex case that the servers (except for the one in

the root) contain only a cache of a title, rather than
a complete copy. Thus, a user addressing the title
can sometimes be served from the cached copy, but
some other times needs to be served from the root
(that is, the ‘‘hit-ratio’’ is smaller than 1).

The paper of [24] deals with placing t servers
(for a known t) on an undirected tree to minimize
the sum of the distances from each user to the
server closest to it.

In all the previous caching papers mentioned
above, the distribution structure is a hierarchy,
that is, a tree (possibly embedded in a more gen-
eral network). Even when the network is not a
physical tree, it is rather common to structure the
logical distribution as a tree. See, for example, the
cable TV networks, or the broadcasting trees for
Multicast [32] including Internet Multicast [17,19].
This simplifies the control and is cheaper in re-
source utilization. The distribution in these trees
is performed from the root towards the leaves.
Consequently, this problem over a directed-tree-
network is an important practical case. Moreover,
methods exist that approximate good results in
networks, given good results for trees, by covering
the network by multiple trees (see e.g. [16]). The
use of (overlapping) distribution trees (one per
object) for Web caching is promoted in [27]. The
idea is that the more popular is an object, the
nearer to the leaves are its copies located. The use
of a tree structure for video on demand distribu-
tion is also promoted or studied by [28,29,30,31],
and others.

Recently, [26] dealt with the related problem
of placing mirror sites on a general networks. In
order to get a feasible algorithm they constrained
the solutions (e.g. the number of mirrors). The
evaluation method used there to measure algo-
rithm performance is simulation.

Another practical problem we address is the
Servers Allocation Problem over a distribution
network. Consider the same model as the elec-
tronic content allocation with the addition of ser-
ver cost. Each node that contains programs is
considered a ‘‘server node’’ (a node with a server
connected to it). Assume that the cost for con-
necting a server to Node i is known. The problem
is to decide how many servers to allocate and
where they should be placed in the distribution
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network. We show that the same algorithm can
solve the Servers Allocation Problem and the
electronic content allocation simultaneously. We
also show that the sequential time complexity
when the algorithm is used as a central algorithm
for server allocation is OðNKþ1Þ, where K is the
number of different programs contained in the
distribution network. In addition, when the algo-
rithm is used as a distributed algorithm for server
allocation, the message complexity is OðNÞ, the bit
complexity is OðN logCOST dKÞ, and the time
complexity is OðdÞ.

This paper is organized as follows. Section 2
describes the network model and the cost func-
tions. Section 3 describes the Optimal Location
Algorithm (OLA). The pseudo-formal code ap-
pears in Appendix A. Section 3.3 presents the
correctness and the computational complexity of
OLA. An example of the execution of OLA is
described in Appendix B. The last section deals
with the Servers Allocation Problem and its solu-
tion based on OLA.

2. The model

A directed tree T ¼ ðV ;EÞ represents the com-
munication network, where V is the set of nodes
and E is the set of directed communication links.
The tree is directed from a root toward the leaves.
Link i is the incoming link of Node i as depicted in
Fig. 1. Each node of the tree represents a com-
munication switch and also a potential server that

contains copies of objects. Intuitively, an object
may be a program, a video movie, etc. The leaves
of the directed tree represent the head-ends, i.e., the
devices that connect the users to the network. A
request of a user at Head-end u for an Object o is
satisfied by the network (by communication from
a Node v that is the nearest to u, among the servers
that contain a copy of Object o, and are ancestors
of u).

In this paper we assume that all the requests are
given precisely, and in advance, and that the net-
work does not change. Additional work is required
in order to analyze how can our scheme be adap-
ted to a dynamic environment such as the Internet.

Model assumptions

(1) The network must satisfy the head-end’s re-
quests for objects. That is, one of the nodes
on the path from the root to any head-end
must contain the object.

(2) The links capacities are sufficient to provide all
the requested objects to all the head-ends.

(3) The links are bi-directional in terms of mes-
sage exchange, but directed from the root to
the leaves for the provision of objects to the
head-ends.

(4) For simplicity and without loss of generality,
we assume that each node has a unique iden-
tity. Before the algorithm starts, each node is
aware of the identity of all its children and
its distance (number of links) from the root
of the tree.

(5) The incoming link of Node i is marked by the
identity of Node i.

(6) Messages received at Node i include the iden-
tity of the sending node.

