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We study the message queueing delays in a node of a communication system, where a mes-
sage consists of a block of consecutive packets. The message delay is defined as the time elap-
sing between the arrival epoch of the first packet of the message to the system until after the
transmission of the last packet of that message is completed. We distinguish between two types
of message generation processes. The message can be generated as a batch or it can be dispersed
over time. In this paper we focus on the dispersed generation model. The main difficulty in the
analysis is due to the correlation between the system states observed by different packets of
the same message. This paper introduces a new technique to analyze the message delay in such
systems for different arrival models and different number of sessions. For an M/M/1 system
with variable size messages and for the bursty traffic model, we obtain an explicit expression for
the Laplace—Stieltjes transform (LST) of the message delay. Derivations are also provided for
an M /G/1 system, for multiple session systems and for fixed message sizes. We show that the
correlation has a strong effect on the performance of the system, and that the commonly used
independence assumption, i.e., the assumption that the delays of packets are independent from
packet to packet, can lead to wrong conclusions.

Keywords: Message delay; dispersed messages; M/ M/ 1; M/ G/ 1; bursty traffic.

1. Introduction

This paper is concerned with the study of message queueing delays in a node of
a communication system. A message consists of a block of consecutive packets
(where in our terms a packet is the integral transmitted quantity), and it corre-
sponds to a higher layer protocol data unit. The message delay is defined as the time
elapsing between the arrival epoch of the first packet of the message to the system
until after the transmission (service) of the last packet of that message is completed.
We distinguish between two types of message generation processes. The message
can be generated as a batch, i.e., all the packets that compose the message arrive to
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the system at a single instant of time (which corresponds to the well known batch
arrival model) or it can be dispersed, i.e., the packets that compose the message
arrive to the system at different times. In this paper we focus on the latter genera-
tion model where the message arrival process is spaced over time.

In many systems the message delay, and not the packet delay, is the measure of
interest for the network designer. This is due to the fact that packets are data units
which are only meaningful at lower layers and are created because of the network
data unit size limitations. The ATM (CCITT [3]), TCP/IP (Comer [4]) and TDMA
based systems (Rom and Sidi [8]) are examples of such systems, where the applica-
tion message is segmented into bounded size packets (cells) which are then trans-
mitted through the network. At the receiving end, the transport protocol (or the
adaptation layer) reassembles these cells back into a message before the delivery to
higher layers. In some applications message delay is not the result of segmentation
at the network layer but of the nature of data partitioning in the storage. A file
can be composed of multiple records which are stored at different locations in the
disk. These records are read individually and may be transmitted as separate pack-
ets. However, the entire file transfer delay is the measure of interest for the file
transfer application.

Understanding the message delay behavior is important for the proper design
of timeout mechanisms for data applications, such as end-to-end protocols for reli-
able transmission in ATM networks where the retransmitted quantity is the mes-
sage and not the individual cells. Another design example is the time-out for
message retransmissions in data link protocols such as the go-back-N protocol, in
which the whole window (or, message) is retransmitted (see, e.g., Bertsekas and
Gallager [2]). Individual packet delay distributions are usually not sufficient for
proper understanding of the system behavior. In general, the delays of two consecu-
tive packets are strongly correlated, i.e., the delay of the second packet conditioned
on the event that the first packet delay is large (small) is larger (smaller) than the
delay of an arbitrary packet. We shall show that evaluating the timeout using an
independence assumption (that the delays of packets are independent from packet
to packet) is quite pessimistic.

The message delay distribution for TDMA systems with a generalized arrival
process was presented in Rom and Sidi [8]. The analysis of the message delay was
associated with batch arrival processes in Halfin [6] and in Rom and Sidi [8], i.e.,
each batch corresponds to a message. In this case, the message delay coincides with
the delay of the last packet of the message (batch). This fact facilitates the analysis
of the message delay distribution. However, in packet switched networks, packets
which belong to the same message may arrive at different instants of times (be dis-
persed), and may be interleaved (due to statistical multiplexing) by packets which
belong to other messages. The difficulty that arises in the analysis of the message
delay distribution for the dispersed generation model is that there is a correlation
between the system states seen by different packets of the same message. The effect
of the correlation between successive arrivals to the system on the average packet
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delays was studied in Sohraby [9] for Poisson cluster processes (PCP). Here, mes-
sages arrive to the system according to a Poisson process, but unlike the batch Pois-
son arrival process, where all the packets of the batch (message) arrive at the same
time, the members of a cluster are separated by a random variable. In Sohraby [9],
the average delay of packets was approximated fora PCP/D/1 system.

