644 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL

ers for asynchronous communication networks,” in Proc. 2nd Int.
Workshop Distrib. Algorithms, Amsterdam, The Netherlands, July 8-
10, 1987.

[16] A. Segall, “‘Distributed network protocols,”” IEEE Trans. Inform.
Theory, vol. 1T-29, pp. 23-25, Jan. 1983.

[17] P. Spirakis and A. Tsakalidis, ‘‘A very fast, practical algorithm for
finding a negative cycle in a digraph,’” in Proc. ICALP 86 (Lecture
Notes Comput. Sci., Vol. 226). Berlin, West Germany: Springer-
Verlag, 1986, pp. 397-406.

An Efficient Distributed Knot Detection Algorithm

ISRAEL CIDON

Abstract—A distributed knot detection algorithm for general graphs
is presented. The knot detection algorithm uses at most O(n log n +
m) messages and O(m + n log n) bits of memory to detect all knots’
nodes in the network (where n is the number of nodes and m is the
number of links). This is compared to O(n’) messages needed in the
previous published best algorithm. The knot detection algorithm makes
use of efficient cycle detection and clustering techniques.

Various applications for the knot detection algorithms are pre-
sented. In particular, we demonstrate its importance to deadlock de-
tection in store and forward communication networks and in transac-
tion systems.

Index Terms—Clustering, cycle detection, deadlock detection, dis-
tributed algorithms, knot detection.

I. INTRODUCTION

A knot in a directed graph is a strongly connected subgraph with
no edge directed away from the subgraph. A knot is a useful con-
cept for describing deadlocks in computer systems. In [1], [2],
deadlocks in store and forward networks are described as knots in
the buffer graph of the network. The concept of a knot in the buffer
graph is also used for deadlock resolution techniques when the
deadlock is resolved by discarding packets at nodes. The minimum
number of packets that should be discarded in order to resolve the
deadlock is exactly one packet in each knot [3], [4]. Knots were
also found to be useful for representing deadlocks in transaction
systems [5], [6].

A distributed knot detection algorithm is the basis for developing
a distributed deadlock detection algorithm. In [3], a deadlock de-
tection algorithm for buffer deadlock in store and forward networks
is described which is based on a knot detection for a general graph.
The algorithm developed here can replace the knot detection of [3],
resulting in a more efficient deadlock detection algorithm.

Various distributed knot detection algorithms have been sug-
gested in the literature. Some of them are imbedded in more gen-
eral deadlock detection algorithms. Three basic classes of algo-
rithms have been suggested.

1) Collecting the complete graph topology at each node and de-
tecting the knot by each individual node [2].

2) Testing individually at each node whether it is a member of
a knot using a search algorithm. A distinct search is used for each
node [4]-[6].

3) Using cycle detection and clustering technique in which
cycles of clusters are detected and merged into bigger clusters [3].

Manuscript received May 27, 1987; revised May 17, 1988.

The author is with the IBM T. J. Watson Research Center, Yorktown
Heights, NY 10598.

IEEE Log Number 8926734,

15. NO. 5. MAY 1989

Class 1) is the most inefficient in terms of 1o1al number of mes-
sages and bits sent and the amount of memory needed to support
its operation. Here. the graph topology is collected at each node
by means of flooding. resulting in communication cost of O(nm)
messages and a total of O(m”) bits (where n is the number of nodes
and m the number of edges). The memory required at each node is
O(m) bits. resulting in a total of O(nm) bits. However. this al-
gorithm is very simple and very fast.

A more efficient algorithm can be developed using 2). Here.
since for each node a complete search in the graph is performed.
O(m) messages are needed to test if a single node belongs to a
knot. For detecting all nodes, O (fiim) messages are needed. How-
ever, comparing to 1), each message is only O(log n) bits long
(stamped with the origin node identity) and the total memory needed
in the network for this algorithm is O (n’ log n) bits. This tech-
nique is considerably more complex than that of 1).

Using the third technique, in [3], the total number of messages
is reduced to O (n?) in the worst case, each of O(log n) bits and a
total of O(m + n log n) bits of memory are needed. This improve-
ment in the communication and the memory costs is accomplished
by considerably increasing the complexity of the algorithm and re-
ducing its speed. In [4], it is explained why a low communication
cost and especially a low memory cost deadlock detection algo-
rithm are invaluable in the environment of buffers deadlock in store
and forward networks. In such a network, a deadlock situation oc-
curs when too many packets are waiting to be served by the net-
work while there is not enough memory to accomplish this service.
Deadlocks occur under heavy load of traffic and shortage of mem-
ory. This is the main motivation for developing protocols which
use fewer messages and less and memory at the expense of com-
plexity and speed.

The algorithm of this paper belongs to the third class. We suc-
ceed in further improving the efficiency of the knot detection by
employing phase numbers in the spirit of [7]. The total number of
messages needed is reduced to O(m + n log n), each of O(log n)
bits and the total number of memory bits is O(m + n log n).

In Section II, we give the model of the system and the definition
of a knot. In Section III, we describe the outline of the new knot
detection algorithm. In Section IV, a detailed description of the
algorithm is given. In Section V, the communication and the mem-
ory costs are evaluated.

II. THE MobEL

A network consists of a set of communication nodes N and a set
of bidirectional communication links L that interconnect the nodes
of N.

Regarding links, the following properties are assumed. They are
FIFO (do not lose, reorder, or duplicate messages); there is no
bound on the amount of time that it takes a message to traverse a
link; any message placed on the link arrives at the other side of the
link in finite time; links never fail.

We assume that at each node i, each attached link / may be des-
ignated as an outgoing link. (In deadlock detection, this implies
that there is a request pending for this specific link.)

Let (V, E) be a directed graph where V = N is the set of vertices
in the graph and E a set of directed edges where a directed edge (i,
J) indicates that in node i the link (i, j) is designated as an out-
going link. A rie Tin (V, E) is a set of nodes with no links directed
fromTtoN — T.

A knot K is a tie of which any subset is not a tie. This implies
that K is a set of strongly connected nodes. Alternatively, node i
is a member of a knot if i is reachable from all nodes which are
reachable from /. In that case, the knot is the set of nodes which
are reachable from i (including i itself). Obviously, any tie con-
tains at least one knot. In Fig. 1, an example for a knot and ties is
depicted.

0098-5589/89/0500-0644801.00 © 1989 IEEE

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 5. MAY 1989 645

Fig. 1. Knot and ties.

III. OVERVIEW OF THE ALGORITHM

In this section, we describe the basic ideas of the knot detection
algorithm. The goal of the algorithm is to finally assign to each
node a value called the state of the node. The final state can be
either KNOT, indicating that this node is a member of a knot, or
FREE, indicating it is not a member of any knot.

The detection of a knot consisting of a single node is trivial since
such a node does not have any outgoing link. Consequently, we
focus on the detection of knots with more than one node. We as-
sume that all single node knots are immediately detected and the
state of these nodes is set to KNOT.

The algorithm exploits the property that nodes of a knot are
strongly connected, and therefore a knot (with more than one node)
contains a cycle of nodes. A group of nodes which are found to be
strongly connected is called a cluster. The algorithm is based on
looking for cycles of clusters and merging them into bigger clus-
ters. Since each of the clusters is strongly connected and a cycle is
a strongly connected subgraph, the new cluster, formed by merging
all the clusters of a cycle, is strongly connected as well. If a cluster
with no link directed outside the cluster is detected, then a knot is
found. At the beginning, each cluster consists of a singie node. At
the end of the algorithm, each cluster contains all nodes of a knot.

The algorithm consists of two basic steps which are repeated to
the end. First, within each cluster, a single outgoing (outgoing from
the cluster) link is selected. In the second step, it is checked whether
this link is directed to either a KNOT or a FREE state node. If
affirmative, then the states of all nodes of the cluster arg set to
FREE. These nodes will not be involved in any further action. We
repeat this procedure until all possible nodes are set to FREE. In
the case that some clusters have outgoing selected links which are
not directed to a KNOT or FREF node, then a cycle of clusters and
selected outgoing links exists and detected. All clusters of this cycle
are merged into a single cluster. These two steps are repeated until
all nodes are either FREE or some clusters without any outgoing
links are found. In the latter case, the states of all nodes of these
clusters are set to KNOT. In Fig. 2, an example to this procedure
is given. The solid arrows represent selected outgoing links, the
dashed arrows represent outgoing links, and the dashed circles rep-
resent clusters. In (a), node 1 is detected to be a knot while all the
rest select a single outgoing link. In (b), nodes 2, 3, and 4 are
merged to a single cluster. The same is true for nodes 5 and 8. The
cluster of nodes 2, 3, and 4 is directed to a knot and thus no longer
considered. In (c), 6 is added to the cluster of 5 and 8. In (d), a
knot containing 5, 6, 7, and 8 is detected. Consequently, nodes 9
and 10 transit to the FREE state.

The important parts of the algorithm are the detection of cycles
of clusters and the technique to combine a cycle of clusters to a
single cluster. The cycle detection is facilitated by having nodes/
clusters pass composed ID’s (to be later defined) through the links
of the cycle and have the maximum ID node receive back its own
ID. The cycle combination is facilitated by having this maximum
ID node establish a tree structure whereby all nodes of the cluster
report to it.

We start by describing the basic ideas of the cycle detection part.

" We assume that each cluster involved in this part consists of a sin-

Z.

34 4

: e el

ﬂ N4
(b)

857

3 8 FREE]
§ 4 RNOT,

: (© @

Fig. 2. Cluster merging procedure.

gle node or “‘acts’ as a single node. We will later describe how
this is accomplished in a distributed manner.

The cycle detection is started at a node i by choosing an arbitrary
outgoing link / and designating it as a selected outgoing link. The
node to which this link is incoming is called the father of i and i is
called a son of this node. Since a single outgoing link is selected,
each node may have several sons, but only one father. If the father
of node i is in the KNOT or the FREE state, node i sets its state to
FREE. This procedure eventually causes each node which has a
directed path of selected outgoing links to a KNOT node to become
FREE. In Fig. 3, we demonstrate this procedure.

After the assignment of the FREE states, the remaining group of
nodes and selected outgoing links must include at least one cycle.
Consider one of these cycles along with all nodes that have a path
of selected outgoing links to this cycle. In Fig. 4, an example to
such a subgraph is depicted.

In order to detect the cycle, a simple algorithm is suggested in
[2]. The nodes forward maximal identities to their sons. Whenever
a node receives an identity which is higher than any other identities
received by this node (including its own identity), it is recorded
and sent to all sons. Whenever a node receives its own identity
from its father, it realizes that it belongs to a cycle and has the
maximal identity in that cycle. This information can now be for-
warded to all other members of the detected cycle through the se-
lected outgoing links. In Fig. 5, a simple detection procedure is
demonstrated for the cycle of Fig. 4.

The major drawback of this simple algorithm is that the number
of ID’s sent by each node may be of the order of the number of
nodes in the subgraph, which results in a quadratic order for the
total communication cost. In order to reduce the worst case com-
munication cost, node identities should be more carefully for-
warded by the nodes. As in [7], we try to guarantee that whenever
an identity is forwarded, it will ‘‘cover’’ enough nodes so that the
total number of ID’s forwarded by a node will be in the worst case
a logarithmic order of the number of nodes. For this purpose, we
introduce the notion of a composite identity (CID). A composite
identity consists of two numbers, a phase number PN (which is
later described) and a node cluster identity NCD. Composite iden-
tities are compared lexicographically. We say that CID, is strictly
smaller (larger) than CID, if PN, is smaller (larger) than PN,. It is
simply smaller (larger) if PN = PN, and NCD, is smaller (larger)
than NCD,. Whenever the father’s composite identity is found to
be strictly larger than that of the son, the composite identity is
accepted by this son.

Generally, this procedure is not enough for covering all nodes
of the cycle with the same composite identity. It terminates when-
ever all nodes have the same phase number (but not necessarily the
same node identity). In the following, we describe how phase num-
bers are incremented in order to cover the entire cycle with the
same composite identity. Let us denote by a segment the group of
all nodes (clusters) that are covered by the same composite identity.

646 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 5. MAY 1989

O e ‘.:ES[@)
dwn. @ (b)

WO FREE]

(c)

[IFRLE)

o O O e

Fig. 3. FREE messages propagation.

Fig. 5. A simple algorithm for cycle detection.

As is later shown, a segment is structured as a directed tree of
selected outgoing links. The root of the segment is the node (clus-
ter) whose identity covers the nodes of the segment. The father of
a segment is the father of its root node; the sons of the segment are
the sons of its leaf nodes. A segment is a local maxima segment if
its father and at least one of the sons of the segment have composite
identities simply smaller than its composite identity. Whenever a
local maxima is detected, its phase number is incremented by one
by its root node. The new composite identity replaces the current
one at all the nodes of the segment and the previous procedure is
repeated. By letting only local maxima segments increment their
phase number we guarantee: 1) the new composite identity will
cover at least one additional segment currently covered by the same
(previous) phase number, 2) this local maxima segment will not be
covered by a different composite identity with the new phase num-
ber (since the father’s node identity is smaller than this segment’s
node identity).

Consequently, assume that a segment covered by a phase num-
ber n consists of at least 2" nodes (which is clearly true for n =

Fig. 6. Cycle detection using segmentation.

0); it is easy to prove by induction using 1) and 2) that a segment
covered by the phase number n + 1 contains at least 2 X 2" =
2"*1 nodes. Since for each phase number only a single composite
identity is accepted, this bounds the number of different composite
identities accepted by a node to a logarithmic order of the total
number of nodes. Cycle detection is a byproduct of this algorithm.
A cycle is detected whenever the root node detects that its father
is covered by its own composite identity. A cycle detection using
this procedure is demonstrated in Fig. 6.

Anather important part of the algorithm is the distributed pro-
cedure to achieve coordination between nodes of clusters and seg-
ments. The coordination of a segment is straightforward since each
segment forms a rooted tree. The decision whether to increment
the phase number is taken at the root node (or cluster) of the seg-
ment . Since composite identities are forwarded from fathers to sons,
the composite identity of the segment’s father is accepted by its
root node. The root node informs its father when its identity is
found to be simply smaller than that of the father. The leaf nodes
report the root node upon positive comparison results at their sons
(which are root nodes of other segments) through the rooted tree.
If the root node decides to increment the phase number, it broad-
casts the new composite identity to all the nodes of the segment
upstream the rooted tree.

The coordination and merging of clusters are similar but more
complex than the coordination of segments. Basically, in each clus-
ter, a directed control tree is maintained. This tree is rooted at a
special node called the cluster leader. The cluster leader serves as
a central control point of the cluster to which the needed informa-
tion is brought and in which decisions are made. The cluster leader
also coordinates the search for a new outgoing link in the cluster.
Not all the processes in the cluster are controlled by the cluster
leader. In order to save communication, some local decisions are
taken by nodes of the cluster without informing the leader.

IV. DETAILED DESCRIPTION OF THE ALGORITHM

We start by describing the algorithm for clusters that contain a
single node, and then generalize it to arbitrary size clusters.

The cycle detection is started at node i by choosing an arbitrary
outgoing link /, designating it as a selected outgoing link (SO;),
and sending a TEST message over it. If no such outgoing link ex-
ists, the node sets its state to KNOT. If [is directed to a KNOT or
a FREE node, this node replies with a FREE message. Whenever

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. I5. NO. 5. MAY 1989 647

a FREE message is received by a node which is not FREE, the node
sets its state to FREE, and forwards the FREE message over its
selected incoming links (to be described). This flooding of FREE
messages causes every node which has a directed path to a KNOT
node to become FREE.

Any non-FREE or KNOT node receiving a TEST message over
a link / designates this link as a selected incoming link (member of
SI) and sends back over this link its current composite identity
(CID). CID is a composite identity vector containing the following
information:

1) the node phase number (PN) which is the maximal phase
number heard by this node (initially 0),

2) the node cluster number (NCD) which identifies the leader
of the cluster (initially the node’s own identity),

3) membership flag (MF) which indicates if the node has al-
ready joined the cluster whose leader is NCD (initially 1).

We say that CID, is strictly smaller than CID, if PN, < PN,
and simply smaller if PN, = PN, and NCD, < NCD,. Similarly
we define the terms strictly larger and simply larger.

Whenever a new CID is received at node i, it is compared to the
node’s current CID. If the received one is strictly larger than the
current one, it is accepted and replaces the current CID. In addi-
tion, the leadership flag LF; and the membership flag MF; are set
to zero. (This indicates that the node is not the root node of the
segment covered by the new CID.) The new CID is sent over all
selected incoming links.

In order to increment its phase number, a node (and later on a
cluster leader) must have both its father and one of its sons CID’s
to be simply smaller than its current CID. The variables MAX2 and
MAX1 are used to record these events, respectively.

If the received CID is simply larger than the current one, the
node sends an INC1(PN) message back to the sender. The node
also sets the variable MAX2 to 0, indicating that its segment is not
a local maxima. If the received CID is simply smaller than the
current one, then the node sets the variable MAX2 to 1. If it is
strictly smaller, this message is ignored.

Upon receiving an INC1(PN) message at a node having its
leadership flag set to 1 and the received PN is equal to its current
phase number, the node sets the variable MAX1 to 1. If the same
conditions hold with the exception that the leadership flag is zero,
then the node passes this INC1(PN) over its selected outgoing
link. Whenever the variables MAX1 and MAX?2 are both equal to
1, the node increments its phase number by one and broadcasts its
new CID over all selected incoming links. Both MAX1 and MAX2
are then reset to zero.

Since CID’s are sent over incoming links, the existence of a
cycle implies that one node (the node with the maximal CID in that
cycle) will receive its own CID back over its selected outgoing
link. When this happens, this node detects a cycle and appoints
itself to be a cluster leader.

Next we describe how the leader combines the detected cycle
into a cluster. In this process, the leader builds a control tree rooted
at itself. This tree is used to coordinate the cluster activities, i.e.,
to make it ‘‘act’’ like a single node. Through this tree, messages
are exchanged between the leader and the other members of the
cluster.

First, the leader sends a message (JOIN(i)) stamped with its
own identity over its SO link. A node receiving this message over
an S/ link records its leader’s identity, deletes this link from the
list of selected incoming links, and designates it as a leader link
(LL). Messages to the leader are forwarded over this link. The
membership flag is set to 1. The node forwards the JOIN message
over its selected outgoing link, and designates this link as a branch
link (member of LB). Messages from the leader are forwarded over
the branch links. Finally, the JOIN message arrives through the
cycle back to the leader. The link on which the leader receives this
message is not a part of the leader tree. The leader deletes this link
from the list of selected incoming links and sends a DELETE
message over this link. Upon receiving this DELETE, the receiver

Fig. 7. A typical snapshot.

deletes this link from LB, and sends a completion message
(JOIN_TERM) over its leader link. Any node receiving this JOIN-
_TERM message over all LB links (here, LB consists of a single
link) forwards it over LL. In Fig. 7, we demonstrate a typical snap-
shot of the algorithm. In (a), the nodes with their selected outgoing
links are depicted. In (b), the resultant cluster along with its leader
tree is depicted.

The basic difference between trees which are the result of merg-
ing a cycle of single nodes and trees of general clusters is that in
the first case, each node has only one branch link and in the second
case, each node may have many branch links. In both cases, the
leader tree connects all nodes of the cluster. In each node, the iden-
tities of the links that belong to the tree are recorded. The node
distinguishes between the leader link (LL) which leads to the leader
(the root node of the tree) and the branch links (LB) which leads
to the leaves of the tree. In Fig. 8, an example of such a structure
is depicted.

Next, we describe how clusters are coordinated to detect a cycle
of clusters. After a new cluster is formed, a single link, outgoing
from the cluster, is chosen. The search for such a link is done using
a distributed depth-first search through the leader tree, starting at
the leader. A node presently active in the search process (called
the active node) looks for an untested outgoing link (i.e., a TEST
message was never sent over it). If all links are tested, the active
node passes the search deeper into the tree by sending a search
message (SEARCH) over one of its branch links from which a
search termination message (SEARCH_TERM) has not been re-
ceived. This passes the activity to another node.

If an untested link is found, a TEST message is sent over it (the
link becomes the cluster outgoing link). If the identity of the
present leader is received over this outgoing link along with a flag
indicating it is the leader of the sender, then this link connects two
nodes of the same cluster. A DELETE message is sent over it in
order to inform the node at the other end to delete it from SI. This
DELETE message is acknowledged by a second DELETE message.
Upon receiving this acknowledgment, the node designates the link
as tested, and proceeds with the search.

When a node has received SEARCH_TERM messages over all
its branch links (or it does not have branch links or untested links),
it sends a SEARCH TERM message back over its LL to ‘‘back up”’
the search. If the leader receives such messages over all its branch
links, it determines that its cluster forms a knot. The leader then
informs all nodes in its cluster of this situation by broadcasting a
KNOT. Upon receiving such a message over its leader link, a node
forwards the KNOT message over its branch links, sets its state to
KNOT, and sends a FREE message over all its S/ links. Note that
all the links of the cluster were tested and all links that were found
to connect nodes of the same cluster were deleted from S/ list (either
after receiving a DELETE message during the search or when the
link was designated as a leader link or a branch link). This implies
that all the remaining S/ links are incoming from nodes external to
this cluster and thus are not members of the knot.

648 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 5. MAY 1989

Fig. 8. A typical cluster.

The other possible events after an untested link is chosen to be
the cluster outgoing link are as follows.

A new CID is received over this link. The active node compares
it to its current CID and acts in the following manner depending
on the cases below.

1) If the received CID is strictly smaller than its current CID,
then the node ignores this message.

2) If it is simply smaller, the node sends an INC2 (PN) message
to the leader containing the current phase number. This message is
forwarded through the leader tree to the leader. Upon receiving the
INC2 (PN) message with the current phase number, the leader sets
the variable MAX2 to 1. If both MAX1 and MAX?2 are equal to 1,
the leader increments its phase number by one and broadcast the
new CID over all branch and selected incoming links. All the nodes
of the cluster follows the same acation.

3) The received CID is equal to the node’s current CID with the
exception of a zero leadership flag. Here, a cycle of clusters has
been detected. At this point, all clusters of that cycle are combined
into a single cluster whose leader has the identity just received.
The process is to combine the leader trees of the clusters in the
cycle into a single tree, rooted at the new leader. The node which
is responsible for performing this cluster combination is the active
node (the node adjacent to the cluster selected outgoing link). The
new part of the leader tree will be rooted at this node. The active
node starts the construction by sending a JOIN message stamped
with the leader identity. A node which receives such a JOIN mes-
sage over a link changes its leader identity, sets its leadership flag
to 1, designates this link as the new leader link, designates all other
old leader tree links and the cluster selected outgoing link (if any)
as branch links, and forwards the JOIN message over all the branch
links. This changing leader process is terminated by a JOIN_TERM
message flowing back through the new LL’s to the node that
initiated the process. After the active node has received the
JOIN_TERM message over the cluster outgoing link, it designates
this link both as a branch link and as a tested link, and continues
the search for a new cluster outgoing link (the search is forwarded
to the new branch link as well). In Fig. 9, we demonstrate this
cluster combining process. In (a), the clusters are depicted along
with their leader trees and selected outgoing links. In (b), the re-
sulted combined cluster is depicted.

4) If the received CID is simply larger than the current one, the
active node responds with an INC1(PN) message. This tells the
sender that its CID potentially forms a local maxima.

A more complex situation occurs when the active node receives
a CID which is strictly larger than its current one. In this case, the
cluster should be covered by this new CID and should join the seg-
ment whose root node (cluster) has the node identity just received.
This new CID must be broadcast over all selected incoming links
of this cluster, and compared to the neighboring nodes’ CID’s. The
comparison results should be forwarded back over the cluster se-
lected outgoing link. To facilitate this procedure, we replace the
root node of the control tree (currently the leader of the cluster) by
the active node. It is not important any more to keep the regular
structure of the cluster since it is already known that this cluster is
not the root of the segment. This cluster will not be expanded any
more. It may only join other clusters or become FREE. Conse-
quently, it is more convenient to root the tree at the active node

(a)

(®)

Fig. 9. Cluster merging.

which is attached to the cluster selected outgoing link. The active
node replaces its CID with the received one, resets its membership
flag to zero, and broadcasts its new CID over all branch links and
over all S7 links.

