
New Models and Algorithms for Future Networks

Israel Cidon*, Inder Gopal, and Shay Kutten

IBM T. J. Watson Research Center

Yorktown Heights, NY 10598

Abstract

In future networks transmission and switching capacity will dominate processing capacity. In this

paper we investigate the way in which distributed algorithms should be changed in order to operate

efficiently in this new environment. We introduce a class of new models for distributed algorithms

which make explicit the difference between switching and processing. Based on these new models

we define new message and time complexity measures which, we believe, capture the costs in many

high speed networks more accurately than traditional measures. In order to explore the conse-

quences of the new models, we examine three problems in distributed computation. For the

problem of maintaining network topology we devise a broadcast algorithm which takes O(n) mes-

sages and O(log n) time in the new measure. For the problem of leader election we present a

simple algorithm that uses O(n) messages and O(n) time. The third problem, distributed compu-

tation of a ″globally sensitive″ function, demonstrates some important features and trade-offs in the

new models and emphasizes the differences with the traditional network model.

A preliminary version of this paper appeared in the 7th ACM Symposium on Principles of Distributed Computing,

Toronto, Canada, August 1988. The last section of this paper appeared in the Proceedings of the 4th Workshop on Dis-

tributed Algorithms, Bari, Italy, September 1990.

* and department of Electrical Engineering, Technion, Haifa, Israel

1

1. Introduction

The advent of fiber optic media has pushed the transmission speed of communication links to

over a Gigabit (109 bits) per second, representing a three to four order of magnitude increase over

typical links in today′s data networks [KMS87]. Today′s packet switching nodes (e.g. ARPANET

[MRR80]) implement most of the packet handling protocols in software executed in general pur-

pose computers. Typically, thousands of instructions are needed for a computer to deal with a

message [G87]. (We use the terms “packet” and “message” interchangeably.) The increase in the

communication link speeds has not been matched by a corresponding increase in the processing

capacity of the communication nodes. Thus, processing has become the bottleneck in today′s

communication systems.

Several previous works have noted this and have proposed new designs for networks to reduce

the effect of this bottleneck [TW83, HA87, CG88, CGGG93]. New standards such as ATM

(Asynchronous Transfer Mode) have evolved as a consequence of these new designs [B92]. A

common aspect of all of the proposed new designs has been the introduction of dedicated and op-

timized fast packet switching hardware. This hardware is designed to perform the most common

packet handling function, i.e. the function of switching or moving a packet from the input link to

the appropriate output link as defined in the packet header. By attaching the switching hardware

to a communication node it is possible to off-load most of the networking related processing burden

from the software driven processor. Packets that only require to be switched from an input to an

output link are handled by the switching hardware. Only packets that require more complex

processing are delivered to the general purpose processor to be handled by software.

Note that we use the terms ″hardware″ and ″software″ because they represent the typical im-

plementation techniques used in proposed designs. The real implication of the term ″hardware″ is

that the functions embodied therein are performed in a specially designed machine in a performance

optimized fashion. Conversely, ″software″ functions are not optimized in this fashion. A dedicated

set of embedded processors, executing optimized microcode to perform switching operations count

as ″hardware″ from this perspective. For the purpose of clarity of presentation, we will use the terms

″hardware″ and ″software″ throughout this paper.

We categorize the delay experienced by a packet forwarded from one node to another into three

components: 1) Transmission delays experienced in traversing the communication link, 2)

Switching delays experienced in the switching hardware and 3) Processing delays experienced in the

processor in case that more complex functions must be invoked.

The bulk of traffic transported in such networks will consist of high capacity user-to-user (or

application-to-application) transmissions of data, voice, image and video. Such traffic does not

require complex processing in the intermediate nodes and consequently will travel only through the

2

switching hardware. Since future networks are expected to support large volumes of user-to-user

traffic, it is likely that future node designers will continue to improve the capacity of switching

hardware. Already, the hardware switching structures proposed in [HA87] have throughputs that

approach a Terrabit (1012 bits) per second. In contrast with the heavy demand for switching re-

sources, it will be mainly the distributed algorithms used to control and manage the network (the

route computation, configuration management, etc.) that will use the processing resources. The

generality of these tasks (compared with switching), their relative complexity, and the need to

maintain flexibility and openness for changes will probably require these control and management

functions to remain software procedures for a while. The traffic associated with these functions is

typically lower in volume by several orders of magnitude than the user-to-user traffic. (A video

connection sends about 10,000 packets per second [MASK88]. Distributed computing applications

typically send no more than a few dozen packets per second [AKRP87].) Therefore, in contrast

with switching capacity, communication node designers will not have the same incentive to increase

processing capacity within the node. (The PARIS network prototype [CG88] uses a single nodal

microprocessor to perform the distributed network control operations).

Thus, future networks are likely to be very different from current networks, with transmission

and switching (hardware) capacity dominating processing (software) capacity and, consequently,

software delays dominating hardware delays. The purpose of this paper is to explore how distrib-

uted algorithms should be changed in order to operate efficiently in this new environment. Tradi-

tional models used in the design of distributed algorithms do not differentiate between hardware

functions and software functions. In other words, a message sent from one node to another is

typically counted as contributing one unit towards message and time complexity whether it requires

complex processing at that node or whether it requires simply to be relayed to another node without

any further processing.

In this paper, we introduce a class of models wherein the difference between hardware and

software functions is made explicit. We define the functions that can reasonably be performed in

hardware, given our judgement of the the limitations of current technology in capabilities and cost.

(For example, we assume that it will not be cost effective, efficient and flexible enough to imple-

ment complex network control functions directly in hardware.) By assigning the hardware func-

tions different costs and delays from the software functions, we are able to construct a class of

models that can better capture the realistic costs and delays in many new network environments.

While it is possible to use a general parameterized cost model for certain cases, we find it useful to

simplify the model in order to study a wider class of problems. In particular, we consider a special

case where the hardware costs and delays are essentially negligible (subject to some constraints)

compared to the corresponding software values.

In order to explore the consequences of the new model we examine three problems, two of

which have been extensively studied in the literature. The first, which is of major practical impor-

3

tance in networks, is the problem of maintaining network topology. The best known solution to

this problem was used in the ARPANET [MRR80], wherein each node periodically broadcasts

local topology (its adjacent links′ states and loads). The broadcast takes O(m) messages and O(n)

time, where m is the number of communication links and n is the number of nodes. (These com-

plexities do not change under our new measures.) In this paper we present a new topology main-

tenance algorithm that, under the new measures, takes O(n) “messages” and O(log n) time per

broadcast. A tight lower bound for the O(log n) time is given, for a certain class of potential al-

gorithms.

The second problem that we examine is the well-studied problem of distributed leader election

[GHS83]. Here the nodes in the network are required to cooperate in order to elect one of them

as the leader and every node must know whether or not it is the elected leader. Distributed leader

election is important for organizing a network after faults have occurred, resolving deadlocks and

conflicting decisions, managing distributed databases, etc.. We present a simple leader election al-

gorithm that uses O(n) “messages” and O(n) time. (The message complexity of the traditional al-

gorithms is Ω(n log n) [B80, PKR84, KMZ84] under our new measure as well.)