This paper introduces a new technique to analyze the message delay in such sys-
tems, and shows that this correlation has a strong effect on the performance of the
system. This technique is similar to the one introduced recently in Cidon et al. [5].
The model we use in this paper for ascertaining the correlation in the packet delay
process consists of a source that generates packets and sends them through a single
server with an infinite number of buffers, which represents the communication sys-
tem. We present an exact analysis of the message delay. In particular, we introduce
an efficient recursive procedure to obtain the LST of the message delay for differ-
ent arrival models and different number of sessions. For the M /M /1 system with
variable size messages and for the bursty traffic model, we obtain an explicit expres-
sion for the LST of the message delay. As was discussed above, the use of an inde-
pendence assumption, i.e., the assumption that the delays of packets are
independent from packet to packet, can lead to wrong conclusions. We demon-
strate this by comparing the exact variance of the message delay with the variance
of the message delay as obtained from the independence assumption. Numerical
examples are provided to show that the variance of the message delay may be over-
estimated by the independence assumption for a wide range of message sizes. In
addition, our results demonstrate the “negative feedback” effect that governs the
message delay process. If the message’s packet arrivals happen to concentrate over
a short time interval, then, the message arrival time becomes short. On the other
hand this causes a larger queue to be built up, resulting in a larger queueing delay
for the last packet of the message. Similarly, if the message’s packet arrivals happen
to be more dispersed, then, the queueing delay of the last packet tends to become
shorter. Thus, the message delay distribution in the dispersed generation model
tends to concentrate around the average much more than can be expected using the
independence assumption.

The paper is structured as follows: In sections 2 and 3 we focus on continuous
time systems and a fixed block size (counted in packets). The continuous time
model is suitable for the analysis of variable size packet systems. The analysis is for
a single session with Poisson arrivals with exponentially distributed service times
in section 2 and with generally distributed service times in section 3. We also discuss
the numerical results for some examples. In section 4 we extend the results of sec-
tion 2 to the case of multiple session multiplexing and obtain the distribution of the
message delay for a given message that belongs to a particular session. In section
5 we analyze the single session model of section 2 for the case of variable block size.
Here, we obtain an explicit expression for the LST of the message delay. In section
6 we analyze a single session system with binary Markov (bursty) arrival process,
and obtain an explicit expression for the LST of the message delay.
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2. Single session systems: fixed message size- M /M /1

In this section we consider systems with variable length packets. The packets
are stored in a queue that can accommodate infinitely many packets and are trans-
mitted according to the first-in-first-out (FIFO) rule. The packets are grouped
into messages of an arbitrary size. We consider systems with Poisson arrival pro-
cess with rate A. We assume that the transmission time of packets is exponentlally
distributed with parameter . The average load p is defined as p = )\/ 1, and we
assume that p <1. In the next section we consider systems with generally distribu-
ted transmission time.

Consider an arbitrary message of size n arriving to the system (i.e., the arrival
of the first packet of the message) in steady-state. This tagged message will be
termed the -message. The packets which belong to this message will be called the z-
packets. The first and the last #-packets will be called the z-header and the #-tail,
respectively. Let d,"n,n> 1,1<i<n, (h stands for header), be a random variable
(r.v.) of the time delay from the arrival epoch of the ith t-packet to the system to the
departure epoch of the #-tail from the system given that the s-header is present in
the system at that arrival epoch. Denote by D 'o(s) the LST of ther.v. d” Note that,
the message delay for a message of length n, n>=1,is given by the r.v. d{' and we
areinterested inits LST D% ().

We recall that, for the M /M /1 system, the LST of the time spent in the system
by an arbitrary packet is exponentially distributed with parameter i — A (see, e.g.,
Kleinrock [7, p. 202]). Since the first packet in a message is arbitrary, then its delay
is exponentially distributed with parameter . — A, and is independent of the inter-
arrival and service times of the subsequent packets. Let d7,,,m>1,i>0, (a stands
for arbitrary), be a r.v. of the time delay from an arbitrary epoch to the departure
epoch of the last packet of the next m packets that leave the system (transmitted),
given that i packets are present in the system at that arbitrary epoch. Denote by

im(s) the LST of the r.v. d7,. Consider the ith z-packet that arrives to the system
whﬂe the z-header is present in the system. Conditioning on the next event; an arri-
val of a r-packet before the departure of the #-header or a departure of the #-header
before the next arrival of a #-packet, and using the well known properties of inde-
pendent and exponentially distributed r.v.s we have (forn>1)

S+ p

o= (4525) (4) g

where, the first product term in eq. (1) is the LST of the minimum of two indepen-
dent r.v.s which are exponentially distributed with rates £ — A and ), respectively.

