IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987 3

Local Distributed Deadlock Detection by Cycle
Detection and Clustering

ISRAEL CIDON, MEeMBER, IEEg, JEFFREY M. JAFFE, MEMBER, IEEE, aAND MOSHE SIDI, MEMBER, IEEE

Abstract—A distributed algorithm for the detection of deadlocks in
store-and-forward communication networks is presented. At first, we
focus on a static environment and develop an efficient knot detection
algorithm for general graphs. The knot detection algorithm uses at most
O(n* + m) messages and O(log (n)) bits of memory to detect all dead-
locked nodes in the static network. Using the knot detection algorithm
as a building block, a deadlock detection algorithm in a dynamic en-
vironment is developed. This algorithm has the following properties:
It detects all the nodes which cause the deadlock. The algorithm is
triggered only when there is a potential for deadlock and only these
nodes which are potentially deadlocked perform the algorithm. The
algorithm does not affect other processes at the nodes.

Index Terms—Clustering, computer networks, cycle detection,
deadlock detection, distributed algorithms.

I. INTRODUCTION

EADLOCKS in computer systems and transaction

systems have been extensively studied in the litera-
ture [1]. Various schemes to prevent the occurrence of
deadlocks have been presented [2], [3]. Distributed dead-
lock detection algorithms for detecting resource dead-
locks in computer systems have been suggested [4]-[6].
Distributed algorithms for detection [7]-[9] and resolu-
tion [7], [9] of buffer deadlocks have been described.

In a network without deadlock prevention, having a dis-
tributed deadlock detection algorithm is invaluable. De-
tection of deadlocks could be a key to notifying a ‘‘help-
desk,’’ that manual intervention is necessary. If one also
has a distributed deadlock resolution scheme [7], [9], then
deadlock detection is the first step towards starting such a
scheme. Finally, in a network in which throwing away
messages is an acceptable resolution of a ‘‘bad situa-
tion,”’> deadlock detection is a catalyst for determining
when and where messages should be discarded.

Various properties are desirable in distributed deadlock

Manuscript received January 31, 1986; revised June 16, 1986.

I. Cidon was with the Department of Electrical Engineering, Tech-
nion—Israel Institute of Technology, Haifa, 32000, Israel. He is now with
the IBM Thomas J. Watson Research Center, Yorktown Heights, NY
10598.

J. M. Jaffe is with the IBM Thomas J. Watson Research Center, York-
town Heights, NY 10598. Most of this work was performed while he was
on leave to the IBM Scientific Center, Technion City, Haifa 32000, Israel.

M. Sidi is with IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598, on leave from the Department of Electrical Engineer-
ing, Technion—Israel Institute of Technology, Haifa 32000, Israel.

IEEE Log Number 8611357.

detection algorithms. When the algorithm is to detect
buffer deadlocks, then it should use only a small (prefer-
ably fixed) portion of the nodal storage [8], [9]. Algo-
rithms that accumulate a large amount of information,
such as the ‘‘wait-for graph®’ [7], would have insufficient
storage in practice. Preferably, deadlock detection algo-
rithms should be local, so that if a potential deadlock oc-
curs in a portion of the network, nodes in remote portions
do not ever find out that deadlock detection algorithm is
in progress [8]. By contrast, the algorithm in [9] is global,
as all nodes of the network are involved in the detection
algorithm.

In addition, the detection algorithm should be efficient
and should limit the amount of control messages trans-
mitted during its execution. The algorithm should be
started only when necessary, should find all deadlocked
nodes in the network, and should not interfere with the
normal operation of the network.

In this paper we present a new distributed deadlock de-
tection algorithm with all the above properties. Our ap-
proach is to describe the algorithm as it applies to com-
puter networks. However, with slight modifications this
algorithm can be applied to transaction systems too.

The algorithm that we present, uses only O(log (n)) bits
of memory per node, is local, is started only upon events
that may lead to deadlock, and does not interfere the nor-
mal operation of the network. In a static network with n'
potentially deadlocked nodes and m' links that are at-
tached to such nodes, the number of control messages
transmitted for detecting all the deadlocked nodes is o(n'’?
+ m') in the worst case, better than the previously known
deadlock detection algorithms.

