
410 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-35, NO. 4. APRIL 1987 

Failsafe End-to-End  Protocols i n  Computer 
Networks  with  Changing  Topology 

ISRAEL CIDON AND RAPHAEL ROhl 

Absfrucf-End-to-end protocols in computer networks in which  the 
topology changes with time are investigated. A protocol that  delivers  all 
packets ordered, without duplication, and which uses a window, is 
presented. using .a precise model of the network correctness of the 
protocol is proven. Ttie use of the window for flow control is also 
addressed. 

I. INTRODUCTION 

E ND-TO-END  communication is clearly  the  object of any 
communication  network.  Naturally,  therefore,  end-to-end 

protocols  have  been  the  subject of research  for  a  long  time. 
While  many  protocols  achieve  their  goals  by  using  timeouts 
[l] ,  [2]. Finn, in an  original  paper [3], demonstrated  the 
existence  of  end-to-end  protocols  without  making  use of 
timeouts. 

Essentially,  a  failsafe  end-to-end  protocol  is  one  that  should 
deliver, all packets  in  the  correct order and  without duplica- 
tion. In  addition,  flow  control‘and  error  recovery  must  also  be 
addressed.  In  his  paper,  Finn  presented  a  ptotocol  which 
properly handlCd .ordering  and  duplication  avoidance in a 
network,in which  a  resynch procedure  operates. 

In  this  paper,  we  extend  that  protocol, to.  accommodate 
windows, i.e:, allow  mores  than  one packet to  be  in  transit 
between source.  and  destination  nodes,  allow  to  control  the 
flow,  and  hadale  erroneous  packets.  All  this is done  while 
using  bounded  counters. 

The  paper is structured in the  ,following  way.  We  first 
introduce  a  model  for  a  network  with  changing  topology,,  the 
concept of resynch  procedures,  and  the  assumptions  .underly- 
ing the operation  of  end-to-edd  protocols.  These  are  based on 
previous  work [4], [3]. A  windowed  end-to-end  protocol is 
then  presented  and  its  correctness  proven.  The  use  of  windows 
for flow, control  is  also  included, as is  the special case  of 
circuit-based  networks. 

11. THE MODEL 

We cobsider  a  network  composed  of  autonomous  processors 
referred to as nodes interconnected  by  bidirectional links. The 
processors  exchange  packetized  information  over  these  links. 
We  distinguish  between  two  types of networks-fixed  topol- 
ogy  networks  and  ‘changing  topology  networks.  A  detailed 
definition  of  the  model  of  such  networks is given  in 141, we 
give  here a. brief  summary  only. 

In,  a  fixed tppology  network all packets  sent  from  a  node to 
its  neighbor are assumed to  arrive  correctly  in  the  order  sent. 
and  within an  arbitrary,  but  finite,  delay.  Nodes  can  distin- 
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guish  among  packets  received on  different  links  and  process 
packets in the  order  of  arrival. 

The  major  difference  between  fixed  and  changing  topology 
networks  is  the  states  of  the  links.  In  a  changing  topology 
network  links  can  be  either active in  which case  packets  sent 
over it arrive  properly, or inactive in which case  packets do 
not arrive. Nodes do not  necessarily  know  the  state  of  the  link, 
but  rather  mark  it  as operative or inoperative according to 
whether  the  node  assumes  the  link to  be  active or inactive, 
respectively. It is  also  assumed  that  nodes  become  aware  of  a 
change in a  link  state  within a finite  time  of  the  change. 

We assume  that  a  communication  resynch  procedure  (CRP) 
operates in the  network.  A CRP is  a  mechanism  to  clean  the 
network  from all packets  that  entered  the  network  before  some 
topological change took  place.  The CRP described  here  is  a 
simplification  of the  resynch  procedure  defined in [3]. Every 
node  maintains  a  cycle  number  (CN)  that  identifies  the  most 
recent  resynch  cycle  in  which  the  node  participated.  Nodes 
increment  their CN when  they  bedome aware of a  topological 
change  ,in an  adjacent  link or when  special  messages origin,at- 
ing at  neighbors  whose CN is  higher are received.  Messages 
belonging to previous  cycles  are  not accepted. The  CRP 
assures  that  a  packet  making it. to the  destination  has  seen  the 
same  CN in all nodes it traversed. 

Our starting  point  is  the  end-to-end  protocol  presented  in 
[3]. This  protocol,  which  we  refer to as  the  ETE  protocol, 
proceeds  as  follows.  The  source  node i sends  sequenced  data 
packets P(i ,  j ,  h )  to  destination  node j (with n being the 
sequence  number),  and  the  destination  node j responds  with 
acknowledgments ACK(j, i, nj. Node i will not  send  the n + 
1st message until ,the  nth  message  has been  acknowledged in 
the  current  resynch  cycle. Each  recipient  immediately  ac- 
knowledges every  data  packet  received  as  well  as  sends  an 
ACK  after  every  resynch  cycle to indicate  the  last  data  packet 
received. 

Two  additional  assumptions must  be  made  with  regard ,to 
this  protocol.  First,  we  assume  that  nodes do not  fail  with 
complete  loss  of  memory-the  last  packet  sent  from  the  node 
must  be saved.  The  second  assumption  regards  routing.  We 
assume  that  a  packet  sent  from  node s towards  destination d 
traverses  the  route s = ko, k, ,  * . . , k,, in which  either k,, = d ,  
or the  packet  is  rejected  at k,,, or sent  from  it  over  an  inactive 
link.  This  means  that  the  packet  either  arrived  at its intended 
destination or is  lost  due  to  topological  changes.  No  other 
constraints are imposed  on  the  selection of nodes in the  route. 

III. A WINDOWED ETE PROTOCOL 

We  describe  here  a  failsafe end-to-end  protocol  which 
allows  more  than  one  packet to be  “in  the  pipe” between 
every  pair  of  communicating  nodes.  We  refer  to  this as the 
windowed  end-to-end  protocol  (W.ETE).  In  the  description 
that follows,  we  refer  to  a  single  pair of source ‘destination 
nodes. 

Let  us  assume that N packets are allowed  to  be ,on their  way 
at any  time. To maintain  fail  safety  we require both  the source 
and  the  destination  nodes  to  be  able  to  store N packets.  In  the 
source  this  buffer  is  required  because  following  a  topological 
change all these  packets  may  have  to  be  retransmitted.  In  the 
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destination it is  required  because  packets may arrive  unor- 
dered, but  have to  be  delivered in the correct  order.  Since 
more than  a  single  packet may be  in  transit, packets must carry 
a sequence  number. To maintain  a  finite field for thesg,G 
numbers,  cyclic  numbers  are used. 

We number the  buffer cells from 1 to N so that at the 
receiver  the  packet in cell number 1 is the next one to  be 
delivered,  whereas  at  the  sender cell number 1  contains  the 
earliest  unacknowledged packet.  Nodes maintain  cyclic 
counters to relate  messages to  cells.  The cyclical  counters are 
updated upon delivery of packets  at the receiver or receipt  of 
acknowledgments  at the  sender. 

In  a more  precise  way, let the  source and  destination  nodes 
maintain cyclical counters n, (mod N + 1) and nd (mod N + 
I ) ,  respectively. The  source s sends to destination d data 
packets of the  form P(s ,  d, n )  where n is  a  cyclical  sequence 
number (CSN).  The destination  responds with acknowledg- 
ment packets  of the  form  ACK(d, s, n ) .  

Data  packets  generated at the source  are put  into the buffer 
in the next available cell.  This packet is assigned  a CSN 
equaling n, O K and  sent  immediately  towards  the  destination 
( K  is the  cell number  into which  the  packet  is put, and 0 
refers to addition  mod N + 1). Upon  receipt of ACK(d, s, n )  
the source  marks the  packet in cell number n 8 n, as 
acknowledged. The packet in cell number 1 is now examined. 
Should it be marked as acknowledged,  it  is discarded, n, is 
incremented by 1, and all packets from  higher numbered  cells 
are advanced  one cell.  This is  repeated until the  packet in cell 
number 1 is unmarked. 

At the receiver, an arriving packet P(s,  d, n )  is deposited in 
cell  number n 8 nd and an  ACK(d, s, n )  is sent. Cell  number 
1  is now examined. Should  it be  full, its  contents  is  delivered, 
nd is  incremented by 1, and  all  packets in higher  numbered 
cells are advanced one  cell.  This process  is  repeated until cell 
number 1 is empty. 

To adapt the protocol to a changing  topology environment, 
we  make  use  of  the Cycle  Number  changes of the CRP 
operating in the network.  Every  time a CN is  incremented  the 
receiver discards all  the  packets in his  buffer  and  sends  an 
ACK(d, s, nd). The  sender waits for this  acknowledgment  and 
upon its arrival treats  it as  an ACK for all  packets in the nd 0 
n, lowest  cells  (note  that if n, = nd no  packet  is  actually 
acknowledged).  All  unacknowledged  packets are then  retrans- 
mitted. 

Note  that  the  protocol can  be  made slightly more efficient by 
using a  selective  repeat  retransmission scheme  rather than the 
go-back-N  scheme which  is used,  i.e.,  at the  beginning  of  a 
new cycle  the  receiver does not discard any packet and sends 
an  ACK carrying not just  the value of his  counter  but also an 
indicator ( N  bits  long) for all  packets in his buffer. The 
sender, of course, retransmits  only  the  unacknowledged 
packets. 

A.  Formal Specification 

to destination d 
Following are the  variables  at  the source node s with  respect 

MEM(n)  The buffer  that contains  for each n = 1, 2 ,  . . , 
N: DP(n)-a  place for a  data  packet and, 
AP(n)-a place for an  acknowledgment. 

n, A  cyclical counter (cyclically  points to  the bottom of 

ad A  Boolean  variable  indicating  receipt of an  ACK in the 
the  buffer) 

current resynch cycle. 

Variables at the  destination  node d with  respect  to source s: 

41 1 

Packets  sent  and  received: 

P(s, d, n)  A  data  packet  sent from  source node s to 
destination d carrying a  (cyclic) sequence 
number n .  

ACK(d, s, n )  An acknowledgment  packet  sent from 
destination  node d to  source s carrying a 
(cyclic)  sequence number n .  

In  addition,  we make use of the notation 

and assume that K is always  updated. 
The reading and writing from/to the  buffer  is handled by 

MEMPOP and MEMPUSH which are defined in the  following 
way: 

MEMPUSH(X, m )  D P ( m ) + P  or  AP(rn)+- 1 depending 
on whether X is a  data or acknowl- 
edgment packet, respectively. 

MEMPOP  For t: = 1 to N- 1 MEM(t)+MEM(t+ 1) 
MEM(N) +- 0 
n,+nsO1 

Algorithm for Source Node s: 

1 .a  MEMPUSH(P,K ) 
1.b send P(s,d,n,OK) 

2) event: A(d,s,n)  and aj=O 
2.a  MEMPUSH(A, nOn,) 
2.b  while  AP(1) = 1 MEMPOP 

3)  event: A(d,s,n) and ad= 1 
3.a for  t: = 1 to nOn, MEMPUSH(A,t) 
3.b while A P ( l ) =  1 MEMPOP 
3.c for t: = 1 to K send P(s,d,n,Ot)  from  DP(t) 

1 )  event: New packet P ,  ad= 0, and K I N  

3.d ad: = 0 
4) event Cycle  Number (CN)  changes: 

4.a for t: = 1 to  K AP(t):  = O  
4.b ad: = 1 

Algorithm for Destination Node d: 

1 .a  MEMPUSH(P,n8nd) 
1 .b send ACK(d,s,n) 
1.c while MEM(1)f 0 do MEMPOP 

2 )  event  Cycle  Number  (CN) changes: 
2.a for t: = 1 to  N MEM(t): = 0 
2.b send  ACK(d,s,nd) 

1) event: P(s,d,n) 

B. Correctness of the ETE Protocol 

To  prove  the  correctness of the  above protocol we  make  use 
of properties of the  CRP that  underlies  the  operation of the 
ETE  protocol.  Two  lemmas with regard to  the CRP  are 
quoted; their proof  follows  directly from lemmas  proved in [4] 
and will not be repeated here. 

Lemma 1: Given a  network  and  a  finite  sequence  of 
topological  changes  terminating at time t*. A finite  time after 
t*  for  every connected pair of  nodes k and j, = Rj (where 
Ri is  the CN of node i ) .  

Lemma 2: If a  packet  sent at  time t from node i along  the 
path i = io. i,, * . , i,, where in is the first node in which it is 
not accepted,  then  within  a  finite time o f t  i increments its CN. 

In  the  following lemmas we  assume  a WETE protocol  that 
operates  with  unbounded  sequence numbers rather  than with 
cyclic  numbers  and  an  infinite number of buffer cells  (meaning 
that  all  arithmetic  is regular and not done mod N + 1).  Three 
different numbers  are distinguished: 

MEM(n)  This is  the buffer that  contains for each n = 1, Sequence numbers (SN)-absolute, nondecreasing  num- 

nd A  cyclical counter (cyclically  points to  the bottom  of Cyclical  sequence numbers  (CSN) which were previously 
2 ,  * e ,  N a place  for a  data  packet. bers  for  ordering  data packets. 

the buffer). defined  and  which  obey CSN = SN mod N + 1 
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Cycle numbers (CN) which are  the numbers  associated 
with every  CRP  cycle. 

Lemma 3: For  every  CN no two identical  packets are sent. 
Proof: By the definition  of  the  protocol  the  sender  does not 

send  any  packet more than once  for any  given CRP  cycle, and 
since every packet  receives  a  different SN they are all 
distinguishable. 

The  same applies  to  the  receiver  since  acknowledgments are 
sent  only once  for each  received  packet  and are distinguishable 
by their  SN.  The first  acknowledgment  sent carries  an SN for  a 
packet  that will not be resent  and therefore will not be 
reacknowledged. The  CRP property assures that packets of the 
wrong  CN  are rejected. 0 

Lemma 4: Let Ad be the  (noncyclic)  counter  at  the 
destination. For  every packet P(s, d, A )  

A d + N L A > A d  

Proof: Since  the  receiver never  acknowledged  packets 
number Ad + 1 ,  by the  rules of the  protocol  the sender could 
not have sent  any  packet  whose SN is greater than Ad + N. 

It remains to  be  shown that  no  packet  can arrive in the 
current  cycle with an SN  less then or  equal  to Ad. Assume Ad 
2 A, meaning  that  packet P(s,  d, A )  has  been  previously 
delivered-either with the  current  CRP  cycle  or in a  previous 
one.  The  first  case  contradicts  Lemma 3 :  The second  case 
implies  that at  the beginning  of  the current cycle Ad 2 A, 
implying  that in the current  CRP  cycle all  data  packets carry 
SN’s greater than A, contradicting  our assumption. 0 

Lemma 5: Let A, be the  (noncyclic) counter at  the source. 
For  every  arriving  acknowledgment  ACK(d, s, A )  

A , + N 1 A 2 A s  

Proof: Clearly, A 5 As + N since  no  more than N packets 
may be sent  without  being acknowledged. 

Assume A < A, and  consider  the  data packet .P(s, d, A ) .  If 
this  packet  was  sent in the  current  CRP  cycle, it  was  already 
acknowledged in contradiction to Lemma 3.  

Consider  the  case in which P(s, d, A )  was not  sent in the 
current  CRP  cycle.  Two subcases  must be treated  depending 
on whether this is or is  not the  first ACK  received in  the 
current  cycle.  The  first  subcase means  that  the  ACK comes in 
response to a data packet P(s, d, A )  which  contradicts  the 
assumption. The  second  subcase means  that  the  receiver has 
previously acknowledged all packets up  to As which  implies A 

Lemma 6: If a  packet P(s,  d, A )  arrives  at the  destination at 
which time its counter is Ad then  all  packets  with SN between 
Ad and A have been  transmitted in the current  CRP  cycle. 

Proof: At the  beginning of the cycle an  ACK(s, d, m )  with 
m 5 Ad has  been  received at the source.  The lemma  holds 
since the source sent  all the packets in their sequential order 
starting at m .  0 

Theorem l:, Given a network with a finite sequence of 
topological changes in which  a CRP  operates. Let  the WETE 
protocol operate in conjunction  with the  CRP.  Under these 
conditions  all  packets are  delivered, in the  correct  order, and 
without  duplicates. 

Proof: Lemmas 4 and 5 prove the  equivalence  between 
regular and modulo N + 1 arithmetic. 

We  prove  the rest by induction on the CRP cycles and on  the 
sequence numbers within every  cycle.  Lemma 1 assures that 
for  every packet  that  is not accepted  a  new CRP  cycle is  started 
causing an ACK to  be sent  which  when arriving at  the source 
causes  all as yet  undelivered  packets to  be retransmitted. By 
Lemma 2 ,  when the sequence of changes  terminates, these 
packets will be  accepted. 

Lemma 6 means  that  a  packet  that arrives is  eventually 

> A,. 0 

delivered. Lemma 4 assures of no  duplicates  (due to the strict 
inequality there). 

Since  packets are  delivered  to the user only from cell 
number 1 they are delivered in the correct  order. 0 

C. A WETE with FIFO Routing 
The  WETE presented  and  proven in the  previous  section 

applies to  an environment  with  general  routing  mechanisms. 
In many cases  knowledge  about the actual  routing may result 
in processing  and  memory savings.  We  take  as example FIFO 
routing  which is typical of circuit-switched  networks as well as 
virtual  circuit-switching networks. 

We refer to  FIFO routing as a  routing  mechanism  that 
assures,  for  every pair of nodes s and d and within  a  single 
CRP  cycle, that: 

1) The routing  property  (see  Section 11) is obeyed. 
2 )  Packets are not accepted out of order,  i.e., if two packets 

accepted at times td, < td, they  had been  sent at times t,, C t,,. 
3 )  If a  packet  sent  at time t in a  given CRP  cycle is  not 

accepted,  then  no  packets  sent after t will be accepted at that 
cycle. 