Upon receiving a new CID strictly larger then its current one
over a particular link, a node (which is not active) designates that
link as a leader link, designates the old leader link, if it is different
from the current one, as a branch link, resets its membership flag,
replaces its current C/D, and broadcasts it, as described for the
active node. In this case, the search for a new outgoing link in the
cluster is stopped.

When a node receives a FREE message over a link, it follows
the same procedure except that now a FREE message replaces the
previous CID message. The node also sets its state to FREE. The
algorithm ends when all nodes are in one of the two states FREE
or KNOT.

In [10], a formal description of the algorithm is presented in the
form of pseudocode. It is omitted here in order to save space.

V. Cost
Communication Cost

To compute the communication cost, measured in number of
messages sent in the network, we consider separately each message
type. Let n be the number of nodes in the system, and let m be the
number of unidirectional links which are attached to those nodes.

1) TEST and FREE messages can be sent once over any unidi-
rectional link, and thus at most 2m such messages are sent.

2) INC1, INC2, JOIN, JOIN_TERM, SEARCH, and
SEARCH_TERM messages are sent only over trees or cycles (and
each cycle with the exception of one link eventually becomes part
of the final tree), once for each phase number. Since there are no
more than log n phases, the total number of transmissions is
bounded by 12r log n.

3) MAXCID messages are received over selected outgoing links.
However, for a node which is not in a knot, such a link is only
selected once (a single link per node). For nodes in knots, such
messages can be received only over outgoing links which are part
of a cycle (except if the link is found to connect two nodes of the

same cluster, which may occur only once and then it is the only

[EEE TRANSACTIONS ON SOFI'WARE ENGINEERING, VOL.

message sent over that link), and thus no more then n log n + m
of such messages can be sent.

We can conclude that communication cost at worst case is O(m
+ n log n) messages, each of no more than O (log n) bits.

Memory Cost

In order to compute the memory cost of the algorithm, we as-
sume that one bit variable is allocated for describing the member-
ship of each adjacent link to each set of links (O;, SI;, T;, SO;, LL;,
LB;). This implies that except for CID;, which contains a node
identity, a phase number, and a binary flag, all variables are of one
bit length, and a fixed number of such variables are allocated for
each link adjacent to a node.

We can conclude that the total memory cost of this algorithm is
O(n log n + m) bits for the total network, and O(log n + k) for
each node where k is the degree of that particular node.

ACKNOWLEDGMENT

The author would like to thank J. M. Jaffe, M. Sidi, and I. S.
Gopal for helpful discussions and the anonymous reviewers for their
helpful comments and suggestions.

REFERENCES

[1] K. D. Gunther, ‘‘Prevention of deadlocks in packet-switched data
transport systems,’’ IEEE Trans. Commun., Special Issue on Conges-
tion Control in Computer Networks, vol. COM-29, pp. 512-524, June
1981.

[2] G. Gambosi, D. P. Bovet, and D. A. Menascoe, ‘‘A detection and
removal of deadlocks in store and forward communication net-
works,”’ in Performance of Computer-Communication Systems, H.
Rudin and W. Bux, Ed. Amsterdam: Elsevier Science B.V. (North-
Holland), 1984, pp. 219-229.

[3] 1. Cidon, J. M. Jaffe, and M. Sidi, ‘‘Local distributed deadlock de-
tection by cycle detection and clustering,”” IEEE Trans. Software
Eng., vol. SE-13, pp. 3-14, Jan. 1987.

[4] —, “‘Local distributed deadlock detection with finite buffers,”” in
Proc. IEEE INFOCOM’86, Miami, FL, Apr. 1986, pp. 478-486.

{5] J. Misra and K. M. Chandy, ‘‘A distributed graph algorithm: Knot
detection,”” ACM Trans. Programming Lang. Sys., vol. 4, pp. 678-
686, Oct. 1982.

[6] G. Bracha and S. Toueg, ‘‘A distributed algorithm for generalized
deadlock detection,’’ in Proc. Symp. Principles of Distributed Com-
put., Oct. 1984, pp. 285-301.

{71 R. G. Gallager, P. A. Humblet, and P. M. Spira, “‘A distributed
algorithm for minimum weight spanning trees,”” ACM Trans. Pro-
gramming Lang. Syst., vol. 5, pp. 66-67, Jan. 1983.

[8] P. A. Humblet, ‘‘A distributed algorithm for minimum weight di-
rected spanning trees,”’ IEEE Trans. Commun., vol. COM-31, pp.
756-762, June 1983.

[9] E. Gafni and Y. Afek, ‘‘Election and traversal in unidirectional net-
works,”” Dep. Comput. Sci., UCLA.

[10] L. Cidon, ‘‘An efficient distributed knot detection algorithm,”” IBM
Res. Rep. RC 12099, Aug. 1986.

An Experimental Investigation of Software Metrics
and Their Relationship to Software Development
Effort

RANDY K. LIND anp K. VAIRAVAN

Abstract—In this paper, we report the results of an experimental
study of software matrics for a fairly large software system used in a

Manuscript received May 29, 1987; revised December 22, 1987.

R. K. Lind was with General Electric Medical System, WI. He is now
with NMT Corporation, Lacrosse, WI.

K. Vairavan is with the Department of Electrical Engineering and Com-
puter Science, University of Wisconsin, Milwaukee, W1 53201.

1IEEE Log Number 8926731 .

15. NO. 5. MAY 1989 649

real-time application. We examine a number of issues, including the
mutual relationship between various software metrics and, more im-
portantly, the relationship between metrics and the development effort.
We report some interesting connections between metrics and the soft-
ware development effort.

Index Terms—Development effort, metrics, real-time software, soft-
ware complexity.

I. INTRODUCTION

In recent years, there has been a growing interest in the study of
software complexity metrics. Attempts have been made 0 under-
stand how metrics can be used to characterize and improve the
quality and the maintainability of software. Since the early pioneer-
ing work of Halstead [5] and McCabe [9], numerous studies have
addressed various aspects of software metrics. Very few studies
have focused on the relationship between different metrics, and be-
tween metrics and the software development effort, particularly for
real-time software.

In this paper, we discuss the results of an experimental investi-
gation of software metrics for a large amount of software developed
in an industrial environment and commercially used in a real-time
application. The main issues we pursue are the relationship be-
tween various metrics, and more importantly, the connections be-
tween metrics and the software development effort.

In Section II, we review the definition of software metrics used
in our study. In Section III, we outline the software environment
and the characteristics of the software studied here. In Section IV,
we explore the relationship between a set of software metrics, and
in Section V, we consider the linkage between metrics and the soft-
ware development effort using different approaches.

II. SOFTWARE METRICS

The metrics that we study include the frequently used metrics—
Halstead’s program length, McCabe’s control complexity, and the
less well-known metric called program bandwidth. The signifi-
cance of these metrics has been discussed extensively before [S],
[11] and will not be repeated here. But we will briefly review them.

Let n; and n, denote the number of unique operators and oper-
ands in a program, respectively. Also, let N; and N, denote the
total number of operator and operand appearances. Halstead’s pro-
gram length N is defined as the sum of N, and N,. Since the com-
putation of N may be nontrivial, Halstead defined the following
program length estimator (Ny) for N [5]: Ny = n, log, (n)) + n,
log, (n,). The following alternative empirical expression (N,) was
reported to be a more accurate estlmate of N in [7]: =
logy (n; 1) + logy (ny !).

The widely known McCabe’s complexity metric MC is the cy-
clomatic number of the program control graph and is a measure of
the complexity of the program’s control structure. It has been shown
in [9] that MC can be determined by the simple expression MC =
number of decisions +1.

The program bandwidth BW is an indicator of the average level
of nesting of a program and is defined as BW = ((i *
L(i)))/(number of nodes in the program control graph) where
L (i) denotes the number of nodes at level i [3], [7]. Thus, a straight
line program would have a bandwidth of one. On the other hand,
a deeply nested program would have a wide band.

Besides the above-mentioned complexity measures, we also
considered the following basic and conceptually simple measures:
the total number of lines encountered in the main body of the pro-
gram (including comments), the number of lines of code, the total
number of characters, the number of code characters, and the num-
ber of comments and the number of comment characters in a pro-
gram. Parsers were developed and used to compute the various
metrics for Pascal and Fortran programs.

0098-5589/89/0500-0649$01.00 © 1989 IEEE

