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Abstract

We consider networking systems with messages that consist of blocks of consecutive (fixed length) cells. A message can
be generated at a single instant of time as a batch or it can be dispersed over time. In this paper we focus on the model of
dispersed generation processes which naturally arises in packet switched networks such as ATM. The main difficulty in the
analysis of message related quantities is due to the correlation between the system states observed by different cells of the
same message.

The following important quantities are analyzed in this paper: (1) The message delay process, defined as the time elapsing
between the arrival epoch of the first cell of the message to the system until after the transmission of the last cell of that
message is completed. In many systems the message delay, and not the individual cell delay, is the measure of interest for the
network designer. (2) The maximum delay of a cell in a message. (3) Number of cells in a message whose delays exceed a
pre-specified time threshold. The latter two quantities are important for the proper design of playback algorithms and time-out
mechanisms for retransmissions.

We analyze the probability distribution of these quantities. In particular, we present a new analytical approach that yields
efficient recursions for the computation of the probability distribution of each quantity. Numerical examples are provided
to compare this distribution with the distribution obtained by using an independence assumption on the cell delays. These
examples show that the correlation between cell delays of the same message has a strong effect on each of these quantities.
A simulation of an 8-node tandem queueing model of a virtual connection is provided to show that the general phenomena
observed for the single node system hold for a network environment as well.

Keywords: Discrete-time queues; Dispersed messages; Delay; Jitter; ATM

1. Introduction

We consider networking systems with messages that consist of blocks of consecutive (fixed length) cells.
In these systems the integral transmitted quantity is a cell and the time axis is slotted with slot duration equal
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to the transmission time of a cell. (We shall use the terms cell and packet alternately throughout the paper.)
The message corresponds to a higher layer protocol data unit. In general, one can distinguish between two
types of message generation processes. The message can be generated at a single instant of time as a batch,
i.e., all the cells that compose the message arrive to the system at the same time slot (which corresponds
to the well-known batch arrival model), or it can be dispersed over time, i.e., the cells that compose the
message arrive to the system at different time slots. In this paper we focus on the new model of dispersed
generation processes which naturally arises in packet switched networks such as ATM [5]. Individual cell
delay distributions are usually insufficient for proper understanding of the system behavior. Therefore, there
is a need to analyze message-related quantities. The main difficulty in the analysis of such quantities is due
to the correlation between the system states observed by different cells of the same message. For instance,
the delays of two consecutive cells are strongly correlated, i.c., the delay of the second cell conditioned on
the event that the first cell delay is large (small) is larger (smaller) than the delay of an arbitrary cell.

In this paper we analyze the following message-related quantities. The message delay process, defined
as the time elapsing between the arrival epoch of the first cell of the message to the system until after the
transmission of the last cell of that message is completed. In many systems the message delay, and not
the packet delay, is the measure of interest for the network designer. This is due to the fact that packets
are data units which are only meaningful at lower layers and are created because of the network data unit
size limitations. The ATM [5], TCP/IP [11] and TDMA based systems [23] are examples in which the
application message is segmented into bounded size packets (cells) which are then transmitted through
the network. At the receiving end, the transport protocol (or the adaptation layer) reassembles these cells
back into a message before the delivery to higher layers. In some applications message delay is not the
result of segmentation at the network layer but of the nature of data partitioning in the storage. A file
can be composed of multiple records which are stored at different locations in the disk. These records
are read individually and may be transmitted as separate packets. However, the entire file transfer delay
is the measure of interest for the overall file transfer application. We provide numerical examples to show
that the variance of the message delay may be over-estimated by the independence assumption, i.e., the
assumption that the delays of cells are independent from cell to cell, for a wide range of message sizes.
Most prior analyses of the message delay were associated with batch arrival processes [17,23], i.e., each
batch corresponds to a message. In this case, the message delay coincides with the delay of the last packet of
the message (batch). This fact facilitates the analysis of the message delay distribution. However, in packet
switched networks, packets which belong to the same message may arrive at different instants of times
(be dispersed). The message delay process for the dispersed generation model was first analyzed in [13]
for continuous time systems such as M/M/1 and M/G/1 systems. Closed form expressions were obtained
in [4].

The second message related quantity analyzed in this paper is the maximum delay of a cell in a message.
One of the central problems in the support of real-time applications (voice, video) within a packet switching
network is the existence of delay jitter. Similarly to loss, the jitter is an inherent problem of packet switched
networks. The delay time of a packet in these networks is composed of a fixed component of propagation
delay and a variable component caused by the waiting time in the buffers of the network. The jitter problem
is solved by the playback algorithm at the destination node by delaying the first cell of a message for a
time which represents the worst-case delay (or variable delay). This delay depends on the maximum delay
of a packet in a message (or, a video frame), see [19], or on the distribution of the message delay jitter
defined as the difference between the maximum and the minimum delay of a packet in a message, see
[9]. Another design problem in which the distribution of the maximum delay of a packet in a message is
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important appears in the design of time-out mechanisms for data retransmissions. Time-out mechanisms
along with acknowledgment packets are used in data link protocols and end-to-end protocols to ensure
reliable communication between source and destination nodes (see [6]). The time-out is equal to the round
trip delay between the source and the destination and is composed of the fixed part of the propagation
and processing delays and the variable part of queueing delay which is equal to the maximum delay of
a packet in a message. The design of a proper time-out value affects the performance of the system, for
example, the number or rate of false retransmissions. In addition, in a window flow control mechanism it is
desirable that the window size be less than the time-out in order to achieve high throughput. We prove that
the independence assumption yields an upper bound (in the sense of stochastically larger) on the maximum
delay of a cell in a message, and show that it converges to «~! Lnn (in probability) as n becomes very
large, where n is the number of cells in a message, and « is the smallest positive pole of the probability
generating function of the cell delay time.

