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Distributed Store-and-Forward Deadlock Detection
and Resolution Algorithms

ISRAEL CIDON, MEMBER, 1EEE, JEFFREY M. JAFFE, SENIOR MEMBER, IEEE, AND MOSHE SIDI, MEMBER, IEEE

Abstract—Distributed algorithms for the detection and resolution of
deadlocks in store-and-forward computer communication networks are
presented and validated. The algorithms use a fixed amount of storage at
each node (that is independent of the size of the network). The detection
algorithm is simple but requires network-wide coordination. The resolu-
tion algorithm is based on earlier approaches, but uses the network-wide
coordination to address certain synchronization problems. When the
detection and resolution algorithms are merged, it is guaranteed that
packets will arrive at their destinations in finite time.

I. INTRODUCTION

NE of the crucial problems in the design of

store-and-forward computer communication networks is
the buffer deadlock problem. A comprehensive survey of
potential types of deadlocks appears in [1]. Various schemes
can be devised to prevent the occurrence of deadlocks in
networks [1]-[4]. However, these schemes are often too costly
to implement. Also, redundant buffers allocated to nodes to
prevent deadlocks are often not utilized, especially in well-
designed networks where deadlock situations are rare. In
addition, ‘‘overcontrol’’ of the network degrades performance
under normal conditions. Thus, IBM’s SNA does not explic-
itly avoid transport deadlock [5], and Digital’s Decnet
prevents deadlocks only by occasionally throwing away
messages [6]. In a network without deadlock prevention,
having a distributed deadlock detection algorithm is invalu-
able. Once a deadlock is detected, having a distributed
algorithm to extricate the network from deadlock is not less
important.

Distributed deadlock detection has been extensively studied
[71-[12]. In all these studies, the amount of local storage
required at each node to perform a deadlock detection
algorithm grows (at least) proportionally with the size of the
network. This property is unacceptable in store-and-forward
networks since a buffer deadlock at the network level implies
storage shortage and there might not be enough storage to
execute the deadlock detection algorithm when a deadlock
exists! Consequently, the network versions of the distributed
deadlock detection and resolution problems require that nodes
be able to detect and resolve the deadlock using a finite
amount of auxiliary buffers specifically set aside for that
purpose [13].

This paper first presents and validates a simple distributed
deadlock detection algorithm that leaves the network in a state
that allows resolution of the deadlock (Section IV). Then an
accompanying distributed deadlock resolution algorithm is
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introduced and validated (Section V). Both algorithms use
only finitely many buffers during their execution and assume
the existence of a single Leader in the network. This implies
(by the Leader performing a single iteration of the PIF
algorithm described in [17]) the existence of a spanning-tree
rooted at the Leader and that each node knows its adjacent
links that belong to the tree. When routing in the network is
‘‘reasonable,’’ the combined deadlock detection and resolu-
tion insures the essential property for proper operation of a
network, that all packets will arrive at their destinations in
finite time, as we prove in Section III. In Section II, we
describe the underlying model that is used in this paper.

II. THE MODEL

We adopt the model of [13]. For completeness, we give a
concise description of that model.

A. Network Model

A network consists of a set of communication nodes N,
and a set of links L that interconnect nodes of N. Two nodes
interconnected by a link are called neighbors. At any point in
time, any node may create a new packet, which we assume to
be of variable, but bounded size.

When a node receives a packet (created by itself or sent bya
neighbor), it determines a next node, based on the packet’s
header and routing tables. The type of routing does not
concern us—only the fact that the header and the (possibly
dynamic) routing tables uniquely determine a next neighbor
and that:

Assumption 1): The routing is ‘‘reasonable,’’ i.e., it
ensures that packets do not loop forever in the network, but
each packet traverses a finite (not necessarily bounded)
number of hops on its way from the source to the destination.

Once the next node is determined, the node queues up a
packet for that next node. The way a node handles its queue to
an adjacent node is not very important. We only need that:

Assumption 2): If a queue is not permanently blocked, then
each packet will eventually be transmitted. Note that a FIFO
discipline is one example in which this assumption holds.

The way in which a node decides to send to an adjacent node
is also not too important, but we need that:

Assumption 3): A node n never sends to node m if m is
unable to receive more packets. Furthermore, if m is not
permanently unable to receive packets, then each of its
neighbors which has a nonempty queue for m has an
opportunity to send to 2 and will send the first message in the
queue to .

Regarding links the following properties are assumed: they
are FIFO (do not lose, reorder, or duplicate messages); there
is no deterministic bound on the amount of time that it takes a
message to traverse a link; any message placed on the link
arrives at the other side of the link in finite time; links never
fail.