2.1. Storage cost

To be as general as possible, we do not define
the storage cost to be depend only on the size of an
object, or on any other specific parameter. We
even assume that different servers may have dif-
ferent storage costs for the same object. Thus, if
SCi is the storage cost of an object at Node i, the
overall storage cost for this object is

P
i2K SCi

where K is the set of nodes that contain the object.Fig. 1. Network model.
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Since our paper deals with minimizing the total
cost of the network, setting SCi  1 means that
there is no server at Node i. When there are dif-
ferent types of objects, SCi;k is the storage cost of
object type k at Node i and the overall storage cost
for K types of objects is

P
k

P
i2Kk

SCi;k, where Kk is
the set of nodes which contain the object type k.

2.2. Communication (bandwidth) cost

The communication cost over Link i, or the
bandwidth requirement calculation for Link i: The
request rate for object (type) k, by the users who
are connected to head-end u is the bandwidth re-
quirement from u to Object k. (Recall that we do
not assume that the requirements of two different
users can be combined, since the users may start
viewing the object at different times.) If Node u
does not contain Object k, the bandwidth re-
quirement from Link u (the incoming link of Node
u) is equal to the bandwidth requirement from
Node u. Otherwise (Node u contains Object k), the
bandwidth requirement from Link u is zero. This
holds for each Link i 2 E. The bandwidth re-
quirement of an internal Node i is the sum of the
bandwidth requirements of all its outgoing links.

Example 1. The network represented in Fig. 2 is a
directed tree with 12 nodes labeled 1–12 and 11
directed links labeled 2–12 (E ¼ f2; 3; . . . ; 12g).
We assume that the network provides one type of
object. The nodes that are marked with f
g con-
tain a copy of the object (K ¼ f1; 3; 7; 12g). The
users’ bandwidth requirements are given under
each head-end. Let us calculate the bandwidth
requirements from the network links.

BR12 ¼ 0 {because Node 12 contains the object};
BR11 ¼ 1 {the bandwidth requirement of the users
that are connected to it}; BR10 ¼ 6; BR9 ¼ 7; BR8 ¼
5; BR7 ¼ 0; BR6 ¼ 2; BR5 ¼ 3; BR4 ¼ BR12 þ BR11 ¼
0þ 1 ¼ 1 {the bandwidth requirements from Link
4 is the sum of the bandwidth requirements of the
links connecting Node 4 to its children, Links 11
and 12}; BR3 ¼ 0 {Node 3 contains the object};
BR2 ¼ BR6 þ BR5 ¼ 2þ 3 ¼ 5.

The communication cost per bandwidth unit
may be different between links. Let Wi be the cost
per bandwidth unit on Link i and BRi the band-
width requirement from Link i to a specific object.
The communication cost over Link i to a specific
object is CCi ¼ Wi � BRi. The overall communication
cost is

P
i2E CCi ¼

P
i2E Wi � BRi.

Example 2. Same as Example 1 and assuming that
Wi ¼ 1 8i. Therefore, CCi ¼ BRi, and the overall
communication cost is

P12
i¼2 BRi ¼ 30.

When there are different types of Objects, BRi;k

is the bandwidth requirements from Link i to
Object type k. The overall communication cost is

X
i2E

CCi;k ¼
X
i2E

Wi

X
k

BRi;k

 !
:

2.3. Total cost

The total cost of the system is the sum of the
overall cost of communication and storage. For a
single object the total cost isX
i2K

SCi þ
X
i2E

Wi � BRi

where K is the set of nodes that contain a copy of
the object. When there are different types of ob-
jects, the total cost is

X
k

X
i2Kk

SCi;k

 
þ
X
i2E

CCi;k

!
:

Example 3. Consider again Example 1 (see Fig. 2)
with one object type. The set of nodes that contain
the object is K ¼ f1; 3; 7; 12g. Assuming that the
storage cost for the object in each Node i is 10Fig. 2. System cost example.
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(SCi ¼ 10 8i), the overall storage cost is
P

K SCi ¼
40, and the total cost of the system is

P
K SCi þP

E Wi � BRi ¼ 40þ 30 ¼ 70.

3. Optimal location algorithm

The OLA optimally allocates copies of a single
object type to nodes in a directed tree by mini-
mizing the total cost. This section presents the de-
scription of OLA (Section 3.1) and its Pseudo-code
(Appendix A) at each node of the directed tree.

