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Abstract— We study the problem of designing a layout of
virtual paths (VP’s) on a given ATM network. We first define
a mathematical model that captures the characteristics of virtual
paths. In this model, we define the general VP layout problem,
and a mom restricted case; while the general case layout should
cater connections between any pair of nodes in the network, the
restricted case layout should only cater connections between a
specific node to the other nodes. For the latter case, we present
an algorithm that finds a layout by decomposing the network
into subnetworks and operating on each subnetwork, recursively;
we prove an upper bound on the optimality of the resulting
layout and a matching lower bound for the problem, that are
tight under certain realistic assumptions. Finally, we show how
the solution for the restricted case is used as a building block
in various solutions to more general cases (trees, meshes, Ii--
separable networks, and general topology networks) and prove a
lower bound for some of our results. The results exhibit a trade-
off between the efficiency of the call setup and both the utilization
of the VP routing tables and the overhead during recovery from
link disconnections.

I. INTROfXJCTJON

A. Background

A SYNCHRONOUS transfer mode (ATM) [9], [14], [15] is
the transmission and multiplexing technique which is the

emerging industry standard for B-ISDN. ATM was chosen by
ITU (formerly CCJTT), ANSI, and a large group of companies
which are members of the ATM Forum. Due to the future

importance of fast, broadband, integrated networks, ATM has
been extensively discussed in recent years.

ATM is based on small fixed size packets, called cells. Due
to the very high switching-rate requirements, the routing of
cells must be carried at each network node by a dedicated
hardware, implying simple routing algorithms. The routing
scheme chosen in ATM is based on two fixed length fields

in the header of each cell (VCI and VPI). These fields serve
as indices into routing tables that reside at the nodes of the
network, and they determine the route that a cell will take.

Routing in ATM is hierarchical in the sense that the VC1
field of a cell is ignored in many nodes along the route, which
perform the switching according to the VPI alone; only at a
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small number of nodes, is the VC1 considered
the cell and determining the next VPI and VCI.

for switching
This scheme

effectively creates two types of predetermined unidirectional
routes in the network: those based on VPI’s (called virtua/

path connections or VP’s) and those based on VCI’S (called
virtual channel connections or VC’ s).

These two route types have different roles in the network:
while VC’s are used for creating a connection between two

users of the network (e.g., a telephone call), VP’s are used for

bundling together several VC’S that share part of their route,
thereby substantially reducing the magnitude of managed
entities in the network. In particular, we are interested in two
such

1)

~)

management aspects.

Each VC requires a separate routing entry only at a small
number of nodes, while in most of the nodes along its
route, routing is performed in accordance to the VP in
which it is contained and hence only a single routing

entry is needed for that VP (rather than a separate VC

entry at every node).
The time required for tbe setup of a new VC is propor-
tional to the number of nodes in which routing tables
must be updated. With VP’s, the setup time depends
on the number of VP’s that are used by a VC (while
without VP’s, it depends on the total number of nodes
in the path).

B. Motivation

The common view on the layout of VP’s in an ATM net-
work, is that VP’s span through the entire network, connecting
a pair of end nodes (or VP terminators) directly. In this view. a
network of N nodes contains at least .V( .V – 1) VP’s (typically
much more, since multiple routes are desired between any
pair of nodes, to overcome failures, to cater connections
with different quality-of-service (QoS), and to enable better

bandwidth allocation). Thus, it is plausible that the number of
VP’s at centrally located nodes will be fl( ,V2 ). overflowing the

VP routing tables which are limited to 212 entries—imp] ying
that this solution is impractical for large networks. Moreover,
certain switch implementations further limit the number of bits
actually used, because of hardware constraints and table size
limitations, Such limitations are permitted by the UNI standard
[9]. For example the Fujitsu ATM chip set [ I I ] is limited to
10 bits per address.

A natural solution to this problem is a fragmentation of the

network into domains, connected by VC switches (e.g., [13],
[26]); however. this solution causes a VC to be routed through
a relatively large number of VC switches (if it passes through
many domains), directly influencing the time required for a
VC setup.
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In this paper, we propose a more integrated approach, in
which the layout of VP’s in a network is determined in a

manner that allows to use small VP routing tables, and tune
their size in accordance to the required call setup performance
(thus exhibiting a tradeoff between the required time for call
setup, and the size of the VP routing table).

Specifically, we study the problem of designing a virtual
graph over a given ATM network, the nodes of which are
the nodes of the network, and the edges of which represent
VP’s—we term this graph the virtual path pair layout (VPPL

for short). Since network design is a complex task, 1 we

separate the VPPL design from the design of the network
itselfi in other words, we design a VPPL for a given network,
rather than changing the design of the network according to
the layout considerations. In our layout design, we have the
following assumptions.

Al)

A2)

A3)

Linear Connection Structure: It is commonly assumed
that VPSIVC’s are coupled in pairs of unidirectional
routes in opposite directions since this structure im-

proves connection management substantially [7]. This

coupling defines VP/VC pairs (VPPsiVCP s), and in
the sequel we refer exclusively to them rather than to
VPs/VCs; thus, a VPP/VCP is a bidirectional, simple
route in the network. In addition, a VCP may be
viewed as composed of concatenated VPP’s (refer
to Fig. 1 and to example 1 for an example of these
definitions).
Full Switching Capability: We assume that each node
can switch both VP’s and VC’S. This assumption
is implied by an architecture in which VP and VC
routing tables reside in every node/port-processor in
the network. When a cell arrives at a node, its VPI is
used to determine the next VPI (in the label swapping
process), and the output port into which it is switched;
during this process the cells’ VCI is ignored as long
as the new VPI is nonnull. Only when the VPI is null,
is the VCI considered, to “demtdtiplex” the VC’s that
used the VP. The VC table determines the new VCI
label and the output port (similar to the VP routing

table), and also a new VPI label which matches the
VP into which the VC is multiplexed (see [7] for a
full description).