Finally, we assume that the response time of a node to
control massages that it receives is finite.

0090-6778/87/1100-1139$01.00 © 1987 IEEE



1140

B. Model of a Communication Node

We assume that the total storage available at a node is finite
and that it is divided into three parts (see Fig. 1). One part is
the storage needed for overhead that includes the code for the
machine, data structures, variables, control blocks, etc. In
addition, the node may reserve storage for specific emergency
measures such as deadlock detection and resolution. This must
be a fixed amount of storage as it must be enough irrespective
of network size. (When storage management is organized in
the machine, one does not know how large the network is or
whether it will grow over time.) Thus, in the overhead
portion, one may reserve a fixed number of message buffers
to aid in deadlock detection and resolution.

Next, one considers the maximum number of links that may
be assigned to a node and assigns a fixed amount of storage per
link. This storage is needed to control the physical link. Since
storage in any case must be allocated on a per link basis, we
also allow a fixed amount of storage per link to be reserved
for deadlock detection and resolution. Thus, the total storage
allowable for the entire deadlock detection and resolution
procedures is a constant number of message buffers, plus a
constant number of buffers per adjacent link.

Once storage has been reserved for overhead and for the
links, all other storage is left over for message buffers for
transit traffic.

The way that the message buffers are used is that they are a
common ‘‘pool’’ shared by various components of the node.
Each link has a queue of outgoing messages. When a link
control learns that an adjacent node is sending a message, it
allocates a free message buffer (if one exists) to accept the new
transit data. Once in a buffer, the node determines the
outgoing link and assigns this buffer to the relevant outgoing
queue. (We assume that this entire message processing step is
an atomic action.) When the message is transmitted, the buffer
is freed. If no free buffer is available, we assume that via
pacing or polling mechanisms, the adjacent node knows not to
send. Similarly, if the packet was created at the given node, if
there is storage, a buffer is allocated for it, and if not, the
packet stays in the same machine, but does not enter the
communication subsystem.

C. Deadlocks

A node is full if it has no free message buffers. Otherwise it
is not full. If a node i has any messages on the outgoing queue
for neighbor / then (i, /) is an outgoing link. Alternatively,
we call / an outgoing neighbor. Let D be a collection of full
nodes. The set D is a deadlock set if all outgoing links from
nodes in D lead to nodes in D. A node n € N is deadlocked if
it is full and is a member of some deadlock set. These
definitions imply that:

Lemma 1:1f a node i is permanently full after time ¢, then it
becomes deadlocked at some time ¢’ = 7.

Proof: Assume that node 7 is permanently full after time
t. Assumption 3) then implies that 37, = ¢ such that after ¢, all
outgoing neighbors of node i are permanently full. Using
Assumption 3) for these outgoing neighbors implies that 37, =
t; such that after ¢, all outgoing neighbors of the outgoing
neighbors of node i are permanently full. Using the same
argument inductively, we conclude that (since the number of
nodes in the network is finite) there is a deadlock set in the
network that node 7 belongs to it.

A deadlock detection algorithm (DDA) is an algorithm
with the following properties: (D1) it never returns a result of
deadlock to a node that is not deadlocked; (D2) if a deadlock
set is formed and deadlocked nodes never become not full (by
some resolution mechanism), then in finite time the algorithm
will (be initiated and) return a result of deadlock to all
deadlocked nodes.

A deadlock resolution algorithm (DRA) is an algorithm
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Fig. 1. Storage partition.

with the following properties: (R1) it is initiated upon
deadlock detection; (R2) if node n becomes deadlocked at
time ¢ then in finite time after ¢, it will become not full; (R 3)
no packets are lost during its execution.

In addition, we require that both the detection and the
resolution algorithms will use only the (fixed amount of)
storage reserved for them in the overhead and link control
portions of a node, and that they will not interfere with the
normal operation of the network. Finally, we require that
during the execution of a resolution algorithm no packets will
be routed on links other than those specified by the routing
algorithm.

The main focus of this paper then is to develop simple
deadlock detection and deadlock resolution algorithms. As we
show in the next section, when a DDA and a DRA are applied
in a network, it is ensured that packets will be delivered to
their destinations in finite time. This latter property is essential
for proper operation of a communication network.

III. DEADLOCK TRANSPARENCY

In computer communication networks, buffer deadlocks
may occasionally occur, and if no means are taken to face such
situations, they will cause some of the packets to be infinitely
delayed and never forwarded to their destinations. Applying
deadlock detection and resolution algorithms with the above
properties will not inhibit deadlocks from being formed, but
these deadlocks will be transparent to the users of the network,
in the sense that all packets will be delivered to their
destinations in finite time, as we now prove.