The third problem is the distributed computation of a ″globally-sensitive″ function. Roughly

speaking, such a function is one that depends on every one of the distributed inputs, though a more

formal definition will be given later. For this problem, we use the general parameterized cost model

and show how the structure of the optimal algorithm and its time complexity depends heavily on

the relative delays of the hardware and software. Note that the traditional model is also an extreme

case of the general parameterized cost model. An interesting observation from these results is that

the new model does not degenerate to the traditional one even if the network is fully connected and

each node can get to any other in a single hop.

We emphasize that our new model is not intended as a ″definitive″ model for future networks.

Rather, it should be viewed as the first step and the main contribution of this paper is the demon-

stration and understanding of the deficiencies in the traditional model. Our paper also provides

some further practical motivation for work done in somewhat different contexts. For example, in

[DHSS84, PS87] importance is given to the number of distinct routes a message traverses rather

than the number of actual message hops. Similarly, in [KO87] messages relayed through interme-

diate nodes are not counted in certain cases. Since the initial version of this paper (the first two

problems in [CGK88] and the third problem in [CGK90]), several works have appeared which ex-

plore distributed algorithms for fast networks (see for example [BZ90, ACGK90, CS89]). In addi-

tion, the parameterized model of [CGK90] has been further extended and studied in [BK92,

CKPS93].

The paper is structured as follows. In the next section we present and justify the new class of

models and measures. We then present the new topology maintenance algorithm, together with the

4

Figure 1. A Node Structure.

proof of the lower bound (Section 3). In Section 4 we present the new election algorithm. Finally,

we present the results on the distributed computation of globally sensitive functions in Section 5.

2. The model

The communication network is represented by a graph (V , E) where V is the set of nodes and

E is the set of bidirectional communication links. We denote |V | by n and |E| by m. Each node

(see Figure 1) consists of a high speed switching hardware (Switching Subsystem (SS)) which is

attached to the communication links and a single processor (Network Control Unit (NCU)).

5

Delay and cost measures

As mentioned in the previous section, a message suffers a hardware delay at every hop (namely, a

transmission delay in traversing the communication link and a switching delay in the node′s SS).

In some cases, the message will travel to the NCU in which case it will suffer an additional software

delay. Our model is similar to the standard model for asynchronous communication networks [eg.

GHS83] in that all delays associated with a message are assumed to be finite but unbounded. No

errors or lost messages are permitted unless link or node failures occur (as described later on in this

section.) FIFO ordering of messages is assumed. (In fact, FIFO ordering is required only in Section

5). For purposes of time complexity analysis, we count hardware and software delays separately.

In particular, we assume that the hardware delays are upper bounded by C time units and the

software delays are upper bounded by P time units. These upper bounds are only used for the

purpose of time complexity analysis and the algorithms must operate correctly even if delays are

unbounded. Our model permits the transmission of the same message over multiple outgoing link

of the transmitting node at no extra processing cost. This feature applies for the PARIS network

[CG88] but might not apply in other architectures. We use this feature in the solution of the first

problem.

We have the following definition:

• Time Complexity - The maximum time which may elapse from the algorithm starting point

to its end under the assumption that the hardware and software delays are upper bounded as

described above.

In terms of network resources cost we have two measures that are both meaningful. The first is the

traditional communication complexity, i.e. the number of hops traversed by messages in the op-

eration of the algorithm. This captures the hardware cost in our model. The other cost is the

software cost which we term ″system-call″ complexity. It is defined as follows:

• System-Call Complexity - The sum over all nodes of the number of times that each NCU is

involved in the algorithm process.

The limiting case on which we concentrate for most of the paper is where hardware costs and delays

are negligible. For this case, the only contribution to the delay is when the NCU is visited and the

only meaningful cost measure is system-call complexity. We also assume (as validated in [CJRS89

]) that most of the system-call delay is due to the routine processing of messages, i.e. data move-

ment, processor interrupts, task switching, message reassembly, integrity check (CRC), etc.. The

algorithmic steps are considered to take negligible time and therefore the system-call delay does not

depend on the message content.

The hardware model

6

Figure 2. ANR Structure.

The switching functions that can be performed in the SS alone are considered fast and cheap.

It is therefore important to define precisely these switching functions. Our definitions are based

upon technology availability as embodied by specific hardware structures under development (e.g.

[CG88]).

Consider an SS with m bi-directional incident links. (The NCU is a special case of an incident

link.) We assume that link i has a finite, non-empty, set of ID ′s, Li, where all ID′s are of length

k bits. We restrict k to be O(log m). A packet (a message) p, is a string of bits. We represent

packet p by the concatenation of two substrings, p = xy , where x is of length k. The SS receives

xy as input over one of its links and outputs the string y over every link i, such that x ∈ Li.

In this paper we use the hardware model in a specific way. Each link is assigned an ID called

the normal ID. The normal ID′s are unique within a single SS. (The incident link leading to the

NCU is always assigned the same predefined normal ID, say the ID ′0′ in each SS.) A link may

have different normal ID′s at each of its end points. In addition each link apart from the link to

the NCU is assigned a second unique ID, the copy ID. (Typically, the copy ID and the normal

ID can be identical except for the most significant bit.) The link to the NCU is assigned all the

copy ID′s of the other links. Thus, every link has exactly two ID′s except the NCU which has m

ID ′s. Copy bits are used to copy a message that traverse a certain path to all or some of the NCUs

along the path. An example how the copy functions is used for setup and take-down of calls appears

in [CG88].

Using the hardware structure described above, we can route messages in the following fashion.

Assume that a certain node (where no ambiguity exists, we shall say “node” instead of “the NCU

in a node”) wishes to send a packet to a certain destination node and that it has knowledge of a

suitable path to that destination node. To accomplish this, it prefixes the data with a string that

is the concatenation of all the normal link ID′s along the computed path. The message travels

7

Figure 3. The Selective Copy.

through the SS′s along the predetermined route to the specified NCU. (See Figure 2.) It will ex-

perience no software delays along the path (except the endpoints). The routing technique is called

Automatic Network Routing (ANR) or source routing [CG88]. We denote the sequence of ID′s

that are used to route a packet along the path as the ANR header.

Sometimes, it is useful to drop a copy of the message at intermediate nodes along the path.

This can be done by using the copy ID (or set the copy bit) rather than the normal ID in the ap-

propriate position in the header string. As can be seen, a message with a copy ID will be sent in

parallel to the NCU and to the appropriate output link. This routing mechanism (selective copy)

is depicted in Figure 3.

In many scenarios it is useful for a receiver to be able to reply immediately to the sender. Since

the sender can be physically non-adjacent from the receiver, this capability would, in general, re-

quire the receiver to possess a routing table or topology map. Several techniques exist which permit

the receiver to respond without such information ([CG88, CGGG93]). These techniques include

having the sender add reverse path information, enhancements to the hardware, etc.. We will as-

sume in this paper that through the use of one of these techniques, a receiver will be able to send

a packet back to the sender.

It is possible that different routing mechanisms can be defined for our hardware model. In ad-

dition, it is possible to define more powerful models with the capability of performing more func-

tions at hardware speed. (For example, update of a stored variable, table lookup and compare

function.). The hardware model chosen for this paper is based upon proposed designs that are

likely to be deployed in real networks in the next decade [TW83, CG88, HA87]. In defining this

model, we have tried to capture a most common subset of functions shared by the various hardware

designs.

