
Dynamic Session Management for Static and Mobile
Users: A Competitive On-Line Algorithmic Approach

Yigal Bejerano
�

Israel Cidon
Department of Electrical Engineering

Technion - Israel Institute of Technology
Haifa 32000, Israel

bej@tx.technion.ac.il,
cidon@ee.technion.ac.il

Joseph (Seffi) Naor
y

Bell Laboratories, Lucent Technologies
600 Mountain Ave.

Murray Hill, NJ 07974.

naor@research.bell-labs.com

ABSTRACT
Most modern communication systems that support real-time
communication (ATM, ISDN, Frame-Relay, etc.) are based
on connection oriented technologies. This is also true for cel-
lular and Personal Communication Systems, where the users
are mobile. Consequently, selecting good routes for Virtual
Channels (VCs) is considered as one of the most important
problems in modern networks. Usually, the VC route is de-
termined during the session initialization along the shortest
path (with respect to some metric) between the users and
remains the same during the entire session. However, the
user mobility and the fact that the cost of a session may
also depend on its duration, motivate the development of
dynamic session management algorithms. Such algorithms
may reroute the VCs dynamically during the sessions for im-
proving session cost and for supporting hando� operations
of mobile users.

This work deals with the general Session Management prob-
lem and proposes several on-line algorithms for managing
session between static or mobile users. In the case of static
users, we present a 4-competitive algorithm for the situation
where the path cost functions are concave. In the presence
of mobile users we prove that for a general graph, mobile
users and arbitrary link cost functions with positive setup
cost, the competitive ratio of the best on-line algorithm is
at least
(log n), where n is the number of nodes in the
network. We also present constant competitive on-line al-
gorithms for several practical topologies and movement as-
sumptions.

�Research supported by the Eshkol Fellowship from the Is-
raeli Ministry of Science.
yOn leave from the Computer Science Department, Technion
- Israel Institute of Technology, Haifa 32000, Israel.

1. INTRODUCTION
Most modern communication systems that support real-time
communication are based on connection oriented technolo-
gies. These include the standard telephone network and its
ISDN extensions [1], as well as the emerging Frame-Relay
[2], ATM [2] and QoS support of Internet such as RSVP [3,
4]. Connections are also used in cellular and Personal Com-
munication Systems [5, 6, 7], where the users are mobile and
may change their point of attachment to the system's infras-
tructure during a session. Such changes are termed hando�
operations. Connection-oriented networks require the es-
tablishment of a virtual channel (VC) between the session
participants before sending information, and maintaining it
during the session. As a result, selecting good routes for
VCs is considered as one of the most important problems in
modern communication networks, and there are numerous
papers on this subject, e.g., [8, 9].There are several opti-
mization issues related to VC routing, such as maximizing
the overall network revenue, or minimizing the call block-
ing probability. In many cases, the selected route may be
required to optimize the session cost according to a known
metric (delay, throughput, or a nominal cost).

Usually, the VC route is determined during the session ini-
tialization along the shortest path connecting the users and
does not change during the entire session. Even in cases
where mobility is supported, most cellular systems do not
compute an entirely new route, but make incremental changes
to the route's links [5, 10]. It is however suggested that
rerouting may achieve better system performance in such
cases [11, 12]. The mobility of the users and the fact that
the cost of a session also depends on its duration, moti-
vate the development of dynamic session management algo-
rithms. Such algorithms may change the VC routes dynam-
ically during the sessions for both improving the network
utilization [12, 13, 14, 15, 16], and supporting hando� op-
erations of mobile users [17, 18, 19]. However, these works
cannot guarantee upper bounds on the cost of a speci�c ses-
sion.

Our work considers the general session management prob-
lem for both static and mobile users. There are multiple
alternative paths between session users. Each path is char-
acterized by a cost function for using this path for a given
duration of time. This function represents both the setup

cost and the hold cost of the given path. The setup cost
represents the cost associated with the establishment opera-
tion, in particular signaling cost and setup latency. The hold
cost determines the expense related to the use of network
resources held by the VC. Our goal is to manage a session
such that its total cost will be as low as possible. We allow
our algorithms to change the VC route dynamically during
the session in order to reduce its cost. To the best of our
knowledge, this is the �rst work that takes into account both
session setup cost and hold cost and guarantees analytically
upper bounds on the session overall cost.

Consider the following example where two users can be con-
nected by one of two feasible paths. Suppose that the hold
cost of the �rst path is one unit per minute, while the hold
cost of the second path is ten units for the entire session
with no time limit. In this situation there is no single op-
timal path between the two users. VCs of short sessions
should be routed over the �rst path while VCs of long ones
should be routed over the second path. However, if the ses-
sion duration is not known in advance, there does not exist
a way to choose an optimal path at the session initialization.
Thus, we are in an on-line dynamic decision setting, where
decisions need to be made without prior knowledge of future
events.

A common way for measuring the performance of an on-line
algorithm is competitive analysis. The performance of an
on-line algorithm is compared with the performance of an
optimal o�-line algorithm that knows the sequence of events
in advance. The maximum ratio between their respective
performances, taken over all sequences, is called the com-
petitive ratio. Extensive work has been done in recent years
for �nding the competitive ratio for di�erent problems such
as paging, call admission and circuit routing, scheduling and
load balancing, and �nance. The reader is referred to the
recent book of Borodin and El-Yaniv [20] for an extensive
survey of this area.

For the above example, the best deterministic on-line strat-
egy for this problem is routing the session VC over the �rst
path for a duration of ten minutes and then rerouting it
over to the second path. This strategy guarantees that in
the worst case the session cost will be at most twice the cost
of an optimal o�-line strategy. This example is known in the
on-line literature as the ski rental problem [20, 21]. We note
that the general session management problem is related to
on-line replacement problems [20, 22, 23]. Our work is the
�rst to address the general session management problem us-
ing a competitive analysis approach. In [24], hando� rerout-
ing algorithms that are not allowed to hold unused resources
are considered and analyzed using competitive analysis.

1.1 Our Results
We �rst consider the case of static users. We derive con-
ditions under which competitive on-line algorithms exist.
Intuitively, we require that the cost functions of all pos-
sible paths be concave with respect to the duration. For
this case we are able to provide a 4-competitive algorithm.
This is achieved by �rst considering the case of linear cost
functions, and then generalizing the algorithm to any con-
cave cost functions. Our on-line algorithm uses the idea
that a rerouting decision can only be made if an optimal

o�-line algorithm has already incurred suÆcient cost with
respect to the current session duration. We note that the
results of [22] imply an algorithm with a competitive ratio
of 4 + 2

p
2 � 6:83 for the case of a linear cost function.

Next, we consider the case of mobile users. Finding com-
petitive algorithms for managing a session between mobile
users is a much harder task. Here, the unknown information
is not only the session duration, but also future movements
of the mobile participants. We �rst present a lower bound
of
(log n) on the competitive ratio for general graphs, mo-
bile users, and arbitrary link cost functions (including linear
functions), where n is the number of nodes in the network.
We note that the mobile case is related to the on-line Steiner
tree problem which has similar lower bounds [25, 26].

Under the assumption of linear cost functions, we consider
several important cases where competitive on-line algorithms
exist. First, we present a 2-competitive on-line algorithm for
managing a session in a tree network. The diÆculty here is
how to avoid repeated allocations of the same session re-
sources which may increase the session cost with respect to
the cost achieved by an optimal o�-line algorithm. We also
provide a matching lower bound on the competitive ratio.
We next consider a ring and present a 4-competitive algo-
rithm. In this case the algorithm is required to determine
both the VC path at each time step during the session, and
when to release unused link resources. Finally, we consider
general graphs with the following restrictions: (a) There is
a correlation between the setup cost and the hold cost. For
every graph links, the ratio between its hold cost and its
setup cost is bounded by two constants c1 and c2, where
c1 � c2. (b) The user movement rate is limited. With
these restrictions we present a (c2

c1
+ 2)-competitive algo-

rithm. When c1 = c2, the algorithm is 3-competitive. This
case is of practical importance since it reects environments
of current mobile networks.

2. THE NETWORK MODEL
We assume a connection-oriented network modeled by an
undirected graph G(V;E), where the nodes and links repre-
sent communication switches and full duplex links, respec-
tively. Users are attached to the network switches, and can
either be static or mobile. A mobile user may move from
node to node and change its attachment point. A session
between two users requires the establishment of a virtual
channel (VC) between the corresponding nodes and main-
taining it during the session. This means allocating session
resources at each edge over the VC path and holding them
during the session. The cost of a session depends on both
the edges used for the VC and on the duration they are
used for. Each edge e 2 E is associated with a cost function
fe(�) that de�nes the cost of using edge e for a duration
of � time units, where � is measured from the time the VC
resources are allocated until they are released. Therefore,
the entire cost of a session, whose VC is routed over path p
and its duration is � , is given by fp(�) =

P
e2p fe(�). Note

that the function fp(�) represents both setup cost and hold
(maintenance) cost of the VC for the given duration. We
assume that the time of establishing a VC is negligible with
respect to the session duration.

Now, consider a session � between two static users. We

use the term session duration for denoting the time period
that elapsed from the session initialization at time zero till
the termination time � . The session � is represented by
the triplet � = (u; v; �), where u and v are the session end
nodes, and � is the session duration. Let Wu;v denote the
set of all possible paths between u and v, and let fp(�) be
the cost of establishing and holding a VC across path p for
a period of � time units. We use the term lower envelope
function between u and v for Lu;v(�) = minp2Wu;vffp(�)g.
This function de�nes the minimum cost of a session between
nodes u and v for duration � , assuming that the session VC
route is �xed during the session. The lower envelope func-
tion also speci�es the optimal path for each duration. We
say that path p is optimal if there is a duration � 0 such
that fp(�

0) = Lu;v(�
0). Denote by Pu;v the set of all opti-

mal paths between nodes u and v. Figure 1 depicts a set
Pu;v that contains four paths and the corresponding lower
envelope function. In this example, the function Lu;v(�) is
divided into seven time intervals, where each interval starts
when a path in Pu;v becomes optimal and it ends when some
other path becomes optimal. Note that a path may be op-
timal at more than one time interval.

The Session Duration

P
at

h
C

os
t

The Lower Envelope Function.

p4

p3

p2

p1

t1 t2 t3 t4 t5 t6

Figure 1: An example of a lower envelope function.

We assume that for each pair of nodes u and v in the graph,
the set Pu;v and the lower envelope function Lu;v(�) are
given. The issue of computing Pu;v and Lu;v(�) is deferred
to the full version of the paper [28].

In the case of mobile users, a session � is de�ned by a se-
quence of m triplets (ui; vi; ti), � = f(ui; vi; ti)gmi=0, where
m is the number of movements of the user during the ses-
sion. The i-th movement of the user is represented by triplet
(ui; vi; ti) that indicates the movement of the user from node
ui to node vi at time ti. In our model, the mobile users may
move freely from node to node without any limitations on
the movement distances or rates.

3. COMPETITIVE ON-LINE ALGORITHMS
FOR STATIC USERS

In this section we handle the case where the users are static.
Initially, we determine the conditions under which compet-

itive on-line algorithms exist. In [28] we prove that if the
optimal o�-line algorithm can gain from rerouting the cur-
rent VC over a di�erent route, or, if it can gain from releas-
ing the current VC and reestablishing a new VC over the
same route, then a competitive on-line algorithm does not
exist. Therefore, we restrict ourselves to the case where the
optimal o�-line algorithm makes a single routing decision at
the session initialization, and this decision is not changed
during the session. However, this restriction is not suÆcient
for guaranteeing the existence of a competitive on-line algo-
rithm. We also require that the cost function between every
pair of nodes is non-negative, monotonically non-decreasing,
and concave. Under this condition, the following property
is satis�ed.

Property 1. If, for each path p 2 Pu;v the cost func-
tion is a non-negative, monotonically non-decreasing, and
concave, then Lu;v(t) is a non-negative, monotonically non-
decreasing and concave cost function.

The proof of the above is deferred to [28]. With these fairly
realistic restrictions we present a 4-competitive algorithm for
the case of linear cost functions in Section 3.1. In Section
3.2 we generalize this algorithm to handle arbitrary concave
cost functions.

3.1 A competitive on-line algorithm for linear
cost functions

We now assume that the cost function of any path p 2 Pu;v
is linear, and we denote it by fp(t) = s(p) + h(p) � t, where
both the setup cost, s(p), and the hold cost, h(p), are non-
negative. For the case where Pu;v contains only two possible
paths a 2-competitive algorithm is implied by [21]. There,
this problem is known as the ski rental problem. In the
sequel we present a 4-competitive algorithm for the case of
an unlimited number of possible paths.

P
at

h
C

os
t

s1

s2

s4

s3

p4

p3
p2p1

t1 t2 t3

The Session Duration

Figure 2: A lower envelope function derived from

linear cost functions.

We �rst sort the paths p 2 Pu;v in increasing order accord-
ing to the setup cost s(p), as depicted in Figure 2. Hence,
for each pair of paths pi; pj 2 Pu;v, i < j if and only if

s(pi) < s(pj). Each path pi 2 Pu;v is represented by a triplet
(s(pi); h(pi); t(pi)), where s(pi) is the setup cost, h(pi) is
the hold cost, and t(pi) is the time when pi becomes non-
optimal. The following properties of the sequences fs(pi)g,
fh(pi)g and ft(pi)g are immediate.

Property 2. fs(pi)g and ft(pi)g are monotonically in-
creasing sequences, and fh(pi)g is a monotonically decreas-
ing sequence.

Property 3. A path pi 2 Pu;v is optimal for sessions
whose duration � 2 [t(pi�1); t(pi)).

The proposed on-line algorithm uses the doubling technique,
see e.g., [27]. During a session, the algorithm may reroute
the session's VC so as to reduce the total cost of the session.
The algorithm is iterative. An iteration starts when the
algorithm determines a new route for the session's VC. This
is determined using two principles: the credit principle and
the persistence principle. Suppose that the algorithm starts
a new iteration (i.e., makes a routing decision) at time t0.
The credit principle states that the selected path pj should
be chosen from the set Pu;v such that its setup cost, s(pj),
is the maximal in fs(pi)g such that s(pj) � � � Lu;v(t0) for
a given constant � > 1. The persistence principle states
that the algorithm should maintain path pj until time t(pj)
when this path becomes non-optimal, i.e., there is a path
pj0 , j

0 > j, which is optimal at time t(pj).

Session-Management-proc (Lu;v; Pu;v)
k = 0
t = 0
while (the session has not terminated)

k = k + 1
If k > 1 then release path pik�1
Establish path pik s.t.

s(pik) = max(fs(pj) j s(pj) � � � Lu;v(t)g)
Wait until t = min(�; t(pik))

End while
End

Figure 3: The on-line algorithm A for linear cost functions.

In Figure 3 we give a formal description of the algorithm.
Let t be a clock that measures the session duration, let k be
the iteration index, let pik denote the path selected at the
kth iteration, and let (s(pik); h(pik); t(pik)) denote the path
characteristics. In addition, let t(pi0) = 0, Lu;v(0) = s1,
and assume that the session duration is � .

In the sequel we show that the competitive ratio of algorithm
A is bounded by 4. For each selected path pik , let c(pk)
denote its cost at the point of time when it becomes non-
optimal, hence c(pk) = s(pik)+h(pik) � t(pik) and it is equal
to Lu;v(t(pik)).

Lemma 1. For each k > 1, c(pk) > � � c(pk�1).

Proof: Consider the path selected at iteration k, pik . It is
established at time t(pik�1) and at that time its setup cost

s(pik) is the maximal that satis�es
s(pik) � � � Lu;v(t(pik�1)) = � � c(pk�1)

Hence, s(pik+1) > � � c(pk�1). The path pik is optimal
until time t(pik), then path pik+1 becomes optimal. By the
continuity of the function Lu;v(t) it follows that

c(pk) = s(pik) + h(pik) � t(pik+1) =
= s(pik+1) + h(pik+1) � t(pik) � s(pik+1) > � � c(pk�1) 2

Corollary 1. For each k; j � 1, c(pk+j) > �j � c(pk).

Corollary 2. For each n � 1,Pn

k=1 c(pk) < c(pn) � �
��1

.

Proof:

nX
k=1

c(pk) �
n�1X
k=0

c(pn) �
�
1

�

�k
< c(pn) � �

�� 1
2

Let a(pik) be the actual cost that the algorithm A pays for
using path pik .

Lemma 2. For each k � 1, a(pik) � c(pk).

Proof: Since A uses the path pik for only a duration of
t(pik)� t(pik�1), the following inequality is satis�ed,

a(pik) = s(pik) + h(pik) � (t(pik)� t(pik�1)) �
� s(pik) + h(pik) � t(pik) = c(pk) 2

Theorem 1. For any session �,
CostA(�) � 4 � CostOPT (�).

Proof: Consider a session between nodes u and v with du-
ration � , and suppose that t(pin) � � < t(pin+1). Hence,

CostA(�) =

n+1X
k=1

a(pik) =

= (

nX
k=1

a(pik)) + s(pin+1) + h(pin+1) � (� � t(pin))

By Corollary 2,
Pn

k=1 c(pk) < c(pn) � �
��1

. By the credit

principle, s(pin+1) � � � c(pn), and from the concavity of
Lu;v(t), h(pin+1) � (� � t(pin)) � Lu;v(�) � Lu;v(t(pin)).
Therefore,

CostA(�) =
n+1X
k=1

a(pik)

=

nX
k=1

a(pik)

!
+ s(pin+1) + h(pin+1) � (� � t(pin))

�

nX
k=1

a(pik)

!
+ � � c(pn) + (Lu;v(�)� Lu;v(t(pin)))

� �

�� 1
� c(pn) + � � c(pn) + (Lu;v(�)� Lu;v(t(pin)))

� �2

�� 1
� c(pn) + (Lu;v(�)� Lu;v(t(pin)))

� �2

�� 1
� Lu;v(�) = �2

� � 1
� CostOPT (�)

For � > 1, the expression �2

��1
is minimized for � = 2.

Plugging this value back into the expression yields that
CostA(�) � 4 � CostOPT (�). 2

3.2 A competitive on-line algorithm for con-
cave cost functions

In the case of concave cost functions, a naive employment of
algorithm A does not yield a competitive algorithm. This
happens since the credit principle assumes that the hold cost
of the paths in Pu;v becomes lower as their setup cost be-
comes higher. This assumption is not valid in the concave
case, as shown by Figure 4-(a). The usage of the persistence
principle is also problematic since a a path may be optimal
in more than one time interval, as depicted in Figure 4-(b),
making it unclear how should a new path be selected. In
the following, we present a new on-line algorithm, referred
as algorithm B. It maps each concave cost function to a set
of upper bounding linear functions. These linear functions
are used as input for algorithm A. We show that the result-
ing algorithm is 4-competitive with respect to the original
(concave) cost functions.

The Session Duration

P
at

h
C

os
t

s2

s1

t1 t2

p2

p1

(a)

P
at

h
C

os
t p2

p1

t1 t2 t3t0

T1 T2 T3 T4

(b)
The Session Duration

Figure 4: Examples of concave cost functions.

We assume without loss of generality that each p 2 Pu;v is
optimal only during a single time interval. If a path p 2 Pu;v
is optimal in several time intervals, like the case of Figure
4-(b), then we replicate this path, and de�ne each copy to be
optimal at a di�erent time interval. The time intervals are
enumerated in increasing order starting from 1 to m, where
m is the index of the last time interval. The �rst interval
starts at time t0 = 0, each time interval k < m starts at time
tk�1 and terminates at time tk, and the last time interval
is marked by m (tm = 1). Hence, the sequence ftkgm�1k=1

is monotonically increasing. Let p̂k be the optimal path
during the kth time interval. For each time interval k < m
and path p̂k, we de�ne a linear function f̂k(t) which is the
left tangent of Lu;v at the point tk. The linear function

f̂m(t) of the last time interval is de�ned as the right tangent
of Lu;v at the point tm�1. An example of such a mapping is
given in Figure 5. There, p1 is optimal during the �rst and
third time intervals, and p2 is optimal during the second
and fourth time intervals. Therefore, p̂1 = p̂3 = p1 and
p̂2 = p̂4 = p2. Algorithm B routes a session VC as algorithm
A would route the VC of a session with the same duration,
given a set of paths fp̂kg and corresponding cost functions

ff̂k(t)g.

The Session Duration

P
at

h
C

os
t

p2

p1

t1 t2 t3t0

T1 T2 T3 T4

f3(t)ˆ

f1(t)ˆ f2(t)ˆ

f4(t)ˆ

Figure 5: Example of mapping concave cost func-

tions to linear functions.

We now prove that algorithm B is 4-competitive. Consider a
session � which has duration � . We denote by CostOPT (�)
the cost of a session with respect to the optimal o�-line
algorithm, CostOPT (�) = Lu;v(�). Let CostA(�) be the
cost of a session � according to algorithm A, when the cost
function of each path p̂k is given by the linear function f̂k(t),
and let CostB(�) be the cost of a session � according to
algorithm B, when the cost function of each path p̂k is given
by the concave cost function fk(t),

Lemma 3. For any k and t � 0, f̂k(t) � fk(t).

For k < m, f̂k(tk) = fk(tk)

Proof: For k < m, f̂k(t) is the left tangent of Lu;v at
the point tk. Since, fk(t) = Lu;v(t) for any t 2 [tk�1; tk],

f̂k(tk) = fk(tk). Moreover, fk(t) is a concave function, hence

f̂k(t) � fk(t). In a similar fashion, f̂m(t) � fm(t). 2

Lemma 4. For any session �,
CostA(�) � 4 � CostOPT (�).

Proof: The proof is identical to the proof of Theorem 1. 2

Theorem 2. For any session �,
CostB(�) � 4 � CostOPT (�).

Proof: For each session �, algorithm B uses the same paths

as algorithm A and for the same duration. Since, f̂k(t) �
fk(t) during each time interval (according to Lemma 3)
CostB(�) � CostA(�). According to Lemma 4, CostA(�) �
4 � CostOPT (�). Therefore, CostB(�) � 4 � CostOPT (�). 2

4. COMPETITIVE ON-LINE ALGORITHMS
FOR MOBILE USERS

In this section we consider session management with mobile
users. In this case, the unknown information is not only
the session duration, but also the future movements of the
mobile participants. We start by proving that for general
graphs and arbitrary edge cost functions with positive setup
cost, the competitive ratio of the best on-line algorithm is at
least
(log n), where n is the number of nodes in the network
(Section 4.1). In the sequel, we limit the discussion to linear
cost functions of the form fe(�) = se + he � � for each edge
e 2 E. We consider several special cases where constant
competitive on-line algorithms do exist. To this end, let us
�rst examine what are the properties of an optimal o�-line
algorithm in this case. A session management algorithm is
called lazy if it changes the VC route only as a response
to a movement of a mobile user, and at the time of the
movement.

Theorem 3. If the edge cost functions are linear, then
there is a lazy optimal o�-line algorithm.

The special cases we consider are: tree topology (Section
4.2), ring topology (Section 4.3), and general graphs with
limited movement rate (Section 4.4).

4.1 Lower bound for general graphs
The mobile case in general graphs can be related to the
on-line Steiner tree problem by viewing each movement as
corresponding to a node leaving the tree and another node
joining it. The proof of the following theorem is similar to
the one presented in [25]. The details are deferred to [28].

Theorem 4. Consider a general graph, mobile users, and
arbitrary edge cost functions with positive setup cost. Then,
the competitive ratio of the best on-line algorithm is at least

(log n), where n is the number of nodes in the network.

4.2 An on-line algorithm for a tree topology
Managing a session in a graph with a tree topology may
not seem a diÆcult task, since there is a unique path be-
tween every pair of nodes. However, the following example
shows that session resources need to be released judiciously,
otherwise the competitive factor is not bounded.

Example 1. Consider a graph with two nodes u and v
and a single edge e between them. Now refer to a session
between two users. One of them is static and is attached to
node u. The other is mobile, and it moves as follows: At
the session initialization it is located at node v. Each time a
VC is established over edge e it moves to node u. When the
VC resources are released the mobile user returns to node v.

The session algorithm may use one of the following strate-
gies: (a) release the edge resources whenever they are not in
use; (b) maintain unused resources in case the mobile user
returns to node v. It is not hard to see that both strategies
are not competitive.

Our algorithm, referred to as Algorithm T , uses the post-
ponement principle for determining the time for releasing
unused resources. The release of VC resources over an edge
e is postponed by a time period of se=he with respect to
the last time they were in use. This period is called the
postponed period, and the edge is called a postponed edge. If,
during that period, the edge resources are required again,
then there is no setup cost. The only cost incurred is the
cost of maintaining the resources during the time they are
not used. Thus, the edge resources are released precisely
when the maintenance cost is equal to the setup cost. In
this case, the postponed period is called redundant. In the
following, we use the term path activation for establishing a
VC over a given path p, which may include postponed edges
as well as edges without any allocated resources. The acti-
vation cost of each edge e 2 p at a given time t is calculated
as follows. Let �e(t) be the period that has elapsed since the
last time edge e was in use until time t, or �e(t) = 1 if it
was never used before. If e is a postponed edge then its acti-
vation cost is he � �e(t). Otherwise, the activation cost is the
sum of two components: the edge setup cost se and the cost
of the redundant postponed period before the edge resources
are released. The cost of this period is he � (se=he) = se. As
a result, the cost of activating path p at time t is:

Active Cost(p; t) =
X
e2p

�
he � �e(t) �e � se=he
2 � se otherwise

(1)

The hold cost of each edge remains unchanged. The proofs
of the following theorems can be found in [28].

Theorem 5. Algorithm T is 2-competitive.

Theorem 6. The competitive ratio of any on-line algo-
rithm is at least 2.

We note that Algorithm T is also suitable for sessions with
multiple participants (multicast session). Theorems 5 and 6
still hold in this case.

4.3 An on-line algorithm for a ring topology
In this section we present a 4-competitive algorithm, re-
ferred to as Algorithm R, for session management in a ring
topology with linear cost functions. In such a graph, at ev-
ery step, the algorithm is required to determine both the
VC path and when to release unused edge resources. The
proposed algorithm uses the postponement principle for han-
dling unused resources, as described in Section 4.2, where a
path activation cost is de�ned by Equation 1. For deter-
mining the VC path during the session the algorithm uses a
retrospective approach [21]. It keeps track of the past and
routes the VC in accordance with the routing decisions made
by OPT .

Our algorithm uses Theorem 3 for estimating the possible
decisions of algorithm OPT . This theorem states that there

is a lazy o�-line algorithm OPT for optimal session manage-
ment. Moreover, OPT knows the future movements of the
users, and when edge resources become unused it can deter-
mine whether to release them immediately or to maintain
them as postponed resources until they are needed again.
Hence, the activation cost of a path p at time t according to
OPT is

Active Cost�(p; t) =
X
e2p

�
he � �e(t) �e � se=he
se Otherwise

(2)

Algorithm R maintains a decision tree that represents all
possible routing options and their cost. A routing option
is a sequence of routing decisions that de�nes the VC path
after the movement of each participant until a given time t.
Thus, each possible routing option is a path in the decision
tree from the root to a leaf. At the session initialization the
tree contains only two routing options. After each move-
ment of a user, each path in the decision tree splits into
two new paths which correspond to the two new routing op-
tions. For every routing option z, let p(z; t) be its VC path
at time t, and let c(z; t) be its accumulated cost until time
t, calculated according to Equation 2. A routing option is
called optimal at time t if it has the minimal accumulated
cost until that time. We denote by ~z(t) the optimal rout-
ing option at time t, and let ~p(t) and ~c(t) be its VC path
and its accumulated cost at time t correspondingly. At each
given time t, algorithm R routes the session VC over the
path ~p(t) de�ned by optimal routing option. It is clear from
this description, that Algorithm R may follow several rout-
ing options during a session, adapting the behavior of new
routing option when it becomes optimal, as describe by the
next example.

We remark that in practice, the decision tree is required to
represent only routing options that may become optimal in
the future. Thus, there is no need to maintain all possible
routing options.

s3=8
c3=0

s2=4 c 2=2

v

u

w

s1=1
c1=0

(a)
t=0

Session
Start

(d)
t=4

Movement
from V to W

v

u

wt=4

(c)
t=3

Realeasing
link (V,W)

v

u

w

(b)
t=1

Movement
from W to V

v

u

w
t=1

The optimal routing option until t=4 (option x).

The optimal routing option after t=4 (option y).

The location of a participant.x

postponed links.

Figure 6: An example of a session in a ring.

Example 2. In this example, a routing option becomes
optimal due to an activation of a postponed edge. Consider
a ring with three nodes as depicted in Figure 6, when the
setup cost and hold cost are denoted over the edges. Now,

5 8

The Decision Tree
Opt_x
{e1,e2}

Opt_y
{e3}

{e1} {e2,e3}

option y
(best option)

0

1

2

3

4

time

Opt-1 Opt-2

Cost

A decision box.

The accumulated cost of a routing option.

Routing option x (optimal until t=4).

Routing option y (optimal after t=4).

7

7

7

option x

release
{e2}

11 15{e1,e2} {e3}

15

17

9

9

9

13 9{e1,e2} {e3}

{e1} {e2,e3} 12

14

Figure 7: The decision tree of the session.

refer to a session between two users. One of them is static
and it is attached to node u. The other is mobile, and it is
located at node w at time t0 = 0 when the session starts. At
time t1 = 1, the mobile user moves to node v, and at time
t2 = 4 it returns to node w. It is clear from the decision tree
in Figure 7, that establishing a VC over edge (u;w) at time
t0, and a VC over edge (u; v) at time t1 is the best routing
option (option y), but this is revealed only at time t2 = 4
when the mobile users returns to node w.

Example 2 shows us that two di�erent routing options may
both be optimal, one before time t and the other after time t,
even if they both route the VC over the same path just before
time t. This results from using two di�erent VC paths in
the ring in the past. We should be aware of this fact during
the cost analysis.

In the following we prove that algorithm R is 4-competitive.
This proof contains two steps. First we assume thatR is not
required to pay for redundant postponed periods. Hence,
the cost of activating a path is given by Equation 2. Later
on, we calculate the contribution of these redundant post-
poned periods to the session cost.

Let T be a sequence of time intervals that speci�es when
an edge e was used during a given session. We denote by
Cost�T (e) the accumulated cost of using edge e during these
time intervals, where the activation cost is de�ned by Equa-
tion 2.

Lemma 5. Let T1 and T2 be two sequences of time in-
tervals such that T1 � T2, then for every edge e 2 E,
Cost�T1 (e) � Cost�T2(e)

Consider a session � that starts at time zero. We denote
by Cost�R(�; t) the session cost with respect to algorithm R

until time t, when the activation cost of a path is calculated
according to Equation 2. The proofs of the following two
lemmas can be found in [28].

Lemma 6. For every session � and a given time tend � 0,
Cost�R(�; tend) � 2 � ~c(tend).

Lemma 7. For every session � and a given time tend � 0,
CostR(�; tend) � 4 � ~c(tend).

Theorem 7. For every session �,
CostR(�) � 4 � CostOPT (�).

Proof: On one hand, from Lemma 7, we get that
CostR(�; tend) � 4 � ~c(tend)

On the other hand, the routing option of OPT is also in-
cluded in the decision tree of the session. Therefore, for
any given time t � 0, CostOPT (�; t) � ~c(t). As a result,
CostR(�) � 4 � CostOPT (�). 2

4.4 An algorithm for general graphs with lim-
ited movement rate

Finally, we present an on-line algorithm for general graphs
which have the following two properties. First, For every
edge e 2 E the ratio he=se is bounded by two constants
c1 and c2, such that c1 � he=se � c2. Second, the user
movement rate is limited. Each mobile user must remain at
each visited node for at least a time period of 1=c1 before it
may move to another node.

In this part we present a lazy on-line algorithm for managing
a session, which is called Algorithm H. The algorithm up-
dates the session VC each time a user changes its location.
Since the user movement rate is limited, edge resources are
released when they become unused. Maintaining resources
for a period longer then 1=c1 would cost more than releasing
them and reallocating them again when needed. Consider a
path p. Let h(p) =

P
e2p he and s(p) =

P
e2p se be the hold

cost and the setup cost of path p, respectively. For every
pair of nodes u and v, let the shortest path between them be
the path which has minimum setup cost. Denote this path
by ~pu;v and its setup cost by ~s(u; v). In addition, let ~h(u; v)
be the minimum hold cost between nodes u and v. Note
that the hold cost of the shortest path, ~pu;v, may be more

than ~h(u; v). However, in most practical networks, there is
a correlation between the setup cost and the hold cost of all
the graph edges and constants c1 and c2 are close. Here, we
assume that the hold cost of the shortest path between a
pair of nodes is close to the minimal hold cost.

Algorithm H works as follows. During the session initial-
ization it establishes a VC over the shortest path between
the users. Now, suppose that during a session one of the
users moves from node w to node u, while the other user is
attached to node v. The algorithm �nds the path p which is
obtained by concatenating the shortest path between nodes
w and u, ~pw;u, to the current VC. If the setup cost of p is
not more than � times the setup cost of the shortest path
between the two users, ~s(u; v), then the path ~pw;u is estab-
lished and it becomes part of the VC route. Otherwise, the

current VC is released and a new VC over the shortest path
~pu;v is established. A formal description of the algorithm
is given in Figure 8, where pw;v is the VC path before the
movement.

Upon the session initialization between nodes u and v do:
Establish a VC over the path ~pu;v

Upon a movement from node w to u when the second
user is attached to node v do:
p pw;v [~pw;u
If (s(p) � � � ~s(u; v)) then

Establish a VC over the path ~pw;u
Add ~pw;u to the VC path pu;v

Else
Release the current VC
Establish a new VC over the path ~pu;v

Figure 8: A formal description of Algorithm H.

The algorithm uses the credit principle. It attempts to min-
imize the setup cost of each VC update operation under the
constraint that the VC total setup cost is at most � times
the setup cost of the shortest path between the users. We
call � the credit parameter. The credit principle guarantees
that the hold cost of H will not exceed c2

c1
�� times the hold

cost of OPT . In the sequel we show that a proper selection
of the parameter � yields a small competitive ratio.

We turn to prove that the competitive ratio of the algorithm
is 1+2 � c2

c1
. Consider a session � that starts at time zero and

is de�ned by a sequence of m triplets, � = f(wi; ui; ti)gmi=0,
where the i-th triplet represents a movement of a mobile
user from node wi to node ui at time ti, as described in Sec-
tion 2. For simplifying the analysis of the competitive ratio,
we also consider both the initialization and the termination
of a session as movements. We assume that before a session
starts both users are attached to node u0, and at time zero
one of them moves to node v0. Similarly, the session termi-
nates at time � , when one of the users moves to the node
attached by the other, and they both do not change their
attachment point anymore.

We denote by Hold CostH(�) and Hold CostOPT (�) the
total hold cost of the session � according to the algorithms
H and OPT correspondingly. In addition, we denote by
Setup CostH(�) and Setup CostOPT (�) the total cost of
the VC setup operations of both algorithms.

Lemma 8. For every session �,
Hold CostH(�) � c2

c1
� � �Hold CostOPT (�).

Proof: For every edge e 2 E, c1 � he=se � c2. Therefore,

for every pair u and v, ~s(u; v) � ~h(u; v)=c1. In addition,
for every path p, h(p) � c2 � s(p). By the credit principle,
at any time during the session, the VC route, p, satis�es
s(p) � � � ~s(u; v), where the users are attached to nodes u
and v. Hence,

h(p) � c2 � s(p) � c2 � � � ~s(u; v) � c2
c1
� � � ~h(u; v)

proving the lemma. 2

Consider the i-th movement from node wi to node ui. Let
s(Mi) = ~s(wi; ui) be the setup cost of the shortest path be-
tween these nodes, called themovement cost, and let s(M) =Pm

i=0 s(Mi).

Lemma 9. For every session �,

Setup CostOPT (�) � s(M)
2

.

Proof: First, assume that OPT pays for allocating the re-
sources of an edge in two installments: the �rst half is paid
for at the time of allocation, and the second half is paid for
when the edge resources are released. Now consider a user's
movement from node wi to node ui, and let us bound its con-
tribution to the total setup cost of OPT . As a result of this
movement, part of the VC route between node wi and some
node x is released, and a new path is established between
nodes x and ui. Hence, the setup cost of this movement is
at least (~s(wi; x) + ~s(x; ui))=2. By the triangle inequality,
we get that ~s(wi; x) + ~s(x; ui) � ~s(wi; ui). Therefore, the

total cost is Setup CostOPT (�) �Pm

i=0
~s(wi;ui)

2
= s(M)

2
2

Lemma 10. For every session �,
Setup CostH(�) � �

��1
� s(M).

Proof: We partition the session into phases so as to calculate
the total setup cost of the session. The �rst phase, called
phase 0, begins at the session initialization. A new phase
begins each time the algorithm decides to release the current
VC and to establish a new one over the shortest path. Sup-
pose that the session contains K connection reestablishment
operations (K + 1 phases). Let s(pk) be the setup cost of
the VC path that is established at the beginning of phase k,
and let s(Mk) be the sum of all the movement costs that are
made during phase k. Note that s(p0) = 0, since we consider
the session initialization as a movement. According to the
credit principle,

s(pk) � 1

�
� [s(Mk�1) + s(pk�1)]

� 1

�
� s(Mk�1) +

1

�2
� [s(Mk�2) + s(pk�2)]

� 1

�
� s(Mk�1) +

1

�2
� s(Mk�2) +

+
1

�3
� [s(Mk�3) + s(pk�3)]

� 1

�
� s(Mk�1) +

1

�2
� s(Mk�2) +

1

�3
� s(Mk�3) +

+ � � �+ 1

�k
� s(M0)

�
k�1X
j=0

1

�k�j
� s(Mj)

Thus, the total cost of the VC's that are established at the
connection reestablishment operations is

KX
k=1

s(pk) =
KX
k=1

k�1X
j=0

1

�k�j
� s(Mj) =

K�1X
j=0

s(Mj) �
K�jX
k=1

1

�k
�

�

K�1X
j=0

s(Mj)

!
�

1X
k=1

1

�k

!
� 1

�� 1
� s(M)

Hence, the total setup cost is

Setup CostH(�) �
KX
k=0

[s(pk) + s(Mk)] �

�
KX
k=0

s(pk) +
KX
k=0

s(Mk) �

� 1

�� 1
� s(M) + s(M) � �

�� 1
� s(M)

2

Theorem 8. Algorithm H is (2 + c2
c1
)-competitive for

� = 1 + 2 � c1
c2
.

Proof: The total cost of a session � is the sum of two com-
ponents, the setup cost and the hold cost. According to
Lemma 8, the competitive ratio of the hold cost is

Hold CostH(�)

Hold CostOPT (�)
� c2

c1
� �

According to Lemma 9 and Lemma 10, the competitive ratio
of the setup cost is

Setup CostH(�)

Setup CostOPT (�)
�

�
��1
� s(M)

1
2
� s(M)

=
2 � �
�� 1

The value of � that minimizes the competitive ratio of both
components is de�ned by the equation

2 � �
�� 1

=
c2
c1
� �

Hence, the best competitive ratio is obtained by � = 1+2� c1
c2
,

and the its value is 2 + c2
c1
. 2

Corollary 3. If c1 = c2 then Algorithm H is
3-competitive for � = 3.

5. SUMMARY
We presented dynamic algorithms for session management
when users may be both static or mobile. In the case of static
users, previous works [11, 12] have shown that the network
throughput can be increased by employing dynamic session
management algorithms that reroute VC's during the ses-
sions. In addition methods for performing a transparent
VC rerouting without losing packets or changing their order
was proposed in [15]. This paper shows that VC rerout-
ing techniques can also be used for reducing the total cost
of sessions by using on-line approach. We presented a 4-
competitive algorithm for the situation where the path cost
functions are concave.

In the presence of mobile users, dynamic session manage-
ment schemes are essential for maintaining continuous con-
nections between mobile users. However, in this case, �nd-
ing an eÆcient method is a much harder task. We showed

that the session management problem resembles the on-line
Steiner tree problem. We proved that for a general graph
and arbitrary edge cost functions with positive setup cost,
the competitive ratio of the best on-line algorithm is at least

(log n), where n is the number of nodes in the network.
However, there are competitive on-line algorithms for sev-
eral practical cases, where the edge cost functions are linear.
We presented a 2-competitive algorithm for a tree topology,
and a 4-competitive for a ring topology. We also gave a
(c2
c1

+ 2)-competitive algorithm for general graphs, where
for every edge e, the ratio between its setup cost, se, and
its hold cost, he, is lower and upper bounded by c1 and c2
respectively, and the user movement rate is at most 1=c1.
This algorithm is especially important since it �ts certain
practical cellular systems.

6. REFERENCES
[1] W. Stallings. ISDN and broadband ISDN. 2nd edition,

Macmillan Publishing Company, 1992.

[2] D. E. McDysan and D. L. Spohn. ATM theory and
application. McGraw-Hill, 1994.

[3] C. Huitema. Routing in the Internet. Prentice-Hall,
1995.

[4] R. Braden, D. Clark and S. Shenker. Integrated
services in the Internet architecture: an overview.
RFC 1633, June 1994.

[5] . Mouly and M. B. Pautet. The GSM system for
mobile communication. M. Mouly, 49 rue Louise
Bruneau, Palaiseau, France 1992.

[6] D. C. Cox. Wireless personal communication : what is
it? IEEE Personal Communication, April 1995.

[7] E. Padgett, C. G. Gunther and T. Hattori. Overview
of wireless personal communications. IEEE
communication magazine, January 1995 Vol 33 No 1.

[8] . E. Streenstrup. Routing in communication networks.
Prentice-Hall, 1995.

[9] D. Bertsekas, R. Gallager. Data networks. 2nd
Edition, Printice-Hall, 1992.

[10] I. F. Akyildiz, J. S. M. Ho and M. Ulema.
Performance analysis of the anchor radio system
handover method for personal access communications
system. Proc. IEEE INFOCOM, 1996.

[11] M. H. Ackroyd. Call repacking in connecting networks.
IEEE Trans. on Commun. Vol. 27, No. 3, March 1979.

[12] E. W. M. Wong, A. K. M. Chan and T. S. P. Yum.
Re-routing in circuit switched networks. Proc. IEEE
INFOCOM, 1997.

[13] A. Girard and S. Hurtubise. Dynamic routing and call
repacking in circuit-switched networks. IEEE Trans.
on Commun. Vol. 31, No. 12, December 1983.

[14] K. C. Lee and V. O. K. Li, A circuit rerouting
algorithm for all-optical wide-area networks. Proc.
IEEE INFOCOM, 1994.

[15] R. Cohen. Smooth intentional rerouting and its
applications in ATM networks. Proc. IEEE
INFOCOM, 1994.

[16] B. Awerbuch, Y. Azar, S. Plotkin and O. Waarts.
Competitive routing of virtual circuits with unknown
duration Proc. of 5th SODA (1994), 321-327.

[17] B. A. J. Banh, G. J. Anido and E. Dutkiewicz.
Handover re-routing schemes for connection oriented
services in mobile ATM networks. Proc. IEEE
INFOCOM, 1998.

[18] K. Keeton, B. A. Mah, S. Seshan, R. H. Katz and D.
Ferrari. Providing connection-oriented network
services to mobile hosts. Proc. of the USENIX Symp.
On Mobile and Location-Independent Computing,
Cambridge Massachusetts, August 1993.

[19] C. K. Toh The design and implementation of a hybrid
handover protocol for multi-media wireless LANs.
Proc. ACM MOBICOM 95, 1995.

[20] A. Borodin and R. El-Yaniv. Online computation and
competitive analysis, Cambridge University Press,
1998.

[21] S. Irani and A. R. Karlin. On Online Computation.
Chapter 13 in "Approximation algorithms for
NP-hard problems", Edited by D. S. Hochbaum, PWS
Publishing Company, 1996.

[22] Y. Azar, Y. Bartal, E. Feuerstein, A. Fiat, S. Leonardi
and A. Rosen. On capital investment. Algorithmica,
Vol. 25, no. 1, pp. 22-36, 1999.

[23] R. El-Yaniv, R. Kaniel and N. Linial. Competitive
optimal on-line leasing. Algorithmica, Vol. 25, no. 1,
pp. 116-140, 1999.

[24] Y. Bejerano, I. Cidon, and J. Naor. EÆcient hando�
rerouting algorithms: a competitive on-line
algorithmic approach, Proc. IEEE INFOCOM-2000.
March 2000.

[25] M. Imaze and B. M. Waxman. Dynamic steiner tree
problem. SIAM Journal on Discrete Mathematics
4:369-384, 1991.

[26] N. Alon and Y. Azar. On-line steiner trees in the
Euclidean plane. Proc. of 8th Computational
Geometry (1992), 337-343.

[27] Y. Azar. On-line load balancing. Chapter 8 in \Online
Algorithms, State of the Art", Edited by A. Fiat and
G. J. Woeginger, Lecture Notes in Computer Science,
Vol. 1442, Springer-Verlag, 1998.

[28] Y. Bejerano, I. Cidon, and J. Naor. Dynamic Session
Management for Static and Mobile Users: A
Competitive On-Line Algorithmic Approach. Research
Report, Center for Communication and Information
Technologies, Technion Haifa, Israel. CC PUB #291,
August 1999.