A main feature of our algorithm is that it finds out all
deadlocked nodes in a single invocation of the algorithm,
as opposed to the ‘‘search’’ type algorithms [5], [6], {8],
{11], [12] in which each node starts an independent in-
vocation of the search to find if it is deadlocked. Here we
use a new approach to deadlock detection using cycle de-
tection and clustering techniques which are similar to {13],
[14].

II. THE MODEL

We adopt here the model in 8], [9], [15]. For com-
pleteness we give a concise description.

0098-5589/87/0100-0003$01.00 © 1987 IEEE

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

A. Network Model

A network consists of a set of communication nodes N ,
and a set of links L that interconnect nodes of N. At any
point in time, any node may create a new packet, which
we assume to be of variable but bounded size.

When a node receives a packet (created by itself or sent
from another node), it determines a next node, based on
information from the packet and the routing tables. The
type of routing does not concern us—only the fact that the
packet and (possibly dynamic) tables uniquely determine
a next adjacent node. Once the next node is determined,
the node queues up a packet for that next node.

Regarding links, the following properties are assumed:
they are FIFO (do not lose, reorder or duplicate mes-
sages); there is no deterministic bound on the amount of
time that it takes a message to traverse a link; any mes-
sage placed on the link arrives at the other side of the link
in finite time; links never fail.

B. Model of a Communication Node

We assume that the storage available at a node is finite.
The storage is assumed to be divided into three parts. The
first is the storage needed for overhead that includes the
code for the machine, data structures, variables, control
blocks, etc. In addition the node may reserve storage
(message buffers and variables) for specific emergency
measures such as deadlock detection. This must be a fixed
amount of storage as it must be enough irrespective of
network size. Note that messages may carry node identi-
ties needed for routing and control, and thus, a message
buffer should be of size O(log (| N|)) bits (where |N| is
the cardinality of N). However, in practice, since the net-
work size is reasonably bounded, a fixed number of bits
is preallocated to identify a node, assuming it is enough
to distinctly identify all potential nodes within the net-
work.

Next one considers the maximum number of links that
may be assigned to a node and assigns a fixed amount of
storage per link. This storage is needed to control the
physical link. Since storage in any case must be allocated
on a per link basis, we also allow a fixed amount of stor-
age per link to be reserved for deadlock detection. Thus
the total storage allowable for the entire deadlock detec-
tion procedure is a constant number of buffers, plus a con-
stant number of buffers per adjacent link. Once storage
has been reserved for overhead and the links, all other
storage is left over for message buffers for transit traffic.

Regarding the management of transit message buffers
we assume that a link control protocol prevents the send-
ing of a message to an adjacent node, until a free buffer
is allocated for this message at the adjacent node. Simi-
larly, if the packet was created at the given node, if there
is storage, a buffer is allocated for it, and if not, the packet
stays in the same machine, but does not enter the com-
munication subsystem.

C. Deadlocks
A node is FULL if all of its transit buffers are occupied
with packets destined away from this node, otherwise it

is NOT _FULL. Let (N, L) be a directed graph where N
is the set of nodes in the network and L a set of directed
links, where a directed link (i, j) indicates that node i has
at least one packet whose next node is J-Atie T, in (N,
L) is a set of FULL nodes with no links directed from T
to N — T. We say that a deadlock exists in the network
at time ¢, if a tie exists in (N, L) at time ¢.

Another important notion is that of a knot (of FULL
nodes) [10]. A knot K is a tie of which any subset is not
a tie. This implies that K is a set of strongly connected
nodes, i.e., there is a directed path which leads from each
node of K to all others. Alternatively, node i is a member
of a knot if i and all nodes which are reachable from node
i are FULL and can reach node i. In that case the knot is
the set of nodes which are reachable from i. Obviously,
any tie contains at least one knot.

A node suffers from deadlock if it is in a tie. Such a
node can never forward any packet. A node causes a
deadlock if it is in a knot. In order to resolve all deadlocks
one must remove at least one packet from each knot (i.e.,
from at least one node in such a knot), or alternatively to
add to each knot at least one empty buffer place. It would
not help if buffers were added to nodes which only suffer
from the deadlock.

III. OUTLINE OF THE PAPER

In this paper a distributed algorithm for detecting all
nodes which cause a deadlock is presented. Such an al-
gorithm is most suitable if the deadlock will be later re-
solved by releasing packets from nodes (see [71, [9D), and
may serve as a trigger to the subsequent resolution pro-
cess.