8

Path length restriction

As described above, the model permits unbounded length paths through the hardware. In order

to make the model more realistic we restrict the length of the maximal path permitted through the

hardware. We denote this upper bound by dmax. The rationale for such a restriction is twofold:

1) With source routing (ANR), the length of the message grows linearly with the path length.

While hardware costs and delays are assumed to be negligible, there are typically restrictions on

message buffer sizes and other hardware components that physically prevent the transmission of

very large messages or make the cost and delays non-negligible any more.

2) While we have assumed no errors in transmission, there is actually a small probability that a

message will be corrupted during a transmission. Though this number is usually very small and can

be ignored (around 10−12), it can be significant when the path length is very large. It is therefore

necessary to bound the path length in order to preserve the assumption of error free transmission.

The choice of dmax actually defines a class of models. A reasonable value for dmax is the typical

diameter of the network. The rationale behind this choice is that most communication networks

are designed for the support of end-to-end communication. Therefore, parameters such as maximal

packet length, buffer sizes and link error probabilities are tuned for end-to-end services. In this

paper we will either use the diameter or the total number of nodes as our choice for dmax.

Changing topology

In the following, we describe the extensions to the model required for modeling dynamically

changing topology. This model is used for the first problem (maintaining network topology). An

NCU is initially familiar with the ID′s (both copy and normal) of its adjacent links and the identity

of the neighboring nodes. A link is either active, in which case it delivers every message sent over

it to the other side in finite but unbounded time, or inactive, in which case it does not deliver any

messages. An inactive node is modeled by a node all of whose links are inactive. If an adjacent link

remains in either the active or inactive state for sufficiently long period, the NCU will be aware of

that state. This assumption is typically realized through a data link control protocol and is weaker

than the assumption normally made for distributed algorithms in changing topology networks

[BS84].

3. Topology Maintenance

A broadcast algorithm for topology maintenance is described in Section 3.1. The algorithm is

analyzed in Section 3.2. A matching lower bound proof for a certain class of algorithms is given in

Section 3.3. In this (and the next) section, we assume that hardware delays are negligible in com-

parison to software delays.

9

We briefly define the topology maintenance problem (a more complete definition is provided

in [T77]). Each node keeps the properties of each adjacent link including the identity of the

neighboring node, the various link ID′s, the operational state and other parameters such as the load

condition. The collection of these properties for all adjacent links is referred to as the node′s local

topology. The purpose of the topology maintenance algorithm is to maintain in every node a

complete updated description of the topology of the network, i.e. the collection of all the local

topologies. As some of the properties dynamically change, it is not possible to maintain an exact

consistent global topology. The objective, therefore, is to maintain eventual consistency, i.e. when

all topological changes stop, then within a finite time all nodes will have a consistent and correct

view of the global topology [T77]. As in the ARPANET [MRR80], this eventual consistency is

achieved by having every node broadcast its local topology periodically (with an incremented se-

quence number each time). We are interested in minimizing the time and system call complexity

per broadcast. The broadcast in the ARPANET is based on a ″flooding″ algorithm that sends a

message over every link and consequently takes O(n) time and O(m) system calls. In contrast, each

of our broadcasts uses a tree, thereby saving system calls and also improving the time complexity

of each broadcast. This is done by dividing the tree into paths, and broadcasting over each path

in one unit of time. In the next section we give details of our tree decomposition algorithm. (Other

methods of tree decomposition appear in different contexts, e.g. in [HT84, SV88, T83].)

3.1 The Topology Broadcast Algorithm

First, we give a brief description of the overall algorithm. Prior to the t th execution of the

broadcast, node i has obtained some information about the topology of the network. By assump-

tion, the node is always aware of its local topology. Information on remote nodes is obtained from

the topology maintenance messages received from other nodes. Note that the remote topology

information may not reflect the actual state of the network at that instance. Let Gi(t) be the net-

work topology according to i′s most recent information just before the t th periodic execution. Es-

sentially, i′s algorithm is: (1) compute Ti(t)- a spanning tree (rooted at i) of minimum hop paths in

Gi(t) from i to all connected nodes in Gi(t) (2) send the local topology (Gi(t)) over Ti(t) with an in-

cremented sequence number according to the broadcast algorithm and (3) update the remote

topological information according to the most recent (determined by sequence number) topology

messages received. The main issue of this section is to devise an appropriate and efficient broadcast

algorithm for (2).

Under our model, there are various ways to perform a broadcast. For example, i may send a

message directly to each node. The system call and time complexities are both O(n). Another way

is for i to generate a single message which will traverse (in Depth First Search manner, see, for ex-

ample, [E79]) the tree, and be copied once by every node. The system call complexity in this case

is still O(n) (actually, exactly n). However, the time complexity is only 1!

10

Unfortunately there is a problem in employing this Depth First Search method in the presence

of link failures as the traversing message is lost on encountering the first failure. Thus, a node j

may not receive the broadcast message even if the route from i to j on Ti(t) is active. This may lead

to a problem of non-convergence where there is no further topological change but the nodes remain

forever with inconsistent topological information. To see this problem, we present the following

example.

Example: Consider a graph with six nodes u, v, w, u1, v1, w1 and 6 edges (u,v), (v,w), (w,u),

(u, u1), (v, v1), (w, w1). Assume that the last three edges fail, and nodes u, v and w try to broadcast

(using the Depth First Search method) topology updates notifying about these failures. Assume

further that the path chosen by node u starts with links (u,v) and (v, v1). Clearly, its message will

never reach node w, unless node u receives node v′s broadcast describing v′s local topology. How-

ever, by symmetry, node u never receive v′s broadcast unless v receives w′s broadcast, and v never

receive w′s broadcast unless w receives u′s broadcast. In other words a deadlock is reached and the

topology map known to the nodes never converges to the actual topology.

The scheme developed in this section overcomes this problem. Its system call complexity is still

O(n). The time complexity is bounded by O(log n). To overcome the problem demonstrated in the

above example our broadcast is one-way: We define a one-way algorithm on a tree to be one in

which a link is traversed (zero or more times) only in one direction (away from the root)1.

The following sequential algorithm (performed by i on Ti(t)) is used to construct paths for the

broadcast message (see Figure 4). First assign the label 0 to each leaf of Ti(t). Let j be a node all

of whose children in Ti(t) have been labeled. Consider the child with the largest label l. If j has

another child labeled l then we label j with l + 1. Otherwise, we label j with l. This procedure is

repeated until all nodes are labeled. Also, assign the label of every node j ∈ Ti(t) − {i} to the edge

from j to its parent.

Let k be i′s label. Let us now construct a path. We start this path from i and extend it to a

child of i. Let l be the label of the edge between i and that child. Extend the path away from i as

long as possible using only edges labeled l. As a consequence of Lemma 1 (below) this procedure

is well defined. In order to construct the next path, remove all the edges of this path from Ti(t).

1If direct messages whose path length is of O(n2) are permitted (i.e., there is no path length restriction), then a simple al-

gorithm can be designed which guarantees convergence after O(log n) rounds and has a time complexity of one time unit.

This algorithm is based on traversing the minimum hop tree (BFS tree) a layer at a time. First we traverse the sub-tree

that spans all nodes of distance 1 hop from the root (but no node of distance greater than 1) and terminate the traversal

at the origin. We then traverse the sub-tree that spans all nodes of distance 2 hops and go back to the origin, and so on.

The overall traversal is composed of a concatenation of these subgraphs traversals. Messages are copied only during the

first visit at each node.

11

Figure 4. The Branching Path Broadcast Algorithm.

The next path starts with the largest numbered non-isolated node, and is constructed similarly to

the above. This operation is repeated until all the nodes are isolated in Ti(t).

Node i′s broadcast is performed over the set of paths defined above. First i sends its local

topology over all the paths that start from it. Note that the number of such paths is at most the

degree of i and consequently by the broadcast primitive this can be done in one unit of time. Using

the copy mechanism, the message is received by every NCU along these paths. In addition to the

local topology, the message contains a description of the tree, enabling every starting node j of a

12

new path to know that it is such a node. When j receives the broadcast message it sends it over

all the paths that start in it. Again, this takes one time unit. We refer to the algorithm as branching

paths broadcast. The system call complexity of each broadcast is, clearly, n. The time complexity

is the maximum number of distinct paths that a message will have to traverse. In the next section

we prove that the algorithm operates correctly and has time complexity bounded by log n.

3.2 Analysis

The following two lemmas are easy to prove.

Lemma 1: In the labelling procedure described above, a node of label l can have at most one

child of label l.

Lemma 2: Let P be a path on Ti(t) that starts in i, and contains only active nodes and edges.

Then, when i uses the branching paths broadcast protocol, every node on P receives the broad-

casted message.

The next result demonstrates that the topology maintenance algorithm operates correctly ac-

cording to the definition of correctness provided in [T77].

Theorem 1: Assume that the topological changes cease at some time. Then, eventually, every

node in the network knows the correct topology of its connected component.

Proof: Consider the network after the last topological change. We prove the theorem by an

induction on the distance in this final network (measured in hops) of a node from every other node.

The base case follows from the assumption on the data link protocol: every node eventually knows

the network topology within one hop of itself. Assume that every node eventually knows the

topology within k hops of itself. Let u be a node at distance k + 1 from i (if no such node exists

we are done). Let v be a neighbor of u whose distance from i is k. Clearly v knows about u after

one unit of time. By the assumption a route of active edges and links from v to i appears in Tv(t)

at some time t. By Lemma 2 v′s broadcast at that time will eventually reach i. Thus, i eventually

knows the topology within k + 1 hops of itself.

•

Comment: Let d be the network diameter. Using a similar argument to the above proof it can

be shown that a node′s topology knowledge covers at least a distance k just before its k-th broad-

cast. Thus O(d) broadcasts per node may be necessary until all nodes know the whole topology.

This can be improved to log d by having each node broadcast all the topological information it

knows.

13

Theorem 2: The time complexity of each broadcast is bounded by log n.

Proof: Consider the labeling algorithm of Section 3.1. Let j be a node whose label is l. It is

easily shown (by induction on l) that in the subtree (of Ti(t)) rooted in j there are at least 2l nodes.

Thus, the highest label in Ti(t) is at most log n.

Let x be the highest label. Clearly a path labeled x receives the broadcast message at time unit

1 = 1 + x − x. Similarly, a path labeled x − 1 receives the broadcast at time unit 1 in case it directly

starts at the root and at time unit 2 = 1 + x − (x − 1) otherwise. Generally, consider a path labeled

by y. By an induction on the value of y it is easy to prove that the broadcast message is transmitted

over this path after no more than 1 + x − y time units. The theorem follows.

•

3.4 Lower Bound

In this section we prove that Ω(log n) time is necessary for any one-way broadcast.

Theorem 3: Any one-way broadcast algorithm uses Ω(log n) messages to cover a (rooted)

complete binary tree.

Proof: Consider an execution of any one way broadcast algorithm on a complete binary tree

of depth D. To prove the lower bound it is enough to consider only an execution in which the

delivery of each message takes exactly one time unit. The following claim shows that at time t after

the broadcast starts, there are nodes at some level l(t) = O(t) that have not yet received the broad-

casted message. Given the claim, the theorem follows by considering t = Ω(log n).

Claim: For every t (1 ≤ t < D − 5
5

) there exists a set V t such that

1. V t is a subset of vertices at depth 5t of the tree,

2. the nodes of V t + 1 are descendents (in the tree) of the nodes of V t,

3. |V t| = 2t, and

4. At time t in the execution (i.e. just after the tth step in the execution) no node of V t has yet

received the message.

Proof of the Claim: Identify the sets V t inductively. The source can send at most two messages in

each time unit. After the first time unit at most two nodes at depth 5t = 5 have received the mes-

sage. However, there are 25 nodes at depth 5. Thus we can select two (other) nodes at depth 5 that

have not yet received the message.

14

Now suppose we have V t and consider t + 1 (if t + 1 is still no larger than D − 5
5

). Let S denote

the set of descendants of V t at depth 5(t + 1) of the tree. By (4) of the induction hypothesis, no node

of S has received the message before the t + 1th step. Messages reaching nodes of S at step t + 1

arrive along a path from some node that is

(a) a predecessor of a node in V t (by the assumption that the algorithm is one way);

(b) is not in V t (by part (4) of the induction hypothesis).

Each such predecessor produces at most two paths at time t + 1, and each such path passes in at

most one node of S (by the one-way assumption). Hence, denoting the number of predecessors

of nodes in V t by Pt, at most 2Pt nodes in S receive the message in time t + 1, and at least

B ≥ |S | − 2Pt do not. Now |S | = 25t + 5 while Pt obeys the recursive inequality Pt ≤ 5|V t| + Pt − 1,

implying Pt ≤ 6(2t + 1), so B ≥ 25t + 5 − 6(2t + 2) ≥ 2t + 1. Thus it is possible to choose 2t + 1

″uninformed″ nodes of S into V t + 1 and the theorem follows.

•

4. Leader Election

In the leader election problem all the nodes start in the same state (not.leader). When the algorithm

terminates exactly one node is in a special state (leader), and the others are in another new state

(leader.elected).

The leader election problem has been extensively investigated in the literature. Before we de-

scribe the new algorithm in detail, we first motivate the need for a new algorithm and describe other

key properties of our algorithm. A straightforward application of the traditional techniques to the

new model would result in system call complexity of Ω(n log n), as explained later.

To motivate the need for a new technique which exploits the new model and reduces the system

call complexity, we introduce an example (Figure 5). It shows a typical situation during the exe-

cution of a ″generic″ leader election algorithm. There is a set of nodes which are candidates for

leadership. These candidates communicate with each other and the set of candidates is gradually

reduced until, finally, there is a single candidate which becomes the leader. The reduction is ac-

complished through comparison of the candidates′ ″priority″; the lower priority node ceases to be

a candidate and becomes a ″supporter″ of the higher priority node. (The previous supporters of the

lower priority node will also become supporters of the higher priority node.) In the example, nodes

A and B are candidates for leadership. The eight lower nodes are supporters of B, while the upper

nodes are supporters of A. By communicating with node E, node A discovers that E supports an-

other candidate (i.e. B). If the priority of A is smaller than that of B then A (and its supporters)

become supporters of B. This process is repeated until exactly one candidate remains. Our algo-

15

Figure 5. Leader Election Example

rithm follows this paradigm. The novel part is the method we use to reduce the system call com-

plexity of the operation of comparing the priorities of such A and B.