The third message related quantity analyzed in this paper is the number of cells in a message whose
delays exceed a pre-specified threshold. This quantity has a practical importance for the design of playback
algorithms and it can also be used to estimate the number of false retransmissions in systems that employ
time-out mechanisms. In real-time applications, a packet that exceeds some delay limit is obsolete and hence
lost. The number of lost cells in a message is an important measure for data and real-time applications as
shown in [12]. Queueing systems in which the waiting time (or delay) of a packet is limited to a pre-specified
delay limit were studied in the past, see, e.g., [10,14,16]. In these systems, packets whose waiting times
(or delays) exceed some pre-specified delay limit are lost. For these systems the packet loss probability
and the delay time of a packet which completed service were analyzed. Overload control problems with
FIFO-timeout were analyzed in [14]. Here, an infinite buffer is assumed and all packets are accepted to the
system. If after time period 7" the packet is still in the system it is dropped (actually, the decision to drop
a packet can be taken at the arrival time of the packet). In [14], an M/M/1 system with a FIFO-timeout
dropping policy was analyzed using level crossing arguments. In [16], an M/M/m system with waiting
times (or delay times) limited to fixed or random times (exponentially distributed) was analyzed using
birth—death processes. In [10], an M/G/1 system with waiting times (or delay times) limited to fixed or
random times (exponentially distributed) was analyzed using generating functions approach. In contrast to
the above studies which consider a single packet, we investigate the effect of the correlation between the
delays of a block of consecutive packets on the performance of the system. We provide numerical examples
to compare the probability distribution of the number of cells whose delays exceed a pre-specified threshold
with the same probability distribution obtained by using the independence assumption on the cell delays.
We show that the independence assumption may yield overly optimistic results, and that correlation exists
not only for the cell loss process (assuming that a cell is lost if its delay exceeds the threshold) but also for
the no-loss process.

In this paper we analyze the probability distribution of the above three quantities. In particular, we present
a new analytical approach that yields efficient recursions for the computation of the probability distribution
of each quantity. Numerical examples are provided to compare this distribution with the distribution obtained
by using an independence assumption on the cell delays. These examples show that the correlation between
cell delays of the same message has a strong effect on each of these quantities in all cases explored. A
simulation of an 8-node tandem queueing model of a virtual connection is provided to show that the general
phenomena observed for the single node system hold for a network environment as well.

The paper is structured as follows. In Section 2 we present the queueing model and the notations used
throughout the paper. Here we use a discrete-time, single source, single server with an infinite buffer system.
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Every n consecutive cells belong to one message, i.c., the cell stream originated at the source is assumed
to obey a message structure with every consecutive n cells belonging to one message. This assumption
is motivated by the fact that these cells are flow controlled at the entrance to the network which tends to
smooth the arrival of cells to the network (for example the Leaky-Bucket mechanism adopted by the ATM
Forum [5]). Also, the message structure originally defined at the source is disturbed by the multiplexing and
interaction with other sources inside the network. In Section 3 we analyze the message delay. In Section
4 we analyze the maximum delay of a cell in a message. We prove that the independence assumption
yields an upper bound on this quantity and obtain an asymptotic result for the upper bound. We introduce
the message delay jitter and describe a procedure to compute its distribution. In Section 5 we analyze the
number of cells in a message whose delays exceed a pre-specified threshold. We introduce an important
measure for real-time sessions, the cell overload period, and compute its distribution. In Section 6 we
provide numerical examples for each of the above quantities. In Section 7 we provide a simulation of an
8-node tandem queueing model of a virtual connection for each of the above quantities.

It is interesting to note that the analysis of the above measures (delay, jitter and threshold crossing)
can be extended to the case of an ON-OFF source (with geometrically distributed ON and OFF periods),
where each ON period corresponds to a single message. This can be done using similar techniques to those
used in [13]. Similarly, one can use these techniques to analyze the message delay process in a system
with multiple sources. However, the analysis of the jitter and the threshold crossing processes for multiple
sources is significantly more complicated and is still an open problem.

2. Model and notations

The time axis is slotted and each slot corresponds to the transmission time of a single cell. Cells arrive
randomly to the system from a single source. The arrival process is assumed to be independent and identically
distributed from slot to slot. The cells are stored in a buffer that can accommodate an infinite number of
cells, and are transmitted according to the First-Come-First-Serve (FCFS) policy (assuming that no more
than one cell may arrive instantaneously to the system).

Assume that departures take place at the beginning of slots, and arrivals within slots. Let g be the quene

length at the end of the rth slot, Pr{g = i}é lim;— o0 Pr{g; = i} and Q(z)éE[zq]. Let b be a generic random
variable (r.v.) of the number of cells that arrive within a slot, and define b,é Pr[b =il,i = 0, ZéE [b]
and B (z)éE[zb ]. Assume that b < 1 so that the system is ergodic. Consider an arbitrary cell arriving to
the system and denote by b® and b2 the number of cells that arrive before and after (including) this cell,
respectively, within its arrival slot. Note that, bb and b? are the backward and the residual recurrence times
in the (discrete time) renewal process whose inter-event time distribution is given by the r.v. b. Thus, the
distributions of b® and b? are given by

Pr{b > k
b}gépr{bb:k}:i{_>—}, k=0,1,...,
E[b]

Pr{b = k
P e PR
E[D]

and the joint distribution of bP and b? is given by
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bin-+k
Prib® =m, b* =k} = "=, m=>0, k> 1. 1
r{ m } Elb] > > (D
The evolution equation of the queue length is given by
giy1= (g — 1T +b, >0, @)

from which we have (using standard generating function techniques [207)

1-b)(1—z7HB(z '
U=0d =2 IB@ o, 0
1 —z7"'B(2)

We shall consider the delay time of a cell to be 1 if the cell is transmitted in the slot immediately following
its arrival slot. Using a distribution form of Little’s law [18], the probability distribution of the delay of a
cell, d, is given by Prld = i] = Pr[¢ = i]/Pr[g > 0], i > 1, from which we have

Q(z) — 1

DOEER! =14+ = @)

In the following we assume that cells are grouped into fixed size messages, namely, every n consecutive
cells form a message.

Q) =

3. Message delay

Here we compute the probability generating function (PGF) of the message delay — the number of slots
from the arrival slot of the first cell of the message until the last cell of that message is transmitted. Let dy,

be the r.v. of the message delay for a message of size n, and define D;, (z)éE [zd"]. Let a be the r.v. of the
number of cells in the system at the departure epoch of the first cell of the message from the system. Let
di,m, k = 0, m > 1, be the r.v. of the number of slots from the beginning of a slot in which there are &

cells in the system until the next m cells leave the system (transmitted), and define Dy (z)éE [z%m].
Since the first cell of a message is arbitrary, we have

Di(z) =D(2),
X0 X0 o0 . 4 i d
Da@)=Y Prlg =il Y 65 Prla=klg =i, b° = mlE[z0~ D +mrIHdeni]
i=0 m=0 k=0
o
=Y f@Din-1(), n=2, )
k=0
where fi(z)= zZ —oPrlg = i1z4- n* Pr[a =k|g =i, b = m)z" for lz| < 1, and xta

max(x, (). In (5) we first conditioned on the number of cells in the system at the end of the slot preceding
the arrival slot of the first cell of the message and on the number of cells that arrive before this cell in its
arrival slot. Then we conditioned on the number of cells in the system at the departure epoch of the first
cell of the message from the system which clearly departs after (i — 1)™ 4+ m + 1 slots, and used the fact
that the r.v. di ,—1 depends only on arrivals after that departure epoch.