A —A
Dl (s) = = <®f+l,n(s)+“—“— ?_l,n_l(s)) 1<isn—1, (1)

and fori = nwe have
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The LST of the message delay D .(8),n>1, is obtained from the set of differ-
ence equations (in the parameter i) deﬁned in (1) and (2), and we have

W =N p= AR Yo
Dials) = (s+p—A)(s+ ,U)Znﬁz * s+ p j;o(s + N) Dip-1(8)- ®)

In order to uniquely determine the LST of the message delay fD'l',n (s), we need to
compute the LSTs Dy, _;(s), 0<i<n — 2. In what follows, we introduce a recursive
procedure similar to the one introduced recently in Cidon et al. [5] for the computa-
tion of the LSTs Df,,(s), l<m<n —1,0<i<m — 1. The recursion is initiated at
m = 1 with the following obvious relation:

a A
j30,1 (s) = o

GG A )

Conditioning on the next event: an arrival of a t-packet or a departure of a ¢-
packet, we have for 2 <m<n — 1 the following recursive equations:

2 A
Dom(s) = Y DI m(s)

At p A 7
e = D? +
im(9) S+X+p <)\+ w 1m(S) A+ p

Dau0 = (1) 5

s+ p

D 1pa(9) 1<ism—1,

From the set of difference equations (in the parameter i) defined in (5), we have

om(s) = im(8))

2 _ A m—i l,l, m
D) = <S +A+ #) (S + u)

w m—i—1 A j
e <i<m-—1.
+S+A+u,-\4:5(s+A+u>9'+f—lym-l(s) I<ism—1. (6)

The LSTs Df,,(s),2<m<n — 1,0<i<m — 1, can be obtained recursively from
(4) and (6). Then, the LST of the message delay is obtained from (3). From eq. (4)
and (6), a set of recursive equations for the computation of any momient of the r.v.s
d?,,2<m<n—1,0<i<m — 1, can be obtained. The number of simple operations
(addltlons and multlphcatlons) needed for the computation of any such moment
is of the order of O(n?). Then, any moment of the message delay can be obtained

from (3).
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Yet, for the average message delay we can obtain a simple closed form expres-
sion as follows. We note that the message delay is composed of two components.
The first is the time elapsing between the arrival epoch of the first packet of the mes-
sage to the system until the arrival epoch of the last packet of that message to the
system (Erlang distribution with parameters n — 1, \). The second is the time delay
of an arbitrary packet (stands for the last packet of that message) in the system
which is exponentially distributed with rate ;. — A. These two components are of
course dependent r.v.s. However, the average message delay can be obtained
directly from the sum of the averages of these two components, i.e., (n — 1)/A+ 1/
(b —A).

A simple and common way to approximate the message delay is to assume that
these two components are independent r.v.s. In the following example we show the
relative error of such an approximation.

NUMERICAL EXAMPLE

Using the above independence ap?roximation, the variance of the message
delay becomes (n — 1)/2? + 1/(u — X)*. The relative variance error of the message
delay, defined as 100x [(approximated variance)/ (exact variance)—1] is plotted in
fig. 1 versus the message size n for = 1 and for different values of A (A = 0.5,
0.8,0.9). For all cases observe that the approximated variance of the message delay
is much larger than the exact one. Observe also that the approximation becomes
worse for heavy loads in a wide range of message sizes.

—
o
o

A=0.5

—————

1 1 1 T
0 50 100 150 200 250 300

MESSAGE SIZE n

RELATIVE VARIANCE ERROR (%)

Fig. 1. The relative variance error of the message delay versus the message size n.
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3. Single session systems: Fixed message size— M /G/1

In this section we assume that the transmission time of packets is generally dis-
trlbuted Let b be the r.v. of the transmission time of a packet. Denote by
.A(s) A/(s+ ) and 5B(s) E[e™%] the LSTs of the inter-arrival time and the
transm1ss1on time of packets, respectively. The average load p is defined as
pEE [6], and we assume that p< 1.

Letd,,n>1,bear.v. of the message delay for amessage of length n. Our purpose
in this section is to compute the LST D,(s) = E[e‘s" ],n>1, of the message delay
d,. We carry the computation by conditioning on the number of packets in the sys-
tem (queue) just after the departure of the first packet of the message from the sys-
tem. To that end, we define di ,,,m>1,k>0, to be the time elapsing between the
departure epoch of a packet from the system until after the transmission of the last
packet of the next m packets that leave the system (transmitted), given that there
are k packets in the system (queue) just after that departure epoch. Denote by
Dicom (s) E[e~%n] the LST of the r.v. dj .. In what follows, we shall need several
additional definitions. Let P, k>0, be the probability of k& packets in the system
(queue) at the departure epoch of the first packet of a message from the system. The
z-transform of the probability distribution Py is given by the Pollaczek—Khinchin
transform (PKT) equation for the number of packets in the system (see, e.g., Klein-
rock [7, p. 194])

(1 -p)(1-2)
=BA-\ .
02) =B - M) gy,
Let m, k>0, be the time delay of the first packet of a message in the system (from
its arrival to the system to its departure from the system), given that k packets are
present in the system (queue) just after the departure epoch of that packet from the
system. Since the first packet of a message is arbitrary we have that

1 ( )\n)ke—()\-ﬂ‘)r]