Recall that in our model, if the route to node B is ″known″ to node E, then the priorities of A

and B can be compared using only two system calls. That is, A′s message is sent to E, and then

forwarded directly to B. However, we now face the question: ″do we notify all of A′s supporters

that they are now supporters of B (and give them the route to B)?″ If we do, then the number of

system calls paid for the elimination of A is linear in the number of A′s supporters, leading to a total

16

system call complexity of O(n log n). On the other hand (if we do not notify A′s supporters),

consider a candidate who contacts H, a supporter of A. Note that H is now, actually, a supporter

of B. However, (unlike the previous case with E) the route to B is not available in H. Thus, B

cannot be reached from its supporter H in one system call. The way to reach B will be to go to

H, then to A, and only then to B. If supporters are not notified of a candidate′s elimination, and

if the process of candidate elimination is not controlled, then the number of system calls needed to

eliminate a candidate will be linear with the number of its supporters. This again leads to a system

call complexity of O(n log n).

The algorithm presented below does not notify A′s supporters that they now support B. How-

ever, candidate elimination is done in a way that ensures that a message can be sent from any

supporter of a candidate B to B using only a logarithmic (in the number of supporters) number of

system calls. Note that this technique is very similar to the one used for the broadcast in Section

3.

4.1 The Leader Election Algorithm

We present the algorithm in terms of tokens (see [KKM85]). We view the token as a process

that can migrate from a node over an edge to the other end-point. By repeating the operation of

migration, a token traverses a graph or a subgraph. In order to avoid problems of mutual exclusion,

no two tokens are processed concurrently in a node. Instead, once a token has control over a node,

it retains control until it either halts or migrates to another node or executes a ″wait″ instruction.

At that time the control may pass to another token (which is either released from a ″wait″ instruc-

tion, or has migrated from another node). The use of tokens simplifies the presentation and proofs.

Clearly, the token algorithm can be simulated by a conventional algorithm [KKM85].

During the operation of the algorithm the nodes are partitioned into domains. Each domain is

a collection of nodes. At the beginning of the algorithm each node belongs to its own domain.

At the end of the algorithm all the network is included in a single domain.

Each node creates a candidate token that represents its domain. The token carries the identity

of its creating node, and the number of nodes in its domain. The creating node of a candidate is

called its origin. In origin node i, two sets are recorded: a set of all nodes in the domain (IN i) and

a set of all neighbors of these domain nodes which are outside the domain (OUT i). For each node

in both lists, an ANR field is attached which permits this node to be reached via a direct message.

This data structure is kept as a tree (the INOUT i tree) which is a subgraph of the network′s graph.

Thus, all the ANR field lengths as well as the data sets sizes are linear in n.

17

A domain is organized as a (virtual) tree. The origin is the root. Every other node i in the

domain has a pointer (ANR field) to the parent of i, denoted by Fi, in the virtual tree. Note, that

Fi is not necessarily a neighbor of i. Thus, unlike the INOUT i tree, the domain tree is not neces-

sarily a subgraph of the network′s graph. However, it is possible to reach Fi from i via a direct

message.

During the execution of the election algorithm candidates may enlarge their domains by cap-

turing other domains. Let the size of i, (Si), be the number of nodes in i′s domain, the level of

candidate i (Li) be the pair (Si, i), and the phase of candidate i (PH i) be log2Si . A candidate which

has noticed the existence of another candidate, with a higher level, becomes inactive and does not

attempt to enlarge its domain any more.

The algorithm at each node i starts when it receives for the first time either a START message

from outside, or a message of the algorithm. At that time it creates a candidate token, sets

IN i = {i}, and OUT i = {j/(i,j) ∈ E}. candidate i has Si = 1 and PH i = 0.

An active candidate, i, repeatedly performs tours for the purpose of capturing other domains.

The tour is started at the candidate′s origin by selecting an arbitrary node o from the set OUT i.

Next, the candidate travels to this node and attempts to reach an origin by going from that node

to its parent via the virtual tree. However, candidate i will never travel more than PH i +1 ″hops″

in its search for an origin. (Note that a ″hop″ is comprised of a single direct message and may

traverse several nodes.) If an origin is not found after such a limited length tour, candidate i directly

returns to its origin and becomes inactive. In order to be able to directly return to its origin, the

candidate always carries ANR(o,i). Let q be the node in which candidate i has decided to return

to its origin. ANR (q,o) is at that time computed in q, using INOUTq. This can be done since (as

we shall see) o ∈ INq. This route is used, rather than the reverse of the concatenation of candidate

i′s ANRs from o to q, since the length of the latter may be more than n.

Let us now describe what candidate i does when it arrives at a new node v, in its tour. We have

the following cases:

(1) v is not an origin -

If the length of the tour is already more than PH i, then candidate i returns to its origin and

becomes inactive. In order to return, the candidate first finds in node v a linear length ANR

to o (since o ∈ INv). It uses the concatenation of this ANR and ANR (o,i). If candidate i has

not became inactive in v then it proceeds to node Fv.

(2) v is an origin-

(2.1) If Lv > Li (lexicographically)- candidate i returns to its origin and then becomes inactive.

(2.2) If Lv < Li and the local candidate is inactive. - candidate i captures domain v by assigning

Fv = i (and leaving a linear length ANR(v,i) in v). It then returns to its origin carrying

with it both of v′s sets. There, a merging of the sets is performed by assigning

18

IN i = INi ∪ INv, OUT i = OUTi ∪ OUTv − INi (Actually the INOUT i and INOUTv

trees are combined in node i by connecting node o of INv to its neighbor in IN i. This

keeps the ANRs linear in length.) Also Si: = Si + Sv. The candidate is now ready for a

new tour.

(2.3) If Lv < Li and the local candidate is on a tour and no other candidate is waiting in v -

candidate i waits for the return of candidate v and for the completion of all computation

that are related to this comeback. At that point a comparison between the candidates′

levels is done and actions are taken in a manner similar to (2.1) and (2.2).

(2.4) Same as (2.3) but there is another candidate, j, waiting in v - The lower level candidate

returns inactive to its origin.

If after a tour the OUT set becomes empty, then the candidate declares itself the leader. Oth-

erwise, the candidate proceeds on another tour.

4.2 Correctness Proof

In this section we prove that a single candidate is elected in every execution of the algorithm.

In order to prove the general result (Theorem 4) we use several lemmas. Lemma 3 is used to prove

that rule (1) of the algorithm does not cause the algorithm to deadlock. Lemma 4 will be used to

show that no deadlock results from rule (2). Lemma 5 shows that a candidate that remains alive

(Lemmas 2 and 4) will, eventually, capture every other candidate. The proof of Lemma 3 also

shows the similarity between the routing techniques used here, and in Section 3 (in the paths con-

struction). This lemma is also used later in the analysis of time and system call complexities.

Lemma 3: The depth at any time t of a virtual tree of a candidate i that is alive at time t is never

more than i′s phase at time t.

Proof: Note (rules (2.2) and (2.3)) that the size of a capturing candidate is no less than that of

the captured one. Thus, when candidate i approaches the origin of candidate j from a leaf, the

number of nodes in the subtree below it increases at least by a factor of two in each step. The

lemma follows.