To simplify the description of the algorithm we pro-
gress in stages. In Section IV, we describe a version of
the alogrithm for a ““static environment.’’ In this case any
node which participates in the algorithm freezes its buffer
state, i.e., never considers any packet movement to or
trom its buffer which takes place after it started the al-
gorithm. This implies that the directed graph which rep-
resents the network does not change after the initiation of
the algorithm at all participating nodes. The algorithm for
the static environment can be interpreted from two points
of view.

1) A knot detection algorithm for a general graph which
consists of two types of nodes (FULL, NOT_FULL),
similar to [10}].

2) As asingle iteration of the dynamic deadlock detec-
tion algorithm to be described later. From this point of
view the algorithm for the static environment is a building
block of the dynamic deadlock detection process.

In Section V, we describe how the static algorithm can
be adapted to the general situation where nodes may move
from FULL to NOT__FULL states and vice versa. The
main idea is to iteratively use the static algorithm by rein-
itiating it when there is a potential for a new deadlock.
Using similar ideas a tie detection algorithm is developed
and described in [15].

CIDON et al.: LOCAL DISTRIBUTED DEADLOCK DETECTION

IV. DEADLOCK DETECTION IN THE STATIC
ENVIRONMENT

A. Outline

In this section we describe an algorithm which operates
in a static environment, i.e., nodal state transitions are
not considered. Appendix A contains a complete specifi-
cation of the algorithm.

At the end of the algorithm each node is in one of two
modes: 1) FREE—in this case the node does not belong
to a knot. (Obviously, any NOT__FULL node is always
FREE and immediately sets its mode to FREE). 2)
DEADLOCK—in this case the node belongs to a knot.

The algorithm exploits the property that nodes of a knot
are strongly connected and therefore a knot contains a
cycle of FULL nodes. A group of FULL nodes which were
found to be strongly connected is called a cluster. This
algorithm is based on looking for cycles of clusters and
merging them into bigger clusters. If a cluster with no link
directed outside the cluster is detected, then, a knot is
found. At the beginning, each cluster consists of a single
FULL node. At the end of the algorithm each cluster con-
tains all nodes of a knot, if one exists.

The algorithm consists of two basic steps which are re-
peated to the end. First, within each cluster of FULL nodes
a single outgoing (outgoing from the cluster) link is se-
lected. In the second step it is checked whether this link
is directed to a FREE node. If affirmative, then all nodes
of the cluster set their mode to FREE. These nodes will
not be involved in any further action and their cluster is
considered as erased. On the other hand, if none of the
outgoing selected links is directed to a FREE node, then,
a cycle of clusters is detected. All clusters of this cycle
are merged into a single cluster. These two steps are re-
peated until all nodes are either FREE, or clusters without
any outgoing links are found. In the latter case all nodes
of such clusters set their modes to DEADLOCK.

In order to accelerate the starting of the algorithm and
the way nodes become FREE we add a sub-phase to the
algorithm in which each FULL node firstly checks if any
of its next nodes are FREE. In this phase all FULL nodes
before choosing a selected outgoing link send an ASK
message over all outgoing links. A NOT_FULL node re-
ceiving such an ASK message responds by sending a FREE
message to the sender. When a FULL node which never
started the algorithm receives such an ASK, it initiates the
algorithm. If a node receives a FREE message over one
of its outgoing links, it changes its mode to FREE and
broadcasts FREE messages over all links.

Using the above, two competing algorithms are exe-
cuted at the same time: the flooding of ASK and FREE
messages, and the cluster formation process. The first one
does not affect nodes that are in knots since the FREE
messages can only be sent by nodes that have a directed
path to a NOT_FULL node. Consequently, these two
phases are independent and are described separately.

B. Detailed Description of the Static Algorithm

The important parts of the algorithm is the detection of
cycles of clusters (a modification of [11], [12]) and the
technique to combine a cycle of clusters into a single clus-
ter. The cycle detection is facilitated by having nodes/
clusters pass maximal ID’s through the links of the cycle
and have the maximum ID node receive back its own ID.
The cycle combination is facilitated by having this max-
imum ID node establish a tree structure whereby all nodes
of the cycle report to it. We start by describing clusters
that contain a single node, and then generalize it to any
cluster.

