
A HARDWARE SIGNALING PARADIGM FOR FINE-GRAINED RESOURCE
RESERVATION

Dan Gluskin and Israel Cidon

Department of Electrical Eng.
Technion - Israel Institute of Technology

ABSTRACT

Current implementation of real time service quality
within converged IP networks is mainly accomplished
by over-provisioning of bandwidth with limited defi-
nition of traffic classes on a network wide basis pos-
sibly enhanced by quasi-static provisioning of net-
work elements using traffic engineering. Per-flow on-
demand resource reservation is mostly unavailable in
large packet networks. Examples are establishments
of switched VC using PNNI signaling in ATM and es-
tablishment of LSPs using RSVP signaling in MPLS
supported networks. Management complexities and
limited scalability slow down this trend. While per-
flow reservation is a conceptually straightforward QoS
solution it is usually looked at as an impractical, non-
scalable and even a higher cost solution. Today high-
end routers and switches can handle traffic volumes
of many hundreds gigabit and even terabits per sec-
onds, which can be translated to millions of simulta-
neous voice and video connections. However, current-
signaling technologies will enable to handle only sev-
eral hundreds connections that can be translated to
only few thousands simultaneous short lived connec-
tions. Clearly, today call establishment mechanisms
cannot scale to support per-flow reservation that is con-
ceptually a simple QoS solution. In order to solve this
limitation, there is an on-going effort to reduce the re-
quired reservation rate by developing complex hier-
archical aggregation schemes and multiplexing con-
cepts. This limits the use of connection establish-
ment signaling to aggregate traffic engineering, which
is hard to define, understand and manage and may fail
to provide a required QoS solution.

This work (based [1]) is first to examine the pos-
sible solution of the above scalability problems for
IP signaling by implementing them in hardware. We

present a novel design termed “Keep-It-Simple” Sig-
naling (KISS) which is optimized for hardware signal-
ing of unicast connections which dominate the present
world of real time services. We show, that backbone
routers, can process by hardwareKISS messages to
improve their connection establishment capabilities to
a level where fine grain user application-initiated re-
source reservations is feasible. Such hardware signal-
ing may deliver the missing component to fulfill full
QoS support in large IP networks.

Index Terms— System design, quality of service, sig-
nalling, hardware architecture.

I. INTRODUCTION

Despite a tremendous growth in Internet traffic, ca-
pacity and services, QoS support is still missing in
the global Internet and is limited at smaller install-
ments like corporate WANs. Therefore, high-quality
real time services such as voice and video conferenc-
ing, VOD and real time Webcast are not deployed in
large scale. Traditional network technologies offer few
distinctive services. The IP network architecture offers
scalable datagram connectivity, good resource utiliza-
tion and a reasonable support of few prioritized best
effort QoS classes. This fits well the bursty nature of
computer communication and data services but is sub-
optimal for many potential real-time applications. The
circuit-switch telephone network, offers global con-
nectivity as well as real-time QoS capabilities but is
inefficient for supporting bursty or short transactions.
It presents long connection setup time and a limited
number of QoS services. The goal of future converged
networks is to introduce a single infrastructure that of-
fers the global connectivity and efficiency of the In-
ternet as well as a rich array of QoS and real-time
capabilities starting from established services such as

peer to peer telephony, voice and video conferenc-
ing, video on demand (VOD) and on-demand band-
width dialup for access and peer to peer connectiv-
ity. A known way to assure that connections qual-
ity meets a desired level using limited bandwidth re-
sources is connection based network resource reserva-
tion. Given the emerging trend of rich-media, livecast
and on-demand high bandwidth services such capabil-
ities may become critical to broadband networks and
providers. Current support of real time service qual-
ity in converged networks is accomplished by band-
width over-provisioning and network wide definition
of few traffic classes. A quasi-static provisioning of
network elements using DiffServ and MPLS may en-
hance this possibly utilizing signaling. Examples are
ATM SVCs setup using PNNI signaling and estab-
lishment of MPLS LSPs using RSVP signaling. De-
ployment complexities, limited scalability and lack of
a QoS routing limit the usability of these signaling
systems to coarse traffic engineering. While per-flow
reservation has been discussed in the literature as a
conceptually straightforward QoS solution it is usually
considered to be impractical, non-scalable and high
cost solution. Consequently, today’s high-end routers
handle traffic volumes of hundreds gigabit and ter-
abits per seconds, which can be translated to millions
of simultaneous short-lived voice and video sessions.
However, current software signaling technologies han-
dle only hundreds (possibly thousands) connections
per second and the signaling capability of routers can-
not provide per-flow on-demand resource reservation.
This limits the use of connection establishment to ag-
gregate traffic engineering, which is hard to define and
manage, and may not provide the full-required user on-
demand support. This implies a basic gap. Today call
establishment mechanisms cannot scale to support per-
flow reservation that is conceptually a simple QoS so-
lution. In order to solve this limitation, there is an on-
going effort to reduce the required reservation rate by
developing complex hierarchical aggregation schemes
and multiplexing concepts. This both complicates the
simple end-to-end resource reservation idea and may
fail to provide a valuable and sellable QoS solution.

Looking on today’s most popular IP QoS mecha-
nisms we also observe that RSVP is originated in re-
ceiver initiated multicast model and did not originally
adopted the notion of connectionpinning down. Other

approaches, considered today for providing QoS, are
over-provisioning and QoS quasi-static assignment
(MPLS or DiffServ) using traffic engineering. The
first requires global availability of low-cost very high-
bandwidth IP infrastructure. The second, while being
on the surface simpler than on-demand reservation is
complex to define and manage, has unclear efficiency
in utilizing and saving bandwidth and requires global
management and traffic monitoring.

