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Abstract—The packet loss process in a single server queueing
system with a finite buffer capacity is analyzed. The model
used addresses the packet loss probabilities for packets within
a block of consecutive sequence of packets. In contrast to other
work that used an independence assumption to compute the loss
probabilities of packets within a block, an analytical approach is
presented that yields efficient recursions for the computation of
the distribution of the number of Tost packets within a block of
packets of fixed or variable size for several arrival models and
several number of sessions. Numerical examples are provided
to compare the distribution obtained from our analysis with
the distribution obtained by using the independence assumption.
The results give insight to the following areas refated to high-
speed networks: 1) forward crror correction schemes become less
cfficient due to the bursty nature of the packet loss processes;
2) real time fraffic such as voice and video might be more
sensitive to network congestion than was previously assumed;
3) the retransmission probability of ATM messages has been
over-estimated by the use of independence assumption.

Index Terms— Packet loss processes, blocking probability,
finite-queues, high-speed networks, ATM, forward error recov-
ery.

1. INTRODUCTION

AST PACKET switching (or its variants like ATM) are

now broadly accepted as the universal technique for
constructing high-speed multimedia communication networks
(12], [4}, [10], {16]). Due to the high throughput demands
and the mixed traffic environment, these networks usually
employ simplified and universal congestion control mecha-
nisms which are based on call bandwidth reservation, input
rate enforcement, and packet discard at the intermediate nodes.
Simple open loop congestion control mechanisms which use
knowledge of the extrinsic paramelers associated with the
connection and control the source by forcing it to conform with
these parameters, has been suggested for these networks. The
leaky bucket scheme proposed in [16] and the schemes used in
PARIS [4] and in [1] are examples of such mechanisms. Packet
discarding is unavoidable during temporary overload situations
due to buffer overflow. Packets may be lost also due to bit
errors. However, current highi-speed networks which use fiber-
optic transmission links can achieve very low bit-error rates
(10~ error rates can be achieved over long-distance fibers)
that makes it negligible compared to loss due to congestion.
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Therefore, in this paper we shall concentrate on the study of
packet loss processes due to buffer overflow.

Understanding the packet loss behavior is crucial for the
proper design of the real time (e.g., voice and video) coding
and playback mechanisms and the methods of congestion
control and error recovery for data. It is also essential for sizing
the various buffers at the transmission links and swilching
elements. Individual packet loss probabilities (where in our
terms a packet.is the integral transmitted quantity) are usually
not sufficient for proper understanding of the system behavior.
In general, packets arc more likely to be rejected because of
buffer overflow as their rate of arrival to the buffer increases.
Also, if a packet has been rejected, then it is more likely that
consecutive packets will also be rejected’. Consequently, it is
clear that there is a strong correlation beiwéen consecutive
packet losses, and therefore fosses are bursty. It is well known
that the bursty nature of the packet loss process can effectively
reduce the service quality, cspecially for sources which are
sensitive to long bursts of losses (such as voice, video, and
some error recovery {cchniques employed for data). It is less
known that some sources may actuaily benefit from the bursty

-nature of the loss process. For instance, sources that transmit

messages that are composed of several packets may need less
retransmissions of messages when the loss process is bursty.
The goal of this paper is the study of packet foss processes in
systems that can accommodale a finite number of packets.

An important design issuc in high-speed networks is the
scheme of packet loss recovery. Forward packet tecovery
schemes for high-speed networks have been investigated re-
cently for both data and video services, see, e.g., [10], [14],
[15]. In these schemes, it has been proposed to group data
packets into blocks of predetermined size, and add to each
block a number of parity packets which contain redundant in-
formation. The number of parity packets and their consttuction
determine the maximum number of lost packets In a biock thal
can be tolerated. Below this number, all missing packets can be
recovered using the redundant information. For such recovery
schemes, it is desirable to derive the probability distribution
of the number of packets that may be lost within a block.
As will be demonstrated later, such forward error recovery
scheinies become much less efficient as the packet loss process
becomes more bursty.

11t can be shown for the M/M/1/K system for example, that this holds
for all I{ > 2, i.e., the conditional probability of rejection given a prior
rejection is strictly higher than the unconditional probability of rejection (for
an arbitrary arrival),
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Another application in which it is important to know the
probability distribution of the number of packets lost within
a block is related to the asynchronous transfer mode (ATM)
emerging standard [2]. In ATM, the current status of the
proposed error recovery scheme calls for error recovery of
lost cells (ATM packets) using a retransmission at the mes-
sage (or block) level (above the adaptation layer). This is
due to the fact that individual cells of a message are not
numbered. This strategy increases the effective loss probability
(or retransmission probability) for messages as compared to
networks which keep the error recovery units to be the same
as the transmission units (i.e., PARIS [4]). This is because
~any cell loss within the message results in a retransmission of
the entire message [3]. On the other hand, the correlation of
loss (or no-loss) among the cells of the same message plays a
positive role in such a scheme. We shall show that evaluating
the message retransmission probability using an independence
loss assumption is quite pessimistic.

The model we use in this paper for ascertaining the cor-
relation in the packet loss process consists of a source that
generates packets and sends them through a single server with
a finite number of buffers, which represents the network. We
analyze the packet loss process. In particular, we introduce an
efficient recursion to obtain the distribution of the number of
lost packets in a block of arrivals of a given size for different
arrival models and different number of sessions. Earlier studies
that considered similar problems ([10}, {14], {15]) used an
independence assumption, i.e., the assumption that the event
of packet loss is independent from packet to packet, and the
loss probability of every packet is the same (i.i.d. losses).
This assumption can lead. to erroneous conclusions, as was
first observed in [15] by comparing these results to those
obtained from simulations. In this paper, we compare the
distribution obtained from our analysis with that obtained from
the independence assumption. Numerical examples are pro-
vided to show that the distribution we compute may be worse

compared to the distribution computed from the independence.

assumption for applications such as forward error correction or
better for applications such as straight message retransmission.

