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Abstract

Modern high speed networks (and ATM networks in particular) use resource reservation as
a basic means of establishing communications. One-way on-the-fly reservation is a method for
allocating resources for short bursts of data when regular reservation is too costly. The first such
algorithms were recently suggested by Turner. We investigate two examples that are characteristic
to the way traffic streams interact in virtual circuit networks: a three node subnetwork that
also acts as a 4X2 switch and a ring. For both systems we compute system throughput under
homogeneous load, and compare it with the throughput when fast reservation protocols (FRP)
are used. For the three node subnetwork we give an explicit expression for an upper bound.
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1 Introduction

High speed networks are intended to support applications with widely varying traffic characteristics:
from short database queries to long video streams. In order to use the network resources efficiently,
bandwidth reservations are made to ensure high probability of data arrival to their destinations.
For applications such as constant bit rate video or voice conversations this is the right approach.
However, for bursty traffic, i.e., traffic whose intensity varies in time, reservation itself introduces
non-negligible overhead.

Short bursts are those whose transmission time is not more than a few round trip delays. For such
bursts waiting for a reservation, that itself takes a few round trip delays, is clearly not acceptable.
The best end-to-end method for this type of bursts is to send the data without reservation and use
time-outs (possibly at a higher layer) to detect failures. However, if several bursts arrive to an ATM
switch at the same time and compete for buffers they may disturb each other. To avoid this, Turner
[Tur92] suggested to use one-way on-the-fly reservation. In his scheme, a burst that arrives to an
ATM switch and finds a sufficient number of buffers reserves the required buffer space to prevent
disturbance from new coming bursts. This process is repeated in every switch along the burst route.
Note that the scheme does not guarantee that a burst that succeeds in reserving enough bandwidth
in one switch will also succeed in the next one along the route. There is also no mechanism to
release immediately the partial bandwidth already reserved (see below). The same solution does
not fit longer bursts. Here, the overhead of reservation is not as bothersome so two-way reservation
algorithms can be used. Widjaja [Wid94] computed the break-even point where the performance of
the two schemes is equal.

In this work we give an exact performance analysis of one-way on-the-fly reservation algorithms
and compare the results with the performance of fast-reservation protocols (FRP). Our analysis is
based on modeling bursts and bandwidth on a link as customers and G/M/N/N queues, respectively
[Wid94, HLNP93, CLG94]. We are able, then, to use results that were obtained from the analysis
of telephone switching networks [Gir90]. However, note that bursts that use one-way reservation
do not behave as telephone calls. Specifically, if a burst is rejected by a switch in the middle of
its route the burst holds all the switches along the route, from the source to the blocking switch,
for the entire burst duration, while in telephone switching networks a failure to capture a server
in one of the switches along a call route causes the immediate release of those servers that the
call managed to capture before being blocked. In the model considered by many to analyze circuit
switched networks in general and telephone switching networks in particular (e.g., [?, ?]), one cannot
introduce dependency between the system state (the number of busy servers in each link) and the
group of links an incoming call captures. In these models, the group ofcaptured links is always
predefined. Consequently, much of the research done on circuit-switched networks [?, ?] cannot be
applied to the analysis of one-way on-the-fly reservation algorithms.

The main difficulty in using results from the telephony model is that the process that describes
the traffic out of a telephone switch (a link in our case), the carried traffic in telephony jargon,
is not a renewal process. Widjaja [Wid94] bypassed this difficulty by assuming that the rejection
probabilities in the links along the burst route are independent. We show in section 3 that this
assumption is incorrect, and demonstrate the inaccuracies that result from such an assumption. In
our analysis, we look at Markov chains that represent the state of the full system and thus avoid the
need to explicitly describe the traffic out of every switch. Recently, Cho and Leon-Garcia [CLG94]
analyzed a system with only one potential congested link. Doing so lead them to erroneously state



that one-way reservation and fast reservation perform equally when the propagation delay is zero.
This statement is incorrect when more then a single link can potentially be congested. Thus, their
simplifying assumption caused them to miss an important deficiency of on-the-fly reservation.

Two special cases, a three-node subnetwork and a ring of nodes, are analyzed. These are two
typical examples of interaction among bursts that travel more than a single hop. Our analysis shows
that when one-way reservation is used, the inability to throttle a burst source that fails to capture
bandwidth along its entire route significantly damages the throughput. In the ring example, the
throughput loss is more apparent, but the upper bound calculation for the three-node subnetwork
demonstrates that this throughput loss is intrinsic even for a simple interaction of streams. In
scenarios where the travel hop distance grows, simulations show even a greater loss of throughput.
In Section 4 we compare the performance between fast reservation and one-way reservation. Note
that for fast-reservation protocols the work on circuit-switched networks can be applied.