In realistic implementations, it is plausible that
many nodes will switch VP’s exclusively; however,
incorporating this fact into the model complicates
it (and hence the proposed solutions) with details
that may damage the insight into the problem, which
motivated this work. At the summary of this paper
we propose a method for dealing with such ‘*hetero-
geneous” networks.
Routing for Basic End-to-End Connectivity: in this
work we are not concerned with determining multiple

1Network design typically involves multiple optimization criteria and
a large number of input parameters, often resulting in a combination of
automatic tools, heuristics, and human intervention during the process [16].

2Note, however, that this coupling is for routing purposes only, and other
aspects of the unidirectional routes are managed separately, e.g., bandwidth
allocation is not necessarily equal in both directions.

rlrm——Lr+rv———
1 II l— I II I

,// /

/-------

/“,/
,/

Qslcd hnk —
,. -. -.. /’,,,

‘, /“ ATMm&
,’ ., .

> ,/” VP

<
~ ,2 Vc ~

~
~. ,, VP @r. . . ,.,

Fig. 1.

... .. . ------ --- VPI Swilchmg *

VC[ Swirchiag —

The configuration of VP’s and VC’S in a simple network,

The

routes between nodes, in accordance to bandwidth al-
location or fault tolerance considerations. This attitude

enables us to formulate the problem and solutions
more clearly, and thus gain insight into them, while
these additional parameters remain for future research.
The proposed solutions are applicable with no modi-

fications in certain scenarios, for instance for catering

local-area network (LAN) emulation over ATM (i.e.,
relatively short messages which have no bandwidth
guarantee).

following performance properties are affected by the
design of VPPL. A “good” layout is characterized by achieving
a good performance trade-off among them.

Pl)

P2)

P3)

VCP Setup Complexi~: Low VCP setup complexity is
important as it substantially reduces various overheads

of connection management [6], [26], [27]. The setup

complexity is proportional to the number of nodes in
the VCP, in which the VCI is examined, since in these

nodes the intervention of software is needed (to change
the VC routing tables, to allocate bandwidth etc.). For
this reason, the number of VPP’s used for the routing

of a VCP (termed VP hop counf) should be small.

Length of Underlying Physical Route: The chosen
route for a VCP must also be short in terms of the

number of physical links it uses, to efficiently utilize

the communication network. In this work we resrnct
the discussion to shortest physical routes only. All the

results are applicable if the shortest paths are based
on shortest propagation delay rather than minimum
number of links.

Utilization of VP Routing Tables: The number of oc-

cupied entries in the VP routing tables (termed the
load on the table) implied by the layout, should be low

enough at any location in the network—see discussion
in the beginning of this section.
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P4) Recovery Overhead: The resulting layout must over-

come link disconnections with a low overhead. This is
achieved by reducing the number of VPP’s that share
any link, so that if a link is disconnected, the number
of VPP’s that need to be rerouted, in order to bypass
the faulty link, will be small (see [7] for a description
of this recovery and reroute procedure). In the sequel
we show that this property is closely related to P3.

Example 1: Consider the network in Fig. 1, in which a
virtual path layout of 4 VPP’s is depicted, and 4 VCP’s that

use this layout. The squares on the VP’s denote the fact that
at this point VP switching is done, while the circles denote
VC switching. To demonstrate the label swapping process,
consider the VPI and VCI fields of a cell in the lower part of
the figure. This cell belongs to the lowest VC in the figure,
going from left to right. The relevant VP and VC routing
tables at each output port along the cell’s path appear in the
figure as well. Note that as long as the cell is routed through
VPP .4 its VCI remains unchanged (k’Cl = 10). At node

.r. when the VP1 is translated by the VP routing table to a
null value (denoted “NL” in the figure), then VC switching is
performed using the VCI of the cell and the VC is routed into
VPP 11 (denoted by VPI 25 at r). The VCI is swapped to 42,
a unique ID within VPP 11.

C. Our Solution

We solve the VP layout problem in two stages. First,

we define a more restricted form of the problem in which
the VPPL is required to efficiently support VC’s between a
specific node (termed the root of the VPPL), and any other
node. Such a layout is termed a “one-to-many” VP layout
and is denoted by VPPL1 - ‘“. Next, we use the construction
scheme for VPPL1 ““ as a building block for constructing
more general VP layouts, which are required to support VC’s

between any pair of nodes. Such layouts are termed “many-

to-nmny” VP layouts and are denoted by VPPLr~’“T1.
Our VPPL’” ‘“’” constructions are typically based on the

following idea. Refernng to Fig. 2, choose centrally located
“hub’ nodes in the network (depicted as dark squares in the
figure). These nodes split the network into separated clusters,
so that any VC between nodes in different clusters must be
routed through these hubs (e.g., nodes .r and y in the figure).
For each hub construct a VPPL14 “’ in each cluster, rooted at

the hub, This VPPL1 ““ will enable VC’s to reach the hub
with a small VP hop count. Thus, a VC between .r and y (in
the figure) can be set up using a small number of VPP’s to

the hub ~ and a small number of VPP’s from z to y.
To enable the routing of VC’S with both end points in the

same cluster using short physical routes, each cluster is further
split into subclusters with “second level” hubs and VPPL1 ““s
(depicted by dotted lines in the figure). This process is repeated
a number of times to produce a “multilevel” solution which
supports efficient routing of VC’s both in terms of the VP hops

(enabling efficient VC setup) and in terms of the shortest paths
in the physical network. In the rest of the paper we present a
precise formulation and analysis of the above ideas, tailored
to increasingly general network topologies.
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Fig 2. General framework for [he VP layout solution

D. Related Works and Paper Structure

Most existing studies of the VP’s in the network layout have

considered only the case in which all VC’S traverse a single

VP through their entire end-to-end path (e.g., [13], [27]). As

discussed above, such a design choice is not scalable and is
suitable only for relatively small networks.