Theorem 1: Let the assumptions upon routing and queue
and packet handling stated in Section II-A hold. Assume that a
network operates with deadlock detection and resolution
algorithms with the properties stated in Section II-C. Then,
each packet that enters the network will be delivered to its
destination in finite time.

Proof: Assume that the theorem does not hold, namely
that there is a packet in the network that is never forwarded to
its destination. Since the routing is reasonable, i.e., the packet
only traverses finitely many hops, and since no packets are lost
(R3), the packet must be permanently stuck at some node.
Consequently, it must be that the outgoing queue is perma-
nently blocked. Thus, the packet is to be sent to a permanently
full neighbor. By Lemma 1), this neighbor will become
deadlocked and by (D1) it will find out that it is deadlocked in
finite time. Then by (R1) resolution will be initiated and by
(R2) node { will become not full in finite time, contradicting
the fact that it is permanently full.

It is interesting to note that if both detection and resolution
algorithms are applied in a network, then it is not guaranteed
that each deadlocked node will find out that it is deadlocked,
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because the deadlock might be resolved before some nodes
become aware that it has been ever formed.

In the following two sections, we introduce distributed
deadlock detection and deadlock resolution algorithms with
the above properties.

IV. DEADLOCK DETECTION ALGORITHM

The distributed deadlock detection algorithm to be de-
scribed is based on a simple idea for determining the deadlock
set in a network. To facilitate the understanding of the
distributed DDA, we first give a centralized DDA that
introduces the basic idea.

A. Centralized Algorithm for Deadlock Detection

Let N, E, and D be variables that at the end of the algorithm
represent the set of all nodes, the set of not-deadlocked nodes,
and the set of deadlocked nodes, respectively. The idea of the
algorithm (listed in Fig. 2) is that at its beginning, all full
nodes are in D and all nodes that are not full are in £. Then
each node in D with an outgoing link to a node in E, is deleted
from D and added to E, repeatedly. Thus, at the end of the
algorithm D contains all full nodes that do not have any path
through outgoing links to a not-full node and therefore they are
deadlocked.

B. Distributed Algorithm for Deadlock Detection

The following is an algorithm that exploits the same idea of
the centralized algorithm, but now in a distributed manner. We
assume that there is a static spanning tree that covers all nodes
of the network and is rooted at a Leader. Each node i knows its
adjacent links that belong to the spanning tree and its
neighbors on this spanning-tree are called tree neighbors.
Different distributed algorithms can be used for determining
the Leader [15] or for constructing the spanning tree [16], [17]
using a finite amount of storage per adjacent link.

At any time, each node can be in one of two modes. When it
is not participating in the algorithm it is ASLEEP and when
participating it is A WAKE. Each node i holds and updates the
Boolean variable ST(i) during the execution of the algorithm.
ST(¢) indicates whether node i is potentially deadlocked or
not; 0—not deadlocked (belongs to E), 1—deadlocked (be-
longs to D). At the end of a cycle, this variable indicates
whether a node is deadlocked.

‘The distributed algorithm operates in cycles. Each cycle is
composed of three phases and is started by the Leader after
being triggered by some request (REQ) from a node that
became full when it was ASLEEP or when it was A WAKE.
In the former case, the REQ message is forwarded immedi-
ately through the tree to the Leader, while in the latter case, it
is held until the whole cycle of the algorithm terminates, and
only then is forwarded.

The first phase of the algorithm is called the START phase
and it is started by the Leader sending ST AR T messages to all
its tree neighbors. The START messages propagate as
follows. Each node / that receives a START message from the
tree neighbor that leads to the Leader (call it p;), sends
START messages to all its tree neighbors, except p;. When it
receives START messages from a// its tree neighbors it sends
a START message to p;. When a node i receives a START
message for the first time in a cycle (i.e., when it is
ASLEEP), it AWAKE’s and sets its ST(i) properly, i.e., if it
is full, ST () « 1 and if it is not full S7T() « 0.

During the whole cycle, a node / that becomes not full while
being A WAKE, sets ST (i) < 0. If node i becomes full during
a cycle it does not change ST(i ), but keeps a REQ message to
indicate that it should trigger a new cycle when the current one
ends.

Whenever node i sets S7(i) to 0, it starts a freeing
mechanism by sending FREE messages to all its neighbors. A
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Initialize E = ¢; D = N;

Step 1 Foralli e N,if iisnot fullthendo: E<« E U i; D « D —i;

Step 2 FLAG « 0 ; Foralli € D, if j € E and j is an outgoing neighbor of i do:
E«EVUi, DeD — i;FLAG « 1;

Step 31f FLAG = 1thengotoStep?2;

End {D contains all deadlocked nodes; E contains all nondeadlocked nodes }

Fig. 2. Centralized algorithm.

node j that receives a FREFE message from a node 7 and is
AWAKE acts as follows: if ST(j)=0 or if it does not have
any data message intended to 7, it sends an immediate ACK to
node i. Otherwise (i.e., ST(j) = 1 and j has a data message
intended to i), it sets S7T(j) <« O and starts a freeing
mechanism. Only after receiving ACK messages from al// its
neighbors, will node j send an ACK message to node i. Thus,
when a node / receives ACK messages from all its neighbors,
it is ensured that all nodes that are not deadlocked because i is
not, have been informed of that. We say that at this point node
i completes its freeing mechanism. A node j that becomes not
full by sending a data message to node / acts as if it received a
FREFE message from i when ST(/j) = 1 with a message
intended for i. Finally, a node j that receives a FREFE message
from a node 7 and is still ASLEEP, waits until it A WAKE’s,
and then acts as described above.

When the Leader receives START messages from all its
tree neighbors, it knows that each node in the network started
the algorithm and the START phase has been completed. It
then begins the second phase, called the TERMINATE
phase, by sending TERMINATE messages to all its tree
neighbors. TERMINATE messages propagate in the same
way as START messages, except that when a node receives
TERMINATE messages from all its tree neighbors, it sends a
TERMINATE message to p;, only if it has ST(i) = 1 orifit
has ST(i) = 0 and it completed its self-initialized freeing
mechanism. Otherwise, it will send a TERMINATE message
to p; upon completion of its freeing mechanism.

Finally, when the Leader receives TERMINA TE messages
from all its tree neighbors, it knows that each node in the
network completed the TERMINATE phase. It then (if its
freeing mechanism is in progress, it first waits for its
completion) begins a final phase (the INFORM phase) by
sending INFORM messages to all its tree neighbors. IN-
FORM messages propagate in the same way as START
messages. When a node receives an INFORM message and it
has ST(i) = 1 it concludes that it is deadlocked (indicating
that by DS(i) < Deadlocked). A node that sends an
INFORM message to p; goes ASLEEP. When the Leader
receives INFORM messages from all its tree neighbors, it
knows that each deadlocked node in the network knows that it
is deadlocked and that the current cycle of the detection
algorithm has been completed.

In addition, the INFORM phase messages contain a
variable X (i) that allows the Leader to find out if there is any
deadlocked node in the network. This feature will become
important when we design deadlock resolution algorithms.
Finally, during the propagation of the INFORM messages, if
any node has an REQ message (indicating that the node
became full during the execution of the current cycle), it is
forwarded to the Leader, thus triggering it to start a new cycle.

The formal specification of the algorithms performed by the
Leader and the nodes in the network is given in Fig. 3. From
the above description of the DDA, it is clear that only a fixed
amount of local storage is used during its execution. In the
following subsection, we prove that it operates correctly, i.e.,
that it has properties (D1) and (D2), too. Note that the
assumptions upon routing and queue handling stated in Section
II-A are not needed for the detection algorithm to be correct.
These assumptions are important when a resolution algorithm
is designed, as we show in Section V.

Finally, it is easy to see that the number of control messages
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Detection Algorithm for the Leader (L)
< 1> For NOT FULL
<1.1> If became NOT FULL by sending a data message to neighbor /, then
perform <6.2.1>-<6.2.3>; Else ST(L) « 0, FR, + nil, Send FREE mes-
sages to all neighbors
<2> For FULL or REQ
<2.1> If Q(L) = ASLEEP then START ; Else hold REQ
<3> For START
<3.1> 1f Q(L) = ASLEEP then do:
<3.1.1> Q(L) « AWAKE
<3.1.2> Send START messages to all tree-neighbors
<3.1.3> DS(L) « Not-Deadlocked
<3.1.4> If full then ST(L) <« 1; Else NOT FULL
<3.2> If Q(L) = AWAKE then do:
<3.2.1> If received START messages from all tree-neighbors then send
TERMINATE messages to all tree-neighbors
<4> For TERMINATE
<4.1> If received TERMINATE messages from all tree-neighbors then send
INFORM messages to all tree-neighbors (if freeing mechanism is in progress
wait until it is completed)
«<5> For INFORM(X(1)}
51> HX() = 1then X(L) « 1
<5.2> If received INFORM messages from all tree-neighbors then do:
«52.14> If ST(L)=1 ‘then L is in a DEADLOCK;
DS(L) « Deadlocked ; X(L) < 1
<5.2.2> Q(L) « ASLEEP
<5.2.3> If have REQ then START and delete REQ
«6> For FREE from neighbor /
<6.1> If ST(L) = 0 then send ACK to {
<6.2> If ST(L) = 1 and L has a packet to / then do:
<6.2.1> ST(L) « 0
<6.2.2> FR, « |
<6.2.3> Send FREE messages to all neighbors except FR,
<7> For ACK
<7.1> If received ACK message from all neighbors then send ACK messages
to FR;

Detection Algorithm for node i
<1> For NOT FULL
<1.1> If became NOT FULL by sending a data message to neighbor /, then
perform <6.2.1>-<6.2.3>; Else ST(i) « 0, FR, « nil, Send FREE messages
to all neighbors
<2> For FULL or REQ
<2.1> If Qi) = ASLEEP then send REQ to p; Else hold REQ
<3> For START
<3.1> If Q(i) = ASLEEP then do:
<3.1.1> 0(i) « AWAKE
<3.1.2> Send START messages to all tree-neighbors except p,
<3.1.3> DS(i) « Not-Deadlocked
<3.1.4> 1If full then ST(:) = 1; Eise NOT FULL
<3.2> If Q(L) = AWAKE then do:
<3.2.1> If received START messages from all tree-neighbors then send
START message to p;
<4> For TERMINATE
<4.1> If received TERMINATE message from p, then send TERMINATE
messages to all tree-neighbors except p,
<4.2> If received TERMINATE from all tr ighbors then send
TERMINATE message to p, (if freeing mechanism is in progress wait until it is
completed)
<5> For INFORM(X(1))
<5.1> If X(D) = 1 then X(L) « 1
«5.2> If received INFORM message from p, then send INFORM messages
to all tree-neighbors except p;
<5.3> If received INFORM messages from all tree-neighbors then do:
<5.3.1> If ST(/)) = 1 then i is in a DEADLOCK; DS(i} < Deadlocked ;
X)) -1
<5.3.2> Send INFORM(X(i)) to p;
<5.3.3> Q(i) « ASLEEP
<5.3.4> If have REQ then send it to p, and delete it
<6> For FREE from neighbor / (upon AWAKE)
<6.1> If ST(i) = O then send ACK to /!
<6.2> If §T(i) = 1 and i has a packet to { then do:
<6.2.1> ST(i) = 0
<6.2.2> FR, « |
<6.2.3> Send FREE messages to all neighbors except FR;
<7> For ACK
«7.1> If received ACK message from all neighbors then send ACK to FR;

Fig. 3.

Detection algorithm.

exchanged during one cycle is O(|L|) (where |L| is the
cardinality of the set L), since in the worst case two messages
(FREE and ACK) will be transmitted on each link, in addition
to six messages on each of the links of the spanning tree.
Assuming that the maximal propagation delay for a message is
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one unit of time, the time required to complete one cycle is
O{N.

C. Validation of the DDA

The DDA presented above operates in cycles. Each cycle is
composed of three phases, each of which is started by the
Leader and ends when the respective control messages are
received by the Leader from all its tree neighbors. From the
way the control messages of each phase propagate, it is
obvious that the START and the INFORM phases are
completed in finite time. We now show that the TERMI-
NATE phase also ends in finite time.

Lemma 2: The TERMINATE phase ends in finite time.

Proof: Assume the contrary. Then there exists a node,
say i, that started a freeing mechanism and it never receives
an ACK message from all its neighbors. Hence, one of its
neighbors, say I, started a freeing mechanism upon receiving
a FREE message from /| (otherwise, it sends an immediate
ACK) and never received ACK messages from all its
neighbors. Applying the same argument, it follows that there
must exist nodes i, &y, i3, * -+, such that i;, started a freeing
mechanism upon receiving a FREE message from #; and each
of them never received ACK messages from all its neighbors.
However, since the number of nodes in the system is finite,
and since the response time to a control message is finite, there
is some j for which i; = i, for some 1 = / < j — 1, hence
contradiction.

Now that we showed that each of the phases of a cycle
completes in a finite time, it immediately follows that a cycle
completes in finite time. Therefore, an REQ message gener-
ated at some node arrives to the Leader in finite time.

We now prove that our DDA has property (D1).

Theorem 2: A node that is not deadlocked has ST(i) = O
when it receives an INFORM message.

Proof: Assume that at least one node in the network, say
node i, is not deadlocked (otherwise, the theorem trivially
holds), and that the theorem does not hold, i.e., ST() = 1
when node 7 receives an INFORM message. Obviously, node
i was full since the beginning (when it received a START
message) of the cycle (otherwise, it would have set ST(i) =
0). Let ND be the set of all nodes such as i, i.e., full, not
deadlocked, and have S7(/) = 1 when completing the
INFORM phase. If all nodes in ND have packets only to
nodes within ND or to deadlocked nodes, then they are
deadlocked, contradicting our assumption about ND. So at
least one node k in ND has a packet to a node / that is not
deadlocked and is not in ND. Note that ST(/) = O since if / is
not full ST(/) = 0 automatically and if / is full then ST(/) = 0
by the assumption / € ND. When / set ST(/) to 0, it started a
freeing mechanism by sending FREE messages to all its
neighbors. Hence, k should have set ST(k) to O (otherwise, /
would not have received an ACK from k and the TERMI-
NATE phase would not have been completed yet), contradict-
ing the fact that k is in ND.

The next theorem shows that our DDA has property (D2).
We assume that no resolution mechanisms are applied to
deadlocked nodes.

Theorem 3: If a node becomes deadlocked, then in finite
time it will find it out.

Proof: A node i becomes deadlocked only if it remains
full forever. At the instant i becomes deadlocked, some node
becomes full and generates an REQ message. This REQ
message arrives at the Leader in finite time, causing it to
initiate a cycle. As a cycle ends in finite time, we only need to
show that ST(/) = 1 when node i sends an INFORM message
to p;. Assume that there are nodes that are deadlocked, started
the cycle with ST(/) = 1, but ended it with ST(#) = O (thus
not detecting that they are deadlocked). Let n, be the first node
that changed ST (n,) = 1to ST(ny) = 0 among the deadlocked
nodes. To do that it must have received a FREE message from
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a neighbor to which it has a packet to send, that by definition is
also deadlocked, contradicting the fact that n, was the first to
change ST.

The importance of the final lemma that we prove will
become apparent when the deadlock resolution algorithm is
presented.

Lemma 3: If some node finds out that it is deadlocked, then
the Leader will know that in finite time.

Proof: Straightforward, as when a node becomes aware
that it is deadlocked, it sets X (/) «<— 1 and that information is
propagated to the Leader during the INFORM phase.

V. DEADLOCK RESOLUTION ALGORITHM (DRA)

Once a deadlock has been detected, one should have some
mechanism to resolve that deadlock. In [7] Gambosi ef al.
have proposed a deadlock resolution algorithm. Their basic
idea is that deadlocked nodes will release packets through
dedicated reserved buffers called exchange buffers. Each
node reserves exactly one buffer for this purpose. Unfortu-
nately, the algorithm of [7] may lead to deadlock among the
exchange buffers. We use similar ideas to those in [7] to devise
a deadlock resolution algorithm, but by exploiting the possibil-
ity for network-wide coordination (through the Leader) we
avoid the difficulties of the algorithm in [7].

A. The Removal Process

The building block of the distributed deadlock resolution
algorithm that we present is a removal iteration that enables
one packet from a deadlocked node to leave the network in
finite time.

The removal iteration has two phases, both of which are
started by the Leader. The first phase is devoted for
determining the deadlocked node that will release a packet and
during the second phase, that packet is actually released. The
first phase is triggered by the end of a previous removal
iteration or when the Leader finds out that a deadlock exists in
the network.

The first phase is started by the Leader sending SEARCH
control messages to its tree neighbors. These messages
propagate in the network as the START messages of the
DDA. SEARCH messages contain the identity of the sender,
as well as some other information MN (can be nil ) that is used
to determine the node that will release a packet which is the
node with the lowest identity among the nodes of the current
deadlock set. Upon receiving a SEARCH message, a node i
that is not deadlocked sets its local variable MN(i) to that
received from neighbor / if MN(i) > MN(l). A deadlocked
node i compares its identity to MN(/), and if it is smaller than
MN(), it changes MN(i) to i. Eventually, SEARCH
messages arrive at the Leader from all its tree neighbors and it
knows the node with the lowest identity among the nodes of
the current deadlock set and that node will release a packet.

During the second phase, the Leader broadcasts the identity
of the chosen node with RELEASE messages (through the
spanning tree). When a node receives its identity, it starts to
release a packet at that iteration. To that end we assume, as in
[7], that all nodes have an extra buffer, called an exchange
buffer that is dedicated for removal purposes and is otherwise
unoccupied. The chosen node then picks one of its packets,
tags it, and sends it to the intended neighbor (according to the
routing tables) and leaves the deadlock set (DS(i) < Not
Deadlocked). That neighbor stores the tagged packet in its
exchange buffer and then forwards it again according to its
routing table. Thus, that packet is forwarded along a route of
exchange buffers. As there is a single tagged packet within the
network at any time, there is no way that the packet will be
blocked at some node and that it would not be forwarded.
Assuming that routing decisions are *‘reasonable’’ (packets do
not loop permanently within the network), the tagged packet
will eventually arrive at its destination and therefore leave the
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network. Then the node at which the tagged packet has been
consumed notifies the leader (through the tree) of that event
by sending an END_RELEASE message. When this message
arrives at the Leader, the second phase of the resolution
iteration ends. Note that at the end of the removal iteration, the
exchange buffers at all nodes are empty and one packet has
been deleted from the chosen deadlocked node. Then other
similar removal iterations are performed; each time the
current node with the lowest identity among the nodes that are
still deadlocked is chosen to be the node that will start to
release a packet. This continues until each node that belonged
to the deadlock set upon initiation of the DRA has released a
packet and thus became not full (at least temporarily) and
therefore, not deadlocked. During the exccution of the DRA,
the Leader does not start any detection cycle. Only when the
DRA ends (MN(L) = nil when SEARCH messages are
received from all tree neighbors), then if the Leader is
required to start a detection cycle (by an REQ message), it
does. In any case, the goal of resolving the deadlock is
achieved.

Several remarks are in place here. The first is that, at each
node along the route, the tagged packet traverses. it can be
replaced by any other packet at that node. The replaced packet
would become the new tagged packet and forwarded along the
exchange buffers and the previous tagged packet would remain
at the node. (Replacements are assumed to be atomic actions.)
Such replacements would not invalidate the correctness of the
removal iteration. The reason is that some packet is forwarded
during the second phase and if routing is *‘reasonable,’’ some
packet will leave the network (be consumed at some node).
Note that if replacements take place, it is unlikely that the
packet from the chosen node (where the removal starts) will
leave the network. Yet, at the end of the removal iteration, the
network would be in the same situation as it would have been
without replacements, namely, all exchange buffers are empty
and there is one less packet at the chosen node.

Allowing replacements has several important implications.
The first is that it enables some optimization during the second
phase. To speed up the execution of the second phase, a node
with the tagged packet may try to replace it with a packet
whose destination is ‘“closer.”” In particular, if the node has a
packet destined to one of its neighbors, it may replace it with
the tagged packet and thus the second phase will terminate
more quickly. Replacements are also important because they
enable to use removal iterations in networks that preserve the
first-in-first-out rule along sessions paths as SNA [16] and
TYMNET [17] do. When a tagged packet is at some node and
it should be sent to some neighbor, then it is replaced by a
packet at the head of the queue of some outgoing link while the
previous tagged packet is put at the end of the corresponding
queue and thus the FIFO property is preserved if at each
outgoing queue packets are served in a FIFO order.

Note that it is not essential that the released packet will
arrive at its destination. Whenever the packet arrives at a not-
full node, it can leave the exchange buffer and be put in a
message buffer, and that not-full node informs the Leadey that
the packet has been released. Such a modification will speed
up the execution of the second phase of the removal iteration
without invalidating its correctness.

Finally, we have to specify how the whole resolution
algorithm is triggered, namely, how the Leader finds out that
there is a deadlock. The simplest way of doing that is that
whenever a node discovers that it is deadlocked (by some
deadlock detection algorithm) it generates a DEADILOCK
message that is forwarded through the tree to the Leader (as is
done with the REQ messages of our detection algorithm).
When a DEADLOCK message arrives at the Leader, it
becomes aware that the resolution algorithm has to be
initiated. When the specific detection algorithm described in
Section IV is used to detect deadlocks, then there is no need
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Resolution Algorithm for the Leader (L)

Replace <5.2.3> of Fig. 3 by:
<5.2.3> If X(L) = 1 then do:
<5.23.1> If DS(L) = Deadlocked then MN(L) -~ L; Else
MN(L) « nil
<5.2.3.2> send SEARCH(L,MN(L)) to all tree-neighbors
Else if have REQ then Q(L) « SLEEP and START ; Delete REQ
<8> For SEARCH(I,MN(!))
<8.1> If MN(I) = nil then discard the message
Else if MN(L) = nil then MN(L) < MN()
Else if MN(J) < MN(L) then MN(L) « MN()
<8.2> If Received SEARCH messages from all tree-neighbors then do:
<8.2.1> If MN(L) = nil then if have REQ then Q(L) « SLEEP and
START ; Delete REQ
<8.2.2> If MN(L) = L ther REMOVE
Else send RELEASE(MN(L)) to all tree-neighbors
<9> For RELEASE(I,MN)
Discard the message
<10> For END__RELEASE
<10.1> MN(L) = nil
<10.2> Send SEARCH(L.MN(L)) to all tree-neighbors
<11> For REMOVE
<11.1> Pick and tag one message; Put it in exchange buffer: Forward it ac-
cording to routing table; Delete it from exchange buffer
<12> For TAGGED message
If L is the destination of the message then END__RELEASE; Else put it in
exchange buffer; Forward it according to routing table; Delete it from ex-
change buffer

Resolution Algorithm for node i

<8> For SEARCH(I,MN)
<8.1> If received SEARCH message from p, then if DS(i) = Deadlocked then
MNC(i) « i; Else MN(i) <« = nil
<8.2> If MN(I) = nil then discard the message
Else if MN(i) = nil then MN(i) = MN()
Else if MN(l) < MN() then MN(i) « MN(])
<8.4> If I = p, then send SEARCH(i, MN(})) to all neighbors except p;
<85> If received SEARCH messages from all tree-neighbors then send
SEARCH(i,MN()) to p,
<9> For RELEASE(I,MN)
<9.1> If i # MN then do:
<9.1.1> If I = p, then send RELEASE(i, MN) to all tree-neighbors ex-
cept p;; Else discard the message
<9.2> If i = MN then REMOVE; DS(i) « Not-Deadlocked
<10> For END__RELEASE
Send it to p;
<11> For REMOVE
<11.1> Pick and tag one message; Put it in exchange buffer; Forward it ac-
cording to routing table; Delete it from exchange buffer
<12> For TAGGED message
If i is the destination of the message then send END__RELEASE 10 p, ; Else
put it in exchange buffer; Forward it according to routing table; Delete it from
exchange buffer

Fig. 4. Resolution algorithm.

for special messages as the DEADILOCK messages, since the
INFORM messages can carry [in the variable X(/)] the
information that a deadlock exists (see Lemma 6). In the
formal specification of the algorithms performed by the
Leader and the nodes in the network given in Fig. 4, the latter
method is used.

Note that if only one packet is released from each of the
deadlocked set, it is very likely that a DDA would have to
start, or even worse, that a deadlock would recur soon. To
overcome this we may very well perform the second phase of
the removal algorithm several times and thus releasing more
than only one packet from the chosen node. To take it to the
extreme, the chosen node might be emptied. The question of
exactly how many packets should be released from each
chosen node, is up to the designer of the network.

B. Validation of the DRA

Theorem 4: In DRA, if node 7 becomes deadlocked at time

f then it becomes not full in finite time after ¢.
Proof: Assume that node i is full when it becomes
deadlocked (otherwise, the theorem trivially holds). This
implies that a DDA would be activated and upon its termina-
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tion node 7 (and possibly other nodes as well) found out that it
is deadlocked. From Lemma 6, it follows that the DRA is
activated and removal iterations are started (or if a different
DDA is used it follows from the DEADIOCK message
discussion in Section V-A). In each removal iteration, at least
one node that is deadlocked and full, becomes not full and thus
leaves the deadlock set. Each removal iteration ends in finite
time (given the assumption of ‘‘reasonable’’ routing) and
therefore #’s turn to release a packet will come (if it has not
become not-full before, in which case the proof is completed)
in finite time.

VI. SUMMARY

Simple distributed algorithms for the detection and resolu-
tion of deadlocks in store-and-forward computer communica-
tion networks have been presented and validated. The al-
gorithms find and resolve buffer deadlocks using only a fixed
number of buffers per node plus a fixed number of buffers per
adjacent link. When the detection and resolution algorithms
are merged, it is guaranteed that packets will arrive at their
destinations in finite time.

Distributed deadlock detection algorithms that does not
assume any @ priori structure among the nodes of the network
and still use a finite amount of storage at each node for their
execution have been presented in [13], [14], and [20]. The
absence of such structure tremendously complicates the
algorithms and makes it difficult to devise a resolution
algorithm. Thus, the present detection algorithm is considera-
bly simpler than those of [13], [14], and [20]. Finally, we note
that the control messages exchanged by nodes in the detection
algorithms in [13], [14], and [20] contain sequence numbers
that may theoretically grow unboundedly, while in the simpler
algorithms presented here, no such numbers are employed.
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