The cluster formation phase is started at a FULL node
i, by choosing an arbitrary outgoing link /, designating it
as a selected outgoing link (SO,), and sending a TEST
message over it. If / is directed to a FREE node, since an
ASK message is always sent prior to the TEST, a FREE
message will be received over / and i will become FREE
as described in the first phase. Any non-FREE node upon
receiving a TEST message over [, adds [to its list of se-
lected incoming links (S7). In addition, it sends over [a
value called MX, where MX is the maximal node identity
‘‘known’’ at this node. MX is calculated to be the maxi-
mum of its own and all other identities received in the past
by this node (over its SO link). Each time a new identity
is received it is compared with the current maximal iden-
tity. If it is larger, it is recorded and sent over all SI links.
Since maximal identities are sent over SI links, the exis-
tence of a cycle implies that the node with the maximal
identity in the cycle will receive its own identity back over
its SO link. When this happens this node detects a cycle
and appoints itself as cluster leader.

Next we describe how this leader causes cluster com-
bination. The leader builds a tree rooted at itself. This tree
is used by the leader to coordinate the cluster activities,
i.e., to make it “‘act’’ as a single node. Through this tree
messages will be exchanged between the leader and the
rest of the members of the cluster.

First, the leader sends a message (CHANGE _
LEADER) stamped with its own identity over its SO
link. A node receiving this message over an SI link re-
cords its leader identity, deletes this link from S7 and des-
ignates it as a leader link (LL). Messages to the leader are
forwarded over this link. The node forwards the
CHANGE__LEADER message over its SO link, and des-
ignates this link as a branch link (member of LB). Mes-
sages from the leader are forwarded over the branch links.
Finally, the CHANGE _LEADER message arrives through
the cycle back to the leader. The link on which the leader
receives this message is not a part of the leader tree. The
leader deletes this link from S7 and in addition sends a
DELETE message over this link. Receiving this DELETE
the receiver deletes this link from LB. In addition, a com-
pletion message (CHANGE __TERM) is sent from this leaf
node back to the leader through the leader tree. Any node
receiving this acknowledgment from all LB links (here LB
consists of a single link), forwards it over LL. In Fig. 1

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

(b)
Fig. 1. Typical snapshot.

@—49]| D
)

of ¥>

Fig. 2. Cluster’s structure.

we demonstrate a typical snapshot of the algorithm. In
Fig. 1(a) the FULL nodes with their selected outgoing
links are depicted. In Fig. 1(b) the resultant cluster along
with its leader tree is depicted.

The only difference in the resultant tree after detecting
a cycle of nodes and after detecting a cycle of clusters is
that in the first each node has only one branch link and in
the second each node may have many branch links. In
both cases the leader tree connects all nodes of the cluster.
In each node the identities of the links that belong to the
tree are recorded. The node distinguishes between the
leader link (LL) which leads to the leader (the root node
of the tree) and the branch links (LB) which lead to leaf
nodes of the tree. In Fig. 2 an example of such a structure
is depicted.

Next, we describe how clusters are coordinated to de-
tect a cycle of clusters. After a new cluster is formed, a
single link, outgoing of the cluster is chosen. The search
for this link is done using a distributed depth first search
through the leader tree, starting from the leader. A node
presently active in the search process looks in its outgoing

links list for an untested link (i.e., a TEST message was
never sent over it). If all links are tested, the node pass
the search deeper into the tree by sending a search mes-
sage (SEARCH) over one of its branch links from which
a search termination message (SEARCH__TERM) has not
been received. This passes the activity to another node.

If an untested link is found, a TEST message is sent
over it (the link becomes the cluster outgoing link). If the
identity of the present leader is received over this outgo-
ing link along with a flag indicating it is the leader of the
sender, then this link connects two nodes of the same
cluster. A DELETE message is sent over it in order to
inform the node at its end to delete it from SI. This DE-
LETE message is acknowledged by a second DELETE
message. Receiving this acknowledgment the node des-
ignates the link as tested, and proceeds with the search.

A node which receives a SEARCH__TERM message
over all its branch links, or, does not have any branch
links, nor any untested links, sends a SEARCH__TERM
message back over its LL to ‘‘back-up’’ the search. If a
leader receives such messages over all its branch links it
determines that its cluster forms a knot. The leader in-
forms all nodes of its cluster of this situation by broad-
casting a SPAN message with this information. Receiving
such a message over their leader links, nodes forward the
SPAN message over their branch links, set their modes to
DEADLOCK, and send a FREE message over all their
SI’s. Note that, all links of the cluster were tested and
incoming links that were founded to be directed from
nodes of the same cluster were deleted from SI list (either
after receiving a DELETE message during the search or
when the link was designated as a leader link). This im-
plies that all the remaining S/ links are directed from nodes
which are not members of this cluster and thus are not
members of a knot. These FREE messages inform the re-
ceiving clusters that they are not the cause of the dead-
lock.

Other situations which may arise when an untested link
is chosen to be the cluster outgoing link, are the follow-
ing:

If a new identity higher than the known one is received
over this link, this knowledge is delivered to all nodes of
the cluster so each may broadcast this identity over all
cluster S7 links. This is accomplished by sending a DE-
LIVER message including this identity to the leader
through the leader link. When the leader receives such an
identity higher than the known one, it broadcasts it to all
nodes of the cluster using a SPAN message. They in turn
broadcast it over all their SI links.

If the identity received over the cluster outgoing link is
the cluster leader’s identity along with a flag which indi-
cates it is not the sender’s leader, then a cycle of clusters
has been detected. At this point all clusters of that cycle
are combined into a single cluster whose leader has the
identity just received. The process is to combine the leader
trees of the clusters in the cycle into a single tree, rooted
at the new leader. The node which is responsible for this
action is the node that received this identity, this node is

CIDON ¢t al.: LOCAL DISTRIBUTED DEADLOCK DETECTION

node i

———3> - selected outgoing link

(@)

- cluster leader j

——=—xx> - leader tree's iink 4
2

()]

Fig. 3. Cluster formation process.

the node which is currently active in the search process
(adjacent to the cluster selected outgoing link). The new
part of the leader tree will be rooted at this node. The
node starts the construction by sending a CHANGE _
LEADER messge stamped with the leader identity over
the selected outgoing link. A node which receives such a
CHANGE _LEADER message over a link, changes its
leader identity, designates this link as the new leader link,
designates all other old leader tree links and the cluster
selected outgoing link (if any) as branch links, and for-
wards the CHANGE _LEADER message over all the
branch links. This changing leader process is terminated
by a CHANGE _TERM messages flowing back through
the new LL’s to the node that initiated the process. After
this node has received the CHANGE__TERM message
from the cluster outgoing link it designates this link both
as a branch link and as tested, and proceeds the search for
a new cluster outgoing link (the search can now be for-
warded to the new branch links as well). In Fig. 3 we
demonstrate this cluster combining process. In Fig. 3(a)
the clusters are depicted along with their leader trees and
selected outgoing links. In Fig. 3(b) the resulted com-
bined cluster is depicted.

Any time a node receives a FREE message over one of
its outgoing links, it leaves the cluster formation process
and acts as previously described. Since clusters are
strongly connected subgraphs, and FREE messages are
forwarded over every incoming link, the termination is
guaranteed at all cluster nodes. The algorithm ends when
every node is in one of the two modes FREE or DEAD-
LOCK.

In Appendix A a formal description of the algorithm for
the static environment is presented along with a calcula-
tion of the communication and memory costs. The com-
munication cost is O(n”? + m') messages in the worst
case, where n’ is the number of FULL nodes and m’ the
number of links attached to those nodes. The memory cost

is O(n log, n + m) bits in total and O(log, n + k) bits for
a node, where n is the total number of nodes, m the total
number of links, and k is the number of links attached to
this node.

V. DEADLOCK DETECTION IN THE DYNAMIC
ENVIRONMENT

In this section we describe the extension of the knot
detection algorithm to the dynamic environment, i.e.
when nodes transit between FULL and NOT_FULL states
due to packet transmissions and receptions. In Appendix
B we formally describe the additional lines needed to im-
plement this dynamic knot detection algorithm. In Ap-
pendix C a complete proof of correctness of the dynamic
algorithm is given.

The extended algorithm iteratively uses the static al-
gorithm where in each new iteration messages are stamped
with a different iteration number. A new iteration is started
whenever there are state transition that may affect the cor-
rect operation of the current iteration. In the following,
we first explain that a transition from FULL to NOT_
FULL does not require starting of a new iteration. Then
we show how the static algorithm is restarted following a
transition from NOT _FULL to FULL.