The functions fi(z), k > 0, are computed as follows. Define the power series in the complex variable

w, F(z, w)é Z/fio fk(z)wk, |lw| < 1.Since | fi (z)] < 1, k >0, |z] < 1, then using Abel’s theorem [2] it
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follows that the power series F(z, w) for every z, |z| < 1, converges absolutely and is an analytic function
in the complex variable w inside the unit disk jw| < 1. Let B2,(z), m > 0, be the PGF of the conditional r.v.
bt given that {b° — m}). Then B2 (z) = Y22, Prib® = k|b® = m]ck = ™"/ Prlb > m}) 3222, bz
Note that, the probability distribution of the conditional r.v. a given that the delay of the first cell of the
message is (i — DT 4+ m + 1 equals the (i — )F 4+ m + 1 fold convolution of the distribution function
of the conditional r.v. b* — 1 given {bb = m}, and (i — Dt + m distribution functions by. Therefore,
Fz,w) = 2352, Prlg = illzBw)]¢~D" Y20 0 b5 w !B, (w)[zB(w)]™. Substituting for 57, (w) in
F(z, w) and using simple algebra, we have

_ (1= b)efeBw) — 1IBw) — BEBw))]
blw — ZBw)1[zBw) — BEBw)]

The functions fi(z) are obtained by taking the inverse transform of F(z, w) in the complex variable w.
If B(z) is a rational function of z then F(z, w) is a rational function of w and the inverse transform in the
variable w can be easily obtained (see the numerical example in Section 6).

To complete the computation we need to compute the PGFs Dy n(2), k > 0, m > 1. In the following
we introduce a recursive procedure for the computation of those PGFs. The recursions are obtained by
conditioning on the number of cells in the system at the beginning of consecutive slots:

F(z,w)

m—1
Dom(2) = —Zb()z ((1 —b)Z" " + D bilDic1m-1(2) — zm_1]> :

i=1

m—k—1
Dk,m(z)=z<zm—1+ > b,-[Di+k_1,m_1<z>—z’"‘1]>, l<k<m-—1,
i=0
Dim(z)=2", k=m. (6)

The recursions in (6) are computed for eachm = 1,2, ...,n — 1 (in increasing order) and 0 < k <m — 1.
The computation complexity is of the order of o(n?).
From (5) and (6) for k > m we have

n—2
D@ =Y fi@)Din-1(@) =" H+2""D@). nz2, 7
k=0

where in (7) we used the fact that Y 72 fx(z) = F(z, 1) = D(2).

From (6) a set of recursive equations for any moment of the r.v.s. dg,m, k > 0, forany m > 1 can be
obtained by taking the appropriate derivatives at z = 1. Then any moment of the message delay can be
obtained from (7). The jth derivative of the function f(z) can be obtained directly or by taking the inverse
transform in the complex variable w of (d/F(z, w)/ dz)| z=1-

3.1. Independence approximation

We note that the message delay is composed of two components (see [13]). The first is the number of
slots elapsing between the arrival slot of the first cell of the message to the system until the arrival slot of
the Iast cell of that message to the system (the message inter-arrival time). The second is the time delay of
an arbitrary cell (stands for the delay of the last cell of the message) in the system and is equal to d. Let I,
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be the r.v. of the first component and denote by Z, (z) its PGF. Let Z,, be the r.v. of the number of slots from
the beginning of a slot until the arrival slot of the last cell in the next n cells that arrive to the system, and
denote by Z,(z) its PGFE. Since the first cell of a message is arbitrary, then by conditioning on the number
of cells that arrive to the system after (including) the first cell within its arrival slot we have

n—1
L) =Pr{b* = nl + ) biTa—j(2), ®)
j=1

and for fn (z) we have the following recursion:

. (1 —bo)z . nzlo
Ti(z) = T To(@) =Prb > nlz+2)_ bjTa_j(x), n>2. )
. P

From (8) and (9) any moment of the message inter-arrival time can be simply computed.

A simple way to approximate the message delay is to assume that these two components are independent
r.v.s. In Section 6 we show the relative error of the variance of the message delay under this approximation.
Note that, for the average message delay, we have E[d,] = E[l,] + E[d].

4. Maximum cell delay

We are interested in the probability distribution of the maximum delay of a cell in a message. Let y™#* (n)
be the r.v. of the maximum delay of a cell in a message of size n. Let Py, ,(y), m =0, n > 1, y > 1, be
the conditional probability that the maximum delay of a cell in the next n cells that arrive to the system after
the beginning of a slot is less or equal to y, given that m cells are present in the system at the beginning of
that slot. Since the first cell of a message is arbitrary, we have

Pry™(n) < y]

y y—({—DT=1 ~min(y—@G~DF—k,n—1)
=Y Prlg =i] [ > Pr[b® =k, b* = j]

X Pl 1yttt j—1.0—; ) + Pr[b° =k, b* > n]1{(i — D +k+n < y}}

12 y—(i—D¥ =1 min(y—(i—1)T—k,n—1)
= —[;ZPT[CI = i][ . b+ j Pl 1)+ 4kt j—1,n—j (V)
i=0 k=0 j=1
y—(i—1)+—n
+ Y Prb>k+ n]], (10)
k=0

where an empty sum vanishes. The explanation of the first equality in (10) is as follows. The probability
that the r.v. y"®(n) does not exceed y equals the probability that the delay of each of the n cells of the
message does not exceed y. First, we conditioned on the number of cells in the system at the end of the
slot preceding the arrival slot of the first cell of the message {g = i}. Clearly, this number cannot exceed
y in order that the delay of the first cell of the message be less or equal to y. Then we conditioned on the
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number of cells that arrive before and after (including) the first cell of the message within its arrival slot,
{b® = k, b® = j}. The delay of the first cell of the message equals (i — 1)t + k + 1 and must be less
or equal to y. If j < n, then the largest delay of a cell in these j cells (which belong to the message)
equals (i — )T + k + j which must be less or equal to y. In order that y™®*(n) be less or equal to y the
maximum delay of the remaining n — j cells (that arrive after the beginning of the next slot in which there
are (i —1)* 4+ k4 j — 1 cells in the system) that belong to the message must be less or equal to y. If j > n,
then the largest delay of a cell in the message equals (i — 1)* + k + n which must be less or equal to y.
The second equality in (10) follows from (1).

