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Congestion Control Through Input Rate Regulation

Moshe Sidi, Senior Member, IEEE, Wen-Zu Liu, Israel Cidon, Senior Member, IEEE, and Inder Gopal, Fellow, IEEE

Abstract—Traditional packet switching networks have typically
employed window-based congestion control schemes in order to
regulate traffic flow. In broadband networks, the high speed of
the communication links and the varied nature of the carried
traffic make such schemes inappropriate. Therefore, simpler and
more efficient schemes have to be proposed to fully exploit the
large available bandwidth.

These schemes usually operate through input rate regulation.
Typically, they force the information sources to limit their average
input rate below some predefined rate while still allowing for
a certain degree of burstiness. This ensures that no source will
exceed for an extensive period of time the rate provided by the
network during the call-setup procedure. The “leaky bucket”
scheme is an example of an input rate regulation.

In this paper, input rate regulation schemes are extensively
studied from the viewpoint of smoothing and regulating effects

of the incoming traffic. The smoothing effect is characterized by

the variance of the interdeparture time of the packet departure
process from the input rate regulation mechanism. Under the as-
sumption of Poisson arrivals the characteristics of this departure
process are explicitly derived in terms of scheme’s parameters
and the tradeoff between the smoothness of the departure process
and packets waiting time is studied. We present results for both
finite and infinite buffer pool sizes.

I. INTRODUCTION

ACKET switched networks have changed considerably in

recent years. One factor has been the dramatic increase
in the capacity of the communication links. The advent of
fiber optic media has pushed the transmission speed of com-
munication links to over a Gigabit/s, representing a significant
increase over typical links in today’s packet switched networks
[5]- A second factor is the altered nature of traffic transmit-
ted through these networks. It is now accepted that packet
switched networks [1], [5] (or variants of packet switching like
ATM) will form the basis for multimedia high speed networks
that will transmit voice, data and video through a common set
of backbone nodes and links.

Both these factors have a significant impact on the design
of the protocols and control procedures within the network. In
particular, conventional mechanisms for controlling congestion
within the network based on end-to-end windowing schemes
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[2]-[4], are unsuitable (we elaborate more on the reason
below). In this paper we study an alternative approach to
congestion control based on open-loop regulation of the input.

Window based mechanisms typically rely on end-to-end
exchange of control messages in order to regulate traffic flow.
The control messages (sometimes with additional congestion
information added by the intermediate nodes) are used as
feedback by the source node to regulate its traffic flow
into the network. In high speed networks, the propagation
delays across the network typically dominate the switching
and buffering delays. Thus, the feedback from the network is
usually outdated and any action the source takes is too late
to resolve buffering or switching congestion. This argues for
mechanisms that do not rely so heavily on network feedback.
It is also important that the congestion control mechanism
operates at the speed of communication link. For this reason,
computationally intensive control schemes are less desirable
than simple schemes that can be easily implemented in high-
speed hardware.

The nature of traffic also affects the design of the congestion
control. While today’s data traffic can usually be slowed down
in order to cope with network congestion, it is likely that
the real-time nature of the traffic in broadband networks will
require some level of bandwidth guarantee. Real-time traffic
(e.g., voice, video, image) has an intrinsic rate determined by
external factors that are outside the control of the network.
Typically, this rate can be estimated by the network prior to
the establishment of the connection. The ability to slow down
such sources is usually very limited. Note, however, that the
packet arrival process is stochastic so there is no guarantee
that over short periods the source will keep to the specified
average rate. In addition, the initial estimate of the rate may
be incorrect.

The above factors suggest a simple congestion control
mechanism that does not react dynamically to network condi-
tions. Instead, it uses knowledge of the extrinsic parameters
associated with the connection and controls the source by
forcing it to conform to these parameters. We refer generically
to such schemes as input rate regulation schemes. The “Leaky-
Bucket” scheme proposed in [1] and the scheme used in PARIS
[5] are examples of input rate regulation mechanisms.