We define here a new problem, that may look
somewhat artificial but it is one that lends itself
easier to a solution by dynamic programming. The
new problem is a generalization of the one we want
to solve, and thus, its solution also solves the
original problem.

Let T 0i be the subtree of T, rooted at Node i,
that includes all the nodes which are descendants
of i. To solve the problem of optimal allocation of
objects in a tree T ¼ ðV ;EÞ, note that one can view
OLA as first solving, for every sub-tree T 0i the ex-
panded problem of optimal allocation of objects in
a somewhat different tree. That tree, Ti, is con-
structed from T 0i and an additional string con-
nected to it as shown in Fig. 3. The string consists
of the nodes fv01; v02; . . . ; v0jg and the edges fe0p ¼
v0p�1 ¼ ðv0i; v0p�1Þ j p ¼ 1; 2; . . . ; j; such that v00 ¼ i
is the original root of T 0i g.The string length is j.
At Node v0j there is a server with a copy of the
object. Note that this copy is at distance j from the
root of tree T 0i . In the description of the algorithm
(Section 3.1) the treatment of a sub-tree T 0i corre-
sponds to the treatment of (its root) i, and a string
of length j corresponds to the initial distance of the
sub-tree from some server which contains a copy
of the object.

The storage cost for an object in the string Sj is
not included in the total cost of tree T 0i , but the
cost of communication over the links of the string
is included. It is obvious that this is a generaliza-
tion of the original problem: when the string
length is zero and T 0i ¼ T , the problem is reduced
to the original one.

Given the construction above, the reader can
construct the dynamic program herself/himself. It
appears below, for the sake of completeness.

3.1. OLA description

The (distributed version of the) OLA has two
phases. In Phase 1, which begins at the leaves and
ends at the root of the tree, each Node i calcu-
lates the optimal cost for the sub-tree rooted at it
as a function of the distance from the nearest
copy of the object up from Node i (that is, to-
ward the root). Thus, Node i calculates the op-
timal cost for each distance possibility, and
determines from where to obtain the object {up,
here or down} depending on that possibility. Node
i holds these costs and locations in a table as
shown below.

j Costi Locationi
)1
0
1
..
.

di

Fig. 3. Tree with a string.
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In the table above, j (the same j as in Fig. 3) is the
initial distance 1 to the object copy up the tree (i.e.
an ancestor). The case j ¼ �1 corresponds to the
case that there is no copy of the object up the tree
nor at the node itself; j ¼ 0 is the case where the
node may have a copy of the object; jP 1 is the
case where the nearest copy of the object is at
distance j up from Node i (at the end of a string at
length j, see Fig. 3). Cost at line j (the j’s line of the
table) is the optimal cost of the sub-tree rooted at
the node, assuming that the nearest object copy is
at an initial distance j up the tree.

Location 2 fup; here; downg at line j is the de-
cision of ‘‘from where to obtain the object when
the initial distance is j’’.

• location ¼ up, the head-ends will obtain the ob-
ject from some node up the tree from the cur-
rent node.

• location ¼ here, the head-ends will obtain the
object from the current node (a copy of the ob-
ject is to be located at the node itself). That is, it
is cheaper to copy the object to the current
node, than to use a copy at distance j up the tree
from it.

• location ¼ down, head-ends located below the
current node in the tree will obtain the object
from nodes down from the current node (but,
for each head end, from above the head-end it-
self).

Table calculation for Node i

The table is calculated in one of two ways, de-
pending on whether Node i is a leaf or an internal
node. A node will only start to calculate after all its
children have completed their calculation.

(1) For a Leaf i
• For line j ¼ 0, Leaf i has a copy of the ob-

ject; the cost is set to the storage cost at Leaf

i (SCi); location is set to here (costi½0� ¼ SCi,
locationi½0� ¼ here).

• For all lines j > 0: If the local storage
cost (SCi) is less than the communication
cost, 2 then the cost is set to the storage cost
and location is set to here (costi½j� ¼ SCi,
locationi½j� ¼ here). Otherwise (it is cheaper
to obtain the object from up the tree than
to copy the object in Node i), the cost is
set to the communication cost and loca-
tion is set to up (costi½j� ¼ BRi

P
l2U Wl, loca-

tioni½j� ¼ up).
(2) For an internal Node i

• For line j ¼ �1: where there is no object
copy up from Node i nor at Node i itself,
the cost is the sum of all children costs at
their line 0 (at the tables of the children)
and location is set to down (costi½�1� ¼P

l2CHi
costl½0�, locationi½�1� ¼ down, where

CHi is the set of Node i’s children).
• For line j ¼ 0: where Node i starts assuming
it has a copy of the object, if the cost at line
�1 is less then the sum of all children costs
at their line 1 plus the storage cost at Node
i (costi½�1� < SCi þ

P
l2CHi

costl½1�) then, the
cost is set to the cost of line �1 and loca-
tion is set to down (costi½0� ¼ costi½�1�,
locationi½0� ¼ down). Otherwise, the cost is
set to the sum above, and location is set to
here (costi½0� ¼ SCi þ

P
l2CHi

costl½1�, loca-
tioni½0� ¼ here).

