132 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-33, NO. 1, JANUARY, 1987

Erasures and Noise in Splitting Multiple
Access Algorithms

ISRAEL CIDON, MEMBER, IEEE, AND MOSHE SIDI, MEMBER, IEEE

Abstract— A system with many nodes accessing a common receiver is
considered. The forward channel is a time-slotted collision-type common
radio channel. Due to a nonreliable forward channel, the receiver may
misinterpret the actual event of a slot. For instance, an idle or a success
slot can be interpreted as a conflict and a conflict or a success slot can be
interpreted as 2n idle slot. The former kind of error is called a noise error,
while the latter is called an erasure. Splitting multiple-access algorithms
are introduced that can handle erasures as well as noise errors. A remark-
able feature of the algorithms is that they ensure that, under stable
operation, all packets are eventually successfully transmitted, including the
erased packets (those packets that were involved in an erasure). The
property that is exploited in devising these algorithms is that nodes whose
packets were erased can detect that situation as they transmit and acknow!-
edge that the slot was idie. Consequently, they can either retransmit
immediately or wait until some agreed point in time (such as the end of a
collision resolution interval) and then transmit. The performances of the
proposed algorithms are evaluated according to the maximal throughput
they can support for Poisson arrival process. The performance degradation
due to erasures and noise errors is quantified.

1. INTRODUCTION

PLITTING multiple-access algorithms have been re-
Sceiving increased attention during recent years. These
algorithms are devised for coordinating the access of many
nodes to a common receiver. The common assumptions
made in studies of splitting multiple-access algorithms are
that the forward channel (the channel used by nodes for
transmitting information to the common receiver) is a
time-slotted collision-type common channel and that each
node can transmit one packet at a time at the beginning of
a slot. The packet duration is exactly one slot.

The various splitting multiple-access algorithms differ in
the assumptions made for the acknowledgment channel
(the channel that is used by the common receiver to inform
all nodes on the outcome of a slot). The most common
assumption is that the receiver is able to -distinguish be-

Manuscript received February 7, 1985; revised September 9, 1985. This
paper was presented in part at the 1985 IEEE Symposium on Information
Theory, Brighton, England, June 1985, and at the IEEE Global Telecom-
munications Conference (GLOBECOM ’85), New Orleans, LA, Decem-
ber 1985.

L. Cidon is with the IBM, Thomas J. Watson Research Center, York-
town Heights, NY 10598, on leave from the Department of Electrical
Engineering, Technion—Israel Institute of Technology, Haifa 32000,
Israel.

M. Sidi was with the Department of Electrical Engineering, Technion
—Isracl Institute of Technology, Haifa 32000, Israel. He is now on leave
with IBM, Thomas I. Watson Research Center, Yorktown Heights, NY
10598, USA.

IEEE Log Number 8610197,

tween three different events: idle slor (no node is transmit-
ting), success slot (exactly one node uses the channel), and
conflict slot (two or more packets are transmitted and none
is correctly received). This is known as the ternary feed-
back model. Other assumptions have also been investi-
gated. For example, the binary feedback model [6], the
assumption that the receiver is able to detect the multiplic-
ity of a conflict [4], [8], the existence of the capture effect
[2], [12], etc.

In most of the studies it is assumed that the forward
channel is error-free and that the receiver is able to dif-
ferentiate the exact event occurring during a slot. However,
this assumption of error-free discrimination does not al-
ways correspond to reality. Therefore, it is of interest to
consider a system in which various errors may occur on the
forward channel [13). Due to such errors the receiver is
prone to misinterpretations of the actual outcomes of slots.
In principle, any kind of misinterpretation is possible.
However, in practice, we expect that each transmitted
packet would be encoded with a sufficiently powerful
error-detecting code, so that it is very unlikely that an idle
slot would be interpreted as a packet.

The kind of errors that we expect to find in practical
systems may be classified as either 1) erasures, 2) noise
errors, or 3) captures. Interpretations of a conflict or a
success slot as an idle slot belong to the class of erasures.
The reasons for erasures in practical systems are that
mobile users (nodes) may occasionally be hidden (for
example, because of physical obstacles) from the receiver,
or because of fading problems. Interpretations of an idle
or a success slot as a conflict slot belong to the class of
noise errors. Such errors are mainly due to additive noises
that are intrinsic in any physical radio channel. Captures
occur whenever two or more nodes are transmitting and
the receiver captures one of them, namely, a conflict is
interpreted as a success. The reasons for captures are
similar to those of erasures. Note that all other packets
involved in the conflict, except the single captured packet,
are erased.

Splitting multiple-access algorithms that handle noise
errors were presented in [5] and in [8]. In [5] the proposed
algorithm is based on the tree collision-resolution al-
gorithm (CRA) [1], [9], while that in [8] is based on
Gallager’s 0.487 algorithm [3]. Erasures are a lot more
difficult to handle, and this is the main issue of this paper.

0018-9448 /87 /0100-0132$01.00 ©1987 IEEE



CIDON AND SIDI: SPLITTING MULTIPLE ACCESS ALGORITHMS

The effect of captures has been studied in [2], [11], and
[12]. We should note that in [11] erased packets (those
packets that are involved in a capture, besides the captured
packet itself) are always /lost.

In this paper we study the effect of erasures and noise
errors on splitting multiple-access algorithms. Specifically,
we introduce splitting multiple-access algorithms that can
handle erasures as well as noise errors. A remarkable
feature of our algorithms is that they ensure that all
packets are eventually successfully transmitted. including
the erased packets, whenever the arrival rate of new packets
to the system is less than the maximal throughput that the
algorithms can support.

The paper is organized as follows. In Section II we
describe the exact model that we use and its basic assump-
tions. Section 111 starts with the description of two split-
ting multiple-access algorithms based on the basic tree
CRA [1]. with the necessary modifications needed for
handling erasures and noise errors. The two algorithms
differ in the actions taken by nodes whose packets were
erased. Obviously, nodes whose packets were erased can
detect that situation as they transmitted and were
acknowledged that the slot was idle. Consequently, they
can either retransmit immediately or wait until some agreed
point in time (such as the end of a collision resolution
interval that is globally known) has been reached and then
retransmit. In Section III-A the two algorithms are
analyzed. Their performances are evaluated according to
the maximal throughput they can support for various error
patterns. We discuss the results in Section I1I-B. Section
IV contains the description of two versions of a splitting
multiple-access algorithm based on Gallager’s algorithm
[3]. To facilitate the presentation, we present only
algorithms that can handle erasures. It is worthwhile to
mention that in Gallager's original algorithm a deadlock
might be formed if erased packets are lost. Section IV-A
contains the analysis of the two versions of the algorithm,
and in Section IV-B we discuss the results. Finally, in
Section V we summarize the paper and indicate several
directions for future research.

II. MoDEL DESCRIPTION

Consider a system with many (effectively infinite) nodes
accessing a common receiver. The forward channel (from
the nodes to the receiver) is assumed to be a time-slotted
collision-type common radio channel. Each node can
transmit one packet at a time whose duration is exactly
one slot.

Three events are possible in each slot: idle slot (no node
is transmitting during the slot), success slot (exactly one
node uses the channel), or conflict slot (two or more nodes
use the channel. but none of the individual transmitted
packets can be reconstructed at the receiver, and they all
have to be retransmitted at some later time). The number
of packets involved in a conflict is called the conflict
multiplicity. For uniformity we assume that an idle slot has

133

conflict multiplicity zero, while a success slot has conflict
multiplicity one.

At the end of each slot, the common receiver decides
whether the slot was an idle, a success, or a conflict and
broadcasts that information (LACK, ACK, or 1'ACK,
respectively) via an error-free feedback channel to all
nodes, instantancously. Due to a nonreliable forward
channel, the receiver may misinterpret the actual outcome
of a slot. Specifically, an idle or a success slot can be
interpreted as a conflict. These are called noise errors, and
their respective probabilities are denoted by m, ~ and m -
Likewise, a conflict or a success slot can be interpreted as
an idle slot. As the possibility of such an event might
depend on the conflict multiplicity, we denote by 7, (7 = 1)
the probability of misinterpreting a conflict of multiplicity
i as an idle slot. The latter misinterpretations are called
erasures. We assume that noise errors are the dominant
event, namely, if exactly one hidden node is transmitting
but the receiver hears some noise, it will broadcast NACK.
In addition, it is assumed that noise errors and erasures are
probabilistically independent.

To summarize, if no node is transmitting, the receiver
will broadcast LACK or NACK with probabilities 1 — m;
and 7, ., respectively. If exactly one node transmits, the
receiver will broadcast LACK, ACK, or NACK with prob-
abilities (1 — 7, )7y o (1 = 7 N1 — m ). and 7 ¢, re-
spectively. Finally, if / > 2 nodes transmit, then the re-
ceiver will broadcast LACK or NACK with probabilities
7o and 1 —m_g, respectively. Other assumptions upon
the dominant events are possible, and we discuss this issue
in Section V.

One should observe that with this model, though the
receiver broadcasts the same information to all nodes, it
may happen that different nodes will have different knowl-
edge about what really happened during a particular slot.
To see that, assume that some nodes have transmitted a
packet in a certain slot and were acknowledged by a
LACK. Obviously, these nodes are aware of the error
made by the receiver, however, no other node in the system
is. Subsequently, those nodes whose packets were “erased”
are said to belong to an erased set until they retransmit the
erased packets. In devising multiple-access algorithms, one
can take advantage of the extra information available to
erased set nodes. We may note here that in {11}, erased set
nodes never transmit their packets successfully.

I1II. TREE-SPLITTING ALGORITHMS IN THE
PRESENCE OF NOISE ERRORS AND ERASURES

In this section we introduce multiple-access algorithms
for channels with noise errors and erasures. The algorithms
of this section are based on the tree CRA {1}, [5]. If the
channel were free of noise errors and erasures, then the
tree CRA is as follows. After a collision, all nodes involved
flip a binary coin; those flipping zero retransmit in the
very next slot: those flipping one retransmit immediately
after the collision (if any) among those flipping zero has



134 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-33, NO. 1, JANUARY. 1987

been resolved. No new packets may be transmitted until
after the initial collision is resolved [5]. It is said that a
conflict is resolved precisely when all nodes of the system
become aware that all initially colliding packets have been
successfully retransmitted. The time elapsed from an initial
conflict until it is resolved is called the conflict-resolution
interval (CRI). In [5] Massey described a very simple
algorithm that can be distributively implemented by the
nodes of the system so that each node will know when to
transmit and when a CRI ends.

As was pointed out in [5], the presence of noise errors
would not require any changes in the tree CRA. However,
if erasures occur, the problem that we face is to determine
what actions should be taken by nodes that transmitted a
packet and were acknowledged by a LACK. Remember
that only these nodes know that the receiver made an
error. All other nodes continue the basic tree CRA without
any changes, as they are not able to distinguish a real
LACK. from an erasure.

One plausible scheme that can be used by nodes that
Join the erased set is the PERSIST scheme. In this scheme,
whenever a node detects that its packet was erased, it
retransmits the erased packet in the next slot. Another
plausible scheme that can be used by these nodes is called
the WAIT scheme. Here nodes that join the erased set
during a CRI wait until that CRI ends and then retransmit
the erased packets at the first slot of the next CRI. The
points in time in which a CRI ends with the WAIT scheme
are identical to those points in the basic tree CRA where
erasures are perceived as idle slots.

So far we have not addressed the issue of first-time
transmission rule, namely, which packets are transmitted
for the first time at the beginning of a CRI. In [1] it was
suggested that packets that arrive during a CRI will be
transmitted at the beginning of the next CRI. This scheme
is not very efficient (its maximal throughput is only 0.346)
and is also difficult to analyze, as statistical dependencies
exist between the CRI’s. An alternate approach, that is the
one we adopt in this paper, is to “decouple” transmission
times from arrival times [3], [5]. To describe that approach
we define an arrival epoch of length A. The ith arrival
epoch is the time interval (iA, iA + A]. The rule that is
used to transmit a new packet that arrived during the ith
arrival epoch in the first utilizable slot following the CRI
for new packets that arrived during the i — 1 arrival epoch
[5]. A is a fixed-length epoch adjusted to maximize the
achievable throughput.

Note that in addition to packets that are transmitted for
the first time at the beginning of a CRI (according to the
foregoing rule) some residual packets are transmitted too.
For the PERSIST scheme and the WAIT scheme the
residual packets are those packets that join the erased set
during the last slot and during all slots of the previous
CRI, respectively.

In the following section we present the analysis of the
WAIT and the PERSIST schemes. Before doing so, we
mention that the algorithms can be trivially modified to

allow for lost packets as in [11]. This is done by never
retransmitting packets from the erased set.

A. Analysis of the WAIT and the PERSIST Schemes

In this section we analyze the performance of the WAIT
and the PERSIST schemes. To facilitate the presentation,
we first analyze the performance of the schemes without
noise errors (i.e, m, - =m ~=0). At the end of the
section we indicate the modifications needed in the analy-
sis to incorporate noise errors as well.

To analyze the performance of the two schemes we first
have to characterize the evolution of the CRI’s. To that
end, the following definitions and notations will be used.

1) Packets that are transmitted for the first time at the
beginning of the ith CRI are called “ith new packets.”

2) Let { A4,, i = 1} be a sequence of independently iden-
tically distributed (i.i.d.) random variables that represent
the number of the ith new packets. Let their probability
mass function be denoted by P,(m), i.e., Pr{4,=m) =
Pym),m=>0,i>1, and their expectation be E[A]=
2 _omP(m).

3) Packets that belong to the erased set at the end of the
ith CRI are called “ith residual packets.” Note that the
ith residual packets are transmitted at the beginning of the
i+ 1CRL

4) Let {Y,,i> 0} be a sequence of random variables
that represent the number of the ith residual packets
(Y, =0).

5) Let { X,,i > 0} be a sequence of random variables
that represent the foral number of packets transmitted at
the beginning of the ith CRI. Note that X, is the conflict
multiplicity of the first slot of the ith CRL

From these definitions it is clear that

X=A,+Y_,, i=1,2--. (1)

It is also clear that the sequence of random variables
Yy, Y1, Y,, -+ forms a homogeneous discrete-time dis-
crete-state Markov chain. Let the transition probabilities
of this chain be denoted by p(n,/n,), i.e., ‘

p(n2/nl)=Pr{Yi=n2/Yi—l=nl}' (2)
Using (1), we notice that

o0

P(nz/’h): Z Pr{Y/=”2/Y1~1=”1’Ai=m}PA(m)
m=0

= 3 P (Y= ny/X =yt m)Pm). (3)
m=0

In (3) we use the fact that new and residual packets are
treated identically according to the tree algorithm.

Observe that to compute the transition probabilities
p(n,/n), we first need to compute

P(l)=Pr{Y,=I/X,=n). (4)

It is worthwhile to note that the quantities P (/) are
independent of the distribution of new packets.



CIDON AND SIDI: SPLITTING MULTIPLE ACCESS ALGORITHMS

Obviously, P,(/)=0for/>nand ! <0as the number
of residual packets of a CRI cannot be negative, nor can it
exceed the total number of packets transmitted at the
beginning of that CRI. To continue the computation of
P()forn=00</<n we first need the following. Let
Q,(n) be the probability that i of n nodes will flip zero,
ie., Q,(n)= ('I')p’(l — p)"~' where p is the probability
that a node will flip zero. Then we have for the WAIT
scheme (similar expressions for the PERSIST scheme are
provided in (11)):

P()(O) =1 P0)=1—-m, Pl(l) =T0 (5a)

" !
Py = (=m0 L 0n) ¥ P(K)P, (I = K),
k=0

i=0

0<l<n—-1,n22 (5b)
Pn(”) =q,0t (- Wn,()) Z Qf(”)
i=0
Y P(k)P,_(n—k), n=2 (5¢)

A=0

Equation (5a) is self-explanatory. The reason for (5b) is
that, to have [ residual packets (/ <n) in a CRI that
started with » transmitted packets, we must have the
following. 1) The n packets were not erased in the first slot
of the CRI. 2) After the nodes were split into i nodes and
n — i nodes according to the distribution Q,(n), the sum
of residual packets from the set of i nodes and the set of
n — i nodes should equal /. The reason for (5¢) is similar
to that of (5b) except that now n packets can be erased in
the first slot of the CRI. This occurs with probability 7, .

From (5) the probabilities P,(/), n = 0,1.2,- L0<l<
n. can be computed recursively. Therefore, via (3) the
transition probabilities of the chain {Y,, /> 0} can be
computed.

The Markov chain {Y,,i >0} is a recurrent and
aperiodic chain. In the Appendix we provide sufficient
conditions for this chain to be ergodic when the WAIT
scheme is applied. Similar conditions can be derived for
the PERSIST scheme. Under these conditions, the steady-
state probabilities Py (i), i = 0.1,2,-- -, of the chain exist,
and they are obtained via

Po(i) = X Py()pi/i),

i=0

S po(i) = 1.

i=0

i=0

(6a)

(6b)

In addition to the steady-state probabilities Py (i), i =
0.1.2,---, two other quantities play an important role in
evaluating the efficiency of the proposed algorithms. The
first is the average number of packets that are successfully
transmitted during a CRI that starts with m new packets
and k residual packets (of the previous CRI). Let this
quantity be denoted by M, ,. The second is the average
length (in slots) of that CRI which is denoted by L,

135

Clearly, if a CRI starts with m new packets and k
residual packets and ends with / residual packets, then the
number of successfully transmitted packets is m + k — L
Consequently,

m-+k
M, =m+k= L 1Pu0. (O
=1
We now observe that, when the steady-state probabilities
Py(k), k= 0,1,2, - -, exist (Le., the Markov chain {Y,, i
> 0} is ergodic), the average number of successful trans-
missions in a CRIis given by Y% _ X% M, P (m)Py (k)
which after simple manipulations using (7) reduces to
E[A). This shows that the ergodicity of the chain {Y,,i >
0} implies that all packets are eventually successfully
transmitted, including the erased packets.

In our tree algorithms the average length of a CRI does
not depend on m and k individually, but rather on their
sum. Consequently, if n=m + k, then L, , = L=
L, and we have for the WAIT scheme (similar expressions
for the PERSIST scheme are provided in (12)):

Ly=1L, =1 (8a)
Ln=1 + (l _er.O)ZQl(”)(Li+ervi)* ”22'
i=0
(8b)

From (8) the quantities L,,n >0, can be computed
recursively. Taking a law-of-large numbers viewpoint, it is
easy to see that the ratio of the expected number of
successfully transmitted packets per CRI to the expected
length (in slots) of a CRI is just the maximum output rate
(throughput) possible with the algorithm. Therefore,

S Y M, Py(m)Py(K)

m=0 k=0

i i Lm,kPA(rn)P)'(k)

m=0 k=0

T =

E[4]
= Tx = . (9)
Z Z Lm.kPA(m)PY(/\')

m=0A=0

To continue, we need to specify the probability distribu-
tion of the arrival process of packets to the system. In the
following we assume that packets arrive to the system
according to a Poisson process with rate A(packets/slot).
Each time a CRI is started, a new epoch of length A (in
slots) is chosen, so that

(AA) e M2

P,(m) = o

(10)
namely, those packets that arrived during the epoch A are
transmitted at the first slot of the CRI. When the CRI
ends. the consecutive epoch of length A is chosen, etc.

If A < T. then the system would be stable. We notice
that the throughput T depends on both the epoch length A
and on the coin-flipping probability p. These two parame-



136 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-33, NO. 1, JANUARY, 1987

ters can be optimized so that the throughput would be
maximized. The procedure that is used is as follows. We
first maximize T over the parameters p = AA and p. Let
p* and p* be the optimal parameters and T * the maxi-
mal throughput. Then for each A < T* A* = p* /X is
used.

PERSIST Scheme: The analysis of the PERSIST scheme
is identical to that already presented except that other
recursive relations should be used for computing the quan-
tities P,(/), n 20,0 </ <n, and L,, n > 0. Specifically,
for the PERSIST scheme (5) is replaced by

PO(O) =1 P(0)=1- T o Pl(l) =0 (lla)
P) = 70+ (1= 7,0) & Q,(m)P.(1) P (n),

- n>2 (11b)
B = (1 - w,,,o)’_;Q,-(n)éop,(kmw(/),

0</<n-1,n=2. (11c¢)

Equation (11a) is identical to (5a) and is self-explanatory.
The reason for (11b) is that for a CRI to start with n > 2
packets and end with n residual packets, we need that
either the n packets are erased at the beginning of the CRI
(this occurs with probability 7, ), or else (with probability
1 — =, 4) a collision occurs, resulting in splitting the collid-
ing nodes into the set of i and n — i nodes. When the CRI
of the i nodes ends, all of them must belong to the erased
set, so they retransmit with the n — i nodes, resulting in a
CRI starting again with » packets, and all these packets
must belong to the erased set when this CRI ends.

The explanation for (11c) is similar. Here a CRI starts
with n > 2 packets and ends with 0 </ < n — 1 residual
packets. Therefore, the first slot of the CRI must be a
conflict slot. Then the nodes are split into sets of i and
n — i nodes. When the CRI of the i nodes ends, any
number 0 < k </ of nodes may belong to the erased set.
Consequently, the second CRI starts with n— i+ k
packets, from which exactly / should belong to the erased
set at the end.

Note that P,(/),n > 0,0 </ < n can be computed re-
cursively via (11a)~(11¢). One first solves the quadratic
equation for P,(n), n > 2, from (11b) and then uses (11c¢)
fori=n—-1,n-2,---,0.

To compute the average length of a CRI that starts with
n packets (L,, n = 0) for the PERSIST scheme, (8) should
be replaced by

Ly=L, =1 (12a)
Ln=1 + (1 —Wn,O)ZQi(n){Li+ ZPi(j)Lnfz#j ’
i=0 j=0

n=2, (12b)

and again L, n > 0, can be computed recursively via (12).
To understand (12b), note that if a CRI starts with » > 2
packets and the packets are not erased, then the »n nodes

are split into i and n — i/ nodes according to the distribu-
tion Q,(n). Consequently, we would have a sub-CRI of
average length L, With probability P,(j) (0 < < i) the
other CRI will start with n — i + j nodes.

Modifications Needed to Incorporate Noise Errors: Recall
that in the foregoing analysis we assumed that noise errors
are absent, i.e., m - =7 = 0.If my - # 0 and 7, . # 0,
then some modifications in the analysis are required.
Specifically, the quantities P,(0), P;(1), L,, L,, should be
modified. All other quantities remain the same since no
distinction is made between noise errors and real colli-
sions.

WAIT Scheme: The analysis of the WAIT scheme in the
presence of noise errors is identical to that already pre-
sented except that L, and L, in (8a) should be computed
as follows (see [5]):

Ly=1+2m oL, (13a)

Li=1+a (Ly+L,). (13b)

PERSIST Scheme: For the persist scheme P,(0), P (1)
in (11a) and L, L, in (12a) should be computed as
follows:

Pi(1)=(1- T )Mot M e

'[Qo(l)P1(1) + Ql(l)Plz(l)] (14a)

Py(1) =1 - P/(1) (14b)

Ly=1+2m L, (14c)
Ly=1+ Wl.C[Qo(l)(Lo + L)+ 0,(1)

(L, + P(0)L, + P,(1)L,)]. (14d)

The explanations for (14a) and (14d) are similar to those
of (11b) and (12b), respectively. In the following we dis-
cuss some of the computational issues involved with the
analysis, and we present some numerical results.

B. Discussion and Results: WAIT and PERSIST Schemes

As we showed before, under the ergodicity condition of
the chain {Y,, i > 0}, specified in the Appendix, both the
WAIT and the PERSIST schemes possess the remarkable
property that all packets (including those that are erased)
are eventually transmitted successfully. Devising protocols
in which the chain {Y,, i > 0} is not ergodic is quite easy.
For instance, the protocols described in [11] are of that
kind since erased packets are always lost, and therefore the
erased set is always increasing. Yet the protocols in [11]
provide some throughput. However, the output rate (the
throughput) is obviously much smaller than the input rate
(the arrival rate). This phenomenon is manifest when the
erasure probabilities are increased. With the WAIT and
the PERSIST schemes the throughput is the same as the
arrival rate when the system is stable.

We now describe some of the numerical results that
were obtained for the following three situations: 1) 7, ~ =
TMe=0mo=mYVn21;2)mc=m =0,m,=m,
=mm,e=0n233)m,=02,Vn>1 7 and 7



CIDON AND SIDI: SPLITTING MULTIPLE ACCESS ALGORITHMS

vary. We restrict ourselves to regions for which we proved
that the chain {Y,,i > 0} is ergodic.

Situations 1) and 2) correspond to the absence of noise
errors. In Figs. 1 and 2 we plot the maximal throughput
that can be supported by the WAIT and the PERSIST
schemes for situations 1) and 2), respectively. Note that,
for any arrival rate that is under the corresponding curves,
the system is stable. Also note that in these situations the
WAIT scheme slightly outperforms the PERSIST scheme.
The same behavior has been observed in other situations
that correspond to absence of noise error and to the
“realistic” assumption that 7, , does not increase with n.
The reason for this behavior is explained by noting that
with the WAIT scheme, the packets that are erased during
a CRI are accumulated and sent at the beginning of the
next CRI, thus increasing the number of packets trans-
mitted at the beginning of a CRI and thus reducing the
erasure probability (at least for case 2)).

In situation 3) we fix the erasure probabilities and vary
the noise errors probabilities, as depicted in Fig. 3 for the
WAIT scheme. The results for the PERSIST scheme are

!
0.4}
-
2
a
5
§ 0.3
& WAIT
2 o2} PERSIST
2
>
<
b3
0.}
i 1 1 1 >
0 0.1 0.2 0.3 0.4
g
Fig. 1. Maximal throughput: 7, , =7, V¥n > 1.

MAXIMAL THROUGHPUT

Fig. 2. Maximal throughput: m y = m =7 7, = 0, Vn > 3.

137

1ri0 =0.2

0.4t
-
)
a
I
9 03
=3
o
3
I
=

PERSIST

2 02f
2
x
<
=

Ot

1 1 1 >
o} 0.1 0.2 03 0.4 05
™
Fig. 3. Maximal throughput. (a) w, . =7 7 . =0.(b) 7, . =0: 7 ..
=7(Q) My . =m =T

Ve

similar, and we plot in Fig. 3 only the case 7, = 7 = 7.
We notice that, in the presence of noise errors, regions
exist in which the PERSIST scheme is slightly better than
the WAIT scheme. In this situation, because of the com-
plex behavior of the algorithm, it is difficult to explain the
small differences in the observed behavior intuitively.

In the foregoing examples we used p = 0.5 (recall that
p is the probability that a node will flip 0). As the WAIT
scheme is a symmetric scheme, p = 0.5 is optimal. For the
PERSIST scheme we found that p = 0.5 is very close to
optimal except for unreasonable high erasure probabilities
(beyond 0.8).

IV. WINDOW ALGORITHMS IN THE PRESENCE OF
ERASURES

In this section we introduce two versions of a multiple-
access algorithm that operate in the presence of erasures
only. These algorithms are based on Gallager’s algorithm
[3]. To handle noise errors, one can adopt the ideas pre-
sented in [8].

The algorithm that we are going to present is called the
window algorithm. In this algorithm, each node of the
system keeps track of an interval of time which is called a
window. The left and right boundaries of the window will
be denoted by 4 and B, respectively. During each slot, all
packets that arrived during the current window are trans-
mitted. The system may reside in one of three states
S S1,S5,, depending on the knowledge at the nodes re-
garding the current window. A CRI is defined to be the
interval of time between two successive visits of states S,,.

As our algorithm should operate in the presence of
erasures, we need to define two sets of erased packets: the
backlogged erased packets set and the residual erased
packets set (backlogged and residual for short). When
packets are erased, they always join the backlogged set and
remain in that set until they are either successfully trans-
mitted or join the residual set, according to the rules to be
described. Packets that join the residual set during a CRI
will not be retransmitted during that CRI. They remain in



138 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-33, NO. 1, JANUARY, 1987

the residual set until that CRI ends and then join the
backlogged set and are retransmitted at the beginning of
the consecutive CRI.

We now describe our algorithm (see Fig. 4 for the
finite-state machine describing the operation of the al-
gorithm). In state S, the system does not have any feed-
back knowledge regarding the number of packets that
arrived within the current window and the number of
packets in the backlogged set. This is the point when a
CRI starts and all packets of the current window and of
the backlogged set are transmitted. If LACK or ACK is
received following this transmission, then the system re-
mains in state S, (meaning that the current CRI ends) and
slides the window forward in time. The new window size is
chosen as the smaller between A and 7, — B (4 < B,
B < min(A + B, T.)). Here A is a constant that is chosen
so that some performance measure (throughput, for
instance) is optimized, and 7, is the current time. In
addition, LACK indicates that an erasure might have
occurred, in which case all erased packets join the back-
logged set.

LACK (VERSION 2)

LACK (VERSION %

NACK

NACK

LACK,NACK

Fig. 4. Window algorithm: finite state machine.

If the system is in state S, and NACK is received, then
the system enters state S, with the knowledge that the
window and the backlogged set (together) contain at least
two packets. In this transition, the window and the back-
logged set are partitioned into left and right parts accord-
ing to some parameters p, and p,, respectively (these
parameters again are chosen so that the performance mea-
sure is optimized). The left part of the window becomes
the new window (B « A4 + (B — A)p,). The backlogged
set is partitioned by flipping a coin with success probabil-
ity of p, by nodes of that set. The nodes that flip success
belong to the “left” part of the backlogged set, while all
other nodes belong to its “right” part. The “left” part of
the backlogged set becomes the new backlogged set. Nodes
from both right parts wait until the results of the current
transmission is known.

If the system is in state S,, then LACK or NACK
maintain the system in this state. If a NACK is received,
the right part of the window is considered as its packets
have never been transmitted (this part of the algorithm is
the key improvement of Gallager’s original algorithm over
the tree algorithms). The “right” part of the backlogged set

(if any) joins the residual set and will be retransmitted only
at the beginning of the next CRIL. The new window and the
new backlogged set are obtained as in the transition from
state §, to state §,, namely, by splitting the current
window and the backlogged set into (new) left and right
parts.

To see why after receiving a NACK while in state S, the
right part of the window is statistically indistinguishable
from the unexplored portions of the arrival process, let V,,
Vg and W, Wy be the left and right parts of the window
and backlogged set, respectively. Then for i > 0,
Pri{Ve=i/Vi+ Va+ W+ W22, V, + W, 22) =
Pr{Vp=i/Vp + We 20,V + W, 22} = Pr{V, =i}
where the last equality follows from the fact that ¥, and
Wy are nonnegative random variables, V, is independent
of V; (because of the Poisson nature assumed for the
arrival process), and W, contains only packets that arrived
prior to the epoch Vy and therefore is independent of V.

For LACK while in state S,, any packet that has been
erased (because a misinterpretation has been made) joins
the backlogged set. Since the system is already in state S,
the right parts of the previous window and the newly
updated backlogged set clearly contain (together) at least
two packets. Therefore, they are partitioned, and a new
window and backlogged set are chosen as in the transition
from state S, to state S,.

An ACK in state S, allows the system to transit to state
S;, where all nodes know that the right parts of the
previous window and the previous backlogged set contain
(together) at least one packet. These right parts become the
new window (4 < B, B« B — A(1 — p,)/p,) and the
current backlogged set, respectively.

From state S| an ACK causes the system to transit to
state S, and to start a new CRI by sliding the window
forward in time and expanding it to length min (A, T, — B).
In addition, all packets in the residual set (if any) leave
that set and join the backlogged set, so they are retrans-
mitted at the beginning of the new CRI. For a NACK
while in state S|, the same operations are performed as in
the transition from state S to state S, that is activated by
a NACK.

Finally, as erasures may occur, it might be that a LACK
will be received while in state S;. In one version of our
algorithm all packets that were erased by this LACK as
well as the packets of the residual set (if any) join the
backlogged set, the system transits to state S, and a new
CRI is started. The new window is chosen as in the
transition from state S, to S, caused by an ACK. Alterna-
tively, in our second version of the algorithm we exploit
the fact that when the system is in state S, it is known
that at least one packet has been transmitted, though a
LACK has been received. Consequently, in this version all
packets that were erased join the backlogged set (the
residual set remains unchanged), the system remains in
state S), and all packets that were transmitted and
acknowledged by a LACK retransmit again at the next slot
(similarly to our PERSIST scheme).



CIDON AND SIDI: SPLITTING MULTIPLE ACCESS ALGORITHMS

Before proceeding to the analysis of the two versions of
the window algorithm, we should point out that with this
algorithm we cannot allow for lost packets. The reason is
that, if erased packets are lost, then a deadlock might be
formed. To see that, assume that a NACK is followed by a
LACK. Because of the NACK the window is partitioned
into two parts. Assuming that the left part contains all
collided packets, we see that all these packets are erased
and, therefore, lost because of the LACK. From this point
on, the right part of the window (that is empty) will be
indefinitely partitioned, trying to find those packets that
originally caused the NACK.

A. Analysis of the Window Algorithm

In this section we analyze the two versions of the
window algorithm. The analysis has some similarities to
that of the tree algorithms presented in Section III, and we
adopt here the same definitions and notations 1)-4) of
Section III. In addition, we assume here that the cumula-
tive arrival process of packets to the system is Poisson with
parameter A. Consequently, each time a new window is
chosen by the nodes, the number of new packets that are
transmitted has Poisson distribution with parameter AA.
Therefore, we have P,(m) = (AA)7e ** /m!.

Recall that {Y,, i > 0} is a Markov chain that represents
the evolution of the process of residual packets. To com-
pute the transition probabilities of this chain (see (2)), we
first consider the following conditional probabilities:

P, (1) = (15)

namely, P, (/) is the conditional probability of having /
residual packets at the end of a CRI, given that the CRI
started with m new packets and k residual packets of the
previous CRI.

From (2) and (15), using the fact that {4, i > 1} are
1.1.d. random variables, we have

Pr{Y,=1/Y_ =k A =m},

fee]

p(ny/ny) = Z Pm,nl(nZ)PA(m)‘

m=0

(16)

To proceed, we first need to compute the probabilities
P, (D). To that end, we denote by Q,(m) the probability
that i (0 < i < m) of m nodes whose packets are new will
belong to the left part of the window when it is parti-
tioned. Clearly, Q,(m) = (T)P'i(l —p)™ " where p, is
the parameter of the partitioning. Notice that, statistically,
Q,(m) is equivalent to having i of m nodes flipping zero
where p, is the probability that a node will flip zero.
Likewise, we denote by Q (k) the probability that j
(0 < j < k) of k nodes whose packets belong to the back-
logged set will flip zero. Clearly, O (k) = ) 1 -
p2)* 7. Obviously, P, (1) =0for/>m+ k,! <0 as the
number of residual packets of a CRI cannot be negative,
nor can it exceed the total number of packets transmitted
at the beginning of that CRI. For m > 0, k = 0, and
0 </ < m+ k, the following relations hold for the two

139

versions of the window algorithm:
Po,o(o) =1 PO,l(O) = Pl,O(O) =1-m,
PO,I(l) = Pl,O(l) =7 (17a)
Pm,k(l) = 8m+k(1)7rm+k,0

+ (1= 7,004 Qo(m) Qo (K) P, (1)

+ Qo(m)Q1(k)[(1 —m.0) P o (1)

+ Wl,opm,k(l)]

+ Ql(m)QO(k)[(l —m0) Py k(1)

Pm—l,k+l(l)]
S Y 0.(m)0,(k)

i=0 ;=0
i+j>1

’ [(1 - 771+j,0)Pi,j(1 -

WH—/ 0 m—i, k+l(l)]

+ 7.0

k+j)

m+k=>20<lI<m+k (17b)

where §,,,,(/)=1if I=m+ k and §,,, (/) = 0 other-
wise. The conditional probabilities P* (/) are computed
differently in the two versions of the window algorithm. In
the first version P ,(/ ) = P, (!). For the second version
we show in (18) how k(D) should be computed.

We now turn to explain the implications of each term in
(17). Equation (17a) is self-explanatory. In (17b) the prob-
ability of having / residual packets at the end of a CRI
that started with m new packets and k packets in the
backlogged set (m + k =2) is computed. The term

8+ (D)W, 11 o corresponds to the case where an erasure
occurs at the first slot of the CRI. In this case,if m + k=1
(m + k < 1), the probability of having / residual packets
is one (zero). All other terms correspond to the case where
an erasure does not occur at the first slot of the CRI;
hence they are multiplied by 1 — ,,, , o. In this case the
window and the backlogged set are partitioned, and, there-
fore, we have the following,

1) If all packets belong to the right parts of the win-
dow and the backlogged set after the partitioning
(Qo(m)QO(k)), then the situation is unchanged, and with
the same probability (P, ,(/)) we would have / residual
packets.

2) If all packets except a single one from the backlogged
set belong to the right parts of the window and the
backlogged set after the partitioning (Qo(m)Ql(k)), that
single packet is first transmitted. Then a) if an erasure
occurs (1 o), we are back at the same situation as in 1)
where the nodes are acknowledged by a LACK, hence the
term P, ,(/); b) if an erasure does not occur (1 — 7, ),



140 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-33, NO. 1, JANUARY, 1987

then an ACK will be received, and thus we will remain
with m packets in the window and k — 1 in the back-
logged set that transmit in the next slot, hence the term
Pm, k-~ 1(1)

3) If all nodes, except a single one from the new packets,
belong to the right parts of the window and the backlogged
set (Ql(m)QO(k)), then the situation is similar to 2) except
that if erasure occurs the erased packet joins the back-
logged set, and, therefore, we remain with m — 1 new
packets and k& + 1 backlogged packets, hence the term
Pm—l‘ k+1(l)'

4) If after the partitioning we have i new packets and
j backlogged packets in the respective left parts
(Q.(m)Q,(k)), then for i +j > 1 we have the following,
a) If an erasure does not occur (1 — 7,,,,), a NACK is
received. In this case, all nodes of the corresponding right
parts (namely, the m — i and k —j packets) leave the
system for the duration of the current CRI. The m — i
new packets are considered as if they have never been
transmitted while the & — j packets join the residual set.
The i and j packets continue to resolve their conflict,
hence the term P, =k +j).b) If an erasure does occur
(m:4;.0), then a LACK is received. In this case the i new
packets that were erased join the backlogged set, hence the
term PmAi.k-H'(])'

This concludes the explanation of (17b).

From (17), P, (/) can be computed recursively. We
start with computing Py (/) for k =2,3,--- 0 </ < k.
Then we compute P, (/) for k =1,2,3,---,0 </ <k +
1. Then P, ,(/), Py (]}, -+, etc., are computed.

As we mentioned before, the conditional probabilities
P, (1) for the second version of the window algorithm are
computed via (17) except that for P* (/) the following
relations hold:

P()fmwkk(l)wm-i-/\‘()

1- 7rm+r’\'.0

P':xk,k([) = Pm./(([) +

s

m+k>20<!<m+k (18a)

n [PO’!‘»H—I\'([) - 77/.0]771.0

1—-m,

P»T‘/\‘([) = Pm,/\'(l) - W/,O

m+k>=21=m+ k. (18b)
To understand (18), assume that a single packet (either
from the k backlogged packets or the m new packets)
belongs to the corresponding left part after the partition-
ing, and erasure does not occur. Since nodes of the system
heard the initial conflict and a following ACK, they know
that the right parts of the window and the backlogged set
contain together at least one packet. If the transmission of
these right parts is erased, then all erased packets join the
backlogged set and are retransmitted. This procedure is
repeated until erasure does not occur. Notice that since
this observation is global, other nodes in the system ignore
those subsequent slots, which resuits in LACK., and do not

interfere with the backlogged packets transmission. Using
this observation, we can explain (18) as follows.

1) If after the ACK the n new packets and the k
backlogged packets are erased, then the m new packets
join the backlogged set. Since backlogged sets transmission
is repeated until an erasure does not occur, we multiply the
probability of the initial erasure (=, , o) by the probabil-
ity of having / residual packets from a CRI that starts with
m + k packets in the backlogged set, given that an erasure
does not occur (Pg*, . ()/(A — 7, o) if I <m+k)
and (Pg¥,, o (1) = Ty 0)/(0 = My o) if I =m + k).

2) If an erasure does not occur, then the second version
is not activated, and the computation is the same as in the
first version.

Using the foregoing analysis, the transition probabilities
of the Markov chain {Y,,i > 0} can be computed. The
Markov chain (Y, i > 0} is clearly recurrent and aperiodic.
If it is also ergodic, then the steady-state probabilities
Py(i), i=0,1,2, - exist and are obtained via

Py(i)= 5 ¥ By () Py(K)P(m) (19)

k=0 m=0

(19b)

As in Section 1V, we define M,, . as the average number
of packets that are successfully transmitted during a CRI
that starts with m new packets and k residual packets, and
L,, . as the average length (in slots) of such CRI.

We now turn to present the recursive relations for L, ,
and M, ,:

Lyo=1 Lyy=L,,=1 (20a)
m, k = Wm+k.0
+(1 - '77m+k_o) 1+ Qo(m)Q(,(k)L,,,.k

+Qo(’”)@1("‘)[(1 —mo)(1+ LY )
+m 0L, ]
+Q1(’”)Qo(k)[(l —mo)1+ LY |,

+7Tl,0Lm—1.k+1]

m ok

+ Z Z Ql(m)éj(k)[(l - 77i+/,0)Li.j
i=0 =0
i+j>1

+7Ti+j.0Lm—iAk+i] ’ m+ k=22 (20b)



CIDON AND SIDI: SPLITTING MULTIPLE ACCESS ALGORITHMS

Similar expressions are derived for M,, ,

My,=0 Mo, =M, y=1~-m, (21a)
M, , =07, o)1+ Qo(m)Qo(k)M
+Qo(m)Q1(k)[(1 —m o)1+ MY, 1)
+a oM, ]
+0,(m)Qo(K)[(1 = m o)1 + M 1)
1y oMy 1 ka1

m)0,(k)[(1

7Ti+j,0)Mi,j

u[\/]s
Ma-

1+j>l

+7T+_] OMm i, k+1] s m+ k=2, (21b)

The explanation of (20) and (21) is similar to that of (17).
For the first version of the window algorithm, we use
ol k= =L,, and M}, =M, ,, while for the second
version, using the same arguments as in (18), we use for
m+ k'>1 the relations Ly = Tpin ol max T Lo i —
Tk, and M¥, =@, oMo mik T My, .
Flnally, the throughput is calculated as in (9):

Z Z m, kP (m) Py (k)
T= 250520 . (22)
Z_O kgoLm,kPA(m)PY(k)

The maximization of the throughput is done as in Section
III.

B. Discussion and Results for the Window Algorithm

Unfortunately, for the window algorithm we were not
able to find analytically the ergodicity conditions for the
chain {Y,, i = 0}. Therefore, in the cases that we consid-
ered, we checked numerically whether the chain is ergodic
or not.

In Fig. 5 we plot the maximal throughput that the
system can support with the window algorithms for the
case my c=m =0, mo=mo=m, 7, (=0, Vn = 3.
We see that version 2 outperforms version 1. The reason
for this behavior is that in version 2 the information
available to the nodes is exploited more properly than in
version 1. For comparison we also plotted the maximal
throughput of the WAIT scheme under the same condi-
tions.

V. SUMMARY

In this paper we addressed the effects of a class of
channel errors, namely, erasures and noise errors, on the
operation and performance of a family of splitting multi-

141
A
o5}
WINDOW

0.4 VERSION 2
[
2
& WINDOW
8 oab VERSION 1
(@]
['4
X
=
-}
I o2f
z
>
LY
b3

ot

0 0.2 0.4 06 0.8 10"
T
Fig. 5. Maximal throughput: m ¢ = m o = 7 7, , = 0,Vn > 3.

ple-access ‘algorithms. We have shown that it is possible to
devise algorithms that ensure that all packets are eventu-
ally successfully transmitted, including packets that are
erased.

From our analysis we conclude that for many error
patterns, the WAIT scheme outperforms the PERSIST
scheme in terms of maximal achievable throughput. Yet,
we conjecture that when the system is lightly loaded, the
PERSIST scheme will yield lower average delay. For the
window-type algorithms we have shown how to exploit the
information available to the nodes through the feedback
channel.

Regarding the underlying model for various types of
errors, recall (see Section II) that we assumed that noise
errors are dominant, i.e., that when a single hidden node is
transmitting and the receiver hears some noise, it will
broadcast a NACK. Other assumptions are also possible.
For instance, the assumption that erasures are dominant,
meaning that when an erasure occurs, it is not important
whether or not the packet was first corrupted by noise.
Such a change in the assumptions does not affect the
derivations in the paper.

Finally, we would mention that it may be of interest to
incorporate captures into the proposed algorithms, result-
ing in multiple access algorithms that operate in presence
of noise errors, erasures, and captures. As capture is a
positive effect in its nature, it is expected that better
performance will be obtained than without captures.

APPENDIX

ErGobicITY OF THE CHAIN {Y;, i > 0}.

In the sequel we derive the conditions for the ergodicity of the
chain {Y,, 7/ > 0}, the number of residual packets from the ith
CRI, when the tree algorithm with the WAIT scheme is applied.
Let {4,} be the chain of i.i.d. random variables describing the
number of new packets transmitted at the beginning of the ith
CRI. We assume that these random variables have bounded
expectation, i.e., E[A4] < c0. As in Section III, we use the nota-
tion P,(m) = Pr{ A, = m}. We also recall that =, , <1 for all



142

n > 1. The following two theorems provide sufficient conditions
for {Y;,i > 0} to be ergodic.

Theorem 1: If for some integer M,Vn > M holds =, , = 0,
then the chain {Y;,i > 0} is ergodic.

Theorem 2: Let a(n) =1 — Qy(n) — Q,(n). If for some in-
teger M,Yn > M holds =, , < (a(n)/(1 + a(n)), then some

B* > 0 exists such that the chain {¥;,/ > 0} is ergodic for any
arrival process with E[A] < B*.

To prove the two theorems we state and prove the following
Lemmas. Lemma 1 is due to Pakes [7].

Lemma 1: Let {Y,,i > 0}, i > 0, be a discrete-time irreducible
aperiodic Markov chain, whose state-space is the set of nonnega-
tive integers. It is ergodic, i.e., a positive stationary probability
distribution { P, (n)} exists such that

Py(n) = lim Pr{Y, =n}>0, n>0
k— o0
if

2 E[Y,, - M|V, =nl<w, VYnx0,

b) limsup, o, E[%,, ~ YI¥, = n] < 0.

Notice that for our chain {7},
0 n+m

E[Y/\'+1 - YvAl)f/\ = n] = z PA(m) Z l Pn+m(1) - n.
m=0 =0

(A1)

An important quantity in the following analysis is the average
number of residual packets resulting from a CRI which starts
with conflict multiplicity n. We denote this quantity by J,.
Clearly,
VEDWEAGE (A2)
1=0
We shall compute J, directly through the following recursive
relations:

Jo=10 Ji=m (A3a)
n
Jn=wn.0n+(1_Wn.O)ZQl(n)[‘]I-’_Jnfi]‘ ’122‘
i=0
(A3b)

We now show that condition a) of Lemma 1 holds for {Y,,i >
0}. As 7, < 1,Vi>1, (A3) implies that J < for all i >0
(namely, the number of residual packets is strictly less than the
total number of packets). Using (Al) and (A2), we have

x
Z PA("’)Jn—+m - n

m=0

Y P(m)(m+n)—n

m=90

E[Ye.\ - %Y, =] =

A

i P (m)ym=E[A] < 0. (A4)

m=90

The following lemmas are used to prove that the conditions of
Theorems 1 and 2 are sufficient to fulfill condition b) of
Lemma 1.

Lemma 2: If there exist 0 < a < 1 and an integer M such that
for all » > M, J, < an, then the Markov chain {Y,,i > 0} is
ergodic.

IEEE TRANSACTIONS ON INFOCRMATION THEORY, VOL. 1T-33, NO. 1, JANUARY, 1987

Proof: Forall n > M

0
E[),i+l - Y,Ix="1 = Z PA(m)Jn+m —n
m=0
< Y P(mya(n+m)—n
m=0

=(a—1)n+ «E[A]

<(a—1)yn+ E[4]. (A5)
Since 0 < a < 1 and E[A4] < o0, then N > M exist such that for
all n > N, E[A] < n(1 — a), which ensures that condition b) of
Lemma 1 is fulfilled. Since condition a) is always fulfilled, the
lemma is proved.

Lemma 3: If some B* > 0 and integer M exist such that for
all n>M,J, <n— B* then {Y;,i>0} is ergodic for all

*Yn ==

processes of new arrivals { 4, } with E[A] < B*.

Proof: Forall n > m

h<
Il

x
It

o0
Z P4(m)‘lll+l)l —n
0

n=

i;OPA(m)(n +m—B*)—n

IA

E[4] - B* <0 (A6)

which ensures that condition b) of Lemma 1 is fulfilled.

The following two lemmas complete the derivation of sufficient
conditions (with respect to the quantities =, , and E[A]), ensur-
ing the ergodicity of the Markov chain {Y;,i > 0}.

Lemma 4. If for some integer M, 7, , = O for all » > M, then
a,0 < a <1, exists such that J, < an for all n.

Proof: As m, , = 0 for n > M (A3) yields

L= Y oW ta ] asM. (A7)
i=0

let @ = max, _;_, {J/i}. Clearly, @ < 1 since J, < i and J; <
ai, VO <i < M.

We now prove by induction that J, < an for all # > M. From
(AT,

n—1
;:1 Q:(n)[']z +J,..]

J = A8
00 - 6 (9
using the induction hypothesis:
n—1
2 Q(m)ai +a(n—i)]
J < 4=l
! 1—Q0(n) _Qn(n)
n—1
an Z Q:(n) ‘
= i an. (A9)

1-00(n) - 0,(n)

Lemma 5: If for some integer M,Vn > M, M, o < a(n)/(1+

a(n)), then some B* > 0 exists such that J, <n — 8* for all
n>M.



CIDON AND SIDI: SPLITTING MULTIPLE ACCESS ALGORITHMS
Proof: Using (A3) and the definition of a(n),
n-1
Mo n+(1=m,) X Q(n)[J +J,_.]
J = i=1

! 1- (1 - 77!1.0)(1 - a("))

We shall prove by induction that, for all n > M,J <n — 8 for
some B > 0. Using the induction hypothesis for M </ <n—1
(namely, J; < [~ B) and substituting for / < M, J,=/—- B+ J,

— (/= B), we get

. (A10)

n—1

143

The proofs of Theorems 1 and 2 follow now from Lemmas 4,2, 1,
and 5, 3,1, respectively.

In conclusion, if either

1) 7,0<1Vn>0,m,=0VYn>M>0, E[4] < o or

) Mo < Wn>0,mm,<a(n)/(1+ arn)Vn > M >
0, E[A] < B*, where B8* is defined in (Al4), then the Markov
chain {¥;,7 > 0} is ergodic.

M

Tont(1=7.0) ¥ 0(n)(n=28)+ ¥ [Q:(n)+ 0, [(m](J~i+B)

J < i=1

i=1

s 1—(1-m, o )(1—a(n))
Mo n+{1—m, o)a(n)(n-28)+ Z [Qi(”)+Qn—i(”)](Ji —i+B)

i=1

1=(1=m, o) (1=a(n))

Y [Q(n)+0, (m)](J—i+B)

1=(1=m, )1~ a(n))
YIo(m)+0, (mI(J-i+B)

e 2B8(1- n.O)a(n) 4 A=l
1=(1=m, ¢)(1-a(n))
=n—B— B(a(n)_ﬂlr.()(1+a(n))

1-(1=m,0)(1~a(n))

The induction holds if

—B(a(n) —m o(1 + a(n))
1= (1-7,0)(1-a(n)

L1000+ 0 (] -+ B)
R T r TR S G

for all n > M, or

B+ a(n))(—‘-’& )

1+ a(n) -
+ _gl[Qf(") +Q, (n)(J, —i+B) <0. (Al3)

Since 7, , < a(n)/(1 + a(n)), it is easy to see that the left term
of (Al13) is nonpositive for any 8 > 0.

Using the fact that J, < i for all i > 1, it is easy to show that
some §* > 0 exists which makes the right term of (A13) non-
positive.

Clearly, choosing 8* = min, ., . ({ — J.) is sufficient. How-
ever, to choose the best 8* derived from (A13), we can select the
maximal 8 which makes (A13) nonpositive for any n > M. This
yields

T 10w+ 0, (=)
B* = inf { —7 =1

M S 1)+ 0 ()] + 7o (14 a(n)) — a(n)

i=1

i=1
1=(1=m,0)(1- a(n)) (Al1)

REFERENCES

(1] J. I Capetanakis, “Tree algorithms for packet broadcast channels,”
IEEE Trans. Inform. Theory, vol. IT-25, pp. 505-515, Sept. 1979.

2] L Cidon and M. Sidi, “The effect of capture on collision resolution
algorithms,” TEEE Trans. Commun., vol. COM-33, pp. 317-324,
Apr. 1985.

[3] R. G. Gallager, “Conflict resolution in random access broadcast
networks,” in Proc. AFOSR Workshop Commun. Theory Appl.,
Sept. 17-20, 1978, pp. 74-76.

[4] L. Georgiadis and P. Papantoni-Kazakos, “A collision resolution
protocol for random access channels with energy detectors,” TELE
Trans. Commun., vol. COM-30, pp. 2413-2420, Nov. 1982.

[5] J. L. Massey, “Collision resolution algorithms and random-access
communications,” Univ. of California, Los Angeles, Tech. Rep.
UCLA-ENG-8016, Apr. 1980; also in Multi-User Communications
Systems (CISM Courses and Lectures Series), G. Longo, Ed. New
York: Springer-Verlag, 1981, pp. 73-137.

[6] N. Merhavari and T. Berger, “Poisson random multiple-access
contention problem with binary feedback,” IEEE Trans. Inform.
Theory, vol. IT-30, Sept. 1984.

[71 Pakes, “Some conditions of ergodicity and recurrence of Markov
chains,” Oper. Res., vol. 17, 1969.

[8] D. M. Ryter, “A conflict resolution algorithm for noisy multiaccess
channels,” Mass. Inst. Technol., Cambridge, Rep. LIDS-TH-1007,
June 1980.

[9] B. S. Tsybakov and V. A. Mikhailov, “Free synchronous packet
access in a broadcast channel with feedback,” Probl. Pereduch.
Inform., vol. 14, pp. 32-59, Oct.—Dec. 1978.

{10] B. S. Tsybakov, “Resolution of a conflict of known multiplicity,”

Prob. Inform. Transmission, vol. 16, no. 2, pp. 134-144 (translated
from Probl. Peredach. Inform., vol. 16, pp. 69-82, Apr.—June
1980).

{111 N. D. Vvedenskaya and B. S. Tsybakov, “Random multiple access

of packets to a channel with errors,” Prob. Inform. Transmission,
vol. 19, no. 2, pp. 131-147 (translated from Probl. Peredach.
Inform., vol. 19, pp. 69-84, Apr.—June 1983).

M. Sidi and I. Cidon, “Splitting protocols in presence of capture,”
IEEE Trans. Inform. Theory, vol. IT-31, pp. 295-301, Mar. 1985.

[13] R. G. Gallager, “A perspective on multiaccess channels,”/EEE

(A14) Trans. Inform. Theory, vol. IT-31, pp. 124-142, Mar. 1985.