The on-demand resource reservation operation
should include the following tasks. QoS routing - find-
ing a low cost network path with sufficient network re-
sources to support a new connection. Node and link
call admission control, which are the tasks of esti-
mating whether each network element in the path has
enough residual resources (in particular bandwidth) for
the new reservation request and a configuration of QoS
policing and forwarding which are the tasks of provid-
ing each flow with its reserved share of the network re-
sources. Finally, the signaling mechanism that forms
the exchange of information between network nodes
for establishing connections in real time. While this
paper focus mainly on the signaling part which is held
back by major scalability issues, the other components
should also be solved and optimized in an integrated
way see for example [31], [30], [2]. Moreover, cer-
tain mechanisms like multi-path reservation [32] tie
together the path selection and signaling mechanisms
and mix the different call establishment tasks.

Current signaling protocols are designed mainly for
software implementation [15], [16], [17], [18], [19],
[20], [21], [24], [30], [31], were some attempts were
made for high-rate software implementations [31], [3]
As user population, communication volumes and con-
nection rates increase faster than CPU performance,
such software implementations cannot support on-
demand, real-time fine-grain reservation. This situa-
tion is very similar to the situation faced by the early
packet switched networking world in the late eighties
and early nineties. Packet switches based on software
processing using general purpose processors were not
able to cope with the increasing levels of traffic. In
order to free switching bottlenecks, packet switching
in special purpose hardware was proposed [6], [7],
[5], [4], [?]. At the first stage, in order to facilitate
such transition to a high-speed hardware-based packet
switching, new and simpler network architectures suit-

able for hardware switching were proposed. Most of
them sacrificed some efficiency (such as giving up on
hop-by-hop congestion control, large address space or
a variable packet size). Eventually, (a more complex)
hardware switching support was also developed for the
de-facto standard architectures such as Frame Relay
and IP.

Similarly, while current-signaling protocols may
end up eventually in hardware implementations, their
basic design was not optimized for hardware imple-
mentations and follow-on optimizations assumed a
general purpose processor implementations. For ex-
ample, RSVP was designed for receiver-based mul-
ticast services that are not seem to migrate to con-
verged networks. On the other hand, most tele-
phony, streaming and even multi-media conferencing
are based mostly on unicast service (where conferenc-
ing is largely accomplished by a conference central
server). Moreover, aggregation techniques (and/or get-
ting read of soft-states) that help in scaling better soft-
ware implementations of such protocols by reducing
messages rate and CPU cycles actually make hardware
implementations harder by adding more complexity to
each aggregate operations and by separating the im-
plementation of frequent main stream event from ex-
ception cases. Therefore, a reasonable approach to-
ward hardware signaling is to devise signaling proto-
cols that are optimized to unicast services signaling in
hardware and that minimizes hardware complexity at
the expense of bandwidth and case uniformity.

In this work we propose a signaling paradigm for
fast, simple and scalable hardware implementation.
Using its concepts, we developed a sample signal-
ing suite which is optimized for MPLS based IP net-
works. We estimate that using current standard ASIC
and memory technologies, a singleKISS hardware unit
can easily support signaling for millions simultaneous
connections and tens of thousands setup and tear-down
requests per second. We also show thatKISS scales
to even higher setup rates. This presents more than a
100-fold improvement over today’s ATM switches and
MPLS routers that are limited to few hundreds requests
per second [34] Our work focuses on IP networking
because of its big install base, its dominant position in
the market as well as the growing availability of label-
switching capable routers (MPLS) that offer new pos-
sibilities for resource reservation. Finally, this work is

based on work [1] that was completed almost 3 years
ago. These results were generally rejected due to being
incompatible and a failure toprove that a different ap-
proach is needed. We still find that this integrated sig-
naling paradigm may be one of several possible ways
to overcome the IP convergence barriers.

II. MOTIVATION

Today’s high-end routers use dedicated forwarding
hardware which enables them to cope with high traffic
volumes. Signaling, however, is implemented in soft-
ware and executed by the router’s CPU. As routers per-
formance increase faster than CPU speed, the connec-
tion establishment capability becomes less adaquate
for the task of on-demand reservation. In this section
we describe the rational which leads us to develop the
KISS signaling paradigm.

Currently, there are three main proposals for in-
tegrated network signaling protocols: IETF’s RSVP
[19], [20], [21], MPLS’s LDP [15], [16] and ATM’s
PNNI [17]. It seems that RSVP signaling for MPLS
networks is the leading market solution.

RSVP development correlates in time with the ex-
perimental MBONE [28]. It is also optimized for a
model of broadcast hosts to which large amount of
users tunes-in and out. Consequently, a major part of
the RSVP standard deals with receiver initiated multi-
cast. Multicast is important for a better usage of net-
work resources for such applications. However, re-
viewing today paid for services, and the on-demand
nature of most internet applications, it is likely that
unicast applications will produce the vast majority of
reservation requests. Consequently, unicast support
should not be compromised for the support of the more
complex multicast. The importance of a better unicast
support was also acknowledged by the RSVP commu-
nity. The RSVP-TE draft [21], suggests simplification
of unicast reservations. This draft enables RSVP to
open unicast simplex connections (LSP) on MPLS net-
works.

Robustness is an important issue for a signaling pro-
tocol. A failure in the tear-down of connections might
lead to situations where resources are wasted. For
that reason, RSVP has introduced the concept of soft-
states. Soft states expire after a predefined timeout if
not refreshed by special messages. This way ”orphan”
reservations are released automatically. The original

RSVP proposal assumes that the route may change
during the connection life time (somewhat in contra-
diction to a QoS guarantee). Therefore, their soft-
states are refresh by retransmitting the whole connec-
tion setup messages (PATH & RESV) which are rela-
tively large. Soft-state refresh messages are sent for all
active connections. If refresh interval is short and the
number of open connections is high, it results in a high
signaling overhead. On the other hand, decreasing the
refresh interval reduces the effectiveness of the oper-
ation.. “RSVP refresh reduction draft” [22] proposes
some mechanisms to lower soft-state overhead at the
expense of increasing the protocol complexity.