The basic operation of such a scheme is simple. Input
packets first enter a queue QL. If the queue Q1 is full the
packet is discarded at the source. In order for the packet at the
head of the line to enter the network, it must obtain a token
from a token-pool. Tokens are generated into this token-pool
at fixed time intervals that correspond to the specified average
rate of the connection. If a predefined maximum number of
tokens (say, M) have collected in the token-pool the token
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generation process is shut-off. The operation of the scheme
guarantees that during any interval of length T, the number
of packets entering the network does not exceed the sum of a
prespecified rate times the interval length 7' plus the constant
M that is independent of T [6]. Thus, it is guaranteed that the
long term average rate does not exceed the prespecified rate
of the connection. However, over short periods, the scheme
permits bursts of much higher rate. Essentially, the choice of
M determines the burstiness of the transmission. A value of
1 maximizes the “smoothness” of the traffic. Typically, the
choice of M should match the application being supported.

The original Leaky-Bucket scheme [1] does not provide an
input queue (Q1). Thus, packets arriving at the system when a
token is not available are discarded. An approximate analysis
of the throughput of this system has been presented in [9]. In
this paper we provide an exact analysis of this scheme as well
as schemes providing an input queue. The motivation of having
an input queue as suggested in [5] is to more effectively control
the tradeoff between waiting times and loss probabilities.

Note that there are several parameters associated with
these schemes (the size of Ql1, M, the token generation
rate). In addition, there are several measures of interest in
evaluating the performance of the schemes. These include the
“smoothness” of the packet stream offered to the network
(measured by the variance of the interdeparture times), the
waiting time at Q1, the number of packets discarded because
of lack of room in Q1, etc. In this paper we analyze exactly
input rate regulation schemes to obtain an understanding of the
tradeoff between these parameters and measures. Specifically,
for Poisson arrivais and for schemes with a finite or an infinite
buffer we determine the Laplace transforms of the waiting
time and the interdeparture time, the expected waiting time,
the output rate (and thus the loss probability) and the variance
of the interdeparture time.

II. MODEL AND ANALYSIS

A. The Queueing Model

The queueing model for an input rate regulation scheme is
depicted in Fig. 1. A pool of tokens that can contain at most
M tokens is available. The generation process of tokens is
deterministic, i.e., each D seconds a new token is generated
and stored in the pool if it contains fewer than M tokens.
Otherwise, the newly generated token is discarded.

Packets arrive into a (finite or infinite) buffer (Q1) according
to a Poisson process with rate A. An arriving packet that finds
the token pool nonempty, departs the system instantaneously
and one token is removed from the token pool. An arriving
packet that finds the token pool empty joins the queue (Q1)
if the buffer is not full. When the queue (Q1) is not empty
(the token pool must be empty in this case) and a token is
generated, one packet departs the queue instantaneously (we
assume a first-in—first-out order) and the token is removed
from the pool. Note that the packet departure process from
this system constitutes the input process to the network that
should be regulated.
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Fig. 1. Queueing model for an input rate regulation scheme.

B. Queue and Token Pool Occupancy: Embedded Joint
Probability Distribution

Consider a slotted time axis where each slot is of length
D and a new token is generated at each slot boundary. A
generated token joins the token pool if it contains fewer than
M tokens, otherwise, it is discarded. In this section we derive
the steady-state joint probability distribution of the queue size
and the token pool occupancy at slot boundaries, just prior to
the generation of a new token.

Let P*(m,i) be the probability of having m tokens in
the token pool and ¢ packets in the buffer at time t (¢ =
0,D,2D,--.), just prior to the token generation instances.
Since the number of tokens cannot exceed M and packets
wait in the queue if and only if there are no tokens in the
token pool, we have for all ¢:

Pt(m,i) =0 m > M, 1<m<M and i>1.
For convenience, let
Pi=\pti—M0) i>M.

Further, let p;, ¢ > 0 be the corresponding steady-state
probability, i.e., p; = lim; o0 pl.