The paper is structured as follows: In Section II, we focus
on continuous time systems and a fixed block size (counted
in packets). The: continuous time model is suitable for the
analysis of variable size packet systems. We first present the
analysis of a single session with Poisson arrivals, and discuss
the numerical results for some examples. Then we proceed
to the analysis of a binary Markov (bursty) arrival process.
In addition, we extend the previous results to the case of
multiple session multiplexing and obtain the distribution of the
number of packets lost in a given block of arrivals that belong
to a particular session. In Section III, we analyze the single
session model of Section II for the case of variable block size.
Section IV addresses the discrete time system which better
describes an ATM based system. Numerical results are also
obtained for this case.

Note that the order by which we present the results does not
necessarily reflect their relative practical significance. It was
mainly chosen in order to facilitate the technical presentation
and to improve understanding.
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II. CoNTINUOUS TIME SYSTEMS: FIXED BLOCK SIZE

In this section we consider systems with variable length-

. packets whose transmission time is exponentially distributed

with parameter 1. The packets are stored in a queue that can
accommodate up to M packets and are served (transmitted)
according to an arbitrary policy. If a packet arrives at a system
that contains M packets, it is lost. The packets are grouped into
fixed size blocks, namely, every n consecutive packets form
a block and we are interested in the probability distribution of
the number of lost packets within a block in steady-state. We
consider systems with a single arrival stream (single session)
and with several arrival streams (multiple sessions). For both’
systems we investigate the loss probability distribution for
Poisson traffic and for bursty traffic.

A. A Single Session

1) Poisson Traffic: Here we assume that packets arrive at the
system according to a Poisson process with rate \. The average
load p is defined as p & )\/p. We recall that the stationary
probability of having ¢ packets in the system at an arrival
epoch (and also at an arbitrary epoch), II(z), 0 < 7 < M, is
given by (see, e.g., [11, p. 104]),

M
O@y=p" /Y o, 0<i<M 1)
=0

Our purpose in this section is to compute the probabilities
P(j,n), n > 1,0 < j < n of j losses in a block of n
consecutive packets. We carry the computation by conditioning
on the number of packets seen in the system by the first packet
of the block when it arrives. To that end we define Pf*(j,n),
i=0,1,--+,M,n>1,0<j<n, to be the probability of j
losses in a block of n packets, given that there are 4 packets
in the system just before the arrival epoch of the first packet
in the block. Since the first packet in a block is arbitrary,

' M _
P(j,n) =y T(E)P(j,n). )
i=0

To complete the computation we need to compute the
probabilities P#(j,n), ¢ = 0,1,---,M,n > 1,0<j < n
To that end we will introduce recurrence relations. To define
the recursion we need the quantity Q;(k), i = 0,1,---, M,
0 < k < i, which is the probability that k packets out of ¢ leave
the system (are transmitted) during an inter-arrival period.
Note that this probability is equivalent to the probability of
k Poisson arrivals with rate p during a period exponentially
distributed with rate \, with the restriction that no more than
i arrivals occur during a period. We have (see, e.g., [13]),

1
1+p

o k+1

)
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TABLE I
PROBABILITY OF PACKET Loss with M = 20 anp n = 10
p=08 p=10 p=15
j P(-" 77.) })ind(jv "’) P(],Tl) Rnd(jv n') P(]1 ") -Pind(jvn)
0 9.90 10~1 9,77 10~1 832101 6.14 101 1.94 10~! 1731072
1 3.86 1072 2.28 1072 4.76 102 307 10! 971 102 8.66 10~2
2 2551073 239 10~* 3.88 10~2 6.91 102 1.15 101 1.95 10~!
3 1.62 10—3 1.49 106 2.99 10~2 921 1073 1.27 101 2.60 101
4 9.69 10— 6.07 102 216 1072 8.06 10— 1.29 10! 228101
5 5.3710™¢ 1.70 10— 11 1.44 1072 4.83 108 1.18 10! 1.3710°!
6 2.69 10—* 3311071 8.55 10~3 201106 9.63 102 5.69 102
7 1.17 10—4 4.41 10~V 439103 5.75 10—8 6.71 102 1.63 10—2
8 419105 3.85 1020 1.84 103 1.08 10-° "3.76 102 3.05 103
9 1.09 1075 2.00 10—23 558 10~ 1.20 104 1521072 339 104
10 1.57 10~ 4.66 10~%7 9.30 10~5 6.00 1014 3.36 103 1.70 105

The recursion for computing the quantities P{(j,n) is
initiated for n = 1 with the following obvious relations:

» 1, §=0,
Pia(jvl) = ‘ 1= 0517 aM" la (4)
0, 721,
and for i = M, we have’
a ; — 17 .7=17

For n > 2, we have the following recursive equations:

i+1
ZQH—l(k z+1 k(]) 1): 0<:i< M ~1,
k 0

Py (j,n) = Z Quk)PY (G — 1,n—1). (6)
k=0

* The explanation of (6) is clear. When the first packet of a block
arrives and sees ¢ (0 <4 < M — 1) packets in the system, it
is not lost. To have j lost packets out of the block of size
n, j packets must be lost out of the n — 1 packets starting
from the next arrival epoch that will see ¢ + 1 — k packets
if k (0 <k <i+1) packets are served between the arrival
epochs of the first packet and the subsequent packet. When
the first packet arrives and sees M packets in the system, it
is lost, so we have already counted one loss. Hence, to have
7 losses out of the-block of size n, j — 1 packets must be lost

out of the n — 1 packets starting from the next arrival epoch

that will see M — k packets if k (0 < k < M) packets are
served between the arrival epochs of the first packet and the
subsequent packet.

Using the initial conditions (4)—(5) one can compute the
probabilities P{(j,n) for any n > 1, recursively, using (6).
The number of simple operations (additions and multiplica-
tions) needed for this computation is of the order O(M*n Zn?).