The Model

The following model applies to the two analyzed systems. The input traffic to the systems is com-
prised of input streams. Each stream is comprised of constant bit rate bursts whose duration is
exponentially distributed with mean 1/p. The interarrival time between the bursts of stream i is
exponentially distributed with mean 1/A;. The links in the system can each support up to N bursts
simultaneously, and are modeled as N server queues with no waiting room (G/M/N/N queue). The
bursts are modeled as customers that try to capture a server (bandwidth) for the duration of the
burst. Bursts that arrive to a link and find no available bandwidth are lost. Note that the use of
queueing theory terms might be misleading since our queues do not form a queueing system per se. A
burst (customer) that arrives to the system tries to capture bandwidth simultaneously for each link
on its route. Only bursts that succeed in the entire reservation contribute to the useful throughput.

The systems we analyze have a finite (and small) number of links. The links are modeled by
G/M/N/N queues and thus the total number of system states is finite. In addition, the periods until
a state transition occurs are all exponentially distributed. As a result, we can model the system by
finite continuous time Markov chains, each is uniquely described by the rate transition matrix, Q).
The element ¢; ; in () is the transition rate from state ¢ to state 7, the negation of a diagonal element,
—¢;,;, is the output rate from state 7.

2 Analysis of a Three Node Subnetwork

2.1 Exact Analysis

We examine a three node subnetwork (Figure 1) with four external input streams. Cells of streams
1 and 3 are routed to link 1, while cells of streams 2 and 4 are routed to link 2. The subnetwork can
be viewed as a large switch with 4 inputs and 2 outputs, a typical scenario for connection oriented
network.

The interarrival periods between bursts in the four input streams are exponentially distributed
with mean 1/X;, 1 < ¢ < 4. We define this system state by the six-tuple comprised of the following
variables:

e The number of bursts that are transmitted over link 3.



e The number of bursts that are transmitted over link 4.

The number of bursts that are transmitted over links 3 and 1.

The number of bursts that are transmitted over links 4 and 1.

e The number of bursts that are transmitted over links 3 and 2.

e The number of bursts that are transmitted over links 4 and 2.

Since the number of bursts each link carries is between 0 and N, the number of system states is
(N + 1)%. In addition, since the transitions among states is memoryless the system is Markovian.
The large number of states makes the analytic or numeric solution of this system laborious even for
a small N. However, when the system is symmetric, i.e., A\; = % for all ¢, we can disregard link 2,
use a four-tuplet state descriptor, and reduce the number of states to (N + 1)%.
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Figure 1: A three node subnetwork

We wish to calculate the system utilization as a function of the load, p = A/(Npu). The system
utility is defined as

. ) 1 T ) 1 T
U = Jim o [ (04 m ) = Jim o [ (0 (1)

where n., (t) and n.,(¢) are the number of bursts that are transmitted over links 1 and 2 at time ¢,
respectively. Since the Markov chain that models the system is finite with exponential transitions,
it is ergodic, meaning that we can replace the average utility in time with the utility probability at
every moment. In our case we can replace the calculation in equation 1 with the expected number
of bursts in link 1.



Consider now a state (¢,7,/,m) where ¢ < N and j < N bursts are occupying links 3 and 4,
respectively, and [ < 7 and m < j out of them are occupying link 1, as well. Several independent
transitions may occur: a burst may leave links 3 and 1, a burst may leave links 4 and 1, a burst
may leave link 3 and not leave link 1, a burst may leave link 4 and not leave link 2, a burst may
arrive to links 3 and 1, a burst may arrive to links 3 and 2, a burst may arrive to links 4 and 1, and
a burst may arrive to links 4 and 2. All the transitions are exponentially distributed with rates lu,
mp, (0 —Dp, (7 —m)p, A2, A/2, A/2, and A/2, correspondingly. We can write the elements of the
transition rate matrix, @:

q,5,0my (i—1,5,1-1,m) = Ly 2)
4(i,5,1,m) (i,5—1,l,m—1) mip (3)
Ui lmy(i-1,0m) = (E—=Dp (4)
Uirjlimy(ini—10my = (J—m)p 5)
For the case where [ + m < N:
Qi 5,0,m) (41,5, 141,m) A2 (6)
QG,5,0,m) (i+1,5,1,m) A2 7)
q<i7j717m>7<i,j+1,l,m+1> = A/Q (8)
Qi gl (i1 0m) = A2 (9)
For the case where [ + m = N:
q<i7jvlvm>7<i+1,j,l,m> = A (10)
q(i,j,l,m>,<i7j+1’[7m> = A (11)

When 2, j, or both are equal to N some of the transitions in equations 6 - 11 become void since they
lead to nonexisting states. The diagonal of @) holds, as defined above, the rate to move out of states.
We can write then:

QUi jim) Giglom) = —[2A+ (0 + 5)u] (12)
For the case where : = N or 5 = N but not both:
Uijdom) (idomy = —[A+ 0+ 7)u] (13)
For the case where 1 = 5 = N:
UN,NIm) (N NLm) = —2Np (14)
We can now calculate the steady state probabilities 7 ;) using the relation:
7¢Q =0 (15)

and the probability conservation relation:

> Tijlom) = 1 (16)

i,5,L,m€[0, 1, ..., N]
i<i, m<y, l+m<N
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where 7 is the vector of steady state probabilities.