In the following a; denotes the probability of 7 arrivals
during a slot, i.e.,

e *P(AD)*
i

1) Finite Buffer Size: When the buffer size is limited

to K, a packet that arrives and finds the buffer full

is discarded. The steady-state equations in this case are
(pi=0fori>M+ K):

a; = ZZO

pi:poai+2pj+1ai_j 0<i<M+K-1. (2)
j=0
The solution of these equations is simple. One assumes a
value for pg. Then the p;’s (1 <4 < M + K) are computed
recursively via p; = (p;—1 — Po@i—1 — E;;?) Pi+1Gi—1-5)/ a0
and finally all quantities are normalized so that Ziﬂigl{ pi = 1.
The throughput of the system is

M+K
T —_—p0< E ia; + (M+K)EM+K)
e

M+K <M+K—j+1

+]§=:1pj Z

=1

i+ (M +K —j+1)

G

: 5M+K—j+1)
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where @; = 1 —
given by

J_oi- The loss probablhty of a packet is

T

oss = 1 — ——=.
A AD

“)

Note that when there are no buffers (K = 0), the scheme
corresponds to the “Leaky-Bucket” scheme [1].
2) Infinite Buffer Size:

The steady-state equations in this case are the same as (2)
except that they hold for all 7,

Pi = Podi + zpj-Hai_j 12> 0. 3
=0
Let G(z) = Y52, piz*. Simple computation yields
PoAp(2)(z — 1)
G(z) = ofplDz — 1) 6
(5= el ©
where A,(z) = e**~1) for all 4 > 0. The constant

po is simply determined from the normalization condition
G(2)|:=1 = 1, and we have pg = 1 — AD and the condition
for stability is AD < 1. Note that since pg is known, other
probabilities can be computed recursively from (5).

Note that G(z) is the generating function of the joint
probability distribution at embedded points, just prior to token
generation instances. To obtain the distribution at an arbitrary
epoch, the method described in the next section can be
employed.

C. Waiting Time Distribution

In this section we derive the Laplace transform of the
waiting time distribution of a packet when the input buffer
is infinite. A similar procedure can be used in the finite buffer
case as well.

Tag an arriving packet. Assume the packet arrives v units
of time after the beginning of a slot and let ¢ be the number
of packets and m the number of tokens in the system just
prior to the generation of a token at the beginning of that
slot. Since the arrival process is Poisson, the random variable
u is uniformly distributed in (0, D). Given w, the number of
packets arriving during the first « units of a slot, A,, have a
Poisson distribution with parameter Au. Let W, be the waiting
time of the tagged packet, given u. Then we have:

0 if g =0,
0<m<M-1,
0<A4,<m

0 ifg=0,

m=M,

0<4, S M~-1
ifg=0,

0<m<M-1,

A, >m+1
if g =0,

m=M, A, > M
D—u+(4y+q—-1)D ifg>1,

\ m = 0, Au Z 0.

D—u+ (A, —-m—-1)D

D—u+ (4, - M)D

™
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The explanation of (7) is as follows: the tagged packet departs
immediately if no packets were in the system at the beginning
of the slot and the packets that arrived before the tagged packet
since the beginning of the slot did not consume all the tokens
present in the token pool at the beginning of the slot. In any
other case, the tagged packet waits until the beginning of the
next slot (D — u), and also waits an integer number of slots
that correspond to departures of packets ahead of the tagged
packet.

Using the fact that arrivals in u are independent of the state
of the system at the beginning of the slot we obtain form (7)
the Laplace transform of the waiting time, conditioned on u,

Wi(s) = Ble™""]

M-1 m
= z ZPM maz(u +p0 Z alz
m=0 =0
+ Z Z e~ s{(i—m)D— u]pM—mai(u)
m=0 i=m+1
20 .
+ po Z e——s[D—u-i-(z—M)D]ai(u)
=M
+3 > e 0P py ai(u)
q=1 i=0

where a;(u) = e (\u)*/il. After some algebra, uéing (6),

we obtain
* . _ Po (C"SD — 1) sfu-+(M—1)D] oD
Wi(s) = e=sD — Ap(e—*D) e Ay (e7*P)
M—-1 m )
+ Z ZPM mai(u (1 — eSlut(m— z)D])
m=0 =0
M-1
+ po Z ai(u)(l - eS[u+(M—1—¢)D]) ‘
i=0

Using the fact that v is uniformly distributed in (0, D), we
obtain the Laplace transform of the waiting time W*(s) =

Ele=*W]
1 (P,
=5 /0 Wi (s) du

The expected waiting time conditioned on u is obtained in
a similar manner from (7)

M-1 m
EWJ=poD+ D> Y prmai(u)((m—i)D +u).
Mrlez—O
+ po Z a;(w)((M ~i)D — D + u)
=0
(D)’
+D()\u—M+/\D+2(1_)\D)> -
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and
1 D
= = EW,
E[W] A W] du
M-1 m .
1 e U1
A%?MM( s )

1 . e
‘I’Xp(] ; <(M—Z—l)al+ﬁal+1)

2=y )

Z;‘:O aj.

where we recall that @; = 1 —

D. The Interdeparture process

In this section we derive the Laplace transform of the
interdeparture time V—the time between two successive de-
partures of packets from the system. Since each departing
packet is accompanied by a single token, the departure process
of packets is the same as the process of departing tokens.
Hence, we will look at the time between two successive token
departures. We assume that tokens depart in a first-in—first-out
order.

In the following € denotes interarrival time (exponentially
distributed with mean 1/A. In addition, R (¢ > 1, 1 < 5 < i)
denotes the time between the jth arrival epoch in a slot until
the end of the slot, given that exactly i packets arrived in that
slot. The density function of R} is given by [8]

0= 0-5) (5) 5

0<r<D, 1<j<4, i>1
and the kth moment of R is

'\ =7 i— 79 ce(i—4

Consider an arbitrary token that arrives at the token pool
at time ¢ and tag it. In order that this token will ever depart
the system, it must join the token pool (the probability of
this event is 1 — pg). In the following we determine the
Laplace transform of the time between the departure epoch
of the tagged token and the subsequent departure. This is the
interdeparture time V.

Conditioned on the event that the tagged token joins the
token pool, it may find the system in one of the follow-
ing states.

1) There are g (g > 2) packets and no tokens in the system.
In this case the tagged token departs immediately (at time ¢)
and the next departure will occur at time ¢ + D, hence V = D.

2) There is one packet and no tokens in the system. In this
case the tagged token departs immediately (at time ¢) and the
next departure will occur at time ¢ + D if at least one packet
arrives during (¢,¢ + D), or it will occur upon the next arrival,
ie., at time ¢t + D + &£ if no packets arrive in (¢, + D).
Hence, V = D with probability 1 —ag and V = D + £ with
probability ag.

D
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3) There are m (0 < m < M —2) tokens and no packets in
the system (note that when M = 1 this situation never occurs).
If i (0 < i < m) packets arrive during (¢,t+ D) then V = &
since the tagged token will depart at some time after £+ D due
to a packet arrival and the token that arrived at time ¢ + D
will depart afterwards upon the next packet arrival. If m + 1
packets arrive during (¢,t + D), then the tagged token will
depart upon the (m + 1)st arrival and the time until the next
token arrives is Rﬁﬂ When the next token arrives at time
t + D, there are no packets in the system, hence it will depart
upon the next packet arrival and therefore V = RT1 + €.
If i ({ > m + 2) packets arrive during (¢,¢ + D), then
V = R7 since the tagged token departs upon the (1 + 1)st
arrival and the next token departs at time ¢ 4 D.

4) There are M — 1 tokens and no packets in the system.
This case is similar to the above, except that until there is a
slot in which at least one packet arrives the state of the system
does not change since subsequent tokens cannot join the token
pool. Conditioned on the event that at some slot at least one
packet arrives we have that V = £if 1 (0 < ¢ < M - 1)
packets arrive during that slot; V = RY + & if M packets
arrive during that slot; and V = RM if i (i > M + 1) packets
arrive during that slot.

In summary, the Laplace transform of the interdeparture
time V*(s) = E[e™*V] is given by

(1 —po)V*(s

D
ZPM-i-qe ?