An alternative recursion for the computation of P(j,n) can
be obtained as follows. Let P*"(j,n), 0 < i < M, n > 1,
0 < j < n, be the probability of j losses in a block of n
consecutive packets that arrive to the system after an arbitrary
time instant, given that there are ¢ packets in the system at

that time instant. Since the first packet in a block is arbitrary,
we have (for n > 2)

M-1

> II()

i=0
FTI(M)PE (G = 1,m — 1).

],n) 1.+1 j7 1)

We proceed to obtain a recursion for the computation of
Pr(§,n). For 0 < i < M — 1, the recursion is initiated
with the same relation as (4). For i = M, we have

erre v MO R, i=1,
PM“’”*{W(HZ), i

For n > 2, we have the following recursive equations:

jze. O

P§"(j,n) = Pi(G,n — 1),
ar( A : ar (s
Pi (],n)=m z+1(.7a 1)+—’—P ( )7
1<i<M-1,
PG = T PR~ L= D+ Pl

®

The explanation of (8) is as follows. In the M/M/1 system,
given that the system is not empty, the probability of an arrival
of a packet to the system before a departure of a packet from
the system is given by A/(A + ), and the probability of a
departure before an arrival is given by pu/(A+p). Conditioning
on the next event (arrival or departure) the recursions in (8)
are obtained.

The procedure for the calculation of P{"(j,n) from (8)
proceeds as follows. First, the probabilities P?7(j,1), 0 <
i < M, are computed from the initial conditions. In step
k, k = 1,2,---,n, the probabilities P?"(j,k) are computed
recursively for each i in increasing order from (8). Note that,
in each step k, the number of simple operations needed for
the computation of P"(j,k), 0 < ¢ < M, is O(M) and
the overall number of simple operations in this procedure is
of the order O(Mn?). Hence, this recursion is more efficient
than the one of (6). .
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The probabilities P(j,n) (0 < j < n) are given in Table I
for a system with M = 20 packets, block of size n = 10 and
for different average loads p = 0.8, 1, 1.5. For comparison
purposes we also give in the table the quantity Pina(4,n)
(n>1,0<j <n), which represents the probability of j
losses in a block of n packets under an independence assump-
tion. The commonly used independence assumption assumes
_ that each packet of the block of size n finds the system full
(and hence is lost) with probability p = II(M) independently
of other packets. With this assumption the number of lost
packets in a block of size n, » > 1, is a random variable,
binomially distributed, with parameters n, p. That is,

Pipa(j,n) = (;)N(l —p)" 7, 0<j<n 9

Table I gives a clear indication that the independence as-
sumption may yield overly optimistic results. Furthermore, an
interesting phenomenon can be noticed from the first row of
Table 1. Correlation exists not only for packet loss but also for
the no-loss process. That is, without forward error correction,
the probability of block loss under the independence assump-
tion is higher than the exact probability of block loss, and
hence we may not need to implement forward error-correction
scheme in order to achieve a prespecified (low) block loss
probability.

We conclude this sub-section by introducing an additional
important measure of packet loss for real-time packet ses-
sions—the average number of consecutively lost packets,
referred to as the session average packet gap, see [6]. Consider
an arbitrary packet arriving to the system and define the
random variable -X to be the number of consecutive lost
packets. We use the expectation of X as a measure for the
average packet gap. From the definition of the probability
P(n,n), we have that Prob{X >n} = P(n,n), n 2 L
Therefore,

EX] = iprob{X >n}= iP(n,n). (10)
n=1 n=1

From (6), we have that P§;(n,n) = Qum(0)Pg(n—1,n-1) =
o= (Qum(0))*"*Pg(1,1) since to have n losses out of
n consecutive packets, each arriving packet must arrive at
a full buffer. Consequently, using (3) and (5), we have that
Pg(n,n) = [p/(1 + p)*~*. Using (2), we conclude that

M _
P(n,n) = Z 0(:) P (n,n)
—rd ‘

n—1
= TI(M) P (n,n) = H(M)(l—i—p> . n>l

(11)

Therefore, from equations (10) and (11) we have E[X] =
(1 4 p)II(M), and E[X] increases in p.

2) Bursty Traffic: In this section the source is modeled as
an interrupted Poisson process (IPP). This model is widely
used in the literature to represent bursty and correlated cell
arrivals, where a source may stay for relatively long durations
in active (ON) and silent (OFF) periods [19]. We define the

Fig. 1. - The state diagram of the bursty traffic, single session system.

“active periods” and the “silent periods” of the source as the
time periods during which the source generates packets or
is idle, respectively. We assume that packets are generated
by the source during active periods according to a Poisson

‘process with rate A. The duration of the active periods and

the silent periods are assumed to be two independent sets
of independent and identically distributed random variables
exponentially distributed with (positive) parameters o and 3,
respectively. '

In the following, we derive the probability P(j,n) of
loosing j packets out of a block of length n for the bursty
traffic model. The approach we use is the same as that in
Section II-A-1. We first determine the probability. that an
arrival will see ¢ packets in the system and the probability of
k out of i packet transmissions during an interarrival period.
Then we use (4)—(6) to obtain P(j,n).

Let N(t) (N(t) = ,---, M), be the number of packets in
the system at time ¢ and s(t) (s(t) € {ON, OFF}) be the state
of the source at time t. The vector (N (t), s(t)) is a finite-state
Markov process. Let (N,s) & limeoo (N(t),(t)) be the
state of the system in the steady-state regime, and denote its
probability by II(NV,s). The state diagram of the system in
steady-state is plotted in Fig. 1. From this figure, we obtain
the following equations: :

(41(i # 0} + B)TI(i, OFF) = olI(i, ON) + uI(i + L, OFF),

0<i<M, (12)
(i — 1,0N) = pll(i, ON) + pII(i, OFF),
: 1<i< M, (13)

where in (12), we define I[(M +1,0FF) 2 0 and 1{}
is an indicator function. The state probabilities IL(i, ON),
II(i,OFF), 0 < i < M, are obtained from (12) and (13),
respectively. First, we assume an initial positive value for
the quantity II{M, ON), then the quantities I1(i, OFF) and
II(3,ON) fori = M, M-1,---,1,0, are obtained recursively
from (12) and (13), respectively. Finally, these quantities are
normalized, so'that 31~ [II(4, ON) + II(i, OFF)] = 1.