A transition from FULL to NOT __FULL occurs when a
packet is sent from a FULL node to a NOT__FULL neigh-
bor. Since a packet can be transmitted only to a NOT__
FULL node, the sender node must have had a path in the
graph to a NOT_FULL node at the start of the current
iteration. Moreover, since a deadlock is permanent, this
node always had a path to a NOT__FULL node. Thus, its
correct final mode for the current iteration (and all pre-
vious ones) is FREE. Therefore the transition from FULL
to NOT__FULL can be considered as if a FREE message
of the current iteration were received by this node. Since
the sender did not suffer from a deadlock in the first place,
no harm can be caused by such an interpretation. The
FULL to NOT_FULL transition tells the node sooner (be-
fore a FREE message does) that it is not deadlocked.

Next, we examine the transition from NOT _FULL to
FULL. This transition may create a new deadlock which
no previous iteration can detect. Thus, it is essential to
start a new iteration of the algorithm following this tran-
sition. Our goal is to handle iteration numbers in such a
way that the static algorithm will be initiated at each node
of a knot after it becomes FULL. Thus, in the last iteration
started by a node of that knot, a deadlock will be detected.

To allow for different iterations we assume that a non-
decreasing iteration number is attached to each node. Ini-
tially the iteration number is zero. Lower iteration num-
bers are considered older. A node increments its iteration
number by one each time the node becomes FULL. Fol-
lowing this increment, the node initiates a new iteration
of the algorithm whose messages are stamped with the
new iteration number. The main difficulty addressed in
this section is the coordination between different iteration
numbers at different nodes and still using a fixed amount
of memory.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. |, JANUARY 1987

To allow the orderly completion of previous attempts
of deadlock detection, a priority is given to old iterations
of the algorithm over newer ones. A node n; attempting
to initiate a new iteration at a neighbor n,, which is per-
forming an older iteration, will have to wait until the com-
pletion of all older iterations at n,. Until n, is finished, n,
records the latest received message for each link until it
can respond to it. After n, completes all previous itera-
tions it responds to messages of new iterations (if any).
Its response depends on its current state and mode.

Generally, each node participates in all iterations, i.e.,
increments its iteration number one by one, and initiates
the algorithm for each new iteration number. This insures
that all nodes of a knot reach the highest iteration number
started in the knot and complete this iteration. Otherwise,
they may skip this iteration due to attempts of higher it-
eration numbers received from outside. Two exceptions
may be considered.

1) A NOT _FULL node always completes its current
iteration of the algorithm in FREE mode. In this case all
iterations between the node’s current iteration and the
highest received from outside are considered as being
completed and the node immediately responds to the high-
est iteration number heard by it.

2) A DEADLOCK node always remains in DEAD-
LOCK mode. In this case a node considers itself as
DEADLOCK for all iterations higher than its own. In this
case the node responds to higher iteration TEST messages
with a FREE message stamped with the received iteration
number, without actually changing its current iteration
number. Note, that since this is knot detection (and not
tie detection) as viewed by other nodes in the network, a
DEADLOCK node is considered as a permanently NOT _
FULL node. (This is changed for tie detection [15].)
These two exceptions may also explain why a node should
record only the highest attempt received from a neighbor.
For all iterations below the highest received it is guaran-
teed that the neighbor completed them as FREE (a node
which completes the algorithm in the DEADLOCK mode
never increments its iteration number nor does it initiate
any new iteration). Since the neighbor already became
FREE in these iterations, it no longer participates in these
iterations and does not wait for any response.

To allow the completion of old iterations, some nodes
have to respond to messages stamped with iteration num-
bers lower than their current one. Since the node com-
pleted these older iterations as FREE, it answers those
messages as a FREE node with the same (older) iteration
number, would do.

We now describe the details. The algorithm is operated
at each node just as described in the static stage. The only
difference is that the current iteration number is attached
to each message of the algorithm. Accepting a message
stamped with its current iteration number, the node op-
erates as in the previous section. A FULL node which be-
comes NOT _FULL acts as a FREE message was re-
ceived, i.e., sets its mode to FREE and broadcasts FREE
messages. A NOT_FULL node which becomes FULL in-

crements its iteration number by one and initiates the al-
gorithm using a TEST message as previously described.
A node which receives a TEST message stamped with an
iteration number which is lower than its own, sends a
FREE message stamped with the received iteration num-
ber back to the sender.

The case when a node receives messages stamped with
a higher iteration number, is divided into several sub-
cases. Since a TEST message is always the first to be sent,
we assume such a message has been received.

1) The node is in NOT _FULL state. In this case the
node increments its current iteration number to the re-
ceived one and sends a FREE message back to the sender.
In this case there is no point in incrementing the iteration
number one by one, since a NOT__ FULL node completes
all iterations in FREE mode.

2) The node has completed the current iteration in a
DEADLOCK mode. The node never increments its itera-
tion number, and considers itself as deadlocked for all
iterations higher or equal to its own. In this case the node
answers this TEST message with a FREE message,
stamped with the received iteration number.

3) The node is FULL but has completed its current it-
eration in FREE mode. In this case the node increments
its iteration number by one and initiates the algorithm for
this iteration number. If the message just received has the
same iteration number (the node previous iteration num-
ber plus one) it is considered for the current iteration. If
it is higher, then it is recorded and kept until current it-
eration completion.

4) The node is FULL but has not yet completed its cur-
rent iteration of the algorithm. In this case the node re-
cords the highest itgration number received over each link.
After the completion of the current iteration, the node
takes care of the recorded messages, and acts as if they
were just received (according to rules 1-3).

The actions described in cases 3 and 4 guarantee that
any message with higher iteration number, received by a
node at a lower iteration, will not be processed until the
node reaches the higher iteration. As the increment in the
iteration number occurs only at nodes which already com-
pleted previous iterations, only the highest iteration re-
ceived over each link should be considered.

VI. DiscussioN AND CONCLUSIONS

A new approach for deadlock detection in computer
network has been presented. The algorithm was incre-
mentally developed for two environments of increasing
complexity. We first derived an algorithm for a static en-
vironment in which the state of the transit buffers at nodes
is frozen. Given a network with n nodes of which n’ are
FULL and m links of which m’ are attached to the FULL
nodes, the worst case communication cost of this algo-
rithm is O(n'? + m’) messages, each of O(log (n)) bits.
The amount of memory needed in a single node is O(log,
(n) + k) where k is the link degree of the node and the
total memory needed is O(n log (n) + m) bits.

Next we showed how to detect deadlocks in a full dy-

CIDON er al.: LOCAL DISTRIBUTED DEADLOCK DETECTION

namic environment where packet transmissions and re-
ceptions constantly change the states of the nodal transit
buffers, and the resulting directed graph. This is done by
invoking a new iteration of the static algorithm each time
a new potential for deadlock occurs, and by giving higher
priority to ‘‘older’’ iterations. Practically, the adaptation
to the dynamic environment uses only a small (fixed)
amount of additional memory for each link.

In the static environment one may compare the differ-
ences in the performance between our algorithm and the
previously published algorithms. However one should be
careful in comparing these algorithms since there are dif-
ferences in the definition of deadlocks, nodes, links, etc.
However since the problems seem similar we will com-
pare our performance results to the best known results. In
[11] a N-out-of-M deadlock detection algorithm for a dis-
tributed processing system is presented. This is a
‘‘search’’ type algorithm in which for each process an in-
dependent invocation of the algorithm is performed. The
communication cost of this algorithm for each invocation
is: O(m') messages of size O(log(n)) bits. Since no mech-
anism for restricting the number of independent invoca-
tions is proposed and in order to detect the deadlock at
least one deadlocked node must invoke the algorithm (and
there is no way to tell which nodes are deadlocked at this
point), it is evident that all nodes which are potentially in
deadlock must initiate the algorithm. Since up to n’ in-
dependent invocations of the same algorithm are needed
(even in the completely static version), the total commu-
nication cost is O(n'm’) messages. The total amount of
memory needed for a single invocation is O(m) bits.
Therefore for n independent invocations O(nm) bits are
needed.

On the other hand, the algorithm of [11] is considerably
faster and it detects more general types of deadlocks. Sim-
ilar communication and memory costs in the static envi-
ronment are common to most search type algorithms
known in the literature. One of them [8] needs less mem-
ory.

In the dynamic environment the comparison is more dif-
ficult as all algorithms