• For all lines jP 1: If the cost at line 0 is less
than the sum of all children costs at their
lines jþ 1 then the cost is set to the cost
at line 0 and location is set to the location
of line 0 (costi½j� ¼ costi½0�, locationi½j� ¼
locationi½0�). Otherwise, the cost is set to
the sum of all children cost at their lines
jþ 1, location is set to up (costi½j� ¼P

l2CHi
costl½jþ1�, locationi½j�¼ up).

In Phase 2, which begins at the root and ends at
the leaves, each node determines whether to copy

1 Node i starts with the assumption that the nearest server

which contains the object is at distance j up the tree. The node

algorithm may change the distance to the nearest copy by

copying the object to a nearer node––either the node itself or

even to lower servers.

2 The communication cost is the cost for obtaining the object

from a node at distance j up from Leaf i (BRi
P

l2U Wl, where U
is the set of links between Leaf i and the node at distance j from
Leaf i).
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the object to itself. The root of the tree ends Phase
1 (after all the other nodes have completed their
participation in Phase 1, this is known to the root
since a parent always starts its participation in
Phase 1 after its children finished) and starts Phase
2. The root determines the optimal cost of the tree
by choosing the minimum cost between the two
lines in its table (j ¼ �1 or j ¼ 0) and sends the
message place ¼ m (where m is the index of the line
having minimum cost) to all its children. (A copy
of the object must be allocated to the root if and
only if the place is zero.) A node which receives
the message place performs: place ¼ placeþ 1 and
checks the location column at the line that equals
place. If location is here, the node sets place to
zero (place ¼ 0), sends place messages to all chil-
dren and copies the object to itself. If location is
down it sets place to �1 (place ¼ �1) and sends
place messages to all children. If location is up it
sends place messages to all children. When the
message place is received at all the leaves, the al-
gorithm ends and the problem of optimally allo-
cating the object copies, in terms of minimizing
the communication and storage cost, is solved. An
example of the algorithm execution appears in
Appendix B and the Pseudo-code appears in Ap-
pendix A.

3.2. Simple extensions

It is very simple to extend the algorithm to the
case of K object types (just by using it for each
object separately), and to the case that a user may
be connected to an internal node by introducing
‘‘virtual’’ leaf nodes with zero communication cost
to the internal node where users are desired.

3.3. Correctness

We present proof for the generalized problem
(with the tree attached to a string) that is based on
induction and the assumption that OLA has ter-
minated. (Proof for the original problem follows
immediately.) The proof that OLA terminates is
trivial: the termination of Phase 1 can easily be
shown by induction, starting with the leaves and
ending with the root. The termination of Phase 2 is

trivial by induction, starting with the root and
ending with the leaves. Lemma 1 is used as the
induction base.

Lemma 1. For all string lengths, OLA optimally
allocates the object copies in Tree T 0i when i is a leaf
of T.

Proof is easy using a case study. The full proof
appears in Appendix C.

Lemma 2 is the induction step.

Lemma 2. Assume that OLA optimally allocates
object copies to servers in every tree that is rooted at
a child of Node i (T1; T2; . . . ; TjCHij, see Fig. 4), for
all string lengths. OLA then allocates the object
copies in the tree rooted at Node i optimally for all
string lengths.

The proof appears in Appendix C.

Theorem 1. When the algorithm terminates, the
allocation of object copies over the network servers
is optimal.