Several works have considered planning a VP layout so
that a VC is routed through multiple VP’s [1], [19]. In
these works, many parameters are taken into account, which
make the problem too complex for mathematical analysis.

Consequently, an experimental approach is taken, based on

heuristic optimization techniques. In contrast with these works,

the present work (together with [12]) considers on] y few

parameters, and is based on an analytical approach. We thus

gain better insight into the problem, present simpler and more
efficient algorithms, and base the performance analysis of the
results on mathematical (rather than empirical) tools.

Our paper assumes a switch model in which VPI’S (and
VCI’s) are looked at and swapped using link based tables. Thus

the same VPI values can be received from multiple incoming

links to indicate different VP’S, In a closely related paper [ 12],
we consider a different (and more restrictive) switch model in
which a central VP table serves the whole switch (and hence
the same VPI values cannot be reused by different incoming
links). The “centralized” approach of [12] relies on the use
of switch-wide shared memory which is not applicable for
most space type switches. It is also a further constraint on the

possible use of the already limited VPI space. In addition to

the different switch models, the solution approaches taken in

both papers are very different. While here we focus on the

quantitative bounds that prove the practical feasibility of our
solutions, in [12] we focus on more theoretical, qualitative

results (such as proof of NP completeness and obtaining
provably optimal results for rather restrictive cases).

A problem related to ours is that of keeping small routing ta-
bles for routing in traditional datagram networks. This problem
was widely studied (for example, in [2], [3], [10], [17], [18],

and [22]) and yielded interesting graph decompositions and
structures, but it differs from ours in some major aspects which

deemed most of these solutions impractical for our purposes,
Some of these differences stem from the fact that in our case
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there is no flexibility as to the nodal intermediate routing
scheme itself since it is determined by the ATM standard
[15], and by the requirement for very fast routing. For this
reason we present a static structure in the network, while
in the traditional model, the exact routing of a packet may

be determined dynamically during its routing process (as in
[2] and [3]), or by information based on the name of the
destination (as in [10]).

Other differences stem from the ATM standard, in which the
sizes of the routing tables at each node are fixed-implying a
worst-case approach to the utilization of the tables, in contrast
to the average-case approach, adopted by some of the solutions
to traditional datagram routing (for example, in [10] and [22]).
Many of the general solutions route packets in paths that are

up to a multiplicative factor longer than the shortest path (this
factor is termed swefch ~acfor-). These solutions are usually
based on a large factor and are therefore not practical for our
purposes.

The separator-based techniques for decomposing a graph
that we have used in this work resemble those of [ 10]. Another
related work is [5], in which a similar problem which arises

in databases is studied for tree networks. The main difference

between the problems (which thoroughly affects the solutions)
is that here we are concerned with the load of VP’s at any point
in the network (a “local” property) while they are interested
in their total number (a “global” property).

The paper is structured as follows: we start (in Section
11) by formally defining our assumptions, the problem in its
restricted and general form, and the essential characteristics of
a “good” layout. In Section III, we propose a solution to the

restricted problem that is based on a structural decomposition

of a network into small subnetworks, and a recursive solution
for each subnetwork. This solution is presented in stages, and

is proven to yield a quantitative upper bound to the efficiency
of the layout and an asymptotically matching lower bound
(under realistic assumptions). In Section V, we show how
the solution for the restricted problem is used for solving
the general problem for various net work topologies: trees, K-
separable networks, meshes, and general topology networks.
For the tree case, we also prove the asymptotic optimality of

the result (under certain realistic assumptions). We conclude
in Section VII by presenting both a qualitative and numerical

comparison between the various schemes in the paper.

II. THE MATHEMATICAL MODEL

In order to properly analyze the virtual path properties and
layout, we first define a graph-theoretic model for it (for basic
terms and definitions, see [8]). In our model, we have an
underlying communication network, which consists of nodes
and links between them. This network is modeled by an
undirected graph G = (V, E), where V corresponds to the
set of nodes and E to the set of physical links between them.

Definition I: Let T(G) be the set of all simple paths~ in

G. A virtual path layout is a subset of T(G). Formally, it is
convenient to represent a VPPL V by V = (G*. Z), where

3For the sake of notational convenience we refer to a path ]) E T’(G) either
as a set of edges or as a set of nodes.

G* = (V, EW) is a “virtual” graph and 1: E* ~ ‘P(G)
is a “mapping” function. A “virtual” edge @ = (a. b) E E’.
represents a VPP between the nodes a and b. The function
Z(@) maps each virtual edge ~h = (a, b) to its corresponding

route in G. We term this path the induced path of @.

We extend the definition of Z to paths in the virtual graph
Gv, as follows:

Dejinirion 2: The inducedpath Z(p) for a path p E T(GW ),
p=(@l, ~)~,. ... ~,~), (ti)i E Ev for all i) is the path obtained

by concatenating the induced paths of all @is.
Next, we define the number of VP routing table entries

consumed by the VPPL. Underlying this definition is the
prevalent assumption that a VP routing table resides in each

port processor. We also assume that each VPP is a bidirectional
route (see assumption A 1). Hence, each VPP that goes through
a physical link contributes one to the utilization of the VP
routing table at the port processors that are connected via that
link (property P3).

Definition 3: The load L(e) on a link e E E is the number
of VPP’S rj E Ev that include c in their induced paths.
Namely,

L(c) = 1{~ E EW[e E Z(q))}l

the load .L(IJ) of a given VPPL V is

L(V) = m~a~~(e).

Observation Z: The above load definition is also suited to
express the fault tolerance overhead when a given link is
disconnected [property P4].