Ti(s) = Efe™] = Z } k=0, (7)

where 7 is the time delay of an arbitrary packet in the system, and its LST is given
by the PKT equation for the time delay (see, e.g., Kleinrock [7, p. 200])

oy _ 50— p)B(s)
T 2 B =

In the derivation of (7) we used the solution of the following auxiliary problem:

Let v be a non-negative r.v. and denote its probability density function by
J+(x),x=0. Assume that packets arrive according to a Poisson process with rate \.
Let v be a r.v. of the number of packets that arrive during a time interval . Then
we have
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Pr(v=k,x<y<x+dx)

f(k,x) 2 lim = lim Pr(v=klx<y<x+dx)
dx—>0 dx—>0

dx
Plx<y<x+dx) (x)ke™
i = 20,k=0.
x fm, dx A x=0,k=0 ®)

Let y(k), k>0, be the time duration of the r.v. v when k packets arrive during +.
Then, using (8) we have

E[e™®)] = / ” e f (k,x) dx
0

o0 x k —)\x ko—(Ms)y
= /O e‘”‘%fy(x)dx = E[%} : 9)

We are now ready to introduce the computation of the LST of t}ae message
delay. Since the first packet of a message is arbitrary, we have that d; = 7, and for
n=2,

o0 o0
@n(s) é E[e—sdn] — Z Py E[e_s("]k‘*‘dkﬁ—l)] = Z Py E[e—sﬂk] E[e—sdk,n_x]
k=0 k=0

_ i EI: )\77) e W‘S)?f‘ Der(s), (10)

=0

where the third equality follows from the fact that the time elapsing from the depar-
ture epoch of the first packet from the system until after the next n — 1 packets
leave the system and the time delay of the first packet in the system, given that there
are k packets in the system at that departure epoch, are independent r.v.s. The last
equality follows directly from (7).

To complete the computation we need to compute the LST Dy ,_1(s),n>2,
k=0. In what follows we introduce a recursive procedure for the computation
of those LSTs. The recursion is initiated at m = 1 with the following obvious

relations:
N e,
Form>2,wehave
Dopn(s) = ("'ZE (e ] Dyprr(s) + ilE (—”’—y-%ﬁf} (B(s))’"“)
= jem= ' :
=A(s>:0E (”’Y]—,M’] (Dima(9) = (BE™™) + AG)BE)", (12
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m—k—1 a—(A+5)b
Dicm(s) = ) E (,\_bx%__i_} (9k+j—1,m—1(5) - (B(S))'"_l) +(B(s)”
=0 '
I<ksm-1, (13)
Diem(s) = (B(s))" k=m, (14)

where in egs. (12) and (13) we used the fact that 32 E[(Ab)*e~(92 /k1] = B(5).
The recursions in (12) and (13) are obtained by conditioning on the number of pack-
ets in the system (queue) at consecutive departure epochs from the system, and by
using the result for the auxiliary problem described above.

From (10) and (14), we have that

Dals) = (B(s))" " T( s)+ZE

k (As)n
_____] (D@ - @) (1)

From egs. (11)-(14), a set of recursive equations for any moment of the r.v.s
dim, k=0, for any m>1 can be obtained by taking the appropriate derivatives at
s = 0. These derivatives yield expressions of the form E[Pe~**],j>1, that have to
be computed in order to obtain the moments. These expressions can be computed
by noting that E[pe **] = (—1Y#B(s)/d¥|,_,,j = 1. Then, any moment of the mes-
sage delay can be obtained from eq. (15). The computation complexity of this pro-
cedure is of the order of O(n?).

Note that the moments of the message delay depends on the LST of the service
time B(s) and its derivatives at s = A. That is, it depends on the whole distribution
of the service time and not only on its moments as obtained by using the indepen-
dence assumption.

NUMERICAL EXAMPLE

Consider an M/E;/1 system with B(s) = (u/(u + s))*. Denote the arrival rate
by X and define p = 2)\/p. The average message delay can be obtained dlrectly asin
theM/M/l system andisequalto (n — 1)/A + (1 — p)(2,u A)/ (1 — 20)%. The var-
iance of the message delay can be a prox1mated usmg the independence assump-
tion, and is given by (n — 1)/A2 + T (0) — (77(0))*. The relative variance error of
the message delay, is plotted in fig. 2 versus the message size n for 41 = 1 and for dif-
ferent values of A (A = 0.25,0.4,0.45). For all cases observe that the approximated
variance of the message delay is much larger than the exact one. Observe also that
the approximation becomes worst for heavy loads in a wide range of message
sizes.

4. Multiple session systems: Fixed message size

Here we assume that packets arrive to the system from S independent sources,
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Fig. 2. The relative variance error of the message delay versus the message size n.

that is, the interarrival times and the transmission times of packets from each
source are mutually independent. The arrival process from source g,1<g<S, is
assumed to be Poisson w1th rate ),. The overall arrival process to the system is then
Poisson with rate A & Z _1 g For the system with Poisson rate A and exponential
transmission rate u, the probablhty of i,i>0, packets in the system in steady
state, is given by, II(i) = (1 — p)p'. Denote the overall arrival rate of all sources
other than source gby Az = A — A,.