Proof. Proof is conducted by induction where
Lemma 1 is the base and Lemma 2 is the step. �

3.4. Complexity

3.4.1. Computational
Since Node i’s computation consists of just

di þ 1 sums of jCHij elements, clearly the com-
plexity for Node i is

ðdi þ 1Þ � jCHij

where di is Node i’s distance from the root and
jCHij is the number of Node i’s children. The
overall complexity of all nodes isX
i2V
ðdi þ 1Þ � jCHij

For j V j¼ N , it is clear that di 6N � 1 8i.
Therefore

X
i2V
ðdi þ 1Þ � jCHij6N �

X
i2V
jCHij ¼ NðN � 1Þ
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The last equality holds because the total number of
children in a tree equals N � 1. Hence, the algo-
rithm complexity is OðdNÞ ¼ OðN 2Þ.

3.4.2. Message
In OLA there are two types of messages. The

first is sent by each node to its parent and consists
of the cost vector calculated by the node. The
second type, place, is sent by each node to its
children. There are N links and each link passes
two messages, one of each type. The message
complexity is, therefore, OðNÞ. The longest mes-
sage is the one with the longest cost vector. The
length of the cost vector is determined by the dis-
tance (number of hops) from the node to the root.
Let d ¼ maxfdig and COST ¼ maxi;j fcosti½j�g.
The longest message is d long, and the bit com-
plexity is Oðd � N � logCOST Þ.

3.4.3. Time
Assuming that the time to send a message over

a link is 1 time unit, the running time of the al-
gorithm is 2d time units. The time complexity is

OðdÞ, where d is the longest distance between the
root to a node in the tree.

4. Optimal allocation of servers

OLA optimally allocates copies of an object to
a given server location. OLA (with some changes)
can also be used to find the optimal allocation of
servers to some of the nodes of the network. The
idea is to use k strings of nodes attached to the
root of a subtree T 0i , instead of one string (as was
used above). Each string represents the distance
of the nearest copy of a different type of object.
The details are left to the reader. (For the sake
of completeness, one can see the full details in
[25].)

5. Conclusion

Further work should include finding a dynamic
distributed algorithm in a model that allows a

Fig. 4. Example for Lemma 2.
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dynamic (i.e., changing over time) request rate for
objects. Another issue is that of more general
networks. Most of the related problems are NP-
hard for general networks. Still, solutions (or good
approximations) for networks that are somewhat
more general than trees may be useful. In partic-
ular, it may be useful to try to superimpose mul-
tiple trees on a network (rather than one tree, as is
common in practice today), and use the solution
for the trees to help with the network problem.
There has been a lot of research using this direc-
tion for other problems [16].

Another direction is to solve the problem with
constraints, e.g. limited capacity at the servers,
limited capacity on the links, and bounded dis-
tance between a user to a server.

Appendix A. OLA pseudo-code

• costi½j�––The cost of the sub-tree rooted at Node
i.

• locationi½j�––The location from which leaves in
i’s sub-tree obtain the object, assuming i’s ances-
tors are a chain of length j; starting with a server.

• place––A message from a parent to its children
containing its distance from a server.

• SCi––The cost of storing one object copy at
Node i.

• BRi––The bandwidth requirements from Link i.
• Wi––The cost per bandwidth unit at Link i.
• di––The distance between Node i and the tree

root.
• U––The set of links between i and the node at

distance j.

Algorithm for Leaf (head-end) i


 For receive START
locationi ¼ array½0 : di�  here
costi ¼ array½0 : di�  SCi {storage cost at Leaf i}
Do j 1 to di while (

P
l2U Wl � BRi < SCi)

{while communication cost is less than storage
cost}

costi½j�  
P

l2U Wl � BRi

{comm. cost: getting object from distance j}
locationi½j�  up

send costi to parent


 For receive place
{from parent, the distance of the object copy
above parent}
If locationi½placeþ 1� ¼ here then

Copy the object at Leaf i {Leaf i prefers a lo-
cal object copy}

Algorithm for non-leaf, non-root Node i

locationi ¼ array½0 : di�  down
costi ¼ array½�1 : di�  0; costi½0�  SCi
CHi  set of Node i’s children


 For receive costc from child c
CHi ¼ CHi � fcg
Do j �1 to di fi0s cost ¼

P
(children’s

costs) + possibly, SCig
costi½j�  costi½j� þ costc½jþ 1�

If CHi ¼ ; then {costs of all children arrived}
If costi½�1� < costi½0� then {rely on objects
below Node i}

costi½0�  costi½�1�,
cost boundi  costi½�1�,
tempi  down

Else {better rely on object here}
cost boundi  costi½0�; tempi  here

Do j 0 to di {use local server if cheaper
than remote}

If costi½j�P cost boundi then
costi½j�  cost boundi;
locationi½j�  tempi

Else locationi½j�  up
send costi to parent


 For receive place {from parent}
place placeþ 1
If locationi½place� ¼ here then

place 0
Copy the object at Node i {prefering a local
copy}

If locationi½place� ¼ down then
place �1 {rely on object below Node i}

send place to all nodes in set of Node i’s children

Algorithm for the root Node r

locationr ¼ array½�1 : 0�  down
costr ¼ array½�1 : 0�  0; costr½0�  SCr
CHr  set of Node r’s children