+ DM+ (aoE[e_s(D"‘g)] +(1- a'O)e-SD>

+ MZ_Z DM —m (i a; Ee ]

m=0 =0

+ am+1E[ —s(RmiHs)}
- 3 wsfr)
i=m+2
M-1
1 —ag <Z

—s£

+ i aiE[e—SRZM]> )]

i=M+1

where an empty sum vanishes. Note that if the buffer size is
finite (K > 1), then we just replace co by K in the first sum
above. The case of no input buffers at all (K = 0) should
be treated separately, since, for instance, in case 3 above (and
similarly in case 4) if ¢ (¢ > m + 2) packets arrive during
(t,t+ D) then V = R**! + £ since the tagged token departs
upon the (m + 1)st arrival and the next token departs upon the
first arrival after ¢ + D. In fact, when K = 0 the departure
process corresponds to the departure process of a D/M/1
queueing system with a finite buffer of size m (see [7] for
an analysis of this system).
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After some algebra, using the fact that interarrival times are
independent, we obtain from (8) that

ADV*(s) = _SD< me) — PM41 a_?_s)\
a; A 1 AT
+ ZOPM m(g s+ r T DETA
D
—8T T
./0 e (1—-5) dr + Aam
D rym
. S O
/0 ¢ ( D)
(e” 1) dr)
M Y ad aA(M—1)
1 —ap s+ A D[s + }]

The expected value of V is 1/ when the buffer is infinite
and 1/T when the buffer is finite, since the rate at which
packets depart the system equals the input rate. The second
moment of V is given by

V)] = ZPMHDZ + Pr41
q=2

: (aoE[ (D+E]+(1 - a,O)Dz)

+sz m<zal

ADE[(

o[ (R2 ]
+ Z aE (Rp+1)? )
i=m-+42

+1flao<; a:B[(€)?]
1+ Z a;E[(RM) ])

1=M-+1

+anE[(RY] + £)?
M
= |:1 - Z DPm
1
+ 5V 7n2=:()pM—m (;[2% — aiyo(m — 1)

20D
(m+2)(m+3)

Tz PM+1(10(/\D +1)

-(m—i~1)]+2am+1{l+
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Fig. 2. The effect of D and M on the expected waiting time and the
coefficient of variation.

+(AD)? = 2(m +1)(AD — a1) + (m + 1)

“(m+2)(1—ag— a1)>
2a9 + Z 2a; — Qi+2

_I_i D1

A21—ag < —

(M —i—1)(M —i—2)]
2AD

(M+1)(M+2)}

+ (AD)® = 2M(AD — ay)

+M(M+ 1)(]. —ag — al))

M-1

+ 2apm {1 +

The variance of the interdeparture time is var(V) =
E[(V)?] — (1/))? and the squared coefficient of variation is
C? = A2 var(V). The squared coefficient of variation is used
as a measure for the smoothness of the output process.

Note that a similar method can be used in order to determine
the joint distribution of two successive interdeparture times as
we show in the Appendix.

III. NUMERICAL RESULTS AND DISCUSSION

In this section we present some numerical results to demon-
strate the effects of the token generation time (D), the size
of the the token pool (M), and the buffer size (K), on the
performance of the input rate regulation schemes.

Consider first the case of an infinite input queue. In this case,
the rate at which packets depart the system equals the arrival
rate , so long as A < 1/D (when A > 1/D the departure rate
is 1/D). Yet, both the expected waiting time of a packet and
the squared coefficient of variation (and hence the variance)
of the interdeparture time of packets are greatly affected by
M and D, and there is a clear tradeoff between these two
quantities. An example is depicted in Fig. 2.