The system utilization U* is given by

U* = — Z (l + m)7r<2-7j7l7m> (17)
i,5,L,me[0, 1, ..., N]
i<i, m<j, +m<N

Figure 2 shows the system utilization as a function of the load, p.
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Figure 2: The three node subnetwork utilization (U) as a function of the load (p).

2.2 Approximated Analysis

The above exact analysis requires the solution of a set of O((N + 1)*) equations which becomes
burdensome for large N. To make the analysis more tractable, we assume that the burst duration at
the two links along its path is independent. This is typical to circuit-switching network analysis and
simulations show that it does not impact the final results for large N values!. We would like to write
an expression for the input process to link 1 that is based on the states of links 3 and 4 and then to
analyze the G/M/N/N queue that represents link 1. However, as we already stated, the input to link
1 is not a renewal process since the interarrival period distribution depends on the states of queues
3 and 4. Nevertheless, we assume that the process is a renewal process with interarrival periods that
are distributed according to a weighted sum of the distributions of the interarrival periods in all the
states of queues 3 and 4 (see equation 19). Our assumption can be easily justified for extreme load
situations: when the system is lightly loaded the links are almost never full and the interarrival time
is exponentially distributed with mean 1/A; when the system is heavily loaded the queues are almost
always full and the interarrival periods are determined by the server release process and are therefore
exponentially distributed with mean 1/(Np). Simulations justify our assumption.

Using our independence and renewal assumptions, links 3 and 4 can be modeled as M/M/N/N
queues with a Poisson arrival process with rates Ay + Ay = A and Az + Ay = A, respectively, and link

!The assumption is similar in spirit to Kleinrock’s independence assumption [Kle76] for packet-switching networks.



1 can be modeled as a G/M/N/N queue whose arrival process depends on the states of links 3 and
4. The steady state probability to find links 3 and 4 in state (¢, 7)is p;p;, where py, is the probability
of an M/M/N/N queue with N exponential servers with parameter p and a Poisson input stream
with parameter A to have k busy servers [Kle75, ch. 3]:

— k!

Using the steady state probabilities we write ¢(s), the Laplace transform of the probability density
function (pdf) of the interarrival times of bursts to link 1, as a function of ¢; ;(s), the Laplace
transform of the pdf of the interarrival times of bursts to link 1 given that ¢« and ;7 bursts are already
occupying links 3 and 4, respectively. Note that due to system symmetry, ¢; ;(s) = ¢;.(s) for all ¢
and j. We clearly have

N N
P(s) = Epigpj@,j@) (19)

Consider now the situation where ¢ < N and 7 < N bursts are already occupying links 3 and 4.
The following independent events may occur, each after an exponentially distributed period:

e a burst may leave link 3, with rate iu
e a burst may leave link 4, with rate ju
e a burst may arrive to link 3 from input process 1, with rate /2
e a burst may arrive to link 3 from input process 2, with rate A\/2
e a burst may arrive to link 4 from input process 3, with rate A\/2

e a burst may arrive to link 4 from input process 4. with rate A\/2

The interval to the next event is therefore also exponentially distributed and has a Laplace transform
given by (2A+ (i 4+ j)u)/(2A+ (i + )+ s). Thus, for 0 <7 < N and 0 < 7 < N we have:

%ij(s) ! + A2 Piy1,5(s) +
7,7\ S = . . . . 7 i\
! DA (i+ipts 20+ (i+jpt+s

1
a Gi—1,;(s) +

n I
20+ (i 4 )+t s 20+ (i+j)ut s
A A2

H o L
—I_QA + (l + ])N 1s [Zcbl—ld(s) + ]qbz,]—l(s)]

A/2
20+ (it j)u+ s

¢i5-1(8)

Gij+1(8)

In equation 20 above, each term is a multiplication of the probability that a certain event is the
next and the Laplace transform of the distribution of the time to the next event. For example, the
first term is a multiplication of the probability that the next event is an arrival of a burst destined
to link 1, A/(2A 4 (¢ 4+ 7)), and the Laplace transform of the distribution of the time to the next
event, (2A+ (i 4+ J)u)/(2A+ (1 + ) + s).