Explanation: When a link fails, the VC’S and VP’s
that are using it are broken. A simple and fast technique
for recovering these connections is to reroute VPS that use

the link, to other routes in the network, an operation which
automatically heals VC’S that are using these VP’s [7]. Thus,
the overhead of computing alternate routes for the VP’s and for
activating control protocols that set them up, is proportional
to the number of VP’s that may be affected by a link failure,
which is equal to the load L(e) on the faulty link e. •1

Dejnilion 4: The hop count H(II, w) for v, w E V is the
minimum number of VPP’S that may be used to form a VCP
between v and w, such that the VCP uses a shortest path in
the physical network. Namely, it is the minimum k such that:

1) 3p = (~q. @2, . . . y~k) E 7(GV),

2) 3.C. g E v, ’41 = (v. r). d~~.= (?/. w).
3) The induced path Z(p) is a shortest path between t) and

w in G.

If no such k exists, define H(t). w) = X.
Observation 2: There exist nodes v and w in the network

with 7-((v, w) = ~ iff E ~ EW.

Explanation: Otherwise, there is always a path between
v and w in the VPPL along a shortest path in the physical
network G: a path that uses single link VP’S. Furthermore, in
this case there are always such 71 and ILI that are adjacent in
G. ❑

If the paths should be shortest possible in their propagation
delay rather than the number of links, the only change in the

model should be performed in this definition. In the rest of the
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paper, each occurrence of the term “shortest path” should be
replaced by “a path with shortest propagation delay.”

We distinguish between two problems: l) The general layout
problem in which it is required to support the setup of VCP’S
between every pair of nodes; we term this case the “many-to-
many” VP layout. 2) A more restricted case, when the VPPL
should cater to VCP’S from a single node (called the mot)

to all the other nodes; we term this case the “one-to-many”

case. The VPPL for the many-to-many case is denoted by

VPPL’” ““, while a VPPL for the one-to-many case is denoted
by VPPL1-’”

Definition 5: The following definitions capture the feasibil-
ity of the above-mentioned problems with respect to a given
hop constraint h > 0:

1) A VPPL’’’-’” is h-~easible If max,,, ,,.~\ 7f(v, w) < h.
2) Let ~ ~ ~” be the root. A VppLl ‘m’ is (h, r)-~eu~ible if

lllax,,~l - ‘H(ll. ‘r) < h.

Notation: When the scheme for producing a feasible

VPPL’”+ ‘“ from G and h is understood from the context, the
VPPL will be denoted by V “’-”’(G. h); for the VPPLl+m
case the notation will be V 1‘n’ (G’, h,. r). For notational
convenience, when G belongs to a given family and IV I = IV
we replace G by N.

The feasibility of a VPPL captures the notion of a VPPL
in which the worst-case VPP hop count is bounded by h
(property P 1 above), and the chosen routes are minimal in the

underlying physical network [property P2]. We now define an
optimal solution as a solution that, in addition, minimizes the
utilization of the VP routing tables [property P3], and enables
efficient recovery from link disconnections [property P4].

Definition 6: A VPPL’” 4’” @ is h-optimal for a given h, if
it is h-feasible and its load Z(V) is minimal amongst all other
h-feasible VPPL’s. This definition is extended in a straight-
forward manner to the (h. r)-optimality of a VPPL1-’n (for
a given root r).

Observation .3: Finding a VPPL1 ““ is easier than finding
a VPPL’” ““ as hinted by the following facts:

1) Given a network G, every h-feasible VPPL’” ‘“’ is also
a (h, r )-feasible VPPL1 ‘“‘“ for any r G V, but the
reverse is not necessarily true.

~) The load Z(~) of an h-optima]vppLrft-r}lisneverless

than the load of a (h. r)-optimal VPPLl ‘“’. ❑

Besides its methodical value as an easier problem to be
tackled first, VPPL1 ““ has its own practical importance, as

it may prove useful for server networks, where data is sent
from a single source to multiple destinations and vice versa.
An example for this is a video conferencing server-which
has VCP’s to all users who are currently engaged in a video
conference~ [21], [23].

HI. THE VPPLl ‘“1 PROBLEM FOR TREE NETWORKS
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Fig. 3. VPPL ] ““ on a chain of nodes

VPPL 1““ for the case when the network is a chain of nodes

(an may of A’ nodes connected in a row) and then extend it
to arbitrary tree networks. For the chain case, we start with
h. = 2, and extend the results to an arbitrary h.

Given a chain of N nodes and a root r at one of its endss
construct VPPLi ““ in the following way: First split the chain
into @ equal sections of size @ each.G Call the node that
is closest to r in section i the “pivot of section i.” Connect r

to all pivots by VPP’S and connect the pivot of section i to

all the nodes in its section (see Fig. 3). This construction for
h = 2 can be extended to any h by the following recursive
scheme (see Fig. 3 for a demonstration),

Scheme 1—A VPPL1 “n on a Chain:

1) Divide the chain into N l/h sections of size N 1- 1/~’
each.

2) Connect each pivot to the root r by a direct VPP.

3) Connect each pivot to its section by a VPPL1 ‘n’ with
up to h – 1 VP-hops [i.e., let Si be the subgraph of
section i, pz the pivot of the section then construct
vl+~(sl, h - l,pl)].

4) The resulting VPPL is a union of the partial VPPL’s
constructed in earlier steps.