Denote by II(§JON) the probability of i packets in the
system given that the source is active. Then

a+f
B

[I(i{|ON) = I1(z,ON), 0<i< M.

Note that, due to the PASTA (Poisson arrivals see time
averages [18]) property, the probability I1(i|]ON). corresponds
to the probability that an arriving packet finds © packets in
the system.
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. We turn now to compute the prdbability QPN(k), 0< i <

M, 0 < k < i, that k packets out of i leave the system (are
transmitted) during an inter arrival period in the bursty traffic
model. Let, '

2 (A +a+p8)’ -4,

1+/\+a+[3i \/—A_,

' 21 21

MB + p) = Apon
ai(as —ay)

e

A,udz

il

a MBA+p)—
o 2

“ 062(01 - Olz)

Note that by definition A > 0 and oy 3 > 1.
Proposition 1: Using the previous definitions, the following
holds:

ON 1\" 1\" )
QI (k)= a + ¢ &—; , 0<k<i—-1

o o) | (o)

ON
QW) =g gyt Ty,

(14)

The interested reader is referred to [5] for the proof of this
proposition.

The computation of the probability distribution P(j,n),
n > 1,0 < j < n, in this case continues in the same
way as in the Poisson traffic model with the probability dis-
tributions TI(z|ON) and QPN (k) replacing the corresponding
distributions II(z) and Q;(k) in (2) and (6), respectively.

B. Multiple Sessions

Here we assume that packets arrive to the system from S
independent sources, that is, the inter arrival times and the
transmission times of packets from each source are mutu-
ally independent. The arrival process from source s, s =
1,2,
overall arrival process to the system is then Poisson with
rate A £ 25:1 Xs- For the system with Poisson rate A and
exponential transmission rate p, the probabilities I1(i) and
Q;(k) for i = 0,1,---,M, 0 < k < 1, are given in (1) and
(3), respectively. '

Denote by PP*(j,n).and Py%(j,n), i = 0,1,---, M,
s =1,2,---,8,n>10<j<mn,the probabllmes of j
losses in a block of n packets originated from source s, given
that there are i packets in the system just before the arrival
of the first packet in the block, and just before the arrival of
a packet from any other source (denoted by 3), respectively.
Denote by P*(4,n), s = 1,2,---,5,n > 1,0 < j < n,
the probability of j losses in a block of n packets originated
from source s. Since the first packet in a block is arbitrary,
we have that

(15)

M
n) =y TEP(j,n
1=0

We turn now to compute the probabilities P;**(7,n), i =
0,1,~~-,M, n>10< j < n, for any source s, § =
1,2,-+-,5. Forn = 1, (4) and (5) still hold for P{**(j,n). The
probablllty of an arrival in the overall Poisson amval stream
being from source s is equal to A,/\. Define p(s) & A;/A

,S, is assumed to be Poisson with rate As. The

and p(5) £ 1 — p(s). Using the previous definitions, we have
(for n > 2) :
i+1

ZQH—l

- [p(s )P1+1 k(]a -1)
+ p(s ,‘+1_k(.77n - 1)]’
0<i<M-1, ‘

PS a j’ n)

M

Z Qar(k)

PG - 10 1)
+ pEPHLG — Lo - 1), (16)

(j,n).for n > 1 is given by

P]t[a j»

where P*

i1

Z Qz+1

p(s) Py i (Gom) + p(3 )P; ARG n)],
0<i<M-1,

P (iym)

(37 n) = PM (7). (17

* The procedure for the computation of P;"*(j,n) proceeds .
as follows. First, the probabilities P;"*(4,1), i =0,1,---, M,
are computed from the initial conditions (4)—(5). In step k,
k=1,2,---,n — 1, the probabilities P;"*(j,k), 0 < i < M,
are computed first from (17) and the probabilities P** (4, k), .
0 <1 < M, (which have been computed in step k —1). Then,
the probabilities P;**(j, k + 1) are computed recursively from
(16). The probabilities P**(j,k), 0 < ¢ < M — 1, can be
computed recursively from (17) using the method developed
in Appendix A. An alternative recursion at arbitrary epochs
can be obtained in a similar way to the single session system.

The analysis of the bursty traffic model for the multiple
session system is more complicated and therefore omitted.
The interested reader is referred to Appendix D in [5] for this
analysis.

The probabilities P*(4,n) (0 < j < n), are given in Table II

. for a system with M = 20 packets, block size n = 10, overall

average load p = 0.8 (p 4 /\/,u) and for-different average
loads p, = 0.1, 0.4, 0.7 (ps e As/u). For comparison pur-
poses, we also include in the table the quantity B ,(j,n)
0 < j < n, which represents the probability of j losses
in a block of n packets originated from source s under an
independence assumption (see (9)).