Within  a FIFO routing environment the WETE  can  be 
implemented in a  simplified way.  At the receiver, all  packets 
are immediately delivered,  the  counter nd is incremented, but 
the  ACK  sent does not carry a CSN. A  special  ACK  that does 
carry a CSN (equaling nd) is sent only whenever  the  CN is 
incremented. 

At the source, receipt of an  unnumbered  ACK  causes 
discarding  of the packet in cell number 1 and  incrementing n,. 
Receipt  of  a  numbered  acknowledgment ACK(d, s, n) causes 
deletion of the n 8 n, first  packets  and  retransmission of the 
rest in sequential order. 

The saving  is  manifested in the lack of buffer at the 
receiver,  shorter  packets,  simpler  computation, and simpler 
memory structure  (the  buffer  at the source is  a regular  FIFO 
buffer). 

Furthermore, if the  network provides virtual circuit routing 
then it is possible to replace  the  global CRP by an  appropriate 
route  set-upltake-down procedure.  The  properties  required of 
such  a procedure  are: 1) in the absence of topological changes 
route  set-up always  succeeds, 2)  if a link  belonging to a route 
fails, then  within  finite time  the  end nodes are notified and  the 
circuit  is  taken down and considered  canceled, 3 )  following  a 
circuit  cancellation  a  new circuit is  established,  and 4) no 
packets  sent in the  past over a currently canceled circuit may 
ever be received by a  node after it has  been notified of the 
cancellation. 

Given  such a  routing mechanism, the  nodes  execute  the 
same  ETE  algorithm  interpreting a circuit  setup  as a CN 
change.  No messages  should be sent  between the cancellation 
of a circuit and the establishment  of its replacement.  An 
example  of  a route management procedure that  fulfills the 
above is  given in [5] .  

D. Dynamic Flow Control 
The  WETE protocol  uses  a  fixed  window of size N. In this 

section,  we suggest several ways in which  the  receiver can 
effectively change  the window size based on the  congestion 
measured  at  the receiver. 

The problem  with changing the  window size is  maintaining 
the  accountability  of  all the messages underway.  Thus, a 
simple way is to fix the window size  at the  beginning  of  a CRP 
cycle when no packets are in transit. To allow  window size 
changes  within  a cycle (which  is  typically  a long period) one 
can artificially  initiate  a CRP  cycle  whenever the  window 
needs to  be  changed. In these  solutions,  large inefficiencies 
and  waste are introduced since they  involve  discarding  packets 
which would  have  been accepted. 

An improvement along these  lines is to  use a  selective 
resynch  mechanism  which works exactly  like  the regular  CRP 
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operating  in  the  network,  except  that it causes  discarding  only 
packets  belonging  to  the  specified  pair.  The  selective 
resynch is initiated  only  when  the  window  needs to be  changed 
and  a  topological  change does not occur.  When a  topological 
change  does  occur,  a  regular  (global) CRP is perform’ed 
superseding  the  selective  resynchs. As a  result,  the  selective 
resynch  always  operates  within  the same global CRP cycle  and 
therefore  needs no internal  cycle  numbers. 

The main  drawback of the  selective  resynch is the  fact  that 
its  messages  flood  the  network. To have  only  the  effected 
endpoints  involved  the  receiver  can  withhold  the ACK’s until 
it is  certain  that no data  packets  are in  transit  (i.e.,  when  a 
windowful of packets  have  not  been  acknowledged)  and  then 
send  a  special  window  changing  packet. 

A yet more flexible  scheme  can be  devised  using  a  window 
of size N - W by  withholding  the W most  recent A C K ’ s .  
ACK(d, s, n) is  sent  only  when  packet P(s, d, n 0 W )  is 
accepted.  This  achieves our  goal  because when P(s, d, n 0 
W )  is in transit P(s, d, n) is as yet  unacknowledged so there 
can  be  at  most N - W under  way. In this case no special 
coordination is required  between  the  sender  and  the receiver- 
all is managed by the  receiver  alone.  This  scheme  allows  the 
freeing of W cells  from  the  buffer,  window  size may be 
decreased  to  zero  (i.e., W = N), and  increased  to  any  size  up 
to N at  any  time.  Note, however, that the last W packets  must 
be  identified in order  to be  acknowledged  and  avoid  dead- 
locks.  Note  also  that  the  sender  must  always  keep  the W 
unacknowledged  packets  in case a new cycle  starts  when  they 
are  retransmitted. 
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