Correctness: The underlying route from any node to the
root is the shortest possible, since the path advances only in
the direction of the root. Also, each node can reach T-using
no more than h hops: h. – 1 hops to the pivot of its section

and one more hop to r-. ❑

had Analysis: Let S the subgraph of a given section,
whose pivot is p. The load on each link in S is affected only
by VPP’s that connect pivots of sections farther away from r,
to r, and by the next level VPPLl ‘n’ in S. Thus, the load of

In this section, we present results that concern the construc- 5II is easy to see that if the root is no[ al an end of the array, rhen [he

tion of a VPPL1 ““. The results are presented for increas- ~ndof each ,Ubchain,problem may be decomposed into two independent subproblems with r at the

ingly complex cases. We first present a method for finding a
blf .Y is not a perfect square then the sections are of size lfi~ and there

‘This is not w bc confused with a multicast service, where all destinations also exists a shorter section of the remaining nodes. However, for the sake
receik,e the same data from a given source, while here we discuss separate of simplicity, we shall ignore such cases henceforth, since it is easy to infer
streams of data from a service center. from the techniques presented in the paper how they may be dealt with.
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the VPPLl ‘w’ satisfies the following recurrence formula:

Z[@l+n’(G, h, r)] s fV1/hZ(!U’-m(S, h -1. p)]

or (together with the boundary condition)

L[wl+m(N, h)] <

{

N–1, h=l,
N1/h + CIVl+~(N1-l/h, h - 1)], h >1.

It can be shown by induction that

since

and

L[@l+m(N, h)] < hN1ih

ZIW1+m(N, 1)] =N -1<1. N1/’

=N

hN1/h <1. N1/h + (h – l)(N1-1/b)l/(h-1)

= N1/~ + (h _ l) N@-1)/~(h-1)

•1
We now extend Scheme 1 from chains to arbitrary tree

networks (with an arbitrary h). We shall need the following

graph-theoretic result on trees:
Dejnition 7: Given a graph G, an (cY,P)-separator is

a set of nodes S whose size does not exceed a and
whose removal (together with adjacent edges) separates the

graph into subgraphs, each with size not greater than @.

These subgraphs are termed the separated cornponenfs of
s.

Lemma I [5]: Given a tree T with N nodes and an integer

k >0, there exists a [k, [N/(k + 1)1 ]-separator for T.

Furthermore, the algorithm that is implied by the proof of
the lemma is linear in the tree size N. Using Lemma 1, we

can now construct a layout for arbitrary trees by the following
scheme (see Fig. 4 for a graphic demonstration).

Scheme 2—A VPPL1 ‘m on a Tree:

1)
2)
3)

4)

5)

6)

7)

If h = l-connect each node to the root by a direct VPP.
Given h > 1, choose k = N1/h.
Find a (k, N/(k + 1)]-separator P for T (as shown in
Lemma 1) and define the nodes of the separator P to be
the pivots. Let C denote the set of separated components
of P.

Connect the root r to all the pivots p c P by direct
VPP’S.

Connect each pivot p E P to each separated component
c E C which contains a node adjacent to p, unless
the path from p to the root goes through c, using a
VPPLl+m(c, h – 1, p).
If the root is not a pivot, connect it to the separated
component c E C it belongs to, by a VPPL1+m(c, h –
1, r)

The resulting VPPL is a union of the partial VPPL’S

constructed in earlier steps.

Fig. 4. VPPL1 ““ on a tree

Correcmess: To reach the root, each node v must first reach
a pivot (by no more than h – 1 hops, using the shortest path—as

guaranteed by the recursive application of the scheme), and
then one additional hop to the root using a shortest path. If
the root is not adjacent to the separated component in which v
resides, then there exists a pivot which is on the shortest path
from v to the root of the tree. ❑

Load Analysis: Each link may be used by no more than k
VPP’S that connect the pivots p E P to the root T-;it may also
be used by a VPPL1-rn with h – 1 VP-hops which conneets
the separated component that contains the link, to the pivot
(the same argument applies to links which connect pivots to
components, and we ignore them in what follows for the sake
of simplicity). Since each link belongs to a single component
c, and there is a single pivot p adjacent to c such that c is not
on the path between p and the root—there is only one such
VPPLl ‘m. As for the boundary condition, for h = 1 there
are direct VPP’s from every node to the root, yielding a load
of N – 1 in the worst case. The load function thus satisfies

qYl+’”(N, h, T)] <

{

N–1, h=l
.CIW1+m(k, 1, r-)]

[(

+ L ~1-m )1~,h–l, p , h>l.

By the choice of k, we get LIV1+m(k, 1, r)] ~ N1/h.
Combining these (and the fact that .Z[Q(Z, y, z)] increases
as z increases), we get

LIIII1+m(N. h, T-)]~ N1/h + LIW1+m(N1-l/h, h -1, p)].

Which identifies with the recurrence for the chain case. Thus

Z[@+m(N, h, r)] < h ~N1/h.

c1
This result is asymptotically optimal for most real-life cases

(in which A and h are small), as proven by the following
theorem.



GERSTE[, et (J. THF. 1.AY()(lT OF VIRT(”,AI, PATHs IN ATM NETWORKS

Theorem I: Let T be a tree network with N nodes, let A

be the maximum degree of a node, and h > 1. For every
VPPL] + ‘“ with 11hops. there exists a link ( E E with load

Proofi Let 1. be an upper bound on the load in a given
VPPL with h hops. Start at the root r and count the maximum
number of nodes reachable from r. Fewer than L.A nodes are
one hop away from r (at most i, VPP’s on each link adjacent
to r, and up to A – 1 such links). For each such node ?), at

most LA nodes are one hop away from ~!, and thus are two

hops from r—a total of (LA)2 such nodes. By repeating this

argument h times. we get up to (LA)” nodes that are h hops
from r. So the number of nodes which are up to h hops from
r does not exceed

&A)J=(@;{:l-]
,=1

~ (IA)”+l
– 0.5LA

=2(L3)”

On the other hand, the size of the network N must not exceed
this number (since every network node must be reached), so
we get

N <2(LA)”

or

❑

IV. THE VPPL’” -‘“ PROBLEMFOR TREE NETWORKS

The main motivation for studying the VPPL1 ““ problem
is that its solutions may be used as a building block in
the solution of the general VPPL”l ““ problem. We now
demonstrate this by building a VPPLW’““ for arbitrary tree
networks. The recursive construction scheme follows (see also
Fig. 5).

Scheme 3–A VPPL’” ““ for Trees:

1)

2)

3)

4)

Recalling Lemma 1, choose a (1. N/’2)-separator s of
T as a pivot,
Construct a VPPL1 ““ with up to h/2 VP-hops in each
subtree, with .S as its root,
Recursively, build a VPPL’” “r’ with up to h VP-hops
in each subtree,
The resulting VPPL’” ““ is a union of the partial
VPPL1 ‘-”‘“s constructed in earlier steps.

Correctness: Note that two nodes that reside in different
subtrees may be connected using no more than h VPP’S, by
going from one node to the pivot (no more than h/2 hops),
and from the pivot to the other node (again, no more than h/2
hops). This is achieved by steps 1) and 2) in the scheme. Step
3) is necessary to enable such a connection on a shortest route
in the tree. Thus, if the nodes reside in the same subtree, then
they are catered to by the recursive application of the scheme
in that subtree. •1
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Fig. 5. VPPL’’’ –’” on d tree

Load Analysis: The load on each link is composed of the
load of the VPPL1 ““ to the pivot and the load of the

recursive application of VPPL’” -‘“ in the subtree. Since a

link participates in one such VPPL1-”’ and one smaller
VPPL”) ‘“’ (of its subtree), and since by Definition 7, a subtree

of the (1. N/2)-separator contains no more than N/2 nodes,
its load is bounded by the following recurrence equation.

L[*’’’-’” (h. N)] <

{

iv < h,

+“-’’’(”:)1

‘+1-’’’(:31‘ll>”
Let L(N) = L(V’’’-r” (h. N)), then by using the result

obtained for VPPL1 ‘n’ on trees we get

c(v)~c(:)+w)’”i
so,

‘(N’43+W””
%)+)+:(32’”

z(2h) <z(h) + ;(//)’/”

L(h) <l.

By summing the above equations we get

L(lv)<l+:[(:)’’’’+ (+)’’’’+ ..+,,?tl]

()

2/)1
N

<~ Ii

1
–21– —z2/h

h—— N’jh

2(27’//1 – 1) “
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Based on the following two lemmas, we prove a lower
bound for this case as well.

Zzmmu 2: Given a tree and a (1. N/2)-separator s, the
number ~’ of pairs of nodes, whose route goes through s
it is at least ~N2.

Proof Let 6 be the degree of s, let t;, 1< i s 6 be the
sizes of the subtrees adjacent to s. Whhout loss of generality,
assume s is in tl. Clearly p’s = ~~<,<j~fi t; . t j. By changing

the order of the sum we get

or

A lower bound on P’ is obtained using an upper bound on the

sum ~l<~~fiti, 2 which is maximal if 6 is minimal and each
t, is mafimal. However for a (1. N/2)-separator t, ~ N/2,
so we get

•1
Lemma 3: The number PI, of pairs of nodes that may

use a given VPP, in an up to h hop route does not exceed
2h(LA)’’-l.

Prooj Given a VPP (a, b), the number of pairs of nodes
that may use it in a one hop route is 1 (only a and 6). The
number of VPP’S for which a (or b) is an end point does not

exceed LA, thus at most 2LA pairs use (a. b) in a two hop
route (half of which are pairs that include a, the other half
include b). The number of pairs that include (a, b) in a three
hop route does not exceed 3(LA )2, since they may 1) include
a as one end point, and a node which is two hops away from
a in b’s direction as the other; 2) include b and a node which
is two hops from b in a’s direction; or 3) include a node which
is one hop away from a, and a node which is one hop away
from b. By repeating the argument h times, we get

Pl, s 1 + 2( LA) + ... +h(LA)”-l
)t

= ~ i(LA)i-l
j=l

or

-!-- ~(LA)I
‘1’ = (i(LA) ,=1

d

[

(~~)~t+l -1
—_—

d(LA) LA–1 1
(h+- l)(LA)~(LA - 1) - [(LA)}’+’ - 1]——

(LA - 1)2

h(LA – I)(LA)” – (LA)” + 1——
(LA-1)2

< h(LA)”

‘LA–1

~ 2(LA)”

=2h(LA)’’-l.

•1
Theorem 2: Let T be a tree network with N nodes, let A

be the maximum degree of a node, and /L > 1. For every
VPPL’” ““ with h hops, there exists a link r ~ E with load

Proof The number of pairs that use an up-to-h hop route,
which passes through a given node t!, does not exceed LA. P),,

since each VPP that passes through t! can support up to Pl,

pairs.
Combining this with Lemmas 2 and 3, we get

LA . 2h(LA))’-l z ~N2

or

❑

Note that for most real-life cases (with a small A, h), the
load of the construction and the lower bound of Theorem 2
are asymptotically tight.

V. BEYOND TREE NETWORKS

A. K-Separabie Networks

So far, we have concentrated on ATM networks with a
tree topology. The above technique can be easily extended
for wider families of networks as well—namely K-separable
networks.

Definition 8: Given h“ >0, a graph G’ is K-separable if it
contains a (K. $ N )-separator, and each remaining subgraph
is K-separable as well.

This family includes many known graph families, in partic-
ular graphs with “bounded treewidth’ (see [24]) which include
e.g., rings, chordal rings, interval graphs, circular arc graphs,

series-parallel graphs, outer p}anar graphs, and cographs [4];
planar networks are ~-separable [20].

Finding a (K. 3 V -separator in a graph in which such ai] )
separator exists can be done in linear time if K is small enough
[24]. Furthermore, for graphs with treewidth ~ K, a (K, ~N)-
separator may be found in linear time using flow techniques
[25]. Based on such algorithms, a construction scheme for
such networks follows.

Scheme 4—A VPPL’’’-’” for K-Separable Networks:

1) Find a (K, ~ N)-separator of G,
2) Construct a BFS spanning tree T,. for every node v of

the separator,
3) Construct a VPPLl+”’ with up to h/2 VP-hops on each

T,. with v as its root,



GERSTEI <f d THI- I AY’O(lT OF VIRTLIAI. PATHS IN ATM NETWORKS xx 1

4) Recursively build a VPPL’’’-’” with up to h VP-hops
in each separated part of G,

5) The resulting VPPL’” + ‘“ is a union of the partial
VPPL1-’” s constructed in earlier steps,

Correcvzes.s: The comectness is proven along the lines of
the proof for trees. The only difference is that a shortest path

between a pair of nodes in separated parts of G, must go
through a node (I of the separator, hence there is a path with
h hops or less in VPPL, that is a shortest path in G (use the
VPPL1 “+’” on T, ). ❑

Load Analysis: Each link participates in at most A’
VPPL1 ‘“‘“s at the first stage of the recursion (namely in
T,. for every ~ in the separator). Therefore, the load function
of the scheme satisfies

[ ‘-’’’(’+’)1-C[VJ’’’-+’’’(N. h)] < h c w

“[v’’’-+’’’(~’v”)l
or

qq,,z K h
“’”( N. h)] < Ap/lt

2(1.5~/f’ – 1)

Using similar considerations as for trees. ❑

B. Meshes

For square mesh networks, we use a different technique
which exemplifies the construction scheme for composite
networks, Recall that an fi x fi mesh network of size
N is comprised of horizontal and vertical chains of size m.
We construct a VPPL’” -‘“ for these networks by merging

chain layouts for each row and column.
Scheme 5—A VPPL’” + ‘“for Square Meshes:

I ) Build a VPPL’” ““ with h/2 hops for each horizon-

tal/vertical chain,
~) The union of all these chain layouts is the resulting mesh

layout.

Cm-rectness: The hop count is restricted by h, since any
switch can be reached by no more than 1}/2 hops (to get to
the correct vertical position) and no more than h/2 hops in
the vertical VPPL. This adds up to no more than h hops. The
stretch factor is preserved since one of the shortest routes in a

mesh is composed of one horizontal segment and one vertical
segment. ❑

Load Analysis: The links of different row/column compo-
nents are distinct, and hence the load on a link is determined
only by the layout of the component it belongs to. The load
of the scheme is thus ZW ~ C(h/2)AT2/”, where C(h) is the
h dependent factor of the VPPL’” ‘“’ for trees (Scheme 3).0

C, General Topology Networks

For networks with arbitrary topology, it was proven [ 12] that
there probably exists no efficient algorithm which yields an
optimal solution (i.e., that the problem is NP-hard). A simple
solution for such topologies is given by the foowing sceheme.

e

/ J B
x

A—
——- -+ +-- -— —

A, AZ A , ‘---~

Fig. 6. S[, ] with m induced wbgraph which i~ nn! d tree

Scheme 6—Simple Scheme for General Networks:

1) Find a shortest-path spanning tree (produced by a BFS
algorithm) from each node to the rest of the network,

2) Construct a separate VPPL1 + ‘“ on each tree, with h
hops.

3) The resulting VPPL’’’”-’” is a union of the tree
VPPLl ‘+’”s constructed in earlier steps.

This layout is easily proven to be h-feasible, and has a load
of at most L(W) ~ 4//iVl+1/”. Note that this upper bound is
typically much higher than the real bound, since it assumes

a worst case, for which all BFS trees share a link. A better
approach is based on a greedy scheme, for which we need the

following lemma:
Lemma 4: Given a link r E E, a set of pairs of nodes .Y

and a set S[(>] of shortest paths between each pair in X such
that all paths in S[e] include r, there exists a set S’[r] of
shortest paths between the pairs in .Y that include c as well,
such that their induced subgraph’ is a tree.

Prooj Assuming that the induced subgraph of S(P] is
not a tree, construct a new set of paths S’ [(] whose induced
subgraph is a tree, as follows. Add paths from SIC] to S’ [r]

one by one. If a new path to be added, L’ E S[(’], creates
a cycle in the induced subgraph of S’(~J], then it is modified
to eliminate this cycle. TO this end, assume without loss of
generality, that there is a path .! E S’[{) which meets and
separates from L’ before reaching c (see Fig. 6). Let r. ?) be
the closest pair of nodes on both paths .-! and D such that
the segment of path B between .r and !/ ( f12 in the figure) is
disjoint from the segment .42 of path .4 between them. Let
A = (.41. .r. A2. ?/. AJ) and /1 = (L1l. r. 13z. V. Z3:j) where

Aj, Bi are segments of A and B.
We first show that f @ AZ and r @ B*: If (by contradiction)

r E A2 then if c ~ D2, .42 is not shortest possible (there exist
.r’. y’ closer to each other in A and l?), and if r @ flz then
13 is not a shortest path—it can be shortened by not including
e in B.

So, without loss of generality, c E .4:). r c l?:~. Note that
IA21 = ID*1 since if IAzI < Illzl, then B is not a shortest
path [B’ = (B1, .r. .4z. v. Bj ) is a shorter path between the
same end points]. Therefore, this violation of the tree structure
can be fixed by diverting B to use .42 instead of B* [take
~’ = (Bl, .r, .42. y. l?,]) instead of D]. Note that }]’ may

‘The union of all links and nodes that pafiiclpatc im these paths
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still cause cycles if added to S’ [e], but such cycles occur in
other parts of B’ (not between z and y), which may be dealt
with using the same method for further modifying II’. Clearly,

the paths in S’ [e] are still shortest paths between the same end
points, all of which include e. •1

A greedy scheme based on the above lemma is the follow-
ing.

Scheme 7—Greedy Scheme for General Networks:

1)

2)

3)

4)

5)
6)

Find a set S of (~) paths, one shortest path for each
pair of nodes in the network.
If the maximum number of paths in S that share a link
e is less than some threshold X-define the remaining

paths in S as independent, single hop VPP’s (we shall
determine X in the sequel).
Otherwise, refer to the set J3[e] of paths that includes all
paths in S that share the above link e. If the induced
subgraph of S[e] is not a tree, modify it into a tree by
changing each of the paths in S[e] that violates the tree
structure into another shortest path between the same

pair of nodes (see Lemma 4 for the feasibility proof),
Assuming the induced subgraph of S[e] is a tree, choose

an end point of e as a root and construct a VPPLl+m
with h/2 hops to it, on the induced subgraph,
Return to step 2) after removing S[e] from S,
The resulting VPPL is a union of the partial VPPL’S
constructed in earlier steps, and the remaining paths in
s.

Correctness: The scheme yields a feasible VPPL”+m
since for every pair of nodes, there exists a shortest path in
the network, which is either a single hop VPP between the
nodes [defined as a VPP in step 2], or is part of a tree for
which a VPPLl+m was constructed in step 4. In this case, it
may follow this shortest path, using up to h/2 VPP’S to the
root of the VPPL1-m and up to h/2 hops to the destination.Ci

Load Analysis: Assume the greedy scheme constructed Y
VPPLl+ms. Then the load of the greedy scheme is bounded
by the load incurred by these VPPLl+ms, plus at most X,
since that was the remaining load when the scheme ended:

Recall that the initial size of S is less than N2/2, and that
each choice of a subset S[e] in step 3) involves at least X
pairs. Therefore, we get Y ~ N2/2X. Substituting these in
the above load conditions we get

To achieve the minimum Z(W) we choose

Yielding the upper bound

L(W) < fi . N1+l/h.

•1
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Fig. 7. An example to an ad-hoc VPPL’”““.

A better “ad-hoc” heuristic approach may be devised for

specific real-world network topologies, in which a set of

centrally located nodes (such as gateways between subnet-
works) naturally separate the network. This “three stage”
scheme is based on connecting all the nodes in each subnet
to the adjacent gateways by VPPL1 ‘ns, and interconnecting
the gateways by a “backbone” VPPLm+m—see Fig. 7 for a
pictorial demonstration. In addition to the VPP’s that are drawn
in the figure, the nodes in each subnet are dkectly connected
by VPP’S.

When a VC is established between nodes in remote subnets,
it is first routed to a gateway via a VPPL1 ““, it then uses the
backbone VPPLm+m to reach the remote subnet, and finally
it is routed to the destination via a VPPLl ‘n in the remote
subnet.

VI. DISCUSSION AND SUMMARY

In the paper we studied the problem of the construction of

a virtual path layout (VPPL) on a given ATM network. Our
results exhibit a trade-off between the hop count h (which
effects the call-setup time), and the number of VPP’s that
use a physical link, Z(V) (which effects the utilization of
the VP routing tables and the recovery overhead at link
disconnection).

We presented a technique for building a VPPL1 ‘m on tree
networks [which yielded Z(V) = O(N1/h )], and proved its
correctness and optimality. We also demonstrated how the
VPPLl+m problem may be used in solving the VPPLm-m
problem efficiently.

While all these results were presented for tree networks, we
showed how to extend them for larger classes of networks,
including rings, chordal rings, and meshes. Finally, we dis-
cussed how to utilize these techniques for general topologies.
These results are summarized in Table I.

A numerical demonstration of efficiency and scalability of

the various schemes is illustrated in Fig. 8 (for a reasonably
low hop constraint h = 3). These schemes are compared
with the trivial option of having a direct VPP between any
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TABLE 1
SUMMARY OF RW”I.TS

Problem Graph family Method Upper bound Lower bound

VPPL’-m Tree Recursive Decomposition Cl(h)N* ~N~

Tree Recursive Decomposition C3(h)N~ ~N~

VPPLm-m K-Separable Recursive Decomposition CK(h, K)N~ —

fix flMesh Union of chain VPPLm-me C3(;)N$ –

General A VPPL’-m for every node CI(h)N1+* —

A VPPL’”- for the loaded links (greedy) c6(h)Nl+i —
I

()
1*

~
h

()

h
Cl(h) = h , CZ(h) = ~ , Cs(h) = ,C4(h) = + , Cs(h, K) =

Kh

2(2: – 1)
,c6(h) = h .

2(1.5? – 1)

owed
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, —z— ““*

k“”--“1
.=-——Gready/;/’;;5”-;;~ Planar

/
//

/ ~ //” - ,/---’

109
.,, ,.. -

/.
___—..— 4-Sep

/

..—.—

..-’ – --- ‘-

3
.,---

~
z ,’

Trae

102 ~— ‘–-__. —-.

L
___-- _.__.—

7
Mesh

//’-- . . _——-———

;./ ‘-

pair of nodes (labeled “Direct” in the figure). The dotted line
represents the upper bound on the load, as defined by the ATM
standard (i.e., 212). The graph labeled “4-Sep” represents the
worst-case for four-separable networks. It is evident from the

figure that our techniques for these networks generally yield
much more scalable solutions than the trivial solution, even
for the “simple” scheme for general networks. Note, however,

that for small networks the trivial solution is superior to our
solutions for general topology networks. The results for our
schemes are even better for higher hop count constraints.

Throughout this paper we assumed that every node has both
VP and VC switching capabilities. This assumption may be

eliminated by building a VPPL’” + ‘“ as described above. and

allocating as such “dual function” nodes, only nodes in which
VC switching is done in the VPPL. It is easy to see that if
the recursive construction is not carried out for subnetworks
which are small enough (in which direct VPP’s are used), the

number of “dual function” nodes need not be too large.
We believe that the approaches in this paper improve the

insight into the VP layout problem, and form a basis for

extending the techniques to general topologies, to multiple

routes between pairs of nodes. and to many other realistic
extensions of the problem.
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