To complete the computation we need to compute the probabilities Py ;(y), 0 <m <y, 1 <l <n—-1.
To that end we introduce recurrence relations. Using a recursion at the slot boundaries of consecutive slots,
wehave forO<m <y, 1 <l <n-—1)

Pua)=1, m+1<y,
y—m

Pt (0) =bo Pyt i)+ Y biPigm14-i(y), m+1>y. (11)
i=1

The computation complexity of Py, j(y) for0 < m <y, 1 <[ < n — 1 is of the order of on?).
These probabilities are then used in (10) to compute the probability distribution of the r.v. y™®*(n) with
computation complexity of the order of O( y%n). In the following section we provide upper and lower
bounds on the maximum cell delay. The asymptotic behavior is investigated in Appendix B. It provides a
simple formula for the distribution of the maximum cell delay for large message size n.

4.1. Bounds

Here we use the notion of associated r.v.s. (see Appendix A) to obtain an upper bound on the maximum
cell delay (a similar use of associated r.v.s. can be found in [7,8,22]). Let x;, 1 < i < n, be the r.v. of
the delay of the ith cell of a message of size n. Using an independence assumption of the cell delays, i.e.,
the assumption that the r.v.s. x;, 1 < i < n, are independent and equal in distribution to the r.v. d, the
probability distribution of the r.v. of the maximum delay of a cell in a message of size n, y; 4" (n), becomes

Pr[yfa*(n) < y] = (Pr[d < yD", y > 1. In fact, the independence assumption yields an upper bound on
the message delay as is proved in the following theorem.

Theorem 1.

i) =g Y™ (m), n=1,

where > stands for stochastically larger.

Proof. We shall prove that the r.v.s. x;, 1 < i < n, are associated r.v.s. (see Appendix A) from which
Theorem 1 follows directly. Denote all cells that arrive during a slot by a batch. In any slot a batch does not
arrive with probability by and arrives with probability 1 — by, i.e., according to a Bernoulli arrival process
with parameter 1 — bo. Consider an arbitrary batch arriving to the system and denote its arrival slot by slot
number 1. Denote arrival slots of consecutive batches by 7, i = 2,3, ... Let bl, i > 1, be the r.v. of the
batch size of batch number i. Let J;, i > 1, be the r.v. of the ith batch 1nter—arr1val time, i.e., the number of
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slots elapsing between the arrival epochs of the (i — 1)st and the ith batches where J; éO. Letg;, i > 1,
be the r.v. of the number of cells at the beginning of slot number i. We have

Gi = Gi1+ b1 — )T, P2

Since b;, Ji, i > 1, are independent r.v.s. and since ¢; is a nondecreasing function of g;_i, b and
—J;, we have by using properties (P2), (P3) and (P4) of associated r.v.s. (see Appendix A) that the r.v.s.
gi,1 <i <N, forany N > 1 are associated r.v.s.

Consider the kth cell arriving in batch number i. Its delay equals ¢; + k which is an increasing function
of g;. Then, using property (P4) of associated r.v.s., the delays of all cells arriving in batches 1, ..., 2n,
are associated r.v.s. Since each batch contains at least one cell, a message of size n must be contained in
the cells that arrive in batches 1, . . ., 2n, and using property (P1) of associated r.v.s., the delays of all cells
belonging to this message are associated r.v.s. Since the first batch was chosen arbitrarily, this message is
an arbitrary message.

Now using the property in Eq. (A.2) of Appendix A and the definition of stochastic dominance, Theorem 1
follows. O

A simple lower bound of the maximum delay of a cell in a message of size n is given by y™*(n) > d.
Note also that y™*(n) > y™** (k) for any 1 < k < n. In Section 6 we give a numerical example for the
distribution of the r.v. y™*(n) and its upper and lower bounds.

4.2. Message delay jitter

We conclude this section by introducing an additional important measure for the design of playback
algorithms (see [9]) — the maximum difference between cell delays in a message, referred to as the message
delay jitter. Let y™ (n) be the r.v. of the minimum delay of a cell in a message of size n. Then the message
delay jitter is defined by y™®(n) — y™"(n), and its probability distribution can be obtained as follows.
The probability Pr[y™*(n) < y, ymi“(n) > x], ¥y > x > 1, can be obtained by a similar recursion to
the one introduced in this section. The probability distribution of the r.v.s. y™*(n), y™in (1) is obtained
from Pr[y™(n) < y, y™"(n) < x] = Pr[y™(n) < y] = Pe[y™*(n) < y, y™(n) > x] where the
probability distribution of the r.v. y™#* (n) was obtained in this section. Then the probabilities Pr[y™**(n) =
y, yMi(n) = x] are obtained directly. Finally, Pr[y™*(n) — y™"(n) = y] = >0 Pr[y™ ¥ (n) =
y +x, y™"(n) = x]. Alternatively, the probability distribution of the message delay jitter can be obtained
directly by a recursion similar to the one introduced in the next section.

5. Threshold constrained delay process

We are now interested in the probability distribution of the number of cells in a message whose delays
exceed a pre-specified threshold. Let P, (y, k), y,n > 1, 0 < k < n, be the probability of k cells in a
message of size n whose delays exceed y. Note that for & = 0 this degenerates to the probability distribution
of the cell maximum delay analyzed in Section 4. Let Py, ,(y, k), y,n > 1, 0 <k <n, m > 0, be the
conditional probability of k cells, in the next n cells that arrive to the system after the beginning of a slot,
whose delays exceed y, given that m cells are present in the system at the beginning of that slot. Define
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Pun(y K020, m > 0, k>0, n <0, Pun(y k)20, m >0, n > 1, k < 0. Since the first cell of
message is arbitrary, we have

00 oo | y=(-DT—m
Po(y, k)= Prlg=i] ) [ Yoo P =m b = 1Pyt imtj 1m0 K)
i=0 m=0 j=1
n—1
+ Z Pr[b® = m, b* = J1PG 1y tmtj=1,n—j

Jj=O=-Dr-myt+1

XWk=[j—(G-G—-D"—mTD

+ ) Prip® =m, b = jl(1{k =0}1{G = DY +m+n <y}

j=n

+ 1{1 §k§n}l{(i—1)++m+n—k=)’})}

1> o) y—(i—1)+—m
== Plg=i) | D butjPi—pytimbi—ta—; 05 )
biz m=0 j=1
n—1
+ > bt j Pyt ms j—1a—j o k= j+ (v — (i — DT —m)™)
J=(y—(i—DF—m)t+1

1 Ytlon y—@i-Dt
+1Uk=0}= Y Prlg=i] Y  Pr[b>m]

b i3 m=n

y+k—n+1{i>0}

+1{15k5n}z > Prlg=ilPtlb>y+k—(i— DT (12)

i=0

The explanation of the first equality in (12) is as follows. First, we condition on the number of cells in the
system at the end of the slot preceding the arrival slot of the first cell of the message, {§ = i}. Then we
condition on the number of cells that arrives before and after (including) the first cell of the message within
its arrival slot, {b® = m, b* = j}. The delay of the jth cell of the message that arrives in the first slot
equals (i — 1)™ +m + j. The first sum corresponds to the case where the delays of all cells of the message
that arrive at the first slot, j, do not exceed y. This happens if j < y — (i — 1)™ — m, and in order that
the delays of k cells out of the message of size n exceed y, the delays of k cells out of the next n — j cells
that arrive to the system after the beginning of the next slot at which there are (i — 1)™ +m + j — 1 cells,
must exceed y. If (y — (i — DT —m)T +1 < j <n—1, thenthedelaysof j — (y — (i — )T —m)T
cells of the message exceed y and the delays of k — [j — (y — (i — 1) —m)™] cells out of the next n — j
cells that arrive to the system after the beginning of the next slot at which there are (i — )T +m + j — 1
cells, must exceed y. Note that when (i — 1)™ + m >y, the delays of all the cells of the message that
arrive at the first slot, j, exceed y, and hence we used the (-)™ operator for the index j of the second sum.
The last sum accounts for the case where all the cells of the message arrived in the first slot. Then, in order

S, Nt el pemd mn

-
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that the delays of all the cells of the message be less or equal to y, the delay of the last cell of the message
(i — 1" 4+ m + n must not exceed y. For the case where the delays of k > 0 cells exceed y, we must have
that the delay of the n — kth cell of the message equals y, so that the delays of the remaining & cells exceed
y. The second equality in (12) follows from (1).

To complete the computation we need to compute the probabilities Py, 1 (y, k,y>1,1<l<n-1,0<
k <1, m > 0. To that end we introduce recurrence relations. Using a recursion at the slot boundaries of
consecutive slots, we have

y—m
Pni(y, k) =boPi_1y+ 1 (v, k) + Z bi Pyyi—1,1-i(y, k)
i=1
-1
+ > biPuyic1—ihk+ (—m)T =)
i=(y—m)*+1
+Prb>k=1— (@ -m)t}, m+1>y. (13)

The procedure for the computation of Py (y, k) from (12) and (13) proceeds as follows. For b < 1thetail
probability of the r.v. ¢ drops exponentially (see Section 4) and the first infinite sum in (12) can be approx-
imated by a finite sum with sufficiently large i*. The second infinite sum in (12) can also be approximated
by a finite sum with sufficiently large m*. Then we need to compute the probabilities P i(y, k). These
probabilities are computed recursively from (13) in the following order. For each !/, [ =1,2,...,n—1, in
increasing order, the probabilities Py, ;(y, k) are computed for eachm, m =0, 1, ..., i*+m*t4+n—-1-2,
in increasing order, and each k, 0 < k < [. Note from (13) that this order is indeed a recursion. The com-
putation complexity of this procedure is of the order of o™ + m*)n3 + n4). The probabilities Py, ;(y, k)
are then used in (12) to compute the probability distribution P,(y, k) with computation complexity of the
order of O(i*m™*n).

Using the independence assumption of the cell delays (see Section 4), the number of cells in a message
of size n whose delays exceed y is a 1.v., binomially distributed, with parameters n, Pr[d > y]. Thatis

PGk = (Z) (Prid > yDPr(d =y, 0<k=n. (14)
In Section 6 we compare the probability distributions Py (y, k) and P,ilIld (v, k).

5.1. Cell overload period

We conclude this section by introducing an additional important measure for real time sessions — the
number of consecutive cells whose delays exceed y, referred to as the cell overload period. Here we consider
a stream of cells with no message structure imposed on them and we study the distribution of the overload
period. Let U? be the r.v. of the length of the cell overload period, and denote by 1/”(z) its PGF. Let U ly
be the r.v. of the number of cells that arrive at the first slot of the overload period and whose delays exceed
v, and denote by uly (z) its PGF. Using the event equivalence {Uly =j} = {g+1=y+jq <yh
j = 1, we have Pr[Uly =jl= iy:o Prlg = i]by, -1+, J = 1. Note that, U7 equals a busy period
that starts with Uly and hence its PGF is U7 (z) = Uly (zU(z)) where U(z) = Bz (2)) (see, e.g., [20]).
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6. Numerical examples

Assume b; = ¢'p, i > 0, where qél —pand0 < p < 1. Then, b = ¢q/p and p > 0.5 for stable
system. The PGF of b is B(z) = p/(1 —gz) and from (3) we have Q(z) = (p — q)(z — 1)/(z(1 —qz7)—p).
From (4) we have D(z) = (1 — b)(z/(1 — bz)) from which we have Pr[d = i] = b (1 —b), i>1,and
Prld <il=1-5", i>1.

'6.1. Message delay

In order to compute the moments of the message delay we need to compute derivatives of the functions
fi(z), 0 <k <n—2atz=1.From the expression for F(z, w) we have

(p—q)z/(1 —q2)
1 —qw/(1—qz)

Fz,w) =
from which we have (by taking the inverse transform in the variable w)

(p —zlg/(1 — g1k
1—gqz

Je(@) = . k=0,

and

P ma d({"](Z) = —1)H(k+z)bk+] 1)1_[(k+ N AR

z=1 i=1 i=1

where an empty product equals 1 (for each &, fk(J ) (1) can be computed recursively in the parameter j).

Using the independence assumption of Section 3, the variance of the message delay is obtained from (8)
and (9). In Fig. 1 we plot the relative variance error of the message delay, defined as 100  [(approximated
variance)/(exact variance) —1] versus the message size n, for different values of b(b=0.5, 0.8, 0.9). For
all cases observe that the approximated variance of the message delay is much larger than the exact one.
Observe also that the approximation becomes worse for heavy loads in a wide range of message sizes. The
same observations were made in [13] for the M/M/1 and M/G/1 systems where the differences were up
to 75% for average load of 0.9.

6.2. Maximum cell delay

In this example the r.v.s. b2, bP are independent and Eq. (10) reduces to a double sum. In Fig. 2 we plot
the survivor function of the maximum cell delay as computed in Section 4 for message size n = 50 and
0.8 load. We also plot this function under the independence assumption on the cell delays (which yields an
upper bound on the maximum cell delay) and the lower bound as introduced in Section 4.