From Table 1I, it is clear that the differences between the
distributions P*(j,n) and P 4(j,n), 0 < j < n, depend on
the average load p,. To further explore these differences, we
define the distance between these probability distributions as
the well known divergence {12}, -

_PG.n)

md (]7 ’IL)

D(Pg“ ind ZPJa
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TABLE 11
PROBABILITY OF Packer Loss witH M = 20, n = 10 AND p = 0.8
P*(j.n) Phalinm)
' ps = 0.1 Cops =04 ps = 0.7 ps =0.1,0.4,0.7
0 .9.826 10~ 9.877 10~! 9.896 107! 9770 10~
1 1.290 10—2 6.198 103 4244 1073 2.280 1072
2 3.394 10-3 3313 1073 2718 1073 2392 10~
3 8.449 10—* 1.670 10—3 1.658 10—3 1.488 10~6
4 1.959 10—* 7.882 10~ 9.539 10— 6.075 10~°
5 4.141 108 3.422 10~ 5.080 104 1701 1011 - -
6 7.755 10~ 1.337 10—* 2.444 104 . 3.306 10~14
7 1.235 10— 4557 105 1.026 10— 4.407 10~
8 1.570 107 1.295 10—° 3.555 10~5 3.855 10—20
9 1.419 10~8 2.834 10~° 9.233 10~¢ 1.998 10—23
10 6.857 10~10 3.887 107 1.422 106 4.662 10~27
0.25 and for a bursty traffic model is similar to the extensions in
Section II and is not presented here.
0 20l Denote by P°(5), j > 0, the probabbility of j losses in a
block in steady-state, and denote by P;"*(j), 1 = 0,1,---, M
# § > 0, the probability of j losses in a block following and
é 0.15¢ including an arrival which finds 7 packets in the system. We
& have that
E 0.10} M
by . b, . .
PMG) =Y TGP G), 520, (18)
0.05- i=0 .
where the stationary probabilities II(z), 0 < i < M, are given
0 1 i t 1 1 ! 1 1 . '
0 0.2 0.4 0.6 0.8 1.0 in (1). '

AVERAGE LOAD OF SOURCE s
Fig. 2. The divergence D{P*||PS ) as a function of p, for M = 20,
n 0.

The divergence is plotted in Fig. 2 as a function of the
average load p,, for a system that can accommodate M = 20,
block size n = 20 and overall average loads p = 0.7, 0.8, 0.85.

From Fig. 2, the probability distribution P°(j,n) is close
to the probability distribution P2 4(j,n) as p, decreases, for
constant average load p. That is, the correlation between
lost packets. form source s decreases as the rate of source
s decreases, for a given arrival rate to the system.

[II. CoNTINOUS TIME SYSTEMS: VARIABLE BLOCKS SiZE

In this section, we consider systems with variable length
blocks, i.e., arriving packets belong to blocks of lengths that
are independent and geometrically distributed with parameter
g. Variable block size (or message size) is typical in data appli-
cations where the block can be a document, an e-mail message,
or an arbitrary file. This model also assumes a variable size
packet which may correspond to some natural partition of the
message (i.e., sections of a document, paragraphs of the e-
mail message, etc.). We confine ourselves in this section to the
analysis of a single session system with Poisson arrival rate
A and transmission time exponentially distributed with rate
p. The extension of the analysis to multiple session system

To complete the computation we need to compute the
probabilities Pib’“(j), 4 > 0. Define § = 1 — g, then for each
4, 7 > 0, these probabilities are computed from the following
set of equations:

i+1
P () = q1{5 = 0} +3 Y Qun(FIPE (),
k=0 '
0<i<M-1, (19)

PY(0) =0,

M '
Phe() = ql{j =1} +3 ) Qu(k) Py, — 1),
Z _
iz 1,0 : (20)

where the probabilities Q;(k), 0 < k < i, where computed in
(3) and 1{-} is an indicator function. For each 7, 7 > 0,
the probability P}\',}“(j) is first computed recursively from
(20), ther the probabilities P{"*(5), 0 < & < M =1, can
be computed recursively from (19)-(20) using the method
presented in Appendix A. ‘

Define the moment generating functions F(2) 2
Y20 PP(3)27, 0 < i < M, and define

=) M .
F(z) &3 PGS = Y TGF(2): @D
=0 i=0
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From (22), a set of M +1 linear equations for the computation
of the momerits of the generating functions F{**(z) can be
obtained. These equations can be solved recursively using the
method in Appendix A. Then, any moment of the number of
packet losses in a block can be obtained from (21).
Numerical Examples: In somé networks such as the asyn-
chronous trarsfer mode (ATM) standard {2], a large data unit
is partitioned to $maller pleces that are sent separately. The use
of small transmission units translates into smaller buffers at the
intermediate nodes and thus decreases memory requirements
(we will ignore the extra ovethead imposed by duplicating
the headers in each packet). However, since packets (cells)
are not individually numbered, the proposed error: recovery
scheme calls for error récovery at the message (block) level,
i.e., any packet (cell) Ioss within the message results in a

retransmission of the ertire message. This in turn, increases

the loss probability of messages [3]. Other networks use larger
packets (i.e., packet = message) but keep the error recovery

units to be the same as the transmission units (i.e., at the packet.

level). This increases riemory requirements due to the larger
packets, but reduces loss probability by using a more efficient
error recovery scheme.

For systems which use error recovery at the block level,
the loss probability of a block is given by 1 — P*(0) (without
forward' error correction). We shall refer to these systems as
VBBL (variable length blocks with block level error recovery)
systems. In what follows we compare these systems with the
latter systems referred as VPPL (variable length packets with
packet level error recovery) systems using the same amount
of buffer memory (but ignoring the extra overhead imposed
in VBBL systerhs). For VBBL systems, we consider the
same model presented in this section. For VPPL systems we
develop an equivalent model in the following manner: blocks

TABLE 1!
PROBABILITY OF Brock Loss wimi M = 128
p=10.38 p=10 p=15
VBBL VPPL VBBL VPPL VBBL VPPL
q System System System System System System

0.05 5.098 10~13 3.603 10~2 3.467 102 6.317 102 8.054 10! 1.576 10!

0.1 3.146 10713 7.731 1073 2.451 1072 3.174 1072 7.033 10! 1.556 10~!

0.2 2.018 10—13 5.409 10— 1.733 102 1.696 102 5.868 101 1.682 10!

0.3 1.574 1013 3.871 1075 1.415 10—7 1.231 102 5.177 101 1.831 10~!