214 I. Cidon et al. / Computer Networks 40 (2002) 205–218




 For receive costc from child c

CHr ¼ CHr � fcg
Do j �1 to 0

costr½j�  costr½j� þ costc½jþ 1�
fr’s cost ¼ sum ðchildren’s costsÞþ
possibly; SCrg

If CHr ¼ ; then {costs of all children arrived}
If costr½�1� < costr½0� then
{rely on objects below Node r}

place �1
Else

place 0 {Node r prefers a local object
copy}
Copy the object at Node r

send place to all nodes in set of Node i’s chil-
dren

Appendix B. Execution example of the OLA

The example is based on the network of Fig. 2,
assuming ð8i; SCi ¼ 10;Wi ¼ 1Þ.

B.1. Phase 1

In Phase 1 each node calculates the optimal cost
for the sub-tree rooted at it, for all distance pos-
sibilities for the nearest object copy up the tree. Let
us begin with the leaves’ tables.

Each leaf sends its cost vector to its parent. The
parent receives the cost vectors from its children
and calculates its own table (see Table 1).

The root ends Phase 1 and starts Phase 2 of the
algorithm. The root determines that the optimal
cost of the tree is 70 and copies the object to itself
because in line 0 location is here (see Table 2).

B.2. Phase 2

The root sets place to zero (place 0) and
sends it to all its children (Nodes 2–4).

Node 2 receives place ¼ 0, increments it by one
(place ¼ 1), and checks the location at line 1. Lo-
cation is up, therefore it sends place to all its chil-
dren.

Node 3 receives place ¼ 0, increments it by one,
and checks the location at line 1. Location is
here, therefore it sets place to zero (place 0),
copies the object to itself, and sends place to its
children.

Node 4 receives place ¼ 0, increments it by one,
and checks the location at line 1. Location is up,
therefore it sends place to all its children.

Nodes 5, 6, 11 receive place ¼ 1, increment it by
one, and check the location at line 2. Location is
up, and these nodes are leaves, therefore they stop.

Node 7 receives place ¼ 0, increments it by one,
and checks the location at line 1. Location is here,
and the node is a leaf, therefore it copies the object
to itself and stops.

j 0 1 2

Cost5 10 3 6
Location5 Here Up Up
Cost6 10 2 4
Location6 Here Up Up
Cost7 10 10 10
Location7 Here Here Here
Cost8 10 5 10
Location8 Here Up Here
Cost9 10 7 10
Location9 Here Up Here
Cost10 10 6 10
Location10 Here Up Here
Cost11 10 1 2
Location11 Here Up Up
Cost12 10 10 10
Location12 Here Here Here

Table 1

The parent’s table

j �1 0 1

Cost2 20 15 10

Location2 Down Here Up

Cost3 40 38 38

Location3 Down Here Here

Cost4 20 20 12

Location4 Down Down Up

Table 2

The root’s table

j �1 0

Cost1 73 70

Location1 Down Here
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Nodes 8, 9, 10 receive place ¼ 0, increment it by
one, and check the location at line 1. Location is
up, and these nodes are leaves, therefore they stop.

Node 12 receives place ¼ 1, increments it by
one, and checks the location at line 2. Location is
here, and the node is a leaf, therefore it copies the
object to itself and stops.

When the algorithm terminates, the optimal al-
location of the object copies is K ¼ f1; 3; 7; 12g and
the cost of the optimal location is

P
i2K SCi þP

i2E Wi � BRi ¼ 40þ 30 ¼ 70.

Appendix C. Proofs of Lemma 1 and Lemma 2

Proof of Lemma 1. Either one of two possibilities
holds.

(1) There is no string connected. OLA allocates
the object at Node i, which is the only possibil-
ity, and thus the optimum.