In Fig. 3 we plot the average of the maximum cell delay as a function of the message size n for 0.8
Joad. In the same figure we plot the natural logarithm of », and the average of the maximum cell delay
under the independence assumption. For this example the parameter o of the asymptotic analysis equals
—Ln(b) = 1/4.48142. The quantity « E[y[13*(n)]/Lnn approaches 1 as n becomes very large.
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Fig. 1. The relative variance error of the message delay versus the message size n.

6.3. Threshold constrained delay process

The probabilities of k cells in a message of size n whose delays exceed y, P,(y, k), are given in Table
1 for a system with message size n = 10 cells, threshold y = 20 cells and for different average loads
b = 0.7, 0.8, 0.9. For comparison purposes we also give in the table the same probability distribution
under the independence assumption P,ilIld (v, k).

Table 1 gives a clear indication that the independence assumption may yield overly optimistic results.
Furthermore, the probability distribution P,ilnd(y, k) decreases with k while P,(y, k) is convex with k and
sometimes increases with k as observed from the last rows of Table 1. This convexity is due to the positive
correlation between cell delays of consecutive cells as observed in Section 4 which implies high probability
in the last row of Table 1. For the time-out mechanism where a cell is lost whenever its delay exceeds a
threshold y, an interesting phenomenon can be noticed from the first row of Table 1. Correlation exists not
only for the cell loss process but also for the no-loss process. That is, with retransmissions at the message
level, the probability of message loss under the independence assumption is higher than the exact probability
of message loss, and hence we may not need to implement forward error correction scheme [24] in order
to achieve a pre-specified (low) message loss probability. The same phenomenon was observed in [12] for
a finite queueing system, and in {3] for moderate traffic. However, the results of [3] showed that forward
error correction can reduce the message loss probability for heavy and light traffic conditions. The results
of Table 1 demonstrate that for a threshold y = 20, even under modest utilization (0.8) there are more
messages (of length n = 10) that contain at least 2 losses due to time-out (3_y_, P, (y, k) = 1.639 x 1072)
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Fig. 2. Survivor function of the maximum cell delay in a message of size n = 50 for 0.8 load.

Table 1
Probability of & cells in a message of size n = 10 that their delays exceed y = 20
b=0.7 b=08 b=09

k Pu(y. k) Py, k) Py(y, k) Pd(y, k) Po(y. k) P(y, k)

0 9.983 x 107! 9.920 x 107! 9.809 x 1071 8.905 x 10! 8.435 x 107! 2.735 x 107!
1 3.690 x 1074 7.922 x 1073 2.708 x 1073 1.039 x 107! 1.089 x 1072 3.786 x 107!
2 2.470 x 10~ 2.847 x 1073 1.968 x 1073 5.452 x 1073 8.511 x 1073 2.358 x 10!
3 1.859 x 10~* 6.062 x 1078 1.593 x 1073 1.696 x 10~4 7.343 x 1073 8.703 x 1072
4 1.480 x 10~ 8.472 x 10~ 1.359 x 1073 3.461 x 106 6.654 x 103 2.108 x 102
5 1.221 x 10~* 8.118 x 10~ 1.200 x 1073 4.844 x 1078 6.229 x 1073 3.501 x 1073
6 1.035 x 10~ 5.402 x 10~V 1.089 x 1073 4708 x 10~10 5.995 x 103 4.038 x 1074
7 9.005 x 1073 2.465 x 10720 1.016 x 1073 3.138 x 10712 5.942 x 1073 3.193 x 107
8 8.090 x 103 7.382 x 10-%4 9.837 x 107 1.373 x 10714 6.141 x 1073 1.657 x 107
9 7.748 x 1073 1.310 x 10~ 1.026 x 1073 3.558 x 10717 6.901 x 1073 5.097 x 1078
10 2,760 x 1074 1.046 x 10731 6.169 x 1073 4,149 x 1020 9.192 x 1072 7.055 x 10~10

than there are messages with a single cell loss (P, (y, 1) = 2.708 x 10~3) where the rate of loss is only
around 0.012 (an average of 0.12 lost cells per message). This can significantly impact the performance of

smoothing and predictive playback algorithms.
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Fig. 3. Average of the maximum cell delay as a function of the message size » for 0.8 load.

7. Network model simulation

In this section we show by simulation that the general phenomena observed in Section 6 for the single
node system hold for a network environment as well. Here, we concentrate on a specific session (or, virtual
connection) and consider the nodes along its path from the source to the destination. In Fig. 4 we depict the
eight nodes tandem queueing system used in the simulation. For each node along its path we use the same
model of Section 2 and assume that slot boundaries at all nodes are synchronized. Session cells arrive at
the first node according to a Poisson process with rate A. Background cells from other sources arrive to
each node i according to Poisson process with rate ;. A background cell which completes service at node
i along the path proceeds to the next node in the path with probability p; or leaves the path with probability

'ﬁlél — p;i. This model captures the effect of interfering traffic from other sources in the network along
several hops in the path of the session. We used the Block Oriented Network Simulator (BONeS) Designer
of Comdisco Systems Inc.

In Table 2 we give the mean and the variance of the cell and the message delays as obtained from the
simulation. For each value of A we used 10 simulations with different seed generators and 10° sample
points for each simulation. The 95% confidence interval is 1 — 2% of the obtained values. For comparison
purposes we also give the variance of the message delay and the relative variance error (RVE) under the
independence assumption (see Section 3). We used a message of size 10, py = 0.5, A; = 0.9 — A,
pi = 0.5, A; =0.5(0.9 — A), 2 <i < 8 (the overall cell arrival rate to each node equals 0.9). For all
cases of A (A = 0.1, 0.45, 0.8) observe that the approximated variance of the message delay using the
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Fig. 4. An 8-node tandem queueing system.