Connection setup latency should be as short as pos-
sible. As RSVP doesn’t use acknowledgments, a loss
of an RSVP setup message (first PATH or RESV) is
left unnoticed, the message will be resent after a soft
state refresh interval which is usually 30 seconds. Pro-
tocols, like PNNI, which use hop by hop acknowledg-
ments can quickly identify message loss and resent the
lost message. Reservation aggregation is important for
global networks. For example an ISP that needs to
connect multiple customer remote sites, might setup
permanent connections among the company sites and
dedicate resources for them (Virtual Private Network).
The customer may still need to multiplex multiple con-
nections among sites. MPLS label-stack (and ATM
virtual-path) support this feature, however currently
there is no support for it in RSVP.

Parsing is the first stage of a protocol message pro-
cessing. A reservation protocol has to carry informa-
tion which is opaque to it. RSVP and LDP use an “ob-
ject oriented” approach. their messages are made of
variable size objects, each starts with its own header.
The object actuall size appears as a field in that header.
To find out what objects are carried in a message, the
implementation must parse the whole message to find
the different object headers. RSVP extensive usage of
objects and sub-objects, each with its own header en-
larges the size of the signaling messages.

Our first attempt was to modify one of the existing
signaling protocols (RSVP actually) for hardware im-
plementation. However, the amount of fundamental
changes required and the RSVP design model (receiver
initiated multicast, changing routes, no acknowledge-
ment, etc.) lead us to develop a new signaling proto-
col. KISS was designed with hardware implementation

in mind. We later show that it fits well the structure
of current high performance routers. Although, extra
work is needed beforeKISS can be deployed in com-
mercial networks, it demonstrates that parts of the sig-
naling processing can be offloaded to dedicated hard-
ware. We show that it enables per-application reserva-
tion even in backbones on global public networks

II-A. Software vs. Hardware

Dedicated hardware usually performs much better
than software running on a general purpose CPU. On
the other hand, software solutions are usually prefer-
able as they can enjoy new faster CPUs without a re-
design. Other advantages are the availability of good
design and debug tools and the ease of upgrading. In
general, for almost any task, software designs are sim-
pler and faster to create. Even if today’s CPUs cannot
cope with a given task, software solution can, in many
cases, be chosen as it can be expected that CPU speed
will rise during the development period.

Networking is one of the few exceptions as, in recent
years, communication volume increases faster than
CPU performance. The vast improvement in fiber-
optic bandwidth, forced router designers to use ded-
icated hardware (ASIC). This was not a trivial evo-
lution, as unlike ATM, which was designed for us-
ing forwarding hardware, IP was originally designed
as a software overlay network. IP has features which
makes dedicated hardware design difficult. For exam-
ple, efficiently switching IP packets with their vari-
able length, is harder than switching ATM fixed size
cells. The need for switching bandwidth forced hard-
ware engineers to find creative hardware solutions for
this task. We believe that to enable backbone routers to
support per-application reservation, signaling process-
ing should follow the same path - hardware implemen-
tation.

Even a quick review of current converged network-
ing signaling standards, reveals their complexity. De-
signing a hardware implementation for PNNI, for ex-
ample, seems infeasible. We believe the signaling
protocol should be designed in a way that enables
hardware implementation of the most common tasks,
like setting up and tearing down unicast connections.
Other, less frequent, procedures can be left for soft-
ware.

Beside the ease of design, software is also easier
to debug and upgrade. There are additional hardware
solutions which do not perform as good as ASIC but
offer some of the above advantages. Programmable
hardware chips (FPGA) can acommodate large designs
of millions of gates Although, they do not match to-
days ASIC clock rates, they offer better flexibility as
their design can be changed by loading a newer con-
figuration file. Network Processors are microproces-
sors which are optimized for network related tasks.
Theoretically, they enable software implementation of
network tasks which are competitive with hardware
speeds while keeping the ease of development and up-
grade of regular software. At this point this technology
is still immature and does not replace hardware imple-
mentations in large scale. We plan to evaluate in the
future the implementation ofKISS using network pro-
cessor technology.

In the previous subsection, we explored the limita-
tion of current signaling protocols. In theKISS design
we took some decisions that enable simple hardware
implementations (software solutions can also make use
of its simplicity). In section V we show that an FPGA
KISS implementation, is expected to cope with signal-
ing load of millions short term connections.

III. MODELS

III-A. Network Model

An internet is a collection of networks that are con-
nected by routers that use the internet protocol suite.
In the classic model, routers are machines with a num-
ber of network interface modules (NIM), each resides
in a different network. In the early days of the Internet,
routers were general purpose computers with standard
network-interface cards that run a special routing soft-
ware. Today, routers are usually dedicated units which
are design to handle the growing speeds of network
links. To cope with the amount of routing decisions
a router has to take, functionality is gradually moved
from the router’s software to a dedicated hardware. In
many routers each NIM is supplied with its own rout-
ing table hardware. The router’s CPU updates these
tables according to the routing protocol information
(EIGRP, OSPF, BGP etc). In these designs, regular IP
forwarding is done on-the-fly by the router hardware,
without any CPU processing. Such a structure is scal-

CPU

Local−Bus

Host

Virtual Internal Network

Router

NIM NIM NIM

Host

CPU

Local−Bus

NIM

Fig. 1. NIM view of the internet

able as each routing engine has to take decisions only
for one incoming traffic link.