Consider an arbitrary message of size » arriving to the system from source
g,1<g<S§, in steady-state. Let d,,n>1, be a r.v. of the message delay and denote
by Dy(s) its LST. Let d;,i>0,n>1, be at.v. of the time delay from an arbitrary
epoch to the departure epoch of the last packet of the next n packets that arrive to
the system from source g, given that i packets are present in the system at that arbi-
trary epoch. Denote by D; ,(s) its LST, and define

i
Diols) £ (Hﬂ) i>0. (16)
Since the first packet of a message is arbitrary, we have that
Duf) = 3 L(Disps(s) =— LY pDipals), (A7)
i=0 i=1

where in (17) we conditioned on the number of packets found in the system at the
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arrival epoch of the first packet of the message, and used the fact that in the
M /M /1 system the epoch just after an arrival is equivalent to an arbitrary epoch
when we consider the evolution of the system from that epoch on.

We proceed to obtain the quantity > o, 0'D;n_1(s). In order to do that, we
define the power series in the complex variable z, G, (s, z) = Z;—o in(8)Z for |z} < 1
and for all s,Re(s) >0. Since |D;,(s)|<1,i>0,Re(s) >0, then using Abel’s theo-
rem (see, e.g., Ahlfors [1, p. 38]) it follows that the power series G, (s, z) for every
s, Re(s) =0, converges absolutely and is an analytic function in the complex vari-
able z inside the unit disk |z| < 1. Now, using this definition it follows directly from
(17) that

D) ==L (Gae1(5,9) = Gt (5,0). (13)

We proceed to obtain an expression for the power series G,(s,z),n>0, |z| < 1.
In order to do that, we first obtain a set of recursive equations for the computation
of the LSTs D; ,(s),n>0,i>0. Consider an arbitrary epoch in which 7 packets are
present in the system. Condition on the next event; an arrival of a packet from
source g (which belongs to the message) before the departure of the next packet
from the system, or an arrival of a packet from source other than source g (which
doesn’t belong to the message) before the departure of the next packet from the sys-
tem, or a departure of a packet from the system before the next arrival to the sys-
tem. Then using the well-known properties of independent and exponentially
distributed r.v.s (as in section 2), we have that (forn>1)

A
Do,n(s) :TXDI’” 1( 2(8),
Ag Ag M
in = “itln- —Di n —~ ., “i-ln
Din(s) S+>\+u®+1’ 1(S)+s_|_)\+# +1,(S)+S+)\+#D 11(8)
i>1. (19)

Now, substituting the LSTs D; 4(s), i >0, from eqs. (16) and (19) in the power ser-
ies G, (s, z) and using simple algebra, we have that

S+ p
Go(s, e
o(s2) = S+p—pz’
Gn(s,2) = : { a'le D1p1(8) = Az Do n1(8) + Az 1 Gy (5, 2)
s x4+ p s+ AT ¢ ’ g ’
Y
f_/& Din(s) — Mgz Douls) + Ngz™" + pz)Ga(s, z)} . (20)

From (19) for i = 0 and (20) we have that

_ Ag[Gn_1(8,2) — Gn_1(5,0)] + (uz — Xg)Ga(s,0)
Gnls,2) = (s+A+p)z—pz2 - )

(21)
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In (21) we obtained a recursion for the computation of the power series
Gu(s,z),n>>1. Once the power series G,—1(s, z) has been obtained. We still have to
determine the boundary function G, (s, 0) in order to uniquely determine the power
series Gy(s,z). Using Rouche’s theorem (see, e.g., Ahlfors [1, p. 153]) it follows
that the denominator of (21) has a unique root inside the unit disk |z| <1. Then,
using geometrical considerations it follows that this root is given by

s+)\+u—\/(s+)\+,u)2—4/\§u
= 7

Since the power series Gy(s,z) is analytic inside the unit circle |z| <1, then the
numerator must vanish at z = z*(s), and we have that

Ag[Gr1(s,2°(5)) — Gn1(5,0)]
X — 1z (5) |

The procedure for the computation of the power series G,(s, z) proceeds as fol-
lows. First the power series Gy(s,z) is obtained from (20) for n=0. In step
k,k=1,2,...,n, the power series Gi(s,z) is obtained by substituting Gx_;(s, z)
(which was obtained at step k — 1) and G, (s, 0) (which is obtained by substituting
Gr-1(s,z*(s)) in (23)) in (21) for n = k. Finally, the LST of the message delay Dy(s)
is obtained by substituting G,(s, p) and G,(s, 0) in (18). The difficulty in this proce-
dure is the computation of Gy_1 (s, z*(s)) in step k, because the numerator (and the
denominator) of (21) vanishes at z*(s) and hence we have to use L’Hopital’s law in
order to compute this quantity.

In appendix A we describe an explicit computational procedure for the computa-
tion of the power series G, (s, z). We use subsequent substitutions of the recursion
(21) to present the power series Gy (s, z) as an explicit function of the boundary func-
tions Gj(s,0),1<j<n. We then use the analytic properties of the power series to
derive n recursive equations for the computation of the boundary functions.

z*(s) Re(s) =0. (22)

Gn(s,0) =

(23)

5. Single session systems: Variable message size

In this section we consider systems with variable length messages, namely, pack-
ets that arrive to the system belong to messages of length which is independent of
and geometrically distributed with parameter g. Variable message size is typical in
data applications where the message can be a document, an e-mail message, or an
arbitrary file. This model also assumes a variable size packet which may corre-
spond to some natural partition of the message (i.e. sections of a document, para-
graphs of the e-mail message, etc.). We confine ourselves in this section to the
analysis of a single session system with Poisson arrival process with rate A and
transmission time exponentially distributed with rate u. The average load p is
defined as before. The extensions of the analysis to generally distributed transmis-
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sion time and to multiple session systems are similar to the extensions in sections
3 and 4 and are not presented here.

Consider an arbitrary message arriving to the system in steady-state. Let d be a
r.v. of the message delay and denote by D(s) its LST. Let d; be a r.v. of the time
delay from an arbitrary epoch to the departure epoch of the last packet of the mes-
sage from the system, glven that i packets are present in the system at that arbitrary
epoch. Denote by D;(s) = A E [e=*%] the LST of the r.v. d;. Since the first packet of a
message is arbitrary, we have that

}:H0<( )Hﬁqaﬂuﬂ

i=0

_apl=p) A =PI\~ iy
BT R ;pDI(S), (24)

where in (24) we first conditioned on the number of packets found in the system at
the arrival epoch of the first packet of the message, and then on the event that this
packet is the last packet in the message (with probability ¢ this is the last packet of
the message and with probability g = 1 — g the next packet belongs to the mes-
sage).

We proceed to obtain the quantity S P Dils ) In order to do that, we define
the power series in the complex variable z, G(s, z) = Z,_O i(s)Z' for |z| <1 and for
every s, Re(s) >0. Since | D;(s)| <1,i>0, Re(s) >0, then using Abel’s theorem (see,
e.g., Ahlfors [1, p. 38]) it follows that the power series G(s, z) for every s, Re(s) >0,
converges absolutely and is an analytic function in the complex variable z inside
the unit disk |z| < 1. Now, using this definition it follows directly from (24) that

gu(l—p) g1 —p)
D(s) = R+ (605, ) ~ G5, 0) 25)

We proceed to obtain an expression for the power series G(s, z). In order to do
that, we first obtain a set of recursive equations for the LSTs D;(s), i >0. Consider
an arbitrary epoch in which 7 packets are present in the system. Condition on the
next event: an arrival of a packet (which belongs to the message) before the depar-
ture of the next packet from the system or on its complement, and on whether the
next arrival is the last packet in the message. Then using the well-known properties
of independent and exponentially distributed r.v.s (as in section 2), we have that

qAp +3 A
(s+ A)(s + ) 5 x

gX g\ ) i _
Dils) = ——Di —D; >1. (26
(5) s+)\+u<s+u> +s+)\+# +1(S)+S+>\+ﬂ i(s) i (26)

Now, substituting the LSTs D;(s),i>0, from (26) in the power series G(s, z)
and using simple algebra, we have that

Do(s) = Di(s),
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_ qudz/(s + p — pz) + (pz — gA)G(s, 0)
Gloz) = (s+ A+ @)z — pz? — g

In order to uniquely determine the power series G(s,z) we will have to determine
the boundary power series G(s, 0). Using Rouche’s theorem (see, e.g., Ahlfors[1, p.
153)) it follows that the denominator of (27) has a unique root inside the unit disk
|z| < 1. Then, using geometrical considerations it follows that this root is given by

Iz <1. 7)

s+)\+,u—\/(s+)\+,u)2——4q)\u
= » .

Since the power series G(s, z) is analytic inside the unit disk |z| < 1, then the numera-
tor must vanish at z = z*(s), and we have that

Z*(s (28)

—gAuz’(s)
G(s,0) = —. 29
&0 = T e - )
By cancelling the term z — z*(s) in (27), we have that
2, % =
Gls,z) = 2 (5)z — gA(s + p)G(s,0) (30)

 p(s+p—p2)(z(s)z—gp)
Finally, the LST of the message delay D(s) is obtained by substituting G(s, p)
from (27) in (25) to obtain,

p(s) — WL=p) T —p)g¥/(s+p—X) - psG(s,0)
G =raat \ '
w p ps+q

(31)

Note also that the LSTs D;(s),i>0, can be obtained explicitly by taking the
inverse z-transform of (30).

The average message delay is obtained by taking the derivative of D(s) ats = 0,
and is equal to g/gX + 1/(x — )). Using an independence assumption as in section
2, the LST of the message delay can be approximated by the LST of the sum of two
independent r.v.s. The first stands for the time elapsing between the arrival epoch
of the first packet of the message to the system until the arrival epoch of the last
packet of that message to the system, and its LST is given by g(\ + 5)/(s + ¢g). The
second r.v. stands for the time delay of an arbitrary packet (stands for the last
packet in that message) in the system which is exponentially distributed with rate
i — X. The average message delay can be obtained directly from the sum of the
averages of these two r.v.s and it is the same as above.

NUMERICAL EXAMPLE

The variance of the message delay can be approximated using the independence
assumption, and is given by g(1 + q)/(g\)* + 1/(u — A\)*. The relative variance
error of the message delay, is plotted in fig. 3 versus the parameter ¢ for p = 1 and
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Fig. 3. The relative variance error of the message delay versus the parameter g.

for different values of A (A = 0.5,0.8,0.9). For all cases observe that the approxi-
mated variance of the message delay is larger than in the exact one.

6. Bursty traffic

Here, the generation of messages from the source is governed by an ON-OFF
source model. This model is widely used in the literature to represent bursty and
correlated cell arrivals, where a source may stay for relatively long durations in
active (ON) and silent (OFF) periods (see e.g., Woodruff et al. [10]). We define the
“active periods” and the “silent periods” of the source as the time periods during
which the source generates packets or is idle, respectively. We assume that packets
are generated by the source during active periods according to a Poisson process
with rate \. The duration of the active periods and the silent periods are assumed to
be two independent sets of independent and identically distributed r.v.s, exponen-
tially distributed with (positive) parameters o and 3, respectively. We also assume
that each active period corresponds to one message, and that a packet (the first
packet of a message) is generated when the source goes from OFF to ON. We shall
consider the case A # 3 as the case A\ = 3 degenerates to the standard M/M/1
case analyzed in section 2.
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In appendix B, we derive the stationary probability of having i packets in the sys-
tem at the arrival epoch of the first packet of a message, I1(7), i>0, and its moment
generating function, F(z) = Z o (D)2, 2| <1,

(1-p)(a+Bo
Aot — (A +plor+p’

nay=ﬂ9**”nm)<l)ii>1,
a2

() =

Mp+B)+ap
_ Aoz —
F(z) = wII(0) o1[Mu+8) + aflz — p?’ 32
where
~ a+A+u+ﬂ—¢w+k+u+ﬂf—ﬁM#+m+aﬂ
= H 2D+ B) + of] ’
A 2_ 4\

o ST BN bt O Dt B ol

2[M(p + B) + of] ’

and p = B(A + a)/u(a + B) <1, is the steady-state condition of the system. Using
the steady-state condition, it follows that, oy and o3 arereal, and |01 <1, |o2| > 1.

Now we proceed to obtain an expression for the LST of the message delay in
steady-state. Note that message sizes are 1ndependent and geometrically distribu-
ted with parameter g = o/(\ + ). Define v = ,8()\ + a)II1(0)/(A(pe + B) + afB).
Then, using the same definitions and notations as in section 5, we have that the LST
of the message delay, D(s), is given by

D(s) = an)(( >i+1+q93i+1(s)>

i=0

) o) (02
+ gyoaG(s,1/02) , (34)

where in (34), we used the definition of the power series G(s, z) from section 5, and
(26) for i = 0. (Note that, the analysis in section 5, and especially equations (26)—
(30), holds also in this case). Now, substituting G(s, z) from eqs. (28)—(30) in (34),
we obtain the LST of the message delay, D(s).
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Appendix A
EXPLICIT SOLUTION FOR MULTIPLE SESSION SYSTEM
In what follows, we describe an explicit computational procedure for the compu-

tation of the power series Gy (s, z). From the recursion (21) we have by subsequent
substitutions that

Go(s, 2) ={)\gpz + (54 p— pz)(pz — A — F(2)

n—1
Y X (F(2)) 7 Gi(s,0)

j=1
(5 1 = 1i2) (uz = 2g) (F(2)" Go(5,0)}
X s+ p— ) (FE)™, (35)

where F(z2) 2 (s+ X + p)z — uz? — Ag.
In order to uniquely determine the power series Gy(s, z), we still have to deter-
mine the boundary functions Gj(s, 0), 1 <j<n.

DETERMINATION OF THE BOUNDARY FUNCTIONS G;(s,0), 1<j<n

The numerator of (35) is analytic in the unit disk |z| <1 which contalns z*($)
and hence it can be expanded to its Taylor series around this point, Z]_o ai(s)(z
)’ The coefficients a;(s), 0 <j <2n, are given by

ao(s) = Aguz*(s) +v(s)So,

ay(s) = Mgyt + (B(s) — a(s)6(s))So + ¥(5)S1 ,
o) ={15zn-1h6)(, " || ) +102n80a6 (7))
—1gzne (" ) e e 60
— 13/ <2~ 1Sy + 1{ <20 — 2}(8(5) + per(s) — 1)y
+ 1{7<2n — 3}(B(s) — a(s)8(s))Sj-1 + 1{j<2n — 4}7(5)S; 2<j<2n, (36)
where in (36) we used the following notations. 1{ - } is anindicator function,

a(s) é 27* (S) — S—_t—)\/;-'__“ ,
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A *
Bls) = pls + p+ Az — 2pz"(s))
A *
6(s) = s+ p— pz*(s),

() £ (uz(s) — Ag)8(s),
min(j+1,7—1)

. k-1
52°% D ew® (L] a0 osy<am-s,
oS j—k+1

(37)
where an empty sum vanishes, 0! ES] and S_, A0.

In steady-state (p<1), the denominator of (35) has exactly one root (z*(s)) of
order » inside the unit disk |z| < 1. Since the power series G, (s, z) is analytic inside
the unit disk |z| <1, then the numerator must also have aroot of ordernatz = z*(s).
This implies that a;(s) = 0,0<j<n — 1, which gives n recursive equations for the
computation of the boundary functions Gj(s, 0),1 <j<n,

Gy(s,0) = A" (s)
7(s)
A+ (B(s) — a(5)8(5)) A G1 (s, 0)
a(s)y(s) ’

Gj(s,0) ={(ﬂ(S) — ()6(5))Sj—2 + (8(s) + pex(s) — p*)Sj3 — pSja
+ (s) Z Xk (- D (as)* 7 l(k )Gk(s 0)}
k=[54+1 J
x (VN (als)) T 3<j<n—1
6,(5,0) — D)1t + (B6) = 0()8(6) S+ (5(9) + ls) = )03 = S5

Y(s)(=1)"(a(s))"™"
nz3. (38)

?

G2(S, 0) =

Once the boundary functions G;(s,0),1<j<n, have been obtained from the
recursions in (38), the power series Gy (s, z) can be obtained from (35). Then, the
LST of the message delay, D,(s), is obtained from (18).

Appendix B

Consider the system described in section 6. Denote by IF, J =0,1,i>0, the sta-
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tionarity probability of i packets in the system when the source is OFF and ON,
respectively. Denote by Fj(z) = A S %, IEZ' its moment generating function. The
state diagram of the system in steady- state is plotted in fig. 4. From this figure we
obtain the following equilibrium equations:

H?:éﬂg—%ﬂ(l“

m
M = (ﬂ#>ﬂ?-1 —%H}-l 22,
1 Am B o
Hi:;HH"'; i — I izl1. (39)

From (39), we have that
Fo(z) = (1 - 2)II8 + (ﬂ : “) 2Fy(z) — %zFl (),

Fi(z) = I+ IT, + (gz - I)Fo(z) +%ZF1(Z), (40)

From (40), we have that
p(Az2 — (A + p+ @)z + p) T — ozl

Mu+8) + Bl — pla+r+p+ )z +p?

From the normalization condition Fy(1) = a/(a + 8), we have that

H8+H(1)=1—p, (42)

where p=B(A+a)/pu(e+ B), and p<1 is the steady-state condition of the
system.

In order to uniquely determine the moment generating function Fy(z), we still

have to determine the probabilities H’o, Jj =0, 1. Using the steady-state condition
p<1,itcaneasily be shown that the denommator of (41) has two real zeroes,

Fo(z) = (41)

A A
@.@ ) ) ) h
m
-1 -3 B
@ @ ) ] ) 5
" B

Fig. 4. The state diagram of the bursty traffic, single session system.
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a+ At pt G5 (@ + At pt B)° — 4k + ) + of]
2+ B) + of] ’
where |o1| <1 (the “minus” zero) and |o2| > 1.

Since Fy(z) is analytic inside the unit disk |z| < 1, the numerator of (41) must van-
ishat oy, then,

O12 = (43)

(Ao? = (A 4 + )y + )T — a0y 1Ty = 0. (44)
From (42) and (44), we have that

__ (I -plao
Mot — A+ por+p’

m (45)

where the denominator of (45) is greater than zero for 8 # .
By canceling the term z — o7 in (41), we have that

_ Aoz — 1
=l S B T ol

Using the inverse z-transform of Fy(z), we obtain the steady-state probabilities,
izw(i> i>1. (47)
AMp+B)+ab \o2

Denote by II(i|OFF) the stationary probability of i packets in the system given
that the source is silent. Then,

Fo(2) (46)

HHOFF) =28 10 0. (48)

o 1

Now, given the source is silent, the first packet of a message arrives accordingto a
Poisson process with rate 5. Then, using the PASTA property, the probability
II(i|OFF) corresponds to the stationary probability of having i packets in the sys-
tem at the arrival epoch of the first packet of the message.
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