0.4 1.329 1013 2.646 10~8 1.226 102 1.014 102 4,699 101~ 2.002 10}

0.5 1.167 1013 1.716 107 1.096 10—2 8.977 103 4343 101 2.194 101

0.6 1.050 1013 1.054 108 1.001 10—2 8.331 103 4.061 10~ 2.407 101

07 9.614 1014 6.099 10—10 9.265 103 7.983 1073 3.832 101 2.634 101

0.8 - 8.926 10~ 14 3313 10711 8.667 103 7.819 103 3.640 10~ 2.869 10~1

0.9 8.349 10— 14 1.679 10—12 8.171 1073 7.760 103 3.476 101 3.105 10!

0.95 8.105 1014 3.674 10~13 7.954 103 7.753 103 3.402 101 3.220 10~
- Then, from (19), we have that arfive to the system according to a Poisson process with rate
irl gA. The number of packets in each block is geonietrically
bar,y — ; - distributed with parameter g. The transmission time of a packet
F%(2)=q+q) Qiy1(k l+1 «(2), 0<i<M-1, ¢ vith parameter ¢ packe
k=0 ~ : is exponentially distributed with parameter u. Each block is
M : : considered as a whole unit (VPPL pdcket) and join the system
F;’V}“(z) =qz+ qz_z QM(k)Fk/}‘f_k(z). (22) only if there is a room in the system for all the packets in the
k=0 block, otherwise the block is rejected (and lost). Denote by

7(i), 0 < ¢ < M, the stationary probability of 7 packets in the
system, then by straight forward calculation, we have

— M- 1+1 Z

7r(i)=qp( (i —1-k), 0<i< M.

(23)

The state probabilities 7(i), 0 < ¢ < M, are easily obtained
from the recursxve equations in (23) and the normalization
condition Zz-—O w(i) = 1. For the VPPL system, the loss
probability of a block is given by

M
Pr{block loss in VPPL} = > Pr{block size >M — i} (i)
i=0
M
1= (1= 29)]n(0).
=0

In Table III, we compute the loss probability of a block in
the VBBL system and in the VPPL system as a function of
the parameter g, for a system that can accommodate M = 128
packets and for different average loads p = 08, 1, 1.5

(P2 M)

From Table III, we see that for p = 0. 8, the VBBL model
outperforms the VPPL system for all values of g, that is the
loss probability of a block in the VBBL model is strictly less

than it is in the VPPL system and the difference is significant.

For p = 1.5, the VPPL system outperforms the VBBL model
for all values of q. For p = 1, the VBBL model outperforms
the VPPL system for small values of ¢ (¢ <0.2) and the
VPPL system outperforms the VBBL model for large values
of g (g > 0.3). Yet, the differences in the two latter cases are
small.


Moshe Sidi

Moshe Sidi

Moshe Sidi

Moshe Sidi


. 'CIDON et al.: ANALYSIS OF PACKET LOSS PROCESSES IN HIGH-SPEED NETWORKS

[V. DISCRETE TIME SYSTEMS

In this section, we consider a discrete time model which
better describes an ATM based system. In what follows we
describe the queueing model and notations used throughout the
section. Consider a discrete time queuing system in which the
time axis is divided into intervals of equal size, referred to as
slots. The slots correspond to the transmission time of a packet,
and all packets are assumed to be of the same fixed size. The
packets are stored in a buffer that can accommodate up to M
packets, and are served (transmitted) according to an arbitrary
policy. Packets arrive randomly to the system from a single
source. The arrival process is assumed to be independent and
identically distributed from slot to slot. We further assume that
at most one packet may arrive instantaneously to the system,
and that packets join the system at a first-in-first-join order if
there is an empty buffer in the system, otherwise the packet
is lost. Let b be the random variable representm% the number
of packets that arrive during a slot and define b; 2 Pr{b = i},
i > 0. As in the continuous time model, the packets are
grouped into fixed size blocks, namely, every n consecutive
packets form a block, and we are interested in the probability
distribution of the number of lost packets within a block in
steady-state. We consider systems with a single arrival stream
(single session), where the multiple session system and the
bursty traffic model can be analyzed by the same arguments
used in the analysis of the continuous time models (Section II).

The system behavior is modeled as a finite-state discrete-

time Markov chain, in which the state is the number of packets '

in the system just before the beginning of a slot. The stationary
probability of having 4 packets in the system at the beginning
of an arbitrary slot, II(7), 0 < ¢ < M, can be computed
recursively from the following set of M linear equations:

11(0) = II(0)bo + H(l)boy
I1(s) = T1(0)b; + Zn(k ikl + H(z + 1)bo,
12i<M-2,
(M) = TI(0) Pr{b > M}. (24)

Our purpose in this section is to compute the probabilities
P(n),n>1,0<j<mn, of'j losses in a block of n
packets. 'We carry the computation by conditioning on the
number of packets seen in the system by the first packet in
the block when it arrives. To that end we define P?(j,n),
0<i<M,n2>10<j < n, to be the probability of
j losses in a block of n, given that at the beginning of the
slot in which the first packet in the block arrives there are 1
packets in the system. Consider an arbitrary packet arriving
to the system (this packet will be called the tagged packet).
Since the arrivals are independent and identically distributed
from slot to slot, the probability dxstrlbutlon of the number of
packets in the system at the begmmng of the slot in which
this packet arrives is the same as II(i). This follows from a
discrete time version of the well-known PASTA theorem, see
[9]. Since the first packet in a block is arbitrary, the probability
P(j,n) equals to the probability of j packet losses in the block

of n packets following the ragged packet and including it, and
is given by .