(2) A string with length j is connected to Tree T 0i .
If the communication cost is less than the stor-
age cost (

P
l2U Wl � BRi < SCi), it is clearly bet-

ter to use (as OLA does alocate) the copy
from the string (cost is

P
l2U Wl � BRi and loca-

tion is up). Otherwise, OLA allocates the object
at Node i (cost is SCi and location is here),
which is obviously optimal. �

Proof of Lemma 2. We prove by contradiction.
Assume that the lemma does not hold, thus, if
COST ALG is the cost of the solution SOLUTIONALG

calculated by the algorithm, then, for the optimal
cost COSTOPT of an optimal solution the assump-
tion is that COST OPT < COST ALG. For each case, in
the following case analysis, we use SOLUTIONOPT

to calculate solutions for the children of Node i.
We show that at least one of these solutions has a
lower cost than the solution found for the child by
OLA. This contradicts the assumption in the
lemma that the solutions calculated for the chil-
dren are optimal.

Either 1 there is no string connected to Node i,
or 2 there is a string connected.

(1) If there is no string connected, then OLA’s al-
location (of the value costi½0�) is the minimum

between: 1(a) not allocating an object copy at
Node i, and 1(b) allocating an object copy at
Node i. In each of these cases, we consider sep-
arately the case that SOLUTIONOPT allocates
a server at Node i, and the case that
SOLUTIONOPT does not.
(a) Consider the case that the minimum is ob-
tained by OLA by not allocating an object
copy at Node i,––The cost calculated by
OLA is, thus, the sum of the costs of the trees
that are rooted at the children of Node i
(T1; T2; . . . ; TjSij) with no string connected to
them (

P
l2CHi

costl½0�). If SOLUTIONOPT does
not allocate a copy at Node i, then, by defini-
tion, SOLUTIONOPT too is the sum of the
costs calculated (say, by some optimal algo-
rithm) for the children. Thus, for COSTOPT

to be smaller than COST ALG, the cost of the
solutions for at least one of the children in
SOLUTIONOPT must be smaller than in
SOLUTIONALG. A contradiction.
If SOLUTIONOPT does allocate a copy at
Node i, then consider the solutions for the
children of Node i in SOLUTIONOPT . Each
such child solution is a correct solution for
the problem of allocating an object copy to
the child’s tree, with a string of length 1 at-
tached to the child (since each such solution
for a child of Node i assumes that there is a
copy of the object at the parent Node i).
The sum CCðOPT Þ of the costs of these child
solutions is smaller than the sum CCðALGÞ of
the costs of the child solutions calculated by
algorithm OLA for the same children with
the same string of length 1 attached. (These
follows from the facts that COSTOPT ¼
CCðOPT Þ þ SCi, and COST ALG

6CCðALGÞ þ
SCi (since OLA found that the minimum is ob-
tained without assigning an object copy at
Node i) and the assumption that COSTOPT<
COST ALG.) Thus, at least one of the child so-
lutions computed by OLA was not optimal.
A contradiction.
(b) Consider the case that the minimum is ob-
tained by OLA by allocating an object copy
at Node i,––The cost calculated by OLA is,
thus, the sum of the costs of the trees that
are rooted at the children of Node i (T1;
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T2; . . . ; TjSij) with a string of length one (S1)
connected to them, and the storage cost at
Node i (

P
l2CHi

costl½1� þ SCi). The rest of the
proof is very similar to the proof in case 1(a).

(2) If a string of length j > 0 is connected, OLA’s
allocation (of the value costi½j�) is the minimum
between
(a) Using the object copy from the string––
The cost is the sum of the costs of the trees
which are rooted at the children of Node i
with a string of length jþ 1 (Sjþ1) connected
to them (

P
l2CHi

costl½jþ 1�).
(b) Allocating an object copy at Node i (see
1(a)), (

P
l2CHi

costl½1� þ SCi).
(c) Not allocating an object copy at Node i,
and not using the object copy from the string
(see 1(b)), (

P
l2CHi

costl½0�).

These are the only three possibilities when there
is a string of length j connected to Node i. Thus,
there are three cases for the minimum calculated
by the algorithm, and for each such case, there are
three cases for the decisions of the optimal algo-
rithm assumed. For each of the nine cases, as-
suming that COSTOPT < COST ALG implies that the
solution of OLA for the children was not optimal,
a contradiction to the assumption of the lemma.
The proof in each of the nine cases is very similar
to the proof of Part 1 above, and we leave the
details to the reader. �

Hence, the allocation of the object copies is
optimal for the tree T 0 rooted at Node i, for every
length of a string connected to it.
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