•

Lemma 4: During any execution of the algorithm there is always at least one alive candidate.

Proof: By Lemma 3, if candidate i becomes inactive because of rule (1) then it is trying to arrive

at an origin of a candidate in a higher level. If it becomes inactive because of rule (2) then it is

19

during a visit to the origin of a candidate in a higher level. Thus, at any given time, the candidate

with the highest level cannot become inactive.

•

Lemma 5: A candidate that starts a tour eventually returns to its origin.

Proof: Note that a candidate waits only for a candidate with a smaller level (in the origin of the

latter). Thus, at least the smallest in a chain of waiting candidates must return.

•

Theorem 4: If a non-empty set of nodes starts the leader election algorithm, then the algorithm

eventually terminates (and exactly one node declares itself a leader).

Proof: The theorem follows from Lemmas 3 through 5, and from the observation that OUT i

can become empty only when all nodes have been visited by candidate i.

•

4.3 Complexity

Theorem 5 gives a bound on the system-call complexity, and thus also on the time complexity.

In the theorem we use the following lemma

Lemma 6: There are at most n
2p

 domains at phase p.

Proof: By the definition of a phase there are at least 2p nodes in phase p. The lemma now fol-

lows from rule (2.2) which implies that a node can belong to at most one domain in each phase.

•

Theorem 5: The number of system-calls in the algorithm is never more than 6n.

Proof: All the system calls (direct messages) of the election algorithm are the result of candi-

dates going on tours and returning from them. First, consider tours in which the touring candidate

succeeds in capturing a domain. Let Vp be the number of candidates that enter phase p. The

number of domains captured in phase p is then

∑
p

(Vp − Vp + 1)

20

By Lemma 3, the capturing of a domain in phase p requires at most p + 2 messages (including the

one to a node in the other domain, and the direct message that is needed for the return of the

candidate to its origin). Hence, the number of messages used in capturing domains is

∑
p

(Vp − Vp + 1)(p + 2) = ∑
p > 0

Vp + 2(V0 − 1) ≤ 3n

Consider now the messages used by candidates for tours in which they have not succeeded in

capturing a domain. In such a tour, the touring candidate becomes inactive. This may happen only

once per candidate, and by rule (1) the number of messages used when this happens to a candidate

in phase p is not larger than p + 2. Thus, the same bound we have computed for successful tours

also holds for the unsuccessful tours. The theorem follows.

•

5. Distributed Computation of Globally Sensitive Functions

In this section we clarify some of the basic differences between system call complexity and com-

munication complexity for a broad class of distributed computation problems. Previously, we as-

sumed that the nodes do not know in advance a direct path to remote nodes. By learning this

information via the operation of the algorithm, the features of the new model could be exploited.

This might lead to the (wrong) conclusion that once each node knows how to directly reach any

other node, the difference between the old model and the new class of models disappears. In other

words, one might incorrectly concludes that once a complete routing information is available, the

new model is no different from a completely connected traditional network where every node can

reach any other in a single hop.

We disprove this wrong conclusion by considering a network whose underlying topology is a

complete graph where each node knows its neighbors′ identities. We demonstrate that the optimal

structure of distributed computation is still sensitive to the trade-off between communication and

system-call delays. In order to capture this trade-off, we do not restrict our attention to the case

where communication delays are negligible. Rather, we assume a more general case in which the

worst case communication delay of each message is C and the worst case system call delay is P,

where C and P are arbitrary numbers. As mentioned in the introduction, problems under this

model have been further investigated in [BK92,CKPS93].

5.1 Problem formulation

We assume an asynchronous completely connected network. Without loss of generality we as-

sume that there are n nodes, numbered 1, 2,..., n. We assume that each node i maintains a local

21

input value Ii which is drawn from a finite alphabet. A distributed algorithm is triggered at time 0

at all nodes. The algorithm terminates eventually at node 1. Upon termination, node 1 should have

computed the correct value of some function f(I1, I2,..., In). Function f is defined for all vectors of

length equal or smaller than n.

The function f is defined to be:

1. Associative - f(X, Y , Z) = f(X,f(Y ,Z)) = f(f(X,Y),Z)

2. Commutative - f(X,Y) = f(Y ,X)

In addition f is globally sensitive. To define this term, we introduce some additional notation.

Consider a vector K = (K1, K2, ..., Kj, ..., Kn). Let Kj(m) denote the vector K with the value of Kj set

to be m (all other values remaining as in K). For function f, we now define a globally sensitive input

vector, I = (I1, I2,..., In), to be one where, for every j, (1 ≤ j ≤ n), there exists a value m such that

f(Ij(m)) ≠ f(I). (Note that m is drawn from the same original finite alphabet as the components of

input vector I). A globally sensitive function is one for which there exists at least one globally

sensitive input vector. Somewhat stronger definitions of global functions are also provided in

[KMZ84,ALSY90]. Clearly, any such function can be computed in one time unit in the case of a

complete graph under the traditional model. This is not necessarily the case under the new model.

5.2 The Construction of Optimal Algorithms

Our goal is to construct an optimal (time and system call) algorithm to compute globally sen-

sitive functions. The optimal algorithm may be different for different values of C and P. Therefore,

we assume that P and C are given. We first show that there exists a spanning tree and a simple

optimal algorithm that sends messages only over a that tree and at most one message over each tree

edge. This is established in Theorem 6 below. Later, we show how to compute the tree, given P

and C. We begin by defining the simple algorithm given a spanning tree.

Definition: A tree based algorithm is an algorithm where the function is computed over a pre-

defined spanning rooted tree (the same tree for all possible input vectors). The computation is done

in the following fashion: At initialization, all tree leaves send their input values to their parents.

Each node (which is not a leaf) waits until it has received a message from all its children and then

computes the partial function of its subtree and forwards the result to its parent.

Theorem 6: There exists a single tree-based algorithm which is worst-case optimal for all func-

tions f.

The proof appears in the appendix. Intuitively, it is based on the observation that in every ex-

ecution of every optimal algorithm one can identify a tree, consisting of edges over which certain

22

″important″ messages were sent. These messages, termed causal, are messages which have a causal

relationship (viz. Lamport′s ″happened before″ relation [L86]) to the output of the computed

function at node 1. An algorithm may send many causal messages, but if we consider for every

node the edge over which it sent the last causal message, this defines a tree. This tree can then be

used by a tree based algorithm. See the appendix for more details.

We now address the main question of identifying the best tree-based algorithm, i.e., identifying

the particular spanning tree over which the best algorithm is defined. Instead of formulating the

problem as “what is the tree over which n nodes can perform the algorithm in minimum time” we

first address a somewhat different but related question of “given a worst case termination time t

what is the tree with the maximum number of nodes over which the tree-based algorithm terminates

before t”. We later show how to use the answer for the latter question for solving the former

question.

We define an optimal (t,P,C) tree, as the rooted tree with the maximum number of nodes over

which a tree-based algorithm can compute any function f and terminates no later than t. Fixing

P and C, we denote this optimal tree by OT(t) and the number of nodes in OT(t) by S(t). It is clear

that the size of the optimal tree is a non-decreasing function of t. C and P were defined as worst

case times. It is easy to prove that increasing any message delay in the tree-based algorithm never

decreases the overall time to complete an execution. Therefore, we may assume that in the worst

case situation messages encounter exactly the maximum allowable delays (P and C).