Table 2
Cell and message delay moments for message of size 10 (p; = 0.5, 41 =0.9—-A, p; =0.5, 4; =0.5(09-4), 2 <i <8

A Cell delay Message delay

Mean Variance Mean Variance Approx. variance RVE
0.1 29 162 119 777 1062 36
0.45 24 134 44 119 179 49
0.8 16 67 28 59 81 36

Table 3
Probability of k cells in a message of size n = 10 whose delays exceed y = 20 for message of size 10 p; = 0.5, 1| = 0.1,
pi =05, 4 =005 2<i<8)

A=0.7 A=0.77

k P,(y, k) Pind(y, k) Py, k) Pind(y, k)

0 9,365 x 10! 7.399 x 107! 7.821 x 107! 2.257 x 107!
1 1.150 x 1072 2.262 x 1071 2.260 x 1072 3.623 x 107!
2 7.100 x 1073 3.113 x 1072 1.640 x 1072 2.616 x 107!
3 6.100 x 1073 2538 x 1073 1.390 x 1072 1.120 x 107!
4 5.300 x 1073 1.358 x 1074 1.230 x 1072 3.145 x 1072
5 3.900 x 1073 4,984 x 1076 1.140 x 1072 6.057 x 1073
6 3.800 x 103 1.270 x 1077 1.050 x 10~2 8.102 x 1074
7 3.300 x 1073 2219 x 107° 1.030 x 1072 7.430 x 107
8 3.400 x 1073 2.544 x 10711 1.060 x 1072 4.472 x 1079
9 3.500 x 1073 1.729 x 10~13 1.140 x 1072 1.595 x 1077
10 1.560 x 1072 5.286 x 10716 9.850 x 1072 2.560 x 107

independence assumption is significantly larger than the more realistic one (the same was observed for the
single node system in Section 6). The mean and the variance of the cell and the message delay decrease as
the session load A increases since the interference with background traffic is reduced.

In Fig. 5 we plot the average of the maximum cell delay as a function of the message size n for A = 0.7,
py =05, 41 =0.1, p; = 0.5, &; = 0.05, 2 < i < 8 (the overall cell arrival rate to each node equals
0.8). For each point in the graph we used 10% sample points. From Fig. 5 we note that the average of the
maximum cell delay is of the order of O(Ln n) similarly to the results of the single node system in Section 6.

The probabilities P, (y, k) of k cells in a message of size n whose delays exceed y are given in Table 3
for a system with message size n = 10 cells, threshold y = 20 cells, background traffic parameters

— e e
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Fig. 5. Average of the maximum cell delay as a function of the message size n for A = 0.7, p; = 0.5, }; = 0.1,

pi=05, 4 =005 2<i<8.

pi=05,1<i<8 A =01, 4 =005, 2<i <8, andfor A = 0.7, 0.77. For comparison purposes
we also give in the table the same probability distribution under the independence assumption

P,ilnd(y, k) = (Z) (Pr(cell delay > y])* Pr[cell delay < y])" %, 0<k<n,

where Pr[cell delay > y] = 0.02967, 0.1383 for A = 0.7, 0.77, respectively, as obtained from the
simulation. Assume that a cell is lost if its delay exceeds y. The same conclusions obtained from the
results of Table 1 for a single node system still hold for the tandem system. For the decoding scheme
proposed in [24], a lost cell can be recovered if and only if it is the only lost cell in its message. This is
done by adding one parity cell to every message of size n cells, which increases the cell arrival rate to
the system by a factor of 1/n. The average number of cells lost in a message after decoding is given by
ED = ZZI% kPy11(y. k), and the cell loss rate after decoding is given by ED/(n + 1). The cell loss
rates with and without this decoding scheme are computed from the simulation (with A = 0.7) and are
equal to 0.149 and 0.0345, respectively. That is, the increase in the loss probability due to increase in the
cell arrival rate, caused by adding the parity cell, supersedes the decrease in the loss probability due to the
correction scheme. The fact that forward error correction schemes becomes less efficient due to the bursty
nature of the cell loss process was first observed in [12,24] for a single node system with finite number of
buffers.
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Appendix A
A.l. Associated rv.s.
The notion of association, a type of positive dependence among r.v.s., was introduced in [15].

Definition A.1. We say thatr.v.s. 71, ..., T, are associated if
Cov[f(T), g(T)] = 0 (A.1)

for all nondecreasing functions f and g for which Ef(T), Eg(T), Ef(T)g(T) exist, where T4
(T1, ..., T).

A key property of association that makes it valuable in a variety of applications is the following: If
X1, ..., X, are associated, then

n n
Pr[ﬂ{xi < () ri}} > [[PrlX; < (=) ri] (A.2)
i=1 i=1
forall reals ry, ..., ry.

Association has the following properties proved in [15]:
(P1) Any subset of associated r.v.s. are associated.
(P2) If two sets of associated r.v.s. are independent of one another, then their union is a set of associated
L.v.s.
(P3) The set consisting of a single r.v. is associated.
(P4) Nondecreasing functions of associated r.v.s. are associated.

A.2. Asymptotic distribution of maximum of r.v.s.

The following theorem was proved in [21, Theorem 1.5.1].
Theorem A.2. Let (&} be ani.i.d. sequence. Denote by F(x)é Prl&) < x], and Mné max{&q, ..., &,}. Let
0 < 1 < o0 and suppose that {u,} is a sequence of real numbers such that
n(l — F(up)) > 1t asn — oo. (A.3)
Then
Pr(M, <u,] — e ' asn— oc. (A4)

Conversely, if (A.4) holds for some T, 0 < 1 < 00, then so does (A.3).

Appendix B

The behavior of the maximum delay of a cell in a message as the message size n increases is important for
the study of the behavior of playback algorithms. In the following we investigate the asymptotic behavior
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of the upper bound of the message delay. The asymptotic behavior of the r.v. y2*(n) is obtained using
Theorem A.2 described in Appendix A.

It was shown in [1] that under quite general conditions (semi-Markov queues where the underlying state
space is infinite and the utilization is less than 1), the tail probability Pr[d > r] of the delay time is of the
form ¢ e7*" where ¢, @ > 0 (—« is obtainable as the negative real root of a certain functional equation which
lies closest to the origin). Under the independence assumption, x;, 1 <i < n, are independent r.v.s. equal
in distribution to the r.v. d. Using Theorem A.2 with x;, Pr[d < x]and y;29*(n) replacing for &;, F(x) and
M, respectively, and u, = (¢ '—e)Ln(n) withe > 0 arbitrarily small, we have n Pr[d > u,] -5 00 o0
and from Theorem A.2 (with T = oo) we have Pr[y;"¢*(n)/Ln(n) > ol — €] .00 1. Similarly, for
up = (@~ 4+ €)Ln(n) we have Pr[y*(n)/Ln(n) < o~ + €] =, 00 1. Combining these two limits we
have Pr[|y3*(n)/Ln(n) — a1 > €] =, 00 0, which implies that Ying (n)/Ln(n) converges to o~ lin
probability. In Section 6 we give numerical example for the mean of the maximum cell delay and its upper
bound as a function of the message size n, and show that it approaches o~ !Lnn as n becomes large.