We observe that as D increases the expected waiting time
increases while C? decreases. In the extreme case that tokens
are generated very rapidly (D — 0), the expected waiting
time goes to zero, and C? — 1 since each arriving packet
finds an available token in the token pool. Clearly, in this case
the output process is Poisson. In the other extreme case when
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TABLE I
SUCCESSIVE INTERDEPARTURE TIMES

# of # of Arrivals in Arrivals in
Packets Tokens (t,t+ D) (t+ D.,t+2D) Interdeparture Interdeparture
q m d J Vi Vo
qg>3 m=20 1 >0 j>0 D D
qg=2 m=10 1 >1 j>0 D D
qg=2 m=20 i=0 j>1 D D
qg=2 m=0 1=0 i=0 D D+¢&
g=1 m=20 1> 2 720 D D
g=1 m =20 r=1 j>1 D D
g=1 m=20 =1 7=0 D D4 £
g=1 m=20 i=10 j>2 2D—Xj1 Xj.l
g=1 m=0 i=0 j=1 2D-—X11 X11~|—5
g=1 m =20 1=0 j=0 2D+ €& &
q=0 0<m<M-—1 i>m+3 j>0 R D
g=0 0<m<M-17 t=m+2 j>1 Rzié D
g=0 0<m<M-1° i=m+2 j=0 RIS D+é&
g=0 0<m<M-12 i=m+1 j>2 RﬁiHD—X} le
qg=0 OST)”L_<_M—]a t=m-+1 ;=1 RZii—'—D_Xll X11+g
qg=0 0<m<M-1% t=m+1 i=0 Rmii+p+g £
q=0 0<m<M-~12 0<i<m j>m—i+3 x;n—iﬂ X;n*i” x]m—i+2
q=0 0<m<M~—12 0<i<m j=m—i+2 xjm—l“ X]m—l” X]rn—i+2+g
g=0 0<m<M-17 0<i<m j=m—i+1 X]?n—i+1+g £
g=0 0<m<M-12 0<i<m 0<j<m-—1 £ 19

aFor m = M — 2 and i = 0 we have to condition on j > 1. For m = M — 1 we have to condition on ¢ > 1 and when ¢ = 1 we have to condition on

izl
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_ Fig. 3. Loss probability for a finite buffer.

tokens are generated very slowly (D — 1/X), the expected
waiting time goes to infinity while C% — 0 since each packet
waits for a token to be generated and the output process
approaches a deterministic process.

The effect of the size of the token pool is also demonstrated
in Fig. 2. As M increases, the expected waiting time decreases
while C? increases. It is interesting to note that even for
relatively small values of M (M = 10), the token generation
rate should be close to the arrival rate in order to have
significant effect on the system performance. We also observe
that in this range the system performance is very sensitive to
changes in the token generation rate.

Next consider the case of a finite buffer for arriving packets.
Examples of the loss probability behavior as a function of the
arrival rate are depicted in Fig. 3. It should be obvious from

(3) and (4) that the loss probability depends only on the sum
of the number of tokens and the buffer size M + K.

APPENDIX

In this Appendix we indicate how to derive the joint
distribution of two successive interdeparture times. To that
end we use the notation of Section II-D, i.e., £ denotes the
interarrival time (exponentially distributed with mean 1 /),
and R} (i > 1, 1 < j < i) denotes the time between the
jth arrival epoch in a slot until the end of the slot, given that
exactly ¢ packets arrived in that slot. In addition, we define
X/ similarly to R, except that A7 corresponds to a different
slot, so that Xij and Rf are independent for any 4, 7, /, and .

As in Section II-D, we consider an arbitrary token that
arrives at the token pool at time ¢ and tag it. In order that
this token will ever depart the system, it must join the token
pool (the probability of this event is 1 — po). Table I contains
the various events the tagged token may encounter. For each
event we indicate the two successive interdeparture times V;
(the time between the departure of the tagged token and the
departure of the subsequent token) and V, (the subsequent
interdeparture time). The explanation of each entry in this table
is similar to the explanations in Section II-D.

The joint distribution of Xij and Xi] *1 for 0 <zo<z; <
D,1<j<1i,1>2is given by

B il z1\77!
fXg7X5+1($1;372) = (] _ 1)! (z —j- 1)! (1 a D)

3o <
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and

_ =D~ +1)-(i—j+k+1) ph+L
G-+ DG +2) - GHET])

From TableI and (9) one can derive an explicit
expression for the double Laplace transform of V; and Vs
(E[e=#1V1—92V2]). The expression is very long and therefore
omitted.

ADDENDUM

The authors would like to comment that since the time the
paper was written, many more papers in the area of leaky
bucket analysis have been published.
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