Let us consider an optimal tree OT(t). The root of this tree receives messages from its children.

It is able to process all of them within time t. Let us observe the last message it processes. This

message must be received no later than (t-P) otherwise it cannot terminate at t. This in turn implies

that the message must have been sent before (t-P-C). In addition, assuming that messages are

processed in FIFO order, the root must have received and processed all other messages by that time

(t-P). It is also clear that:

S(t) = {0 t < P

1 t < 2P + C
(1)

Let X and Y be rooted trees. We define the operation ∪
←

 as an operation that gets as input two

rooted trees and outputs a new tree in the following way. The rooted tree Z which is the result of

Z = X ∪
←

Y is constructed by augmenting the root of Y (we add a directed edge) as a child of the

root X.

Since S(t) is a non decreasing function of t, this leads us to the following recursive structure of

the tree (t ≥ 2P + C).

OT(t) = OT(t − P) ∪
←

OT(t − C − P) (2)

23

This also translates to the numerical equation:

S(t) = S(t − P) + S(t − C − P) (3)

Both the tree structure and size can be solved using the recursions defined by (2) and (3) respectively

and by the initial conditions (1). One has to compute OT(t − i(C + P) − jP) for all i,j such that

t − i(C + P) − jP ≥ 2P + C. The simplest way to do it is by computing the values of t, to be con-

sidered, ordering them from low to high and computing the structures and the values according to

this order. Basically we can restrict the computation to discrete values of time that are in the form

iP + jC. Other times t can be truncated to the highest value that still satisfied t ≥ iP + jC.

Examples

1) Model of sections 3 and 4 - C=0, P=1. We can assume only integer values of time. The

equations take the following simple structure:

S(t) = {0 t < 1

1 1 ≤ t < 2
(4)

OT(k) = OT(k − 1) ∪
←

OT(k − 1) (5)

This structure is a binomial tree [SCH81]. Solving for the tree size results in

S(k) = 2S(k − 1) = 2k − 1 (6)

2) Traditional model - C=1, P=0. It is easy to see that the recursion blows up. This is because

by using a star configuration we can add any number of nodes to the structure and thereby get any

tree size for t=1.

3)C=1 , P=1

S(k) = {0 k < 1

1 1 ≤ k < 3
(7)

OT(k) = OT(k − 1) ∪
←

OT(k − 2) (8)

This structure grows faster than a binomial tree. Solving for the tree size results in

S(k) = S(k − 1) + S(k − 2) (9)

These are the Fibonacci numbers and therefore,

24

S(k) =
((1 + √5)

k
− (1 − √5)

k)
√5 (2)k

(11)

Computing the optimal time for a given size

Since the recursion is applied in the order of increasing value of time, one should just compute it

for the discrete values of time until S(t) ≥ n. As was mentioned before we should use only values

of time that are in the form of iP + jC where i and j are integers. Since in the tree-based algorithm

there are only n − 1 messages sent it is clear that: i ≤ n, j ≤ n. Therefore, there are at most n2

possible points at which we need to compute the recursion.

6. Conclusion

We have presented a family of new models for distributed algorithms which reflect the costs of

communication, switching and processing in high speed networks more accurately than previously

studied models. We have shown that three distributed algorithms can be made to operate more

efficiently under this model. However, issues remain open. For example, can other distributed

algorithms be similarly improved? What is the relationship between the power of the switching

subsystem and the efficiency of the distributed algorithm? Are the models that we have proposed

the most suitable for high speed networks or can they be improved? These and other issues form

a rich area for future study.

Acknowledgements

The authors would like to thank Jeffrey Jaffe for the BFS algorithm of section 3. We also thank the

referees of this paper for their constructive comments that helped us to improve the readability of

the paper and to simplify some of the proofs.

25

References

[ACGK90] B. Awerbuch, I. Cidon, I.S. Gopal, M. Kaplan, S. Kutten, ″Distributed Control for
PARIS,″ Proceedings of the Ninth ACM Symposium on Principles of Distributed
Computing, Quebec City, pp. 145-160, August 1990.

[AKRP80] P. Amer, R. Kumar, R. Rao, J. Phillips, L. Cassel, ″Local Area Broadcast Network
Measurement: Traffic Charecterization,″ IEEE Computer Society International Con-
ference, Piscataway, 1987.

[ALSY90] Y. Afek, G. Landau, B. Schieber and M. Yung, ″The Power of Multimedia: Combining
Point-Point and Multiaccess Networks,″ Information and Computation, Vol. 84, No.
1, January 1990.

[B80] J.E. Burns, ″A Formal Model for Message Passing Systems″, TR-91, Computer Science
Department, Indiana University, Bloomington, Indiana, 1980.

[B92] J.Y. Le Boudec, ″The Asynchronous Transfer Mode: a tutorial″, Computer Networks
and ISDN Systems, Vol. 24, pp. 279-309, 1992.

[BK92] A Bar-Noy and S. Kipnis, ″Designing broadcasting algorithms in the postal model for
message-passing systems″, to appear in Mathematical Systems Theory. Also in 4th
Annual Symposium on Parallel Algorithms and Architectures, ACM, June 1992.

[BS84] A.E. Baratz and A. Segall, ″Reliable Link Initialization Procedures,″ IEEE Transaction
on Communications, Vol. COM-36, pp. 144-152, 1988.

[BZ90] S. Bitan and S. Zaks, ″Optimal Linear Broadcast″, Journal of Algorithms, Vol. 14, No.
2, March 1993, pp. 288-315.

[CG88] I. Cidon and I. Gopal, ″PARIS: An approach to private integrated networks″,
Inernational Journal on Analog and Digital Cabled Systems, Vol. 1, pp. 77-85, March
1988.

[CGGG93] I. Cidon, I. Gopal, P. M. Gopal, R. Guerin, J. Janniello and M. Kaplan, ″The
plaNET/ORBIT High Speed Network″, Journal of High Speed Networks, Vol. 2, No.3,
1993, pp. 1-38

[CGK88] I. Cidon, I. Gopal and S. Kutten, ″New Models and Algorithms for Future Networks,″
7th Annual ACM Symposium on Principles of Distributed Computing″, Toronto,
Ontario, Canada, August 1988, pp. 75-89.

[CGK90] I. Cidon, I. Gopal and S. Kutten, ″Optimal Computation of Global Sensitive Functions
in Fast Networks″, Distributed Algorithms, editors: J. Van Leeuwen and N. Santoro,
proceedings of the 4th International Workshop on Distributed Algorithms, Bari, Itali,
September 1990, Springer-Verlag, pp. 185-191. Also in IBM Research Report, No.
RC 16352, July 1990.

[CJRS89] D. Clark, V. Jacobson, J. Romsky and H. Salwen, ″An Analysis of TCP processing
overhead″, IEEE Communications Mag., Vol. 27, No. 6, June 1989, pp. 23-29.

]CKPS93[D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R.
Subramonian, and T. von Eicken, ″LogP: towards a realistic model of parallel compu-
tation″, 4th SIGPLAN Symposium on Principles and Practices of Parallel Program-
ming, ACM, May 1993.

[CS89] R. Cohen and A. Segall, ″A Distributed Query Protocol for High Speed Networks″,
Proceeding of the Ninth International Conference on Computer Communications, Tel
Aviv, 1988.