The connection among the NIMs is made by a spe-
cial high speed connection element typically a switch
or a ring. This leads to another level of abstraction,
we can think of a router’s inter-NIM connection as a
virtual internal networks (figure 1). Now, an inter-
net can be viewed as networks connected by NIMs
(each with only two connections). Regular hosts have
only one NIM connecting their local-bus to a LAN.
Routers have a virtual-internal-network that connects
NIMs and maybe a CPU. The proposed signaling pro-
tocol (KISS) was planned for this model. It can be
viewed as a signaling protocol among NINs. Unlike
traditional signaling implementation, which use the
router’s CPU, this structure scales well as each signal-
ing unit is responsible for only one link. In section V
we show that a singleKISS unit can easily cope with
the fastest fiber optic link.

III-B. KISS-enabled Network Interface Model

Figure 2 shows a block diagram of a hardware sig-
naling enabled NIM. Regular packets are being for-
warded without software intervention using the hard-
ware speed path. The CPU has to deal only with spe-
cial packets, like IP packets that contain options. Each
router is built from NIMs connected to each other by
an internal fabric. The NIM has connections to a net-
work and to the internal fabric. The NIM speed path
contains the following part: packet classifier, packet
scheduler, forwarding table/engine and ARP (address
resolution) tables. There are speed paths for incoming
packets and for outgoing packets.

Routers that support different levels of QoS may
manage several queues to provide different priori-
ties for different flows. Modern routers can manage
tens and even hundreds of thousands of queues. The
packet-classifier task is to identify packets, according

Outgoing packets speedpath

Incoming packets speedpath

CAC and
Policy Control
Unit

Packet
Scheduler

Signalling

Forwarding
Clasifier

ForwardingPacket
Scheduler

Packet

Table
ARP

Clasifier
Packet

Interface
Physical

Interface

Table

Local Bus

LUT

LUT

Logic (FSM)
Signalling

Logic (FSM)

TableTable
Internal "ARP"

Fig. 2. Enabled NIM conceptual model

to predefined parameters and move them to the right
queues. For label-swapping paradigms like MPLS,
this task becomes trivial - the labels identify the flow.
Scheduling packets for transmission is done by the
packet scheduler, which is responsible to grant each
queue with its time share according to some predefined
parameters (like token-bucket parameters).

New dedicated hardware can provide wire-speed
forwarding decisions. The forwarding tables are up-
dated by the router’s CPU which executes routing soft-
ware. The tables contain the next-IP hop. To translate
this IP to a MAC address there are Address Resolution
(ARP) tables. Note, that the incoming speed path in
figure 2 contains an “internal ARP” block. We added
it for the sake of symmetry. Its function is to translate
the next NIM IP to the internal address that enables the
fabric to move the packet to the right NIM. Another set
of routing-tables is needed for MPLS routers. These
tables are simple as only full-match lookup is needed.

Our hardware-assist signaling protocol can be con-
trolled by a simple hardware. The packet classifier
moves packets that contain signaling messages to the
signaling hardware. This identification can be done ac-
cording to the IP protocol field. We defined two ded-
icatedKISS logic blocks (KLB), one processes mes-
sages that arrive from the network (and can send mes-
sages back), the other processes messages that arive
from the fabric. The connection between KLB on the

same interface is treated as reliable, while connection
among KLBs on different NIM is treated as unreliable.
Our protocol always uses labels, it holds the flow state
information in simple look-up-tables (LUTs). For sim-
plicity, the labels are selected to be the flow LUT entry
number. The KLB can access the LUT directly as each
signaling message carries a label. The LUT are also
being accessed periodicly to implement timeouts and
soft states. The KLB communicates with the CAC and
an optional policy units. The network-side KLB veri-
fies with the CAC unit network resources availability
for data flow from the NIM to the network, the inter-
nal connection side verifies resources availability from
the NIM to the fabric. The Policy unit verifies that an
initiator of a reservation-request has a permission to
do so. This action has to be done only at the edges of
the network. After the signaling controller gets a per-
mission to reserve resources it configures the packet-
classifier and scheduler accordingly.

IV. DESIGN

Suggesting fast hardware implementations for tasks
which were design for software is not new to the net-
working world, IP CIDR “longest best match” [9] is a
good example. Signaling protocols, however, are quite
complex. We developed theKISS (“Keep-It-Simple”
Signaling) suite which has all the important features

and is simple enough for fast hardware implementa-
tion. The signaling protocol was design for IP net-
working (version 4) preferably with MPLS support.
The source size of its software implementation is less
than 1/10 of RSVP implementation [23]. This is not a
reduced RSVP but a totaly new protocol. Its develop-
ment was inspired by signaling protocols we reviewed
including PNNI, RSVP, CR-LDP, SS7, OPENET [31]
and more. In the following paragraphs we explain the
KISS protocol design considerations.

Maintaining complex data-structures in hardware is
a challenging task. The only data-structures required
by KISS implementation are Lookup Tables (LUT),
which are accessed either by direct entry number or pe-
riodically for maintaining soft-states. Note, that if the
LUTs are implemented in DRAM, periodic accesses
can replace refresh cycles to reduce overheads.

To simplify the task of associating the signaling
messages with their specific flow,KISS always uses
labels. These labels are the LUT entry number of the
flow state. During a connection setup phase, each NIM
along the path selects the incoming label which marks
incoming signaling packets as related to the connec-
tion (“downstream on-demand” in MPLS termination).
The signaling mechanism allocates a label when it re-
ceives the first reservation-request of a flow (SETUP
message). The Network Interface Module (NIM) sig-
naling unit sends the label back in an acknowledg-
ment message, and forwards it to the next-hop with
the SETUP message. All other flow related messages,
that are sent to that NIM, carry this label. The labels
are switched as messages travel from one NIM to the
other. In some cases, if the regular forwarding mech-
anism also uses labels, the same label can be used for
both data and signaling. In contrast, to associate an
RSVP message to a flow, for example to tell if a re-
ceived RESV message should refresh an existing state,
the RSVP daemon has to check multiple fields. The
KISS usage of labels, not only simplifies this task but
also enables the use of short acknowledgments and re-
fresh messages (RSVP designers have later introduced
their MESSEGE-ID object for this task [22]).

Timeouts and soft-states are easily maintained in the
proposed architecture. When an event occurs for a
given flow, the time of the next-expected-event timeout
is stored in a special field in that flows LUT entry. As
mentioned above, the signaling controller accesses the

LUTs periodically. During these accesses it checks for
timeouts, by comparing the stored time to the current
time. These event-time fields have to be accessed once
every �, where� is the shortest time constant used.�

in the order of one second should be enough for main-
taining logical time constants.

Two kinds of propagation delays were identified,
end-to-end and hop-to-hop. In connections that trans-
verse many-hops, the end-to-end delay can be long and
thus, the timeout constants used when waiting for a
message must be long too. As hop-to-hop propaga-
tion delays are shorter, the protocol avoids situations
where a loss of a control message causes a long wait
for an end-to-end type timeout. This is achieved by
the usage of hop-by-hop acknowledgments. To reduce
the acknowledgment overhead, one packet can carry
multiple acknowledgments. For robustness and self-
healing, we chose to use soft-states. Unlike RSVP,
the soft-states are refresh by special refresh-messages.
Note, that although RSVP doesn’t use hop-by-hop ac-
knowledgments, “RSVP refresh overhead reduction”
draft [22] suggests a mechanism for it (by piggy-
backing of MESSEGE-ID-ACK objects).

Fast failure detection is an important feature as it
enables the network to take countermeasures to fix
the problems, even before the users sense it. We ex-
pect that the most common network configurations, in
which reservation will be done, will be point-to-point
links. In this case checking the link state can be a
data link layer service or be done by say a software
daemon sending ICMP echo-request (“pinging”). The
daemon can also calculate the Round trip time and ad-
just the signaling time constants accordingly. Alterna-
tively, it can be done by the signaling unit (we defined
an “hello” and “hello-ack” messages”). This task is
more challenging in the “partial reservation” or mul-
ticast network case. In these configurations, it might
not be a-priori known which are all the signaling en-
abled neighbors. The signaling unit finds the address
of these neighbors when it receives acknowledgments
to the connection setup messages. It can thus main-
tain a list of them. IP lookup is needed for checking
if a new hop is already in the list. But, unlike for-
warding tables IP lookup, it requires full match only.
In some configurations, this information can be gained
by adding extra information to the routing protocol.

KISS uses a simple encoding. All messages start

with a common header which contains the message
size and number of objects. The header is followed by
an objects map, which holds the types of objects and
their starting point related to the beginning of the mes-
sage. To find out the content of a message, only the
header and the map should be parsed. To reduce the
signaling messages size, parts ofKISS message data is
carried in bit-fields. In general, objects are used only
for data which isn’t processed by the signaling con-
trollers themselves (likeflowspec and MPLS labels).
Further reduction is possible by placing few messages
in a single packet. Like RSVP,KISS is build directly
over IP. But, it uses acknowledgments to enable fast
retransmissions in case of packet loss.

KISS packets are protected by a 32bit checksum
which is placed at the end of the packet. This eases an
“on the fly” checksum generation and verification. An
alternative is to use a message-digest, like MD5 [11]
which can also give some protection against spoofing.

Another feature that simplifies implementation is
alignment.KISS message objects and fields are aligned
to 4-octet boundaries, which is also the alignment of IP
headers. It enables easy hardware parsing with 32-bit
data path. .

IV-A. Multicast

As mentioned before, we don’t believe that mul-
ticast support should come at the expanse of sim-
ple unicast reservations.However, we found that it
is possible to support one-to-many and many-to-
one distribution trees while maintaining the sim-
ple lable/LUT design. Changing the transmitter of
a multicast tree is also relatively simple. When a
transmitter wishes to add a new receiver to the ses-
sion, it opens a new connection to it. If succesful,
this new connection merges with the existing multicast
tree. The merge is done upstream, from the new re-
ceiver towards the transmitter. Thus, unlike RSVP, the
transmitter has an indication of the procedure status.
This flow resembles PNNI “ADD PARTY” procedure.

For unicast sessions it is clear that source-initiation
is natural. RSVP style, receiver initiation of sessions,
is more complex but has some theoretical advantages
for large multicast sessions. One of these advantages
is the reduction of signaling load of multicast-trees
cores. KISS , on the other hand, uses transmitter ini-
tiation. To reduce signaling load of the core, it uses

PIM (Protocol Independent Multicast protocol [26])
style Rendezvous Points (RP). RP are network nodes
which are already part of a multicast session. In or-
der to join a multicast session, receivers can send join
request messages to the nearest RP. The RPs initiate
setup messages to add the new receivers to the ses-
sion. The multicast-tree core is unaware of this sig-
naling and thus, the signaling load is reduced. It’s the
core responsibility to set the RPs and deciminate their
information to enable receivers to use them.

Receiver-initiation might have an advantage in cases
where each receiver have different bandwidth de-
mands. For example, one receiver might want to get
the full resolution and color of a broadcasted video,
while the other might settle with low-res B&W. RSVP
introduced the “filter-specification” concept which, in
its general form, can take advantage of this situation.
Receivers can use this filter-spec to specify which of
the flows-packets they wishes to receive. RSVP fil-
ters can also limit a reservation only for packets that
were send by specific transmitters. The multicast tree
branch-points should do the actual filtering e.g. to
identify which of the flow’s packets can take advantage
of the reservation placed by each downstream sub-tree.
This can be quite challenging as it has to be done for all
data packets. When reservation is placed, filter-specs
from sub-tress should be merge before the resevation
request can be sent upstream (for RSVP see [20]).