W= 3 @R G, ).

i=0

25)

To complete the computation we need to compute the
probabilities P (j,n),0<i < M,n > 1,0 < j < n. In what
follows, we shall introduce a recursion for the computation of
these probabilities. Note that, the tagged packet is more likely
to arrive within a large superpacket (we call all the packets
arriving in a slot a superpacket). In any slot, a superpacket
does not arrive with probability by, and arrives with probability
1 — bo (i.e., a Bernoulli arrival process). We are interested in
the number of packets in the superpacket arriving Eefore and
after (including) the tagged packet, which we denote by the
randorh variables b® and b?, respectively. Note that b® and
b* are the backward and the residual recurrence times in
the (discrete time) renewal process whose interevent time
distribution is given by the random variable b. Thus, the
distributions of b® and b* are given by

Pr{b > k} :
b A b1} — A
bk_.Pr{b =k} = GO k=0,1,.-,
A a __ i Pr{b?_k} .
=Pr{b* =k} = E k=12

‘And the joint distribution of B® and b® is given by,

m+k

Ef”

To introduce the recursion for the computation of the
probability P{(j,n), we define PE(4,n), 0 <i< M,n>1,
0 < j < n, to be the probability of 7 losses in a block of n,
starting at the beginning of a slot in which there are i packets
in the system. Now we are ready to introduce the computation
when the probabilities P2(j,n), 0 < j < n, are known. For
7 = 0, we have

M~i—=1( M—i-m
= Z{ > Pr{tt =m,b° =k}
k=1

m=0

Pr{tt = m,b* =k} = m>0k>1 (26

Pia(o’n)

(1 1)++m+k(0’n - k)
+ 1{n<M—-i-m}

- Pr{tb =m,b* > n}},

0<i1< M, 27
.and for 1 < 7 < n, we have
Pi(j,n)
M-i-1{M~—i-m
Z { Z Pr{b =m, b“-k} i A1)++m+k(j,n—-k)
m=0 .

+ l{n:IVI—z—m—l—]}- Pr{b® = m,b* > n}

J
+) Pr{t =m0 =M -i-m+k}

'Pltél——l{i¢()} (j“k,n—:(M—i-fm+k))}
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j o
+ 3 0Pe{t > M =i bt =k} Plp_ygisoy (i = kin— )
k=1
+ 1{n=j}Pr{0® > M —i,0° > n},
0<i< M, (28)

where an empty sum vanishes and nt £ max (0,n). We
also define P(j,n) = Pf(4,n) 20,n<0o0rj>n,
P2(j,n) £0,n < 0orj > n, andP;(0,0) & 1. The
joint probabilities of the random variables 5° and b° in (27)
and (28) are obtained by appropriate finite sums of the joint
probabilities in (26).

The explanation of (27) is as follows. The first packet of a
block (called the head) arrives to the system in a slot where
i (0 <1 < M) packets are waiting at the beginning of this slot.
When the number of packets m that arrive before the head in
the same slot (and hence join the system before it) occupies at
most M —1— 1 empty buffers, the head is not lost. When also
the number of packets k that arrive after the Aead (including
it) does not occupy the remaining space in the system (i.e.,
k < M — i — m packets), then in order to have j = 0 packet
losses in the block of size n, there must not be any loss in
the next n — k packet arrivals, starting from the beginning of
the next slot in which there are (z — 1)* + m + k packets in
the system. This completes the explanation of the first term of

(27). The second term indicates that, when the block size n is

less than M — ¢ — m packets, then there are 0 losses in the
block independently of the subsequent arrivals. The explana-
tion of (28) is similar. The first three terms represent the case
where the head finds an empty space and hence is not lost. The
explanation of the first term is similar to the explanation of the
first term in (27) with 7, 7 > 1, replacing j = 0. The third term
represents the case of k < j packet losses in the first slot (the
slot in which the head arrives). The second term represents the
case where the block size n fits exactly the remaining space of
the system M —i—m and the required number of lost packets
J- Then exactly j packets out of n are lost independently of
the subsequent packet arrivals. The last two terms represent
the case where the head finds a full system and hence is lost.
The fourth term represents the case of k < j losses in the
first slot, and the last term represents the case where the block
size n equals to the required number of losses 5. Then exactly

J packets out of ] are lost independently of the subsequent
amvals

We now turn to compute the probabilities Pd(J,n) 0 <
1< M,n>1,0<j <n. The key to the derivation of these
probabilities is the use of a recursion at the slot boundaries of
consecutive slots. The recursion is initiated for n = 1 with the
following obvious relations:

1, =0,
Pi(5,1) = i=0,1,--,M~1, (29
0, 7>1,
and for ¢ = M we have
. b07 Jj=0,
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For n > 2, we have the following recursive equations:

M—i
Zbk (i— 1)++k _k)
1{n <M —i}Pr{b > n},
0< i < M,

Z bk (i~ 1)++k .71 k)

+ z bar—itr
k=1

'val[—l{i;ﬁo} (G —kyn—(M~i+k))
+ {n=M—i+j}Pr{b>n},
0<i<M, >0

PE0,n) =

Pid(j)

(1)

The explanation of (31) is clear and smﬂar to the explanatlon
of (27) and (28).

The probabilities P3(j,n), 0 < i < M, n >1,0<
j < n, can be computed recursively in the parameter n from
(31). In the first step, these probabilities are computed for
n = 1 using the initial conditions in (29)-(30). In step k,
2 < k < n, the probabilities Pd(],k) forany 0 < j <k are
computed for each ¢ = 0,1,---, M, in increasing order. The
number of simple operations needed in this procedure is of the
order O(n® + M?n). The memory required for storing these
probabilities throughout the procedure is n(n + (M +1)/2.

Once the probabilities PA(j,k), 0 < i< M, 1 < k < n,
0 < j < k, have been obtained, the probabilities P(j,n),
0 < j <m, can be obtained directly from (25) and (27), (28).

Numerical Example: For the decoding scheme proposed in
[15], a lost packet can be recovered, if and only if it is the
only lost packet in its block. This is done by adding one parity
packet to every block of size (n —1) packets, which increases
the packet arrival rate to the system to A(1 + (1/n — 1)). The
average number of packets lost in a block after decoding is
given by ED = 5" j=2 JP(j,n), and the packet loss rate after
decoding, Pge. is given by Py, = ED/n. In Table IV, we
compare the loss probability of a packet within a block of
size n (before and after decoding), as given in [15] using the
independence assumption and as computed in this section; for
a system that can accommodate M = 20, arrival rate A = 0.8,
and for n = 71,20, 11,9, 7.