[DHSS84] D. Dolev, J. Helpern, B. Simons and R. Strong, ″A New Look at Fault Tolerant Net-
work Routing,″ Proceedings of the 17th ACM Symp. on Theory of Comput. 1984,
pp.536-541.

[E79] S. Even, ″Graph Algorithms″, Computer Science Press 1979.

26

[G87] Gray, J., Invited talk, Sixth ACM Symposium on Principles of Distributed Computing,
Vancouver, British Columbia, Canada, August, 1987.

[GGK90] A.S. Gopal, I.S. Gopal and S. Kutten, ″Broadcast in Fast Networks″, IEEE
INFOCOM 1990, San Francisco, pp. 338-347, June 1990.

[GHS83] R.G. Gallager, P.M. Humblet and P.M. Spira, ″A Distributed Algorithm for Mini-
mum- Weight Spanning Trees″, ACM Transactions on Programming Languages and
Systems, January 1983, Vol. 5, No. 1, pp. 67-77.

[HA87] J.Y. Hui and E. Arthurs, ″A Broadband Packet Switch for Integrated Transport,″ IEEE
Journal on Selected Area in Commun., Vol. SAC-5, No. 8, pp. 1264-1273, Oct. 1987.

[HT84] D. Harel and R.E. Tarjan, ″Fast algorithms for finding nearest common ancestors″,
SIAM J. on Computing, 13 (1984), pp. 314-325.

[KKM85] E. Korach, S. Kutten and S. Moran, ″A Modular Technique for the Design of Efficient
Distributed Leader Finding Algorithms″, ACM Transactions on Programming Lan-
guages and Systems, Vol. 12, No. 1, pp. 84-101, 1990.

[KMS87] P. Kaiser, J. Midwinter and S. Shimada, ″Status and Future Trends in Terrestrial Opical
Fiber Systems in North America, Europe, and Japan″, IEEE Communications Maga-
zine, Vol.25, No.10, October 1987.

[KMZ84] E. Korach, S. Moran and S. Zaks, ″Tight Lower and Upper Bounds for some Distrib-
uted Algorithms for a Complete Network of Processors″, Proceedings of the 3rd ACM
Symposium on Principles of Distributed Computing, Vancouver, B.C., Canada, August
1984, pp. 199-207.

[KO86] E. Korach and S. Onn, ″A New Model for Distributed Networks to Improve Com-
plexity with Linear Applications to Multi-Commodity Flow and Routing in Series
Parallel Graphs,″ Technical report #439, Computer Science Department, Technion,
Haifa, Israel, November 1986.

[L86] L. Lamport, ″On Interprocess Communication, Pat I, II″.″ Distributed Computing, Vol
1, pp. 77-101, 1986.

[MASK88] B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson, and J. Robbins, ″Performance
Models of Statistical Multiplexing in Packet Video Communications,″ IEEE Trans-
actions on Communications, VOL. 36, NO. 7, July 1988, pp. 834-844.

[MRR80] J. M. McQuillan, I. Richer and E. C. Rosen, ″The New Routing Algorithm for the
ARPANET,″ IEEE Transactions on Communications, Vol. COM-28, May 1980, pp.
711-719.

[PKR84] J. Pachl, E. Korach and D. Rotem, Lower Bounds for Distributed Maximum- Finding
Algorithms JACM, vol. 31, No. 4, October 1984, pp. 905-918.

[PS87] D. Peleg, and B. Simons, Fault Tolerant Routings in General Network″, Information
and Computation, Vol. 74, No. 1, July 1987, pp. 33-49.

[SCH81] P.J. Slater, E.J. Cockayne, and S.T. Hedetniemi, ″Information Dissemination in Trees,″
SIAM J. of Computing (1981), pp.692-701.

[SV88] B. Schieber and U. Vishkin, ″On finding lowest common ancestors: simplification and
parallelization″, SIAM Journal on Computing, Vol. 17, No. 6, December 1988, pp.
1253-1262.

 [T77]. W.D. Tajibnapis, ″A Correctness Proof of a Topology Maintenance Protocol for Dis-
tributed Computer Networks,″ CACM, 20, 7, July 1977.

[T83] R.E. Tarjan, ″Data structures and network algorithms″, CBMS-NSF Regional Confer-
ence Series in Applied Mathematics (SIAM 1983).

[TW83] J.S. Turner and L.F. Wyatt, ″A packet network architecture for integrated services,″
Proc. of Globecom′83, pp. 45-50, Nov. 1983.

27

APPENDIX

Proof of Theorem 6.

Given any optimal algorithm let us show how to construct an optimal tree based algorithm that

has the same worst case time complexity (and a minimum system call cost). Let us distinguish

between messages that can affect the final result and messages that cannot. A causal message is

defined in the following recursive way. It is either received by node 1 before the algorithm termi-

nates or it is received by some other node before that node sends a causal message. Any other

message is defined to be a non-causal message. It is clear from the definition that a causal message

sent over a link cannot be preceded by a non-causal message as we assume FIFO reception.

Lemma A.1 shows that we can essentially ignore or suppress any non-causal message.

Lemma A.1: Consider an arbitrary execution of the algorithm. We can delay any non-causal

message at a node or a link for any arbitrary amount of time without changing the algorithm′s re-

sults or its termination time.

Proof: The proof follows immediately from the fact that non-causal messages cannot be re-

ceived before a causal one at any node. Since causal messages cannot be sent after the reception of

a non-causal message and since node 1 makes its final decision only due to reception of causal

messages the lemma holds.

•

Lemma A.2: Assume that a function f is computed. Then, there exists at least one execution

of the distributed algorithm in which each node other than node 1 sends at least one causal message.

Proof: The proof follows directly from lemma A.1 and the definitions of global sensitive func-

tions and global sensitive input vectors.

•

Following the results of lemma A.2, for every correct algorithm (in particular optimal ones)

there are executions in which each node must send at least one causal message. From now on we

will focus on these particular executions.

Since we assume that message delays do not depend on their contents, a particular tree based

algorithm will have the same worst case time delay for all functions f and all possible input vectors.

We are looking for optimal algorithms in the worst case (over all executions and possible input

vectors). Therefore, in order to prove the optimality of a tree based algorithm, it is sufficient to

28

show that for an arbitrary algorithm that computes an arbitrary function f there exists an input

vector and a tree based protocol which is at least as efficient as the chosen algorithm (only for this

particular input vector).

Lemma A.3: For any function f and any algorithm that computes f there exists a tree-based

algorithm with worst case time and message cost better or equal to that algorithm.

Proof: Consider an execution of the algorithm for a globally sensitive input vector. Consider

the last causal message that is sent by each node. It is easy to show that since this is the last mes-

sage, the causal path of these messages defines a spanning tree rooted at node 1. This implies that

this last causal messages process is equivalent to the operation of a tree based algorithm.

Now let us execute the tree-based algorithm over the above defined tree (for all input vectors).

This algorithm has the same messages exchange as the last causal messages sent by the chosen al-

gorithm for a specific input vector. Therefore, the tree based algorithm just introduced, has worst

case message and time costs which are bounded by a particular execution of the original algorithm

(not necessarily the worst one). This implies that its time and message delays are bounded by the

worst case delay of the original one.

•

Theorem 6 now follows as a corollary.

29