References

[1] R.G. Addie and M. Zukerman, An approximation for performance evaluation of stationary single server queues, in: Proc.
INFOCOM’93 (1993) 835-842.
[2] L.V. Ahlfors, Complex Analysis, 3rd ed. (McGraw-Hill, New York, 1979).
[3] E. Altman and A. Jean-Marie, The loss process of messages in an M/M/1/K queue, in: Proc. INFOCOM’94 (1994)
1191-1198.
[4] E. Altman and A. Jean-Marie, The distribution of delays of dispersed messages in an M/M/1 queue, in: Proc.
INFOCOM’95 (1995) 338-344.
[5] ATM Forum, ATM User-Network Interface (UNI) Specification, Version 3.1 (Prentice-Hall, Englewood Cliffs, NJ, 1995).
[6] D. Bertsekas and R. Gallager, Data Networks (Prentice-Hall, Englewood Cliffs, NJ, 1987).
[7] F. Baccelli, A.M. Makowski and A. Shwartz, The Fork-Join queue and related systems with synchronization constraints:
Stochastic ordering and computable bounds, Adv. in Appl. Probab.
[8] C.S. Chang, Stability, Queue length and delay of deterministic and stochastic queueing networks, IEEE Trans. Autom.
Control 39 (5) (1994) 913-931.
[9] J.-Y. Cochennec et al., Asynchronous time-division networks: Terminal synchronization for video and sound signals, in:
Proc. GLOBECOM'85 (1985) 791-794.
[10] J.W. Cohen, Single server queues with restricted accessibility, J. Engrg. Math. 3 (4) (1969).
[11] D. Comer, Internetworking with TCP/IF, Principles, Protocols, and Architectures (Prentice-Hall, Englewood Cliffs, NJ,
1988).
[12] I. Cidon, A. Khamisy and M. Sidi, Analysis of packet loss processes in high-speed networks, IEEFE Trans. Inform. Theory
39 (1) (J 1993) 98-108.
[13] I. Cidon, A. Khamisy and M. Sidi, On queueing delays of dispersed messages, Queueing Systems Theory Appl. 15 (1994)
325-346.
[14] B. Doshi and H. Heffes, Overload performance of several processor queueing disciplines for the M/M/1 queue, IEEE
Trans. Comm. 34 (6) (1986).
[15] J.D. Esary, E. Proschan and D.W. Walkup, Association of random variables, with applications, Ann. Math. Statist. 38
(1967) 1466-1474.
[16] B.V. Gnedenko and IN. Kovalenko, Fundamentals of Queueing Theory (Birkhauser, Boston, 1989).
[17] S. Halfin, Batch delays versus customer delays, Bell Sys. Tech. J. 62 (1983).
[18] P.A. Humblet, A. Bhargava and M.G. Hluchyj, Ballot theorems applied to the transient analysis of nD/D/1 queues,
I[EEE/ACM Trans. Networking 1 (1) (1993) 81-95.
[19] G. Karlsson and M. Vetterli, Packet video and its integration into network architecture, IEEE JSAC 7 (5) (1989) 739-751.
[20] L. Kleinrock, Queueing Systems, Vol. 1-2 (Wiley, New York, 1975).



104 L Cidon et al. / Performance Evaluation 29 (1997) 85-104

[211 M.R. Leadbetter, G. Lindgren and H. Rootzen, Extremes and Related Properties of Random Sequences and Processes
(Springer, Berlin, 1983).

[22] R. Nelson and A.N. Tantawi, Approximate analysis of fork/join synchronization in parallel queues, IEEE Trans. Comput.
C-37 (1988) 739-743.

[23] R. Rom and M. Sidi, Multiple Access Protocols; Performance and Analysis (Springer, Berlin, 1990).

[24] N. Shacham and P. Mckenney, Packet recovery in high-speed networks using coding and buffer management, in: Proc
INFOCOM’90 (1990) 124-131.

Israel Cidon received the B.Sc. (summa cum laude) and the D.Sc. degrees from the Technion —
Israel Institute of Technology in 1980 and 1984, respectively, both in electrical engineering. From
1984 to 1985 he was with the faculty of the Electrical Engineering Department at the Technion. In
1985 he joined the IBM T.J. Watson Research Center, NY, where he was a Research Staff Member
and the manager of the Network Architectures and Algorithms group involved in various broadband
networking projects such as the Paris/Planet Gigabit testbeds, the Metaring/Orbit Gigabit LAN and
the IBM BroadBand Networking architecture. In 1994 and 1995 he was with Sun Microsystems Labs
in Mountains View, CA, as manager of High-Speed Networking working in various ATM projects
including Openet — an open and efficient ATM network control platform. Since 1990 he is also with
the Department of Electrical Engineering at the Technion.

He is a founding editor of the IEEE/ACM Transactions on Networking. Previously he served as the Editor for Network
Algorithms for the IEEE Transactions on Communications and as a guest editor for Algorithmica. In 1989 and 1993 he received
the IBM Outstanding Innovation Award for his work on the PARIS high speed network and topology update algorithms
respectively.

His research interests are in high-speed wide and local area networks, distributed network algorithms, network performance
and mobile networks.

Asad Khamisy received the B.Sc. degree in computer engineering, the M.Sc. and the D.Sc. degrees
in electrical engineering from the Technion—Israel Institute of Technology in 1988, 1991 and 1994,
respectively. During the year 1994 he was a faculty member at the Electrical Engineering Department
at the Technion. Cuﬁently, he is with Sun Microsystems Labs at Mountain-View, CA. His research
interests include high-speed local and wide area networks, and performance analysis.

Moshe Sidi received the B.Sc., M.Sc. and the D.Sc. degrees from the Technion — Israel Institute of
Technology, Haifa, Israel, in 1975, 1979 and 1982, respectively, all in electrical engineering. In 1982
he joined the faculty of Electrical Engineering Department at the Technion. During the academic year
1983-1984 he was a Post-Doctoral Associate at the Electrical Engineering and Computer Science
Department at the Massachusetts Institute of Technology, Cambridge, MA. During 1986-1987 he was
a visiting scientist at IBM, Thomas J. Watson Research Center, Yorktown Heights, NY. He coauthors
the book “Multiple Access Protocols: Performance and Analysis,” Springer Verlag, 1990.

He served as the Editor for Communication Networks in the IEEE Transactions on Communica-
tions from 1989 until 1993, and as the Associate Editor for Communication Networks and Computer
Networks in the IEEE Transactions on Information Theory from 1991 until 1994. Currently he serves
as an Editor in the IEEE/ACM Transactions on Networking and as an Editor in the Wireless Journal.

His research interests are in wireless networks and multiple access protocols, traffic characterization and guaranteed grade
of service in high-speed networks, queueing modeling and performance evaluation of computer communication networks.