It can be seen from Table IV that the exact probability
Pyec is many orders of magnitude higher than Pj.. under
the independence assumption as obtained in [15], and is close
to Pgec as obtained from simulations there. Also the packet
loss ratio without decoding is only approximated in [15]. The
packet loss ratio for the previous system without decoding was
also computed for average arrival rate of A = 0.8 and block
sizes of n = 70, 19, 10, 8, 6; and it is equal to 6.0347 105.
Note, that there is no instance where decoding reduces the loss
probability. That is, the increase in the loss probability due to
the increase in the packet arrival rate, caused by adding one
parity packet to each block of size n—1, supercede the decrease
in loss probability due to the forward error correction scheme.
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TABLE IV
PROBABILITY OF PACKET Loss witH M = 20 AND A = 0.8; ALL QUANTITIES ARE FOR A(14+1/n — 1)

Before Decoding

After Decoding

Independence Exact Independence Exact
n Assumption Analysis Assumption Analysis
71 4.1728 103 9.3693 103 1.2171 107 8.0105 10~5
20 1.4972 10~ 2.9245 10~4 42528 107 2.3539 101
1 6.5533 10— 1.0848 103 42805 10—¢ 8.2268 10—
9 1.3547 103 2.0629 103 1.4601 10—° 1.5218 103
7 4.1127 103 5.5023 103 1.0024 10— 3.8913 1073

V. DISCUSSION o

In this paper, we analyzed the distribution of the number of
lost packets in fixed and variable size blocks of arrivals. We
considered single and multiple session systems with Poisson
and Bursty traffic models for each session.

The numerical results of the fixed-size single session system

show that the use of an independence assumption for the
rejection of packets from the system can lead to erroneous
(many orders of magnitude lower than the exact results)
evaluation of the above distribution. One has to be careful
regarding the ability to cope with packet losses for real time
applications such as voice and video since losses tend to
concentrate in relatively short time intervals. It is known that
applications like voice and video can tolerate a fair percentage
of packet loss with no significant impact on the perceived
quality. However, most tests and simulations were performed
under independence loss assumption which tends to spread
the losses uniformly [10]. For example, the results of Table I
demonstrate that for a queue size of length M = 20, even
under modest utilization (0.8) there are more blocks (of length
n = 10) that contain at least 2 losses (3.._, P(j,n) =
6.11 - 1073) than there are blocks with a single packet loss
(P(1,n) = 3.86 - 107%) where the rate of loss is only
around 0.01 (an average of 0.1 lost packets per block). This
can significantly impact the performance of smoothing and
predictive playback algorithms. For similar reasons, (and using
the same example) the independence assumption can also lead
to wrong conclusions regarding the . benefits of techniques

such as forward error correction and makes them look far-

more useful than they really are. Such schemes have been
proposed for both data and video communication. Note also
that forward error correction increases the arrival rate of
packets to the system due to the addition of parity packets,
and hence increases the rejection probability of packets form
the system as shown in Section IV. :
For the fixed-size block, continuous-time single session
system, we have obtained that the probability of no packet
loss in a block (P(0,n)) under the independence assumption
can be substantially lower than the actual probability of no
loss. These results demonstrate that buffer sizing under the
independence assumption will be very pessimistic and the
usefulness of a forward error correction scheme is even less
attractive. For a fixed-size block, continuous-time multiple
session system, we have shown that the correlation between
lost packets of the same session s decreases as the rate of

session- s decreases, for a given arrival rate to the system.
However, even for relatively low rate sessions (such as 0.1
of the link capacity) the results are still quite far. from the
independence assumption approximation.

- In what follows, we describe possible extensions of our
model. The analysis of the packet loss process for the single
session system as developed in Section II-A can be extended
to the corresponding G/M/1/M model in a straightforward
manner. The differences would be in the. computation of the
steady-state probabilities of the number of packets in the
system at an arrival epoch (which is more complicated for a
general arrival process), and of the number of packets served
during an interarrival period (which is easily computed for
exponential service time).

The analysis of the corresponding single session M/G/1/M
model can be done by developing the recursion at departure
epochs rather than at arrival epochs. Then, the analysis can
follow in a similar manner to the single session system case
in discrete time. The steady-state distribution of the number
of packets in the system at arrival epochs is computed in [8].
Also, the multiple session M/G/1/M system can be analyzed
correspondingly. _

The same method used in this paper in order to obtain the
distribution of the number of lost packets in a block can be
applied to obtain the distribution of the number of lost packets
in a block of consecutive slots, in the discrete-time model, or
in a continuous interval of time, in the continuous time model.

We have omitted these extensions from the paper in order
to avoid cumbersome calculations which do not add much to
the understanding.

APPENDIX A
Consider the following set of linear equations:
i+l ,
Xi:ai+zbi,ij7 0<i<M-1,
j=0

M
Xp=ap+ Yy bu;X;j

§=0

(32)

where a;, b;;, 0 < i < M,0< 7 < i+ 1, are given real
numbers and X;, 0 < i < M, are the unknown variables.
Without loss of generality, we assume that b;;11, 0 £ ¢ <
M — 1, have nonzero values. The set of linear equations in
(32) defines the well known Hessenberg matrix [7]. -
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Define X; & a; + 3 X0, 0 < i < M. In what follows, we
describe a recursion for the calculation of the coefficients «;,
B;, 0 < i < M, and the variable Xo-

Qg = 0’ IBO =1
i—1
ooy — o1 — Y= Dim14%
e, = ’
bi1,i
i—1
oyl B
ﬂi=ﬂ‘ 1= 2=t oy,
bi_1: ‘

ant — onr + X o o,

Brr = Y im0 bt 5P
The computation complexity of this procedure is of the order
O(M?).
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