
Information Processing Letters 26 (1987/88) 301-305
North-Holland

25 January 1981

YET ANOTHER DISTRIBU1ED DEPTH-FIRST -SEARCH ALGORITHM

Isreal CIDON

IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, U.S.A

Communicated by David Gries
Received 24 October 1986
Revised 15 January 1987 and 16 June 1987

A new distributed deptb-first-search algorithm is presented whose communication and time complexities are bounded by
31EI and 2IVI, respectively.

Keywords: Distributed system, distributed algorithm, asynchronous, depth-first-search

I. Introduction

In a recent paper [1], Awerbuch suggests a

distributed depth-first-search (DDFS) algorithm

that improves the time complexity of the previous

DDFS algorithm of Cheung [2]. The communica-

tion cost of the algorithm of [I] is 41 E I messages

and the time complexity is less than 41V 1, where

E is the set of undirected links and V is the set of

nodes of the communication network. This is com-

pared to 21 E 1 for both complexities in the previ-

ous algorithm of [2].

This paper presents a DDFS algorithm that

uses no more than 31 E 1 messages and 2 I V I units

of time, thus improving both the communication

and the time complexities of [I]. In addition, as in

[1], no FIFO rule of message delivery is needed

for the operation of the DDFS algorithm.

2. The model

Let G(V, E) represent the communication net-
work, with V being the set of nodes and E the set

0020-01901881$3.50 @ 1988, Elsevier Science Publishers B.V. (N(

of bidirectional communication links. The link
between nodes i and j is denoted by the unordered
pair (i, j) and carries messages in either directions.
The asynchronous network has the following

properties:
(1) All messages sent from i to j over link (i, j)

arrive correctly, within arbitrary but finite time,
and not necessarily in the same order they were
sent.

(2) Each node is aware of all its links. It knows
the identity of the link over which a message is
received.

The following complexity measures are used to
evaluate performances of distributed algorithms
operating in the above network. The communica-
tion complexity is the total number of messages
sent during execution of the algorithm. The time
complexity is the maximum time passed from its
start to its termination, assuming that the time of
delivering a message over each link is at most one
unit of time. This bounded delay is assumed only
for evaluating the time complexity. The algorithm
operates correctly with any finite arbitrary mes-
sage-delivery time.

rth-Holland) 301

INFORMATION PROCESSING LETTERS 25 January 1988Volume 26, Number 6

3. The J)DFS algorithm

We present a new DDFS algorithm for the
network described above. The output of such an
algorithm is a DFS tree of the graph G(V, E) kept
in a distributed fashion, i.e., each node knows its
links to its father and sons in the tree. A DFS tree
is defined by the centralized DFS algorithm, for-
mally described in [3].

3.1. Informal description of the DDFS algorithm

covered state, selecting one of the unvisited links,
marking it as son, and sending the message TOKEN
over that link. In addition, the node sends VISITED
messages over all other links.

Upon receiving the TOKEN message for the first
time over a link, a node transits to the discovered
state and marks the link as father. If it has some
unvisited links, the node selects one of them, sends
the TOKEN over that link, marks it as son, and
broadcasts a VISITED message over all unvisited
and visited links (excluding the selected link, which
is now marked as son). If no unvisited links exist,
the node sends the TOKEN over its father link. If
no father link exists, the algorithm terminates
(since only the source may have no father link).

If the TOKEN message is received over a son
link, the node does the same as above (excluding
the broadcast of the VISITED messages).

Upon receiving the TOKEN over an unvisited or
visited link but not for the first time, no response
is sent. The algorithm relies on the fact that a
VISITED message was sent in the past over that
link. The node just marks that link as visited if
not already done so,

Upon receiving a VISITED message over an un-
visited link, the node marks that link as visited. If
it receives the VISITED message over a link marked
as son, the node marks it as visited. This reception
implies that the TOKEN was previously sent over
that link and was rejected by its neighbor. At this
point, the node acts as it would act if it received
the TOKEN back from one of its sons (as described
above). In all other cases, the VISITED message is
ignored. (If it was received over a father link, then
the node realizes that the message was received
out of order since it is always sent prior to the
TOKEN message. Consequently, there is no mean-
ing to this message and it is ignored.)