Building high-speed packet classifiers which can fil-
ter packets according to arbitrary packet fields is not
trivial. It’s even harder for IPSEC enciphered pack-
ets (see RSVP extension [13]). Label-switching can
make the task of associating packets to a specific flow
easy. MPLS shim header has three “CoS” bits. limit-
ing “filter-specification” for selecting packets accord-
ing to their CoS ,or even IP ToS fields, can make filter-
ing feasible. At first look it seems that a similar effect
might be achieved by simply setting few parallel mul-
ticast distribution trees, for example, one can carry lu-
minance data while the other color data. receiver that
wishes to display only B&W video can join only to
the first multicast tree. Packets that are sent on a distri-
bution tree, maintain their original order. But, packet
order is not assured when different distribution trees
are used. This might cause synchronization problems
for receivers that use those parallel trees.

IV-B. Support for partial-deployment

The signaling protocol was planed to support partial
deployment. Reservation can even be placed if not all
the network nodes along the path support the reserva-
tion protocol. To assure that new reservation request
messages will travel along a desired route a standard
IP loose-source-route (LSRR) [8] can be use. Source
route is an IP option. Many high-end routers don’t pro-
cess options in the hardware speedpath but move them
to their CPU for processing or simply ignore them.
However,KISS signaling units should be able to sup-
port LSRR by hardware1. The destination field of the
SETUP message is the final destination.

An IP alert-option [12] can be used to notify routers
along the path that they should examine the setup mes-
sages. Before forwarding a SETUP message, each en-
abled NIM replaces the IP-source field with it’s own
interface address. When a NIM receives a SETUP
message it examines the IP source field and thus, it
knows the address of the previousKISS enabled hop.
Routers can identify their direct neighbors, so they can
tell (a) if it’s a partial-reservation and (b) who is the
previous enabled NIM. From this state on, whenever
the NIM need to send a message downstream it sends
it with the previous NIM address in the packet’s IP
destination field. Setup messages are also acknowl-
edged on a hop-by-hop basis (actually, enabled NIM
hop by enabled NIM hop). The senders of setup-
acknowledgments place their address in the IP source
field. This way, a NIM finds out which are the next-
enabled NIMs. Note that this “IP destination swap-
ping” is done by the signaling controller and thus,
works only for the control messages. In order to
support such a reservation the forwarding mechanism
should also support this kind of “IP destination swap-
ping”. The same support is available in RSVP

IV-C. KISS sample message flow

Figure 3 describes the message exchange for a typ-
ical KISS connection. In the beginning of first phase
(1), the initiator (NIM ’A’) sends asetup message
toward the destination. This message can carry IP
source-route to ensure it travels along a predefined
route. It carries a flow identification label (FIL) which

�LSRR support involves with advancing the next hop pointer.
As LSRR length is 3 bytes + 4*(Number of hops), we assume that
a one-byte NULL-OPTION is always placed before the LSRR

time timetime

3

2

4

1

NIM ’A’ NIM ’B’ NIM ’C’

SETUP(a1)

a1: SETUP−ACK(b1)

b1: SETUP_ACK2

SETUP(b2)

b2: SETUP−ACK(c1)

c1: SETUP_ACK2

b2: CONNECT

c1: CONNECT−ACK
a1: CONNECT

b1: CONNECT−ACK

b2: REFRESH

a1: REFRESH

b1: REFRESH−ACK

b2: REFRESH

c1: REFRESH−ACK

c1: REFRESH−ACK

b1: RELEASE

c1: RELEASE

Fig. 3. KISS message flow

identifies the flow in NIM ’A’ (a1). The message also
carries aflowspec of the new flow. When ’B’ receives
the message, it verifies with its CAC unit that it has
enough resources to accept the new connection. From
the setup packet, it extracts ’A’ address. ’B’ is ready
to accept the connection, so it sends back asetup-ack
message to ’A’. This message carries the FIL from the
setup message. It also contains the FIL of the flow in
’B’ (b1). The setup-ack message is acknowledged with
thesetup-ack2 message. The connection was accepted
so ’B’ sends thesetup message to the next hop (’C’).
This message carry ’B’ FIL2. The CAC unit can reduce
theflowspec if it doesn’t have enough resources.

In phase (2), the destination accepted the new con-
nection. It sends aconnect message, which carries
the adjustedflowspec. The message travels upstream
toward the initiator (A), all the NIM along the way

�Note that the FIL which is sent to ’C’ can be different than the
one which is sent to ’A’. This may occurs due to the two KLB
structure. Each can select it FIL.

Allocate Label

Make

SETUP−ACK

Make

Release

Mem

Read

Source
Validate

change

release

connect

Adj

Net

Adj

Net

CAC

flowspec

Net

Write

Mem

Adj

Write

Mem

NET

Mem

Read

Mem

Read

CACMem

Read

Write

Mem

Net

Adj

Check Timeouts Process Timeout

& state
event−time

upon

Release

entry

flowspec

Refresh Scheduler

Refresh Unit

CAC

NET

To/From Networkt
or adjecnt KISS unit

Action Item

Mem
Read

LUT memory access CAC CAC unit access

Control Item

 Queue Select one option Control

fail

new setups

entry

(+ flowspec for

change, release & connect)

Message
Proc

New Setup Unit

Regular message unit

ADJ

flowspec

Switch

Fig. 4. KISS logic block diagram

modify the amount of reserved resources according to
this flowspec. Theconnect message is acknowledged
with theconnect-ack message. Note, the FIL swapping
as the message travels upstream. When the message
reaches the initiator the reservation is active and it can
start to send data.

During the connection lifetime (3), the soft-states
refreshed in relative long intervals (30 seconds). The
refresh messages are initiated by the NIM, in a hop-
by-hop manner. When one party wishes to terminate
the connection (4), it sends arelease message. When
a NIM receives this message, is releases all reserved
resources and sends the message to the next hop.