For the special boundary cases we have:

o A2 A2 |
onils) = A+(N+UM+8+A+(N+QM+8@WH@) (21)
H : b s < N
-I-/\ g [INoN_1,i(s)+ioni—1(s)] 0<i< N
ox(s) = gt lonvoa(s) + G (o) (22)

To express ¢; ;(s) as explicit functions, we must solve this system of (N + 1)? linear equations
with (N 4 1)? variables.? The corresponding matrix contains non-zero elements only in the three
main diagonals and in two more diagonals that are at distance N + 1 from the main diagonal. This
system can be easily solved by expressing the variables from position N 4+ 2 and on by the first N +1
variables, a process whose complexity is linear by the number of variables, i.e., O((N + 1)%). At
the end of this process we are left with N + 1 equation that can be solved in O(N?T%), where « is
currently below 0.5. Then, the values for the this variables is substituted in the expressions for the
other (N + 1)® — (N + 1) variables. This last process is of order O(N?) which is also the complexity
order for the whole process. In the end we obtain ¢(s), the Laplace transform of the pdf of the
interarrival times of the input stream to the G/M/N/N server that represents link 1.

The system utilization at an arbitrary point in time is given by the utilization of the G/M/N/N
queue representing link 1:
N .
Ut =3 v (23)
=0 "
where p; is the probability to find £ busy servers in queue representing link 1 at an arbitrary point
in time. Using the relation [Tak62, ch. 4]

Pk—1
—kud'(0)
we express p; as a function of the number of busy servers at the arrival epochs, and substituting this
in equation 23 we obtain

P = 0<k<N (24)

~1-B
- —Nu¢'(0)
where B is the blocking probability for this queue, i.e., the probability that a burst that passes
through link 3 or 4 is rejected by the link 1.

U* (25)

To avoid the need to derive ¢, one can approximate U* by U, the system utilization at the arrival

epochs [Gir90, ch. 3]:

X Yoy ) (1)
U—;ﬁpi—ﬁ 1—(;}(].)};) —A—T(l—B)m (26)

where

0N

®The system size can be reduced to (N + 1)(N 4 2)/2 by eliminating symmetric states




TR ) U (28)

i=1 1- cb(z,u)
ho = 1. (29)
For the values of N we computed the graphs for U and U* were hardly distinguishable.
N=2 N=2
0.8 : : . 1
Py T 08 - ———— === _
506 X% T S XX X X X X
5 . € 0.6+ | +
"c:‘s 04 I / %
X NO0.4
S 0.2 5
0.2 0.2
0 0 .
0 1 2 3 4 0 20 40 60 80
Load (p) Load (p)
N=3 N=3
0.8 : 1
08t~ " 0 -
30 6 3 %>¢l< 1 + + : 1 1
= = o.e%”ﬁ
%()4 5
= N 0.4¥
> 5
0.2 0.2
0 . : : 0 . . .
0 1 2 3 4 0 20 40 60 80

Load (p) Load (p)

Figure 3: Comparison of simulation results with and without the independence assumption

Figure 3 shows the utilization of link 1 as a function of the load, p, for the cases where the number
of servers in each link is two and three. The figures compare the analysis (solid line) with simulation
results of two systems: (a) a system where the burst duration is exponentially distributed but without
the independence assumption, i.e., a burst occupying two links occupies both the same time (the
simulation points are plotted as Xs); and (b) a system where the burst duration is independently
selected for each link (the simulation points are plotted as plus signs). Note that the analysis and
the simulation points of the second system are very close which confirms our analysis under the
independence assumption. Figure 4 compares the two simulated systems when the number of servers
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Figure 4: Comparison of simulation results with and without the independence assumption

is 20 and 40. The difference in the utility of the two systems is less than 5% for N = 20 and about
3% for N = 40, which validates the independence assumption for a large number of servers.

2.3 Upper Bounds on the Utilization

In this section we develop upper bounds on the utilization whose calculation is simpler than the one
for the approximated analysis. First, we develop an upper bound for heavy loads whose calculation
requires a linear number of multiplications. Then we give a tighter upper bound which is a function
of the load, p, and that requires O(N*) multiplications.

Let ny(t), na(t), ns(t), and n4(t) be the number of bursts from input streams 1, 2, 3, and 4,

respectively, that occupy the servers of links 3 and 4 at time ¢; ny(¢)+n2(¢) < N and nz(t)+na(t) < N.
For every time ¢, The number of bursts that succeed to capture bandwidth at link 1 is n., () <



min{ni(t) + n3(t), N}. From equation 1 we can write:

U" = lim

<
Jim E\T/ N, (1)dt hm

L / min{n(¢) + ns(t), N}dt = (30)
Since the system is ergodic, we can replace the average utility in time with the utility probability
at every moment. In our case we can replace the calculation in equation 30 with the expected
number of bursts in links 3 and 4 that originate from streams 1 and 3, respectively. We assume that
the system is heavily loaded, i.e., whenever a server in links 3 or 4 is freed a new burst captures
it again immediately. Since the arrival rates of the four input streams are equal, the probability
that the evacuated stream is captured by a burst that is destined to link 1 is 1/2. The heavy load
assumption allows us to assume that at all times nq(¢) + na(t) = N and ns(t) + na(t) = N. From
the system symmetry it follows that at every time ¢ the probability that ni(¢) + n3(t) = ¢ and

n2(t) + na(t) = 2N — i is:
2N\ 1
i v (81)

Which leads to the following expression for the expected number of bursts in link 1 that originated
from streams 1 and 3:

— N
UN) = VQQNZ( )min{i,N}
1 QN), X (QN)
= —= Do )i+ D> TN
N2 L:1 ( ! i=N+1 \
1 Nl fan -1 1{ .,y (2N
= Wlm;( . )—|—N§(2 -y (32)

2N
- 1_ 92N+1
( LN ) /

Using Stirling’s approximation for the factorial it can be shown that U(N) is approaching 1 as N
grows in the same rate as 1 — 1/(2v/7N). For the values of N we plotted in figures 3 and 4 our
upper bound obtain the values: U(N = 2) = 0.8125, U(N = 3) = 0.84375, U(N = 20) = 0.937, and
U(N =40) ~ 0.956.

Figure 4 demonstrates that this upper bound is reasonable only for p > 10 and is not tight enough
for lower loads. To make it tighter, the load on the system should be considered, i.e., the fact that
there is a probability that servers are not occupied. The probability to have ¢ servers occupied, p;,
in links 3 and 4 is given by the Erlang B formula (equation 18). We use this probability together
with the technique used in the derivation of equation 32 to obtain the following upper bound:

T(N, p) = ZZ (N,o) o ZZ( )( )min{j-}-l, N} (33)

ZOk’O 01!=0

The dashed lines in figures 3 and 4, show U(N,p). U(N,p) approaches U(N) for small values of N
and p > 10. For greater values of N, U(N,p) approaches U(N) for lower p values. But, for all the
values of N and p, U(N,p) < U(N).
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3 Analysis of a Cycle of Streams

Another topology we examine is a ring network with n nodes, each receiving an external Poisson
input stream with rate A\g from a source outside the ring and trying to transmit it to a node h hops
away clockwise (Figure 5). We analyze the case when h = 2 using similar techniques to the ones
used in the previous section, i.e., links are modeled as G/M/N/N queues and bursts that arrive to a
link are modeled as customers that try to capture a server.

Figure 6: Traffic through a node in the ring

We model the ring of n nodes (Figure 5) by n G/M/N/N queues with correlated arrivals and
departures. The queues are numbered 1,2,...,n and are arranged in a ring. A customer arriving to
a queue from the outside tries to capture a server. If it fails, it leaves the system, if it succeeds it
immediately tries to capture a server in the next queue in the ring. In case of a failure in the second
attempt the customer holds the server it captured in the first queue for a period that is exponentially
distributed with parameter p, in case of a success the customer holds a server in both queues for a
period that is exponentially distributed with parameter p. Let Ay be the average rate of the bursts
that arrive from outside the ring and capture a server, Ay be the average rate of bursts that succeed
to capture a server in two queues, and denote p = A3/(A1 + Az). pis the probability that a customer
in a queue entered the previous queue in the ring. We normalize our results by setting p = 1. Ag is,
therefor, our desired node throughput.

Due to symmetry of the ring, the traflic through a node in the ring does not depend on the

11



number of ring nodes (Figure 6). Therefore, the analysis of a ring with any number of nodes greater
than two is identical. (A two-node ring is an exception since there is a full correlation there between
the number of bursts in the two queues.) We thus continue our analysis by setting n = 3.

To describe the three-node system as a Markov chain, each state should be comprised of the
number of bursts in each queue (link) and the number of bursts that occupies every combination
of two queues. This leads to an (N + 1)° state space. To reduce the number of states, we describe
the system only by the number of bursts in each queue, and we assume that with probability p a
departure is of a burst that occupies two queues. This enables us to solve a continuous time Markov
chain with only (N + 1)? states.

We shall next write expressions for the elements of the transition rate matrix, ). The transition
rates from a state due to arrivals are always equal to the arrival rate Ag, the transitions are to states
where a customer captures a server in two neighboring queues or just in one of them if the next
queue is full:

Ui gy (i+1,+1,k) = Ao I <N

Qi gk Gi+Lk+1) = Ao J,E<N

Qig k) (i41,5,k41) = Ao L,E<N (34)
9(i,N k), (i+1,N k) 0 i<

9 NY(ij+1,N) = Ao <N

UNGE)(NGks) = Ao kK< N

The transition rates due to departures depend on the number of customers in the queues. Since
a customer in a queue also occupies a server in a neighboring queue with probability p, we have
correlated departures from two neighboring queues with probability p multiplied by the number of
customers in the less occupied queue, otherwise we have single departures.

Ui gy (i-1,j—1,ky = pmin{z, jipu

Ui gy (ij—1,k—1) = pmin{j, k}p

Ui ) (i-1.gk-1) = pmin{k, i} (35)
Uiy i-15k) = (i —p(min{i, j} + min{i, k}))u

Qi kY, (i j—1,k) = (j — p(min{yj, k} + min{j, k}))u

Ak (igk—1) = (k— p(min{k,j} + min{k,i}))u

The diagonal elements of () are the departure rates from the states multiplied by -1:

Qi )ik = —[((E+ 7+ k)1 = p) — p(min{s, j, k} — max{i, j, k}))p+ A((4, J, k) Ao] (36)

where A is the acceptability index of the state, i.e., the number of queues in this state that are able
to accept new customers.

To find the stationary probabilities 7; ; 1y for ¢, 7,k € [0, 1, ..., N]we solve the matrix equation
7Q =0 (37)

along with the probability conservation relation:

> Migw =1 (38)

i7j7ke[07 1, .., N]
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The solution of equations 37 and 38 yields the stationary probabilities as a rational functions of
p. p can be found using the relations:

Moo= X ) (i k) (39)
7,k€lo, 1, ..., N]
iclo, 1, ..., N—1]
Aro= Ao > (i, k) (40)
kefo, 1, ..., N]
ijef0, 1, ..., N—1]

and the definition of p. This yields the polynomial equation:

> Tik) =P > ik + > T (i,5,k) (41)

kelo, 1, ..., N] 3,k€lo, 1, ..., N] keglo, 1, ..., N]
i,7€[0, 1, ..., N—1] i€fo, 1, ..., N—1] i,3€[0, 1, ..., N—1]

The value of p can then be substituted in equations 39 and 40 to obtain the values of A; and As.
The analysis results were matched by results from simulation of a ring with eight nodes for N=2 and
N=4. Figure 7 shows Ay and A3 as a function of the load p = Ag/(N ). Note that A, is significantly
lower than 0.5, a throughput that can theoretically be achieved for this system.
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Figure 7: Ay and Ay as a function of the load, p.

Examining the values of the plotted points in Figure 7 yields the relation Ay/A; > A;/Ag. This
means that bursts that have already captured a server have higher probability of capturing a second
server compared to bursts that come from the outside, which contradicts Widjaja’s assumption
[Wid94] that the probability of capturing a server is constant along the burst route. This probability
increases because the traffic carried on a link becomes smoother at every stage. The smoothing is
most apparent in the first stage as depicted in Figure 8. The Figure shows the success probability for a
burst in successively capturing a server in each of the hops along its route. The points are taken from
a simulation of a ring with eight nodes, where each link can support four bursts simultaneously. It is
clear that while the success probability increases along the route, the difference is most pronounced
between the first and the second hop.
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Figure 8: The success probability along the burst route (N=4, h=4).

4 Comparison to Fast Reservation Protocols (FRP)

In this section, we compare the performance of the one-way reservation protocols with the perfor-
mance of fast reservation protocols [BT92] for the three-node subnetwork and for the ring. As for
the one-way-reservation analysis, we assume zero delay on the lines. Bursts in FRPs behave exactly
as telephone calls in telephone switching networks, thus, their performance analysis can be done
efficiently using results obtained in [?, ?] and the references therein. In appendix A, we give the
transition rate matrices we used to obtain our results.

4.1 Comparison for the Three Node Subnetwork

We consider here the system of figure 1. Figure 9 compares the system utilization for the one-way
reservation scheme that was computed in section 2.1 (+s) with the utilization for the FRP (os).
The solid lines in the graphs show the utilization of an M/M/N/N queue with input rate A = pN pu.
This is the maximum utilization that can be achieved for input streams 1 and 3 regardless of the
capacity of links 3 and 4. Note that as the load increases both reservation schemes increase the link
utilization, however when the load approaches infinity the FRP approaches full link utilization, i.e.,
the value 1, while the one-way reservation protocol is always below the plotted bound (Eq. 32).

4.2 Analysis of FRP in a Cycle of Streams

We consider the system of figures 5 and 6 compare the results obtained in section 3 with the FRP
in a ring of size three. The number three is selected since it gives the worst case utilization (see
Appendix B). Note that for the one-way-reservation the utilization was the same for all ring sizes.

Figure 10 compares the analysis with the simulation results and depicts the fact that a ring of
size 3 has the worst throughput. Figure 11 compares the ring utilization for the one-way reservation
scheme that was computed in section 3 (xs) with the ring utilization for the FRP (os). For all
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Figure 9: Comparison of analysis results for one-way reservation protocol, FRP, and maximum
possible throughput.

the loads, the FRP exhibits better utilization than the one-way reservation. Note that as the load
increases the utilization increases for FRP while it decreases for one-way reservation.

5 Discussion and Concluding Remarks

When using one-way reservation for the systems analyzed and for all loads, a large portion of the
unsuccessful bursts is rejected at the entry points before any network resources are consumed. This
phenomenon is mostly due to the homogeneous systems we analyzed, i.e., systems with identical
link capacity. In practice, bursts use the residual capacity left after reservations of constant-bit-rate
applications were made, and thus the capacity they see is likely to be different for every link. In
non-homogeneous systems we expect to see a larger portions of the bursts that make it through the
first hop and subsequently fail.

Altogether, on-the-fly reservation appears not to be an efficient way to reserve bandwidth (see
figures 9 and 11) and should be used only when alternatives are impractical. It is clear that it is more
suitable for the case where the burst size is small compared to the available throughput or when the
system load is low. However, enhancements to this scheme [CRS94] can increase its performance and
make it more appealing for use.

The comparison between the two types of reservation protocols shows an advantage for the FRP
when the delay on the lines is zero contradicting Cho and Leon-Garcia [CLG94] claims. Future work
is required to compare the two reservation schemes when line delay is accurately accommodated into
the model.
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Appendices

A FRP Analysis

A.1 The Transition Rate Matrix for the Three Node Subnetwork

The elements of the transition rate matrix, (), are

(i, j,0,m), (i-1,5,1-1,m)
Qi 0,m) (i,5—1,1,m—1)

9(3,5,1,m),(i—1,5,1,m)
)

q<i7j7lvm>7<i7j_17l7m

For the case where [+ m < N and ¢ + 7 — (I + m) < N:

Qi 5,L,m), (+1,5,1+1,m)

Gi,5,0Lm), (i41,5,1,m)
Qi ,0,m) (3,5 +1,1,m+1)
)

q<i7j7l7m>7<i7j+17l7m

For the case where [+ m= N and ¢t + 75— ({+ m) < N:

Yiglym),(i4+1,4,,m)
Q(i,j,l,m),(i,j+1,l,m)

For the case where [+ m < N and i + 75— (I + m) = N:

4(i,5,0,m),(i+1,5,14+1,m)
9¢,5,0,m) (4,54+1,0,m+1)
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Figure 11: Comparison of the analysis of one-way reservation protocols with FRP for rings.

The elements of the diagonal of @) are

Qi jim)iglm) = —[2A+ (0 +7)u] (46)

For the case where exactly one of the links 3 or 4 is full and exactly one of the links 1 or 2 is full,

ie., (i=NXORj=N)AND (i+j—(I+m)=N XOR [+ m = N)

G(i 5, 0m), (i, lm) = —[A/24 (i + 7)p] (47)

For the case where exactly one of the links 3 or 4 is full and none of the links 1 and 2 is full, i.e.,

(i=NXORj=N)AND i+j—(I+m)<NANDI+m<N

Qi gl Giglomy = —[A+(E+5)p] (48)

For the case where exactly one of the links 1 or 2 is full and none of the links 3 and 4 is full, i.e.,

i< NAND j=N AND (i+j—(l+m)=N XOR [+ m=N)

Qi) Giglomy = —[A+(E+7)p] (49)

For the case where all the links are full, i.e., 2 = 7= N

4NN Lm),(NNLm) = —2Np (50)

A.2 The Transition Rate Matrix for the Ring

The system state is described by the number of bursts that enter the system at node 2, ¢ = 1,2, 3.
The elements of the transition rate matrix, (), are

Qij k) (i+1,58) = Ao t+J<N i+k<N
Qi k) Gg41k) = Ao JHiI<N j+E<N
Qi k) Ggk+1) = Ao E+i< N k+j<N
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Qg k) (i-1,5k) = U
qi,5,k),(i,j—1,k) JH
Ai,5,k),(5,5,k=1)  — kp

and
Ui g k), (k) = — (0 + 7+ k) + A, 5, k) Ad]
where A, as in section 3 (Eq. 36), is the acceptability index of the state.

B A proof that the throughput of an n-node ring with FRP, is
the lowest when n = 3.

We examine unidirectional rings of n > 2 nodes labeled 0,...,n—1. Neighboring nodes are connected
by links that can support N bursts simultaneously. The links are labeled with the number of the
node they emanate from. All bursts travel exactly two hops.

A ring state is associated with a tuple (mq,mg,...,m,), where m; is the number of bursts that
enter the ring at node ¢, and m = ;- m; is the total number of bursts in the ring. All node indexes
are computed modulo n. Note that m/n is defined as the normalized ring throughput. We define
a saluralion state to be a state where no new bursts can reserve bandwidth along their entire path
before an existing burst releases bandwidth.

Theorem B.1 The maximum number of bursts that a ring can simultaneously support is upper
bounded by |4’ ].

Proof: Each of the n links can support up to N bursts simultaneously. The ring can, thus, support
nN single-link bursts. To get the upper bound, this number is divided by the number of links each
burst occupies. a

A saturation state that achieves the upper bound of Theorem B.1, i.e., m = L%J, is called
optimal. An optimal state exist for any ring of size n > 2 if N is even and exactly N/2 bursts enter
the system at each node. This state is associated with the tuple (N/2, N/2,..., N/2). For simplicity,

we assume from now on that N is even.

Lemma B.1
A. For all states, m; + m;_1 < N.
B. For any saturation states and for all ¢, either m; + m;—y = N or m; + m;41 = N.

Proof: m; + m;_1 is the number of bursts that are carried by link ¢. Obviously, this number can
never exceed N, which proves part A.

To prove part B, suppose that in a saturation state both m; + m;—y < N and m; + m;31 < N.
This means, that both links 7 and 7+ 1 carry less than N bursts, and therefore at least one additional
burst can be accepted at node i, contradicting the assumption that this is a saturation state. O

Based on Lemma B.1, the following observations can be made:

1. For rings of size 2 and 4, all the saturation states are of the form (N/2 — i, N/2 + ) and
(N/2 - i,N/24+ i,N/2 —i,N/2+4+ 1), —N/2 < i < N/2, respectively. All these states are
optimal.
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2. For a ring of size 3, all the saturation states are of the form (N/2 — i, N/2 + i, N/2 — 1),
0 < i < N/2 (and the cyclic rotation of these states). Note that only for ¢ = 0 the state is
optimal.

We adhere to the model we use in the analysis in sections 3 and 4.2, i.e., burst duration is
exponentially distributed with parameter g and burst arrivals to each node form a Poisson process
(with parameter A). As in sections 3 and 4.2, the ring can be modeled by a Markov chain whose
states are described by the n-tuple (mq,mg,...,m,) as defined above. Since this Markov chain is
finite with exponential transitions, it is ergodic, meaning that we can replace the average ring utility
in time with the utility probability at every moment.

Our goal is to show that rings of size 3 have the lowest throughput. For this aim, we show that,
for heavy traffic, the Markov chain of a large ring is a Cartesian product of Markov chains of smaller
rings. In our proof, we define heavy traflic as the rate when every burst that releases bandwidth
does it from a saturation state. We define a segment to be a maximal length sequence of neighboring
nodes s.t. for every two neighboring nodes in the sequence, ¢ and ¢ + 1, m; + m;y1 = N.

Lemma B.2 Fvery saturation stale is comprised of one or more segments of length 2 or more.
Proof: Stems directly from Lemma B.1. a

Lemma B.3 Consider a ring in a saturation state that is comprised of K segments (S1,...,8i,...,SK),
and suppose bandwidth is released by a burst that enters the ring from a node in segment s;. The
transition probability to the next saturation state of the ring is independent of s; # s;, under the
heavy traffic assumption.

Proof: Assume that nodes ¢ — 1 and ¢ belong to different segments. A departure of a burst that
enters the system from node 7 can not enable the acceptance of new bursts in node ¢ — 1 since by the
segment definition m;_1 + m;_5 = N. Similarly, a departure of a burst that enters the system from
node ¢z — 1 can not enable the acceptance of new bursts in node 2. Obviously, a departure of a burst
that enters the system from a node that is not on a segment border can not enable the acceptance
of new bursts in nodes out of this segment. As a result, the transition probability among saturation
states in a segment is independent of other segments and the Lemma holds. a

Theorem B.2 For heavy traffic, a ring of size 3 has the lowest throughput.

Proof: Consider a ring of size & > 5 which is in a saturation state that is comprised of K > 1
segments, Sy,...,Sk. Lhree types of segments are possible:

1. Even size segments.
2. 0dd size segments of the form (N/2+ ¢, N/2—4,...,N/2+41),0<:i< N/2.

3. 0dd size segments of the form (N/2 — i, N/24+4,...,N/2—1),0<i< N/2.

By lemma B.3, the total number of bursts is given by E?:l ms,|s;|, where |s;| is the size of segment
s; and mg, = |51—| Zkes] my, is the average number of bursts per node in segment s;.
J
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For segments of type 1, ms, = N/2. For segments of type 2, Mms; > N/2. For segments of type 3,
the average number of bursts is at least equal to that of a ring of size 3. Thus, the average number
of bursts is a weighted sum of three values each of which is equal or greater than the average number
of bursts in a ring of three nodes. This holds for every starting saturation state. a

We proved our claim for heavy traffic. For light traffic, almost all arriving bursts succeed to
reserve bandwidth regardless of the ring size. Simulations show that our claim holds also for medium
loaded rings.
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