3.2. Formal description of the DDFS algorithm

As in all previous DDFS algorithms, a token is
passed sequentially from node to node in order to
explore the network. The key idea that accelerates
the completion time of the algorithm lies in the
fact that each node, upon receiving the token for
the first time, notifies its neighbors that it has
been visited. This will prevent them from consid-
ering this node as unexplored and from sending
the token to it at some later time. The same idea is
used in [1].

In [1], an acknowledgement is sent for each
notification and the node holds the token until all
notifications are acknowledged. In our algorithm,
no acknowledgements are used, so no time is
spent on waiting for them. The token is forwarded
immediately to the next node when the notifica-
tions are sent. Thus, in contrast to [1], the token
may be sent to an already explored node (whose
notification has not yet been received). In such a
case, the later arrival of the notification indicates
to the sender that it has sent the token to an
already explored node and that it was rejected.
The sender generates the token anew and proceeds
to explore the other neighbors. Even though the
token may be sent unnecessarily to some nodes,
both communication and time costs are improved.

We now give a more detailed description of the
actual steps taken by the nodes.

At each node, all links may have one of the
following four possible markings: unvisited (initial
marking), visited, son, and father. The node itself
may be in one of the two states idle (initial state)
and discovered. Execution begins with a unique
source node transiting from the idle to the dis-

In the following, we give the algorithm ex-
ecuted by each node i. Variable marki(j) contains
the current marking of link j at node i, and
variable statei describes the state of node i.

302

INFORMATION PROCESSING LETTERSVolume 26, Number 6 25 January 1988

The following messages and signals are used

START:

TOKEN:

VISITED'

a signal sent from the outside world in order to start the algorithm,
a message sent to a neighbor perceived to be in the idle state,
a message sent in order to notify neighbors that the node has already transited from
the idle state.

ROUTINE: MAIN

On receiving START from outside and i = source:
if ST A TEi = IDLE then

STATEi -discovered;
SEARCH;
send VISITED over all k such that marki(k) is visited or unvisited

fi

On receiving TOKEN over link j :
if ST A TEi = IDLE then

marki(j) +-- father;
ST A TEi +-- discovered;

SEARCH;
send VISITED over all k such that marki(k) is visited or unvisited

else
if marki(j) = unvisited then marki(j) +- visited fi

if marki(j) = son then SEARCH fi

fi

On receiving VISITED over linkj:
if marki(j) = unvisited then marki(j) +- visited fi
if marki(j) = son then

marki(j) +- visited;

SEARCH

fi.

ROUTINE: SEARCH
if for some k marki (k) = unvisited then

send TOKEN to k;
marki(k)-- son

else if i = souce then stop else send TOKEN over k for which marki(k) = father fi

fi.

303

INFORMA TION PROCESSING LETTERSVolume 26, Number 6 25 January 1988

4. Proof of correctness and complexity bounds

The above DDFS algorithm visits all nodes in
the network and terminates at the source node. It
also distributively constructs a DFS tree routed at
the source node, with each node knowing its father
and sons in the tree. Below we prove this and the
communication and time complexities bounds.

4.1. Lemma. If all messages are delivered in at most

one unit of time, then the algorithm terminates after

at most 21V 1- 2 units of time.

sages can be sent at most once over each link in
either direction. This implies that no more than
four. messages are sent over any link in both
directions. To prove that at most three messages
are sent it is enough to show that if two VISITED
messages are sent, then at most one TOKEN mes-
sage is sent (since at most two messages of each
type may be sent, this also implies that if two
TOKEN messages are sent, at most one VISITED is

sent).
Consider the case that two VISITED messages

are sent over link (i, j). Also assume that a TOKEN
message was sent first from i to j (which implies
that i is not the son of j). In this case, the TOKEN
is sent by i before receiving the VISITED message
of j, otherwise no TOKEN would be sent to j. Since
j sends a VISITED message over (i, j) this cannot be
the first TOKEN message received by j. In such a
case, when the TOKEN sent by i is received at j,
link 0, i) is marked as visited or unvisited, so no
response is sent. Moreover, after the TOKEN recep-
tion link 0, i) is marked as visited, no future
TOKEN message may be sent by j to i.

We have proved that at most three messages
are sent over each link. This proves that the com-
munication cost of the DDFS algorithm is
bounded by 31 E I messages. D

Proof. First we prove that if the TOKEN is sent to
an idle node i by its father at time t, then, in at
most one unit of time after t, the TOKEN is sent to
another idle node or back to the father.

All VISITED messages destined for i from nodes
in the discovered state were sent prior to the
father's TOKEN. Consequently, they all have been
received at i by time t + I. At that time, node i is
aware if it has sent the TOKEN to some discovered
node over a link marked as unvisited. At this
point, i sends the TOKEN over an unvisited link,
which always leads to an idle node (if one exists),
or back to its father. In the latter case, the TOKEN
is never forwarded again to i by its father.

Since the TOKEN is transmitted once in each
direction over all links of the DFS tree and the
time between two consecutive transmissions is
bounded by one, the total time spent by the
DDFS is bounded by 21V 1- 2. D

As noted before, in a synchronous network, no
TOKEN message is sent except over the links of the
DFS tree. Moreover, no more than one VISITED
message can be sent over each link of the DFS
tree in both directions. This makes the communi-
cation cost in this special case to be at most

2IEI+IVI.

Note that if all messages are delivered in ex-
actly one unit of time (the network is synchro-
nous), the algorithm terminates after exactly
2 I V I -2 units of time. Moreover, in such a case,
since message delay is exactly one unit of time,
whenever node i forwards the TOKEN to one of its
neighbors it will have received all VISITED mes-
sages that were sent to it over all links. This
implies that, in this case, the TOKEN is never sent
to a discovered node.

5. Discussion

Our DDFS algorithm sends at most 31 E I mes-
sages and has time complexity of less than 2 I V 1.
An interesting feature of this algorithm is that
even though it may send messages to already
discovered nodes, it still has less communication
and time complexity than the algorithm of [1],
which prevents such undesirable transmissions.
This may suggest that the time and messages spent
in recovering from unnecessary actions is some-

4.2. Lemma. No more than three messages are sent

over any link in both directions.

Proof. It is clear that the VISITED or TOKEN mes-

304

INFORMA TION PROCESSING LETTERSVolume 26, Number 6 25 January 1988

Acknowledgment

The author wishes to thank Dr. lnder S. Gopal
and Dr. Shmuel Zaks for helpful discussions and
comments. He also thanks the anonymous referees
and the communicating editor for their assistance
in improving the presentation of this paper.

times less than the time and messages spent in
avoiding these actions completely.

Another interesting question arises from com-
paring the best message complexity DDFS of [2],
which requires 2 I £ I messages, with that of this
paper, which requires at most 31£ 1 messages (for
some examples in a full graph, 0(31 £ I) messages
are actually sent). It seems that 21 £ 1 serves as a
lower bound for DDFS's message complexity. In
the synchronous case, this bound is almost met. Is
it possible to design a DDFS algorithm for an
asynchronous network that has 0(1 V I) time com-
plexity and uses only 0(21 £ I) messages?

References

[1] B. Awerbuch, A new distributed depth-first-search al-
gorithm, Inform. Process. Lett. 20 (3) (1985) 147-150.

[2] T. Cheung, Graph traversal techniques and the maximum
flow problem in distributed computation, IEEE Trans.
Software Engineering SE-9 (4) (1983) 504-512.

[3] S. Even, Graph Algorithms (Computer Science Press,

Rockville, MD, 1979) 53-57.

305