V. IMPLEMENTATION

KISS was designed for hardware implementation but
a software implementation was used for the debug and
protocol development. Using this tool we tested the
KISS protocol on large virtual networks.

As seen in figure 2, the KISS protocol implementa-
tion relies on two similarKISS logic blocks (KLB), one

intercepts signaling messages coming from the net-
work connection, the other intercepts messages com-
ing from the internal connection. The two logic blocks
also exchange messages with each other. Each KLB
has it’s own look-up table for storing the flows states.
An extra CAC and policy unit is needed for managing
the network resources.

Figure V is a proposed KLB block diagram. It has
three major units. The “setup-unit” is responsible for
managing new connection setup requests (a setup re-
quest doesn’t carry an incoming label). The “message
unit” processes all other messages. There are separate
queues for both units. The “refresh-unit” which does
periodic access to the LUT, is responsible for identi-
fying and responding to timeouts. Before a new sig-
naling packet reaches a KLB, a special checksum unit
verifies its integrity (KISS checksums are at the end of
the message so this can be done on-the-fly). TheKISS
protocol uses 32 bit alignment which can be easily kept
in IP version 4. Thus, a 32 bit data path is natural for
the KLB.

The “Setup unit” processes new setup request either
from the adjacent KLB or from the network or internal
connection. For each new request, the unit sends the
flowspec to the CAC for inspection. Concurrently, it al-
locates new LUT entry for it. If the admission control
and label allocation were successful, the unit gener-
ates an acknowledgment, forwards the setup message
and writes the flow state to the allocated LUT entry.

The “Regular message unit” processes all other
messages. When it receives a new message, it first
fetches its flow state from the LUT according to the
message label. Using the state data, it verifies that the
message was sent by the right NIM. If the message
changes the flows resource allocation (e.g. tear-down,
change-reservation or connect) the CAC unit has to
be accessed. When the message processing ends, the
unit sends back an acknowledgment,forwards a mes-
sage and writes back the flow state to the LUT entry.

The “Refresh unit” does periodic accesses to the
LUTs, it checks the flow-state and the time-tag. If a
timeout occurred, it fetches the flows LUT entry, per-
forms the required task and writes it back. In case a
soft-state expired it also has to access the CAC unit for
releasing the reserved resources.

Current unicast implementation, uses about 180 bits
for each flow state. Some extra bits per flow are needed

by the CAC unit. We believe that 512 bits per flow
should be sufficient for every CAC unit. The LUT
are easily implemented in standard DRAM. Current
DRAM technology offers above 256 Mbit in a single
DRAM device. Standard devices have data path of 4,8
or 16 bits. To create a 32 bits data path we need 8,4 or
2 devices which hold a total of 2048, 1024 or 512 Mb
accordingly. If one quarter of the available memory is
reserved for temporal message storage, this fabric can
handle 0.768, 1.536 or 3.072 million of connections
states. Note, that two KLB units are needed in each
NIM, the number should be halved if they share the
same memory.

The high clock frequencies that can be reached in
VLSI designs compare to possible clock speeds for
DRAM memories or PCB traces and the simplicity
of KISS message processing, results in memory be-
ing the major performance bottleneck. Signaling band-
width is not expected to pose any problem as the num-
ber of connections is proportional to the links band-
width. Another possible bottleneck is the CAC and
policy control unit. For best result we recommend
that these units be integrated with KLB. Synchronous
DRAM technology use pipelined synchronous logic
to enhance DRAM performance. Current standard
SDRAM can use a 133MHz clock (PC133) while new
Double Data rate technology, which transfer data on
both rising and falling clock edges, actually doubles
this transfer rate. DRAM memory-matrices are di-
vided to pages, data-per-clock is only possible within
a single opened DRAM page, DRAM page switching
can take many clock cycles. Standard SDRAM mem-
ory matrices are further divided to four banks which
enable keeping four DRAM pages open. KLB can use
this memory architecture to use the DRAM more effi-
ciently.

Simulation shows that in low packet loss conditions,
a 10000 LUT entries KLB needs 559K SDRAM cycles
per second to handle 200 connection tear-downs and
200 setups per second These parameters are expected
to scale linearly (figure V). A FPGA implementation
working with standard PC133, 133MHz SDRAM (a
possible clock rate for FPGA) can support about 45K
setup and tear down requests per second. For an aver-
age connection duration of 40 seconds, this is enough
to cope with 1.8 millions of simultaneous connections.
Assuming 64Kbps PCM voice channels it means sup-

50 60 70 80 90 100 110 120 130 140 150
10

20

30

40

50

60

70

80

90

100

110

Memory Clock Rate (MHz)

M
ax

im
um

 S
et

up
/T

ea
r−

do
w

n
ra

te
 (

K
H

z)

SDRAM / FPGA
DDR−SDRAM / ASIC

Fig. 5. KISS Performance estimation (Avarage connection dura-
tion 40 seconds)

port for a 115Gbps links. If a more sophisticated
codec is used, for example, 5.3Kbps ITU-T G.723.1
9.54Gbps links, about OC-192, can be support. Using
DDR-SDRAM can double these figures, a further en-
hancement is possible if few units are used in parallel.

VI. DISCUSSION

The goal of our work was to explore scalable tech-
niques for micro-flow resource reservation in large net-
works. Note that a full solution, must also address sig-
naling, QoS routing, admission control, QoS policing,
etc. We describe theKISS signaling paradigm. We
showed that it offers new ideas for creating a scalable
signaling mechanisms, and also raise new possibili-
ties for fast signaling hardware that can reach adequate
connection setup capabilities. QoS routing is an active
research topic and much was done on that issue (a good
overview can be found at [35]). More work is still re-
quired to glue the signaling and the QoS routing to an
integrated solution.

VII. REFERENCES

[1] Dan Gluskin “Hardware Oriented Resource reserva-
tion scheme for integrated networks”, Technion EE
Master Thesis, March 2001.

[2] IETF’s Network Working Group “RFC 2676: QoS
Routing Mechanisms and OSPF Extensions ”, August
1999

[3] I. Cidon, I. Gopal and A. Segall “ A. Fast Connection
Establishment in High Speed Networks”, ACM SIG-
COMM, September 1990, pp. 287–296

[4] I. Cidon and I. Gopal “PARIS: An approach to in-
tegrated high- speed private networks”, International
Journal of Digital Analog Cabled Systems, April-
June 1988, pp. 77–86

[5] A. Huangand S. Knauer “ Starlite: a wideband digital
switch ”, Proc. GLOBECOM’84 (November 1984),
pp 121-125

[6] J. Turner “ New Directions in Communications (or
Which Way to the Information Age?) ” Proceedings
of the Zurich Seminar on Digital Communication, pp.
25–32, March 1986.

[7] J. Turner “ Design of a Broadcast Packet Switching
Network”, ” Proceedings of Infocom 86, April 1986,
pp. 667–675

[8] DARPA “RFC 791: Internet Protocol, DARPA inter-
net program, Protocol specification”, September 1981

[9] IETF’s Network Working Group “RFC 1519: Class-
less Inter-Domain Routing (CIDR): an Address As-
signment and Aggregation Strategy”, September 1993

[10] IETF’s Network Working Group “RFC 1819: Internet
Stream Protocol Version 2 (ST2), Protocol Specifica-
tion - version ST2+” August 1995

[11] IETF’s Network Working Group “RFC 1992: The
MD5 Message-Digest Algorithm”, April 1992

[12] IETF’s Network Working Group “RFC 2113: IP
Router Alert Option”, February 1997

[13] IETF’s Network Working Group “RSVP Extensions
for IPSEC Data Flows”, September 1997

[14] IETF’s Network Working Group “RFC 2210: The use
of RSVP with Integrated Service” September 1997

[15] IETF’s Network Working Group “LDP Specification”
October 1999

[16] IETF’s MPLS working group “Constraint-Based LSP
Setup using LDP”, September 1999

[17] The ATM Forum, Technical Committee “Private
Network-Netwok Interface Specification Version
(PNNI) 1.0” March 1996

[18] The ATM Forum, Technical Committee “ATM User-
Network Interface (UNI) Signalling Specification
Version 4.0” July, 1996

[19] Lixia Zhang, Stephan Deering, Deborah Estrin, Scott
Shenker and Daniel Zappala “RSVP: A New Re-
source ReSerVation Protocol” , IEEE Network Maga-
zine. September 1993

[20] IETF’s Network Working Group “RFC 2205: Re-
source ReSerVation Protocol (RSVP), Version 1,
Functional Specification”, September 1997

[21] IETF’s Network working group, “RSVP-TE: Exten-
sion to RSVP for LSP Tunnels”, draft-ietf-mpls-rsvp-
lsp-tunnels-05.txt, February 1999

[22] IETF’s Network working group. “RSVP refresh Over-
head Reduction Extensions”, draft-ietf-rsvp-refresh-
reduct-02.txt, January 2000

[23] USC Information Sciences Institute
(ISI), RSVP deamon implementation.
http://www.isi.edu/div7/rsvp/rsvp.html

[24] Ping Pan & Henning Schulzrinne “YESSIR: A simple
reservation mechanism for the internet”, August 1997

[25] A.Viswanathan, N. Feldman, Z. Wang, R. Callon
“Evolution of Multiprotocol Label Switching” IEEE
communication Magazine, May 1998 pp. 165-173

[26] IETF’s Network Working Group “Protocol Inde-
pendent Multicast-Sparse Mode (PIM-SM): Protocol
Specification” draft-ietf-pim-v2-sm-01.txt November
1999

[27] IETF’s MPLS working group, “IMPROVING
TOPOLOGY DATA BASE ACCURACY WITH LSP
FEEDBACK VIA CR-LDP”, draft-ietf-mpls-te-feed-
00.txt, February 2000

[28] IETF’s Network Working Group, “Introduction
to IP Multicast Routing”, draft-ietf-mboned-intro-
multicast-03.txt, July 1997

[29] David E. McDysan, Darren L. Spohn “ATM Theory
and Application”, McGraw-Hill, September 28, 1998,
ISBN: 0070453462

[30] Israel Cidon, Inder Gopal, Roch Gu´ering “Bandwidth
Management and Congestion COntrol in plaNET”,
IEEE Communication Magazine, October 1991, pp.
54-64

[31] I. Cidon, T. Hsiao, A. Khamisy, A. Parekh, R. Rom
and M. Sidi, ”OPENET: An Open and Efficient
Control Platform for ATM Networks,” in Proceed-
ings of the Conference on Computer Communications
(IEEE Infocom), (San Francisco, California), pp. 824,
March/April 1998.

[32] I. Cidon, R. Rom and Y. Shavitt, ” Multi-Path Rout-
ing Combined with Resource Reservation,” in Pro-
ceedings of the Conference on Computer Communi-
cations (IEEE Infocom), (Kobe, Japan), pp. 92–100,
April 1997.

[33] IETF Network Working Group, “Stream Control
Transmission Protocol”, draft-ietf-sigtran-sctp-13.txt,
July 2000

[34] Cisco, “LightStream 1010 Mul-
tiservice ATM Switch Overview”
,http://www.ieng.com/warp/public/cc/pd/si
/lsatsi/ls1010/prodlit/ls10mov.htm

[35] Shigang Chen and Klara Nahrstedt “An Overview of
Quality of Service Routing for Next-Generation High-
Speed Networks: Problems and Solutions”, IEEE
Network, vol. 12, no. 6, November 1998, pp. 64-79

