
DVS� A System for

Distribution and Management of Global Video On Demand Services

Alexey Roytman� Israel Ben�Shaul� Israel Cidon�

Department of Electrical Engineering

Technion � Israel Institute of Technology

Technion City� Haifa ������ISRAEL

faroytman� issy� cidong�ee�technion�ac�il

February ��� ����

Abstract

The Distributed Video Server �DVS� system provides a comprehensive solution for the management and

distribution of a major future electronic commodity service� Video on Demand �VOD�� Key contributions of

DVS include a scalable architecture that combines the global accessibility of the Internet with an acceptable

quality of service through an optional private high�speed backbone� novel adaptive algorithms for server

selection and movie distribution that are sensitive to load� storage capacity and changing user demands�

and a reliable management layer that is resilient to failures of individual nodes� DVS has been implemented

�mostly� in Java�RMI� it has a Web interface for end�users� and comes with several utilities� including a

runtime monitor that tracks the dynamic aspects of the system and can be used for instrumentation and for

manual administration in addition to automatic management�

Keywords� Video on the Internet� distributed multimedia�

� Introduction and Motivation

The advent of largely accessible networking infrastructures makes a tremendous impact on the way commercial

services are going to evolve in the near future� Major e�orts are currently being made by various civic and

commercial installments �e�g�� banks� retail stores� government o�ces� in order to evolve toward the competitive

world of electronic commerce motivated by the urgency to increase their market share and in particular remain

competitive�

A signi�cant part of the electronic commerce based economic establishment is expected to emerge as a direct

development of the novel information highway possibilities and abilities� In particular� such businesses that do

not only market and sell their merchandise over the network but actually produce� store� maintain and distribute

it there have a small presence today but are expected to capture larger and larger share� These new services

deal with electronic content itself as the commodity to be marketed� distributed and sold�

One major electronic commodity service is Video On Demand �VOD�� VOD may replace in the future both

video libraries� video stores and TV pay per view businesses� Video clips are also becoming much more common

�also with Sun Microsystems Labs� CA

on the Web� particularly in online news sites� According to ���� approximately ����� Web sites o�ered video

clips in ����� ������ in ����� and the number is expected to triple each year for at least the next three years�

It is easy to see the huge potential in having a largescale motion video base that can be used as a source of

information� entertainment� and education�

Extensive research on the ability to transport multimedia through communication networks has been con

ducted in the past years ���
� with some real applications already emerging ��� ��� In the near future it is

expected that the multimedia providers� with VOD being the common application� will attempt to o�er high

quality global services� while minimizing the operational cost of their services�

Largescale VOD services introduce new challenges in the proper design of frameworks for networked mul

timedia management and dissemination systems� Two important characteristics that impact global VOD man

agement are	

�� High bandwidth and high quality of service �QoS� � Although motion video may be played over networks

with di�erent bandwidths and corresponding qualities �e�g�� H���
 can be played with ISDNlevel bit rate�

MPEG� requires a T��Lan bandwidth of ���Mbps� and MPEG� that requires a bandwidth of up to

���Mbps� with a typical value of �Mbps�� it in general requires continuous and high bit rate�

�� Very large size and storage requirements � A typical �� minutes MPEG� movie weights �GB� but much

larger �les are not uncommon�

These two characteristics present an inherent con�ict from the system design perspective� To address the �rst

requirement� it is desirable to distribute video content as close as possible to endusers by arranging servers

in di�erent geographical regions to enable users to access them with high bandwidth and low delay� This is

particularly important when considering the global and ubiquitous yet unpredictable �in terms of service quality�

Internet for delivering the contents to endusers� Long distance and international communication costs further

require �nearby� video sources that retain low cost�

The second requirement means� in contrast� that content distribution and replication is expensive� both in

terms of communication as well as storage� This is particularly the case when content changes dynamically

�e�g�� news clips� or when the content is large �e�g�� archival of movies from a virtual video store� and quickly

exceeds the storage capacity of a single server� Clearly� storage considerations favor playing video from remote

servers over dissemination of content to and playing from a local server� although loadbalancing at least among

colocated servers must be considered� Thus� the e�ectiveness of the system is largely determined by a solution

that strikes a balance between these two con�icting requirements�

Another important property of the use of VOD is that the demand changes� both temporally �e�g�� di�erent

movies are watched at di�erent times of the day� in di�erent time zones� and movie popularity changes over time��

as well as spatially �e�g�� di�erent regions may favor di�erent movies�� This implies that dynamic management

of content distribution� placement and playing is likely to outperform any static approach�

This paper addresses these challenges� presenting a scalable and reliable distributed architecture and several

adaptive algorithms for management and distribution of video content among the geographicallydispersed

servers� These ideas were embodied in the Distributed Video Server �DVS� system� which was implemented in

Java and deployed over an experimental ATM network connecting several universities� DVS serves as our test

bed for experimentation and validation of our approach� but its actual construction has raised several additional

technical challenges� some of which are presented here�

The rest of this paper is organized as follows� In Section ��� we overview existing �partial� solutions to

�parts of� the problems mentioned above� In Section � we present the system architecture including the server

topology and network interfaces� and describe an algorithm for selecting a playing server given a client request�

In Section
 we present a novel suboptimal but polynomial algorithm for content distribution� which is an

�

NPhard problem� and provide experimentation results� Our architecture is hierarchical� implying potential

reliability problems due to multiple points of failures �disconnections in the hierarchy�� Section � addresses

this issue and presents a naming and location scheme along with a customized leader election algorithm� The

implementation of the DVS system� including its Webbased management component and its initial deployment�

is overviewed in Section �� Finally� Section � summarizes the major contribution of this work and points to

future work�

��� Related Work

There are several theoretical results and practical projects that address scalability and reliability in VOD servers�

In ��� ��� the authors suggest to increase the scalability and reliability of a VOD system using an architecture

that consists of a cluster of nodes� each node with a local disk array� connected by a high bandwidth switch

or network� The user view of the system is of a single large server� The method employs algorithms for load

balancing between servers and disks� This solution addresses the load problem but neglects communication

cost� which is critical in widearea transfer� A similar approach is taken in the Microsoft�s TIGER video server�

which combines a collection of PCs to construct a scalable server ���� It uses video �le striping to distribute

segments of a movie across a collection of servers to balance the access load across the servers� In addition� it

uses replication at the segment level as a mechanism for faulttolerance�

��� presents algorithms for a distributed VOD system in which a collection of video data is located at dispersed

sites across a computer network� The servers maintain parts of movies and must get the missing parts of the

movie before or during the service� This work is limited to the solution of this speci�c topic�

The work described in ��� is closely related to ours� It employs an optimization technique for solving the

socalled Apportionment problem to determine the optimal number of copies per video in the system� and

develops algorithms for the assignment of these copies� However� the distribution of movies is between multiple

disks of the same host� while we exploit the distribution of movies between geographically scattered hosts� This

distinction changes the nature of the problem �expense of communication� large latency and so on�� For example�

both works employ a loadbalancing algorithm that consists of a static phase for initial movie distribution and

a dynamic phase for online scheduling of the load between disks ����� or servers �in our work�� The scheme of

��� permits to change the disks from which the movie is played while the movie is playing� In a large distributed

system it seems impractical to switch a server during the duration of the video playing� In general� we do not

address here diskrelated optimizations and view this topic as complementary to our work�

� DVS Architecture and Server Selection

The highlevel architecture of DVS is depicted in Figure �� The networking infrastructure is bilevel� consisting

of a private highspeed intraserver network �e�g�� a ���Mbps �ber ATM network� with users connecting to

servers through the public Internet� The highspeed network is mainly used for realtime playing of movies to

remote users� through local Internet proxy servers to which users are attached� That is� the attachment point

and the video source need not be the same node� This design greatly increases the �exibility in server selection

and movie placement� but could be expensive if all nodes were required to be attached to the private network�

Thus� we only require a small subset to be directly connected to the private network� as will be explained below�

This also means that interserver management and o�line movie transfer also operate over the public network�

The need to provide regional distribution and management of content implies a hierarchical structure of the

intraserver network� with the edge nodes providing the actual VOD service and manager nodes performing

resource management and allocation� However for reliability purposes� manager programs actually runs an edge

nodes that are elected to serve as regional managers but can be replaced by any other node in the level below

Figure �	 DVS Architecture

it� recursively� The details of the election algorithm will be discussed in Section �� For the moment it su�ces to

understand that each manager node acts as the manager of the level below it and maintains information about

movie location� load� and demand in its managed level� Each region consists of a �at set of servers� and we

make the reasonable assumption that the distance�bandwidth from each server in the same region to all users

is roughly the same� Each �elected� manager maintains the following information on each managed server	 the

current load �i�e�� how many movies are being played from it�� the server�s maximum load as con�gured by the

administrator �most likely to re�ect the server�s capabilities and the amount of resources that is devoted to

DVS activities�� the list of local movies �i�e�� movies that are currently stored in the server�s disk�� the demand

for each movie �measured in the number of new and currently serviced requests�� and a boolean �ag indicating

whether the server can connect to the private network� This information is used by DVS to determine which

server to assign to service a client request� and how to distribute the movies among the clients� We begin with

the former problem� and address the latter in Section
�

The general movie playing service consists of two phases	 �� the user requests from DVS �via one of the

servers that are in the user�s local region� to watch a speci�c movie� and DVS selects the proper server and

returns its contact address to the user�s client� �� the client contacts the selected server requests movie� and

plays it to the user�

The selection process consists of at most three phases� First� if there exist one or more servers in the region

�

of the client which hold a copy of the requested movie and which are not fully loaded� then the server with the

lowest relative load is selected for playing� where the relative load is de�ned as the ratio between the server�s

current load �plus one� and its maximum load�

If no server can be matched in the local region� the second phase begins� The manager looks for the least

loaded server that can act as a proxy server� i�e�� one that is connected to the private network� If a proxy is

found� the manager requests from its own manager at the next level up to locate a server that can remotely

transfer the requested movie through the private network to the proxy� The upper manager forwards the request

to all other children nodes� in parallel� If such a server is found� DVS returns to the client the addresses of

the proxy and the remote server� The client then contacts directly the remote server over the public Internet

and requests it to deliver the movie through the proxy� Notice that while the movie is transferred to the client

through the proxy �in order to improve QoS and reduce costs�� the client still communicates with the remote

server� not with the proxy� This design enables the user to control the session parameters and issue VCR control

operations such as pause� rewind� fastforward etc� If no server is found by any of the sibling �rstlevel managers�

the request is forwarded one level up� recursively� until a server is found or until the root is reached� Thus� each

iteration expands the range of the search�

The third and least desirable option is when even an available �not fully loaded� proxy server cannot be

found� In this case the request is forwarded to the nextlevel manager asis� in the hope to �nd a remote server

that can still play the movie directly to the client through the public Internet with an acceptable quality of

service� The serverselection algorithm is summarized in Figure �� showing the three phases�

Input� M movie name

Output� transfermode� server� proxy �optional�

���

Find a local server LS

with a copy of M and with minimal relative load and

with LS�load � � � LS�maxLoad

if LS found return �DIRECT� LS�

���

Find for a local proxy P

if P found then

begin

request the manager at the next up level to locate a proper remote server RS

if RS found return �INDIRECT� RS� P�

end

�
�

Search for a remote server RS with a copy of M

if found return �REMOTEDIRECT� RS�

Figure �	 Server Selection Algorithm

Figure
 further illustrates the direct and indirect �via proxy� modes through an example� In the upper

�gure� the request arrives at server ��� �server naming scheme is discussed later in Section �� and gets forwarded

to its manager� server �� Server � �nds that server ��
 holds a copy of the movie and has an acceptable load�

Server � then replies to ���� which replies to the user that server ��
 is capable of playing the movie� Server �

�

then informs server ��
 that it is expected to receive a request from the user to get the movie� and server ��

reserves �for a limited period� the necessary resources for the request� Eventually� the user opens a connection

with server ��
 and gets the service directly from it� In the lower �gure� the requested movie is not located in

the local region� or all local servers that hold a copy are overloaded� However� server ��
 can still serve as a

proxy� The manager �server �� forwards the request to its parent �in this case the root�� The root observes that

a copy of the requested movie can be played from server �� Server � �nds that server ��� is capable of playing

the movie� i�e�� it has a copy of the movie� it has a connection to the private network and its load is acceptable�

Finally� the user contacts server ��� and requests it to play the movie through proxy ��
�

��

������������

rootmovie & user names movie & user names

user

2

root

user

movie & user names
1

first
level
group

first
level
group

first
level
group

first
level
group

second
level
group

second
level
group

server name (21)

1

server name (13)

movie name movie name & VCR commands

server &
proxy names (21 13)

menagments commands & VCR commands over TCP

video data over UDP video data over ATM

2.3
video data

movie & user names

server & proxy names (21 13)
movie & user names

movie name & VCR commands

video data

movie & user names

server name (13) video data

server name (21)

movie name

server & proxy names (21 13)

1.1 1.2 1.3 2.1 2.2

2

2.1 2.2

2.3

1.31.21.1

Figure
	 Sample Movie Requests

There are two problems in the above procedures� First� a security problem might arise since there is

no guarantee that the user will follow the system instructions �selected servers� or it might change its prior

preferences �such as movie selections�� The second problem is with potential discrepancy between the actual

server loads and the information on their load as known at the regional manager� in particular� the load might

�

change during the course of the request protocol� due to the possibly long delays between the assignment of

servers to clients and their actual playing�

The second problem stems from the fact that the protocol actions may be interleaved with other concurrent

requests from other clients� Thus� a standard solution involving locks on resources of the assigned server with

a de�ned timeout is employed� Since typically the VOD service time is large� the wasted resource time of this

locking operation is negligible� To address the security problem� the assigned servers may be passed user and

session information which is kept with the lock and with other resources allocated for that user request� Upon

the reception of the expected request� the server veri�es its correctness and validity�

� Content Distribution

So far we were concerned with the selection of a server assuming a proper distribution of the movies among the

available servers� But what is the optimal distribution method that minimizes both storage and communication

costs � For one thing� such a method must take into account the changing demands for movies� which leads to

a dynamic allocation scheme� Furthermore� given that movies can be moved� added and deleted �to make room

for more popular movies� there may be an additional constraint� namely to keep at least one or more copies of

each movie�

��� The distribution process

The distribution process operates as follows� Each server counts the number of requests for each movie� i�e�� the

demand per movie and sends the information to its manager� The sum of the demands is passed by managers to

higher level managers� Firstlevel managers �re�distribute the movies according to their demand and possibly

the singlecopy constraint� To simplify the discussion we �rst assume that there is no singlecopy constraint� all

storage is empty and there is no load constraint on the servers� We will later remove these assumptions� The last

assumption means that it is su�cient to keep at most one copy of each movie in the group� Thus� the task of a

�rstlevel manager is to distribute among its members movies that are in high demand in its region� conforming

to the total storage capacity� This task can be mapped to the �multiple knapsack ���� problem ����� There

are known branchandbound and boundandbound optimal algorithms to this problem but their intractability

and our expected large input �e�g�� thousands of movies in an online video store� lead us to seek suboptimal

solutions� ���� also showed that dynamic programming techniques cannot be applied to this problem� due to

the extremely high memory requirements� ���� ��� describe a greedy algorithm with complexity O�n��� where n

is the the number of movies� It is better than the ordinary greedy algorithm �as described in ���� ����� in that

the deviation from the optimum is bounded�

In practice� the maximal number of users supported by each server is bounded� therefore� it may be useful

to keep multiple copies of most popular movies in a single group� Consequently� we have modi�ed the greedy

algorithm of ���� to the case of multiple choice constrains knapsack problem� Usually� knapsack problems assume

empty knapsacks� In contrast� our servers generally store as many movies as possible� so the leader also needs

to decide on the removal of movies from servers� Finally� since transfer of a movie over the network is a costly

operation� our algorithm also attempts to minimize the amount of movie transfers�

��� Formal Problem Formulation

In the following we formalize our optimization problem for the distribution of movies in the servers� We use

the following parameters in the movie distribution problem	 there are n servers in the system and we need to

distribute m movies� Denote by ci the storage capacity of server i and by bi the maximal number of concurrent

�

requests that server i can serve� Let wj be the storage size of movie j and pij be the demand for movie j at

server i measured by requests per time unit� Finally we denote by a boolean variable yij �yij � �� �� whether

movie j is currently located at server i� We need to �nd xij � f�� �g and i � N � j �M � where xij � � if movie

j is to be assigned to server i� and � otherwise�

Our goal is to select n subsets of movies so that the sum of the demand of the selected movies will be

maximal� In addition� each subset must �t �in terms of storage� in a di�erent server and the average load on

each server must be less than the maximal load� Formally	

max

nX

i��

mX

j��

xij � pij

subject to	
mX

j��

wj � xij � ci� i � N � f�� � � � � ng

�servers storage size constraint�
mX

j��

xij � pij�t � bi� i � N � f�� � � � � ng

�servers load constraint� and
nX

i��

xij � �� j �M � f�� � � � � ng

�single copy constraint��

We make the following simplifying assumptions� First� the maximumnumber of clients that each server can

serve is proportional to the size of its storage� This assumption relaxes the server load constraint and also makes

sense in terms of system con�guration� Second� as mentioned in Section �� the system is constructed as a tree�

Each server belongs to a group of servers� and each group contains an elected leader� which belongs to a group

of nodes at the next level etc�� We assume that the network latency between a client and each server in the

group are very similar� Therefore� any client can be served by any server in the group that holds the requested

movie� Consequently� we can combine the requests pij in a group using pj �
P

i�Group pij�

��� The distribution algorithm

The complete movie distribution algorithm for the �rst level leader is presented in ��
��The algorithm consists

of six phases� First� the leader calculates the total numbers of copies of each movie which are located at the

group�s servers� Second� the leader computes the number of copies of each movie that are required at its group�

using the formula

kj �
pj �C

wj � P
�

where C is the storage size of all servers in the group �C �
P

i�Group ci�� and P is the overall demand for movies

in the group �P �
Pm

j�� pj�� The leader sorts the above numbers� in decreasing order� If the number of copies

of the highest demand movie is larger than number of servers in the group� the leader makes this number equal

to the number of the servers in the group� Then the leader updates the number of copies of the other movies

using the above formula for kj but C is set to the total size of storage in the group after we have assigned

the �rst movie to all servers �C �
Pn

i�� ci � n � w�� and P is set to the overall demand� except for the �rst

movie��P �
Pm

j�� pj�� The last procedure is repeated for all movies� Next� the leader subtracts from each kj
the number of already stored copies for movie j� Then� it divides the movies list to two lists� The addList is

�

the list of movies for which we need to add copies and similarly the removeList is the list of movies for which

we need to remove copies�

In the third phase� the leader attempts to place copies of the movies from the addList� If the mission is

completed the algorithm is terminated� otherwise it continues to the fourth phase�

In the fourth phase� the leader decides which movies may be removed and from which server� After that it

tries to assign the yet unassigned movies to the cleared space� If all movies are assigned� the leader goes to the

sixth phase of the algorithm�

The �fth stage of the algorithm is based on ����� In this phase the leader tries to improve the solution

by testing exchanges between assigned and unassigned movies� We decided not to adopt other improvements

presented in ���� because of the di�erence between the two problems�

In the sixth and last phase� the leader tries to keep movies from the removeList if the free space exist�

If the system is required to keep a single copy of each movie� the algorithm has the following additions	 the

top level leader starts the algorithm and assigns a single copy of these movies to its children� If possible� the

leader assigns the movie to the child server with the maximal demand among servers that haves the ability

to connect to the private network and haves enough free storage space� Lower level leaders� except the �rst

level� recursively assign the movies they got to lower levels� When the �rst level leader calculates the number of

desirable copies as described above� it considers its one copy requirement as a given minimum� The complexity

of the movie distribution algorithm is O�nm��� This high algorithmic complexity results from the �fth phase�

This phase is not always necessary and can also be stopped at will�

��� Experimental Results

For the purpose of experimentation we constructed a group of four servers� each with a storage size of ���

��� MBytes and with the ability to serve simultaneous by � clients� In addition� we provided another single

server group with a storage size greater than the total size of all movies ��GBytes� and the ability to serve ���

clients� The last server enable us to disregard the single copy constraint� In the experiments we used �� movies

of sizes ranging randomly between �� to ��� MBytes� and user requests that arrive to the system according

to a random Poisson process� The demand for each movie changes during the day according to a random Zipf

distribution as described in ��
� ��� Since in reality a user can stop viewing at any moment and our system may

also contain interactive movies� that makes the viewing time variable� we assume that a movie is viewed for an

exponential distributed time� proportional to its storage size� We assume that the average viewing time of a

movie of size �GByte is �� minutes� In our tests we measure the number of misses in the �rst server group� i�e��

the cases where the system needs to use the private network to serve the clients or cannot serve the requests

at all� In the �rst test the demand for the movies was set in a static way according to average demand during

the whole �� hours� The servers contained no movies �except for the second group server�� The system was

operated for a time equivalent to � days �at which near steady state results were observed�� The results are

presented in �gure �� From the �gure we can see that in the interesting area �between ������� requests per

day� the amount of misses increases very slowly with the increase of the demand� In the high demand area the

system approach a saturation� i�e�� the misses are caused because servers are overloaded� In ��
� we also examine

the in�uence of changing the server storage size� the maximal number of clients per server and the movies size�

The results are very similar in nature to the one presented above and therefor omitted to save space�

In the second test we �xed the average number of requests per day to ���� �a point selected from �gure � in

the region of interest�� However� the day was divided to �
hours intervals� where in each interval the demand

per movie was changed� Per each interval we measured the number of misses and depicted them as a percenting

of the number of misses in a system where time intervals are not observed� In other words� in the reference

system the demand per movie is averaged over �� hours intervals and the variation along the day is not taken

�

Figure �	 Percent of the misses in a static demand system

into account� �Note� that the system of � is exactly such system�� The results of the second test are presented

in �gure ��

Figure �	 Comparison of a static and adoptive systems

We observe that is the demand per movies is changing even more over the day the adaptation can still

improve the miss rate considerably�

��

� Reliability Support

The hierarchical structure of the intraserver network introduces serious potential reliability problems� since

failures of each leader node might bring the system down� To address this issue� we present a solution that is

based on the ability to grant leadership to all servers� At system con�guration time� each server is assigned a

leadership priority number that re�ects the system administrator�s choices� Every time a server comes up� it

joins the leader election process� If it loses in that process it expects to hear from the elected leader periodically

and to respond to it� If it does not receive anything within a prede�ned period� it restarts the election algorithm

anew� Each leader maintains an active node list to which it sends the periodic messages� If an active node

does not respond� it is removed from the list� In the literature we can �nd election algorithms with message

complexity O�N logN � ����� These algorithms can also be adopted to handle leadership priority number at

some constant cost� We decided to use an algorithm with higher complexity � O�N�� �� since we expect the

number of servers in a group to be low �� ���� and our algorithm has a much smaller constant factor and is

simpler� It is also optimized for the use of Java Remote Method Invocation �RMI� �����

Before discussing the algorithm� we need to explain how nodes are named and located� A similar hierarchical

system of PNNI ���� is using a link state protocol for discovering other nodes � communication switches�� In

contrast� the nodes in our system �which are servers� do not have point to point links between them� Therefore�

our system needs to supply other means for nodes to locate their neighbors� We present two alternatives for

solving this problem�

The �rst is suitable for relatively small systems� Each server is provided with a list of neighbors from a

con�guration �le� If this list is not complete it can supplement it using information which it gets from the

neighbors of its list� This method is simple and easy to implement� but it is not scalable to very large systems�

The second method uses a prede�ned hierarchical naming structure similar to PNNI ����� and the principle

of root nodes� similar to DNS� There are several root nodes which are known to each node in the system whose

leadership priority number is higher than all other nodes� In addition to its IP address each node is provided

with another identi�cation� which is a concatenation of two parts� The �rst part is a node number� which

is unique in that group� and the second part is the group identi�er� When a new leader is elected� the leader

represents its group and at that level sets its identi�er equal to the group identi�er� which in turn can be divided

recursively� The leader is a member in the next level group� i�e� with other elected leader� The group with

identi�er � is the toplevel group� and its elected leader is the toplevel leader� assigned as a root� Figure �

shows an example of this naming policy�

When a node starts the election algorithm and is not familiar with other nodes in the group� it elects itself

as leader� creates a next level node and starts the election algorithm in the next level� When the process arrives

at one of the root nodes� the root node checks that in its group there are not multiple nodes with the same

identi�cation� If there are two or more nodes with the same identi�er� the root node makes them aware of each

other� For reduce the load on the root nodes� when a node is elected as leader� all nodes in its group record

their name in the con�guration �les� Recent leaders can be kept for future election rounds� When a node starts

the election algorithm� it checks the stored recent leader list before communicating with the root node�

Figure � shows two nodes ����� ���� and an example of their con�guration �les and single root node� Before

the election algorithm starts� each node knows only its IP address� its identi�cation and IP address of the root

node� The nodes are not aware of each other� Consequently� each node elects itself as a leader and creates a

next level node� The higher level nodes get the same identi�cation name ���� When they apply to the root

node� they recognize that they belong to the same group and make it aware of it� Node ��� is elected and after

that its IP address is written in the con�guration �les of all the nodes in the group�

��

root
node

nodeID 1

root

node ID 3

node ID 1

node ID 3 node ID 3

.2

node ID 1
group ID 0

node ID 2
group ID 0

group ID 1

group ID 1.1group ID 1.1

1.1.1

1.2
group ID 1.2 group ID 1.3

1.1.31.1.2

1.1

.1

1.2.1 1.2.2 1.2.3

1.3

1.3.1 1.3.2 1.3.3

Figure �	 ID address example

Doun level
groups

Up level
groups

IP address
of 11

local IP
address

rootroot

IP adderss
of the root

node

IP adderss
of the root

node

IP adderss
of the root

node

1

new leader creating election protocol

1.1

Up level group

Doun level group

1.1

1

1.1

1.1

1

1.2

joing to the group massage neighbour update message

1.2

1.2

IP adderss
of the root

node

1.2

Figure �	 Example of node location

� System Implementation

We have implemented all management activities of the DVS system with Java ��� ���� ���� Given that the

computation cost is relatively small compared to the communication cost involved in the management activities

��

�movie distribution and server selection�� the current performance of Java did not present a practical problem� In

contrast� we bene�ted greatly from its platform independence� builtin multithreading support� and networking

support� In particular� we made heavy use of the Remote Method Invocation �RMI� ���� package� which enabled

us to program the system as a uniform set of communicating objects regardless of whether they are colocated or

physically distributed� In addition� we exploited the powerful RMI capability to pass remote object references as

parameters� This signi�cantly improved connection time and eased the programming e�ort since it eliminated

the need to establish network connection for each interim interaction between servers or between clients and

servers�

Unlike management and distribution functions� the actual delivery of the video to users must be performed

in realtime with performance being a critical factor� Early experiments that we conducted with Javabased

videoservers ���� showed an intolerable delay� among other reasons due to the transfer of data from the native

calls to Java� Given that video playing over the network perse was not a research goal in this project� we

used the public domain VCR MPEG� player from the Oregon Graduate Institute ���� and extended it with

the capability to redirect its output to ATM �to the proxy�� Although VCR is implemented in C and runs only

on Unix� the rest of the system is platformindependent and thus can be deployed over the Web as long as the

VCR client is preinstalled as a �helper� application on the browser� In any case VCR is loosely coupled with

the rest of the system and could be replaced with the upcoming Java Media Framework ����� resulting in a fully

portable system�

Finally� an important component of the DVS system is its runtime monitor� which is capable of tracking

dynamically various properties such as changing user demands in a server� load on the servers� and automatic

restructuring� in any of the servers that comprise an instance of DVS� Figure � shows a snapshot of the monitor�s

GUI� The left frame lists the server groups and their hierarchical structure �two groups of � and � members�

respectively�� Notice that manager nodes in the hierarchy �e�g�� comnet�� appear also as edge nodes� as explained

in Section �� If some manager fails and a new node is elected� the hierarchy is refreshed and redrawn in the

monitor� The right frame shows the movie distribution in a selected server� tochna��� and the demand for each

movie in that server� For example� movie T�� is local� which is not surprising given its relatively high demand

�indicated by the value �

 in the Request column�� In contrast� there is no local copy of movie T� in that site�

re�ecting the low demand ��� in this server� The monitor is also capable of manually transferring movies for

testing and experimentation purposes�

� Future Work

One of the possible extensions to our system is to improve the movie distribution algorithm� for example by

splitting the movie space into geographical regions� since many movies have only local popularity and should

not a�ect other areas� Another improvement is to optimize the movie and load distribution according to the

private network�s link capacity and cost�

We also plan to explore and incorporate security and robust faulttolerance components to the next version

of DVS� Finally� a major extension is to develop a more general framework that will support distribution and

management of electronic comodities �besides VOD� in the general context of network computing� for example

to support commerce in software components ���� or purchase services such as remote �le storage�

References

��� George Young and Lanie Kurata� Building advancedmedia solutions� February �����

�

Figure �	 The DVS Monitor

��� J�L� Wolf� P�S� Yu� and H� Shachnai� Disk load balancing for videoondemand systems� ACM Multimedia

Systems Journal� ����� �����

�
� R� Staehli� Quality of Service Speci�cation for Resource Management in Multimedia Systems� PhD thesis�

OGI� January �����

��� S�Cen� C�Pu� R�Staehli� C�Cowan� and J�Walpole� A distributed realtime mpeg video audio player� In

Appeared at the Fifth International Workshop on Network and Operating System Support of Digital Audio

and Video �NOSSDAV����� Durham� New Hampshire� USA� Aprill �����

��� T� Mojsa and K� Zielinski� Webenabled� corba driven� distributed videotalk environment on the java

platform� In Proceedings of the 	th International World Wide Web Conference� pages ��
����� Santa

Clara� CA� April �����

��� Renu Tewari� Daniel Dias� Rajat Mukherjee� and Harrick Vin� High availability for clustered multimedia

servers� In In the Proceedings of International Conference on Data Engineering� New Orleans� February

�����

��� Renu Tewari� Daniel Dias� Rajat Mukherjee� and Harrick Vin� Design and performance tradeo�s in clustered

multimedia servers� In In the Proceedings of IEEE�ICMCS �Tokyo� June �����

��� Jim Gemmell� Harrick M� Vin� Dilip D� Kandlur� and P� Venkat Rangan� Multimedia storage servers	 A

tutorial and survey� IEEE Computer� May �����

��� Eenjun Hwang� B� Prabhakaran� and V�S� Subrahmanian� Presentation planning for distributed video

systems� Technical report� University of Maryland� Computer Science Division� December ����� Report

CSTR
��
�

��

���� Silvano Martello and Paolo Toth� Knapsack Problems� Algorithms and Computer Implementations� Wiley�

�����

���� Silvano Martello and Paolo Toth� Heuristic algorithms for the multiple knapsack problem� Computing�

��	�
����� �����

���� Thomas H� Cormen� Charles E� Leiserson� and Ronald L� Rivest� Introduction to Algorithms� The MIT

Press� MCGrawHill Book Company� �����

��
� A� Roytman� Dvs� a system for distribution and management of global vodeo on demand services� Master�s

thesis� Technion Israel Institute of Technology� October �����

���� Gerard Tel� Introdaction to Distributed Algorithms� Cambridge University Press� �����

���� javasoft� RMI � Remote Method Invocation� http	��www�javasoft�com�products�jdk�����docs�guide�rmi��

���� The ATM Forum Technical Committee� Atm forum pnni speci�cation� march ����� Version ��� afpnni

���������

���� Mary Campione and Kathy Walrath� The Java Tutorial � Object�Oriented Programming for the Internet

�Java Series�� AddisonWesley Pub Co� http	��www�javasoft�com�docs�books�tutorial�index�html� second

edition� March �����

���� Ken Arnold and James Gosling� The Java Programming Language �Java Series�� AddisonWesley Pub Co�

second edition� �����

���� Abraham Baum� Talking head� onetomany realtime video over the internet using java� Technical report

tcs����ltd� Software Laboratory Departments of Electrical Enginnering of Technion Israel Institute of

Technology� �����

���� Shanwei Cen� A Distributed Real�Time MPEG Video Audio Player� ftp	��ftp�cse�ogi�edu�pub�dsrg�Player�

���� javasoft� Java Media Framework API� http	��java�sun�com�products�javamedia�jmf�index�html�

���� I� BenShaul� A� Cohen� O� Holder� and B� Lavva� Hadas	 A networkcentric framework for interoperability

programming� International Journal of Cooperetive Information Systems� ��
��	��
�
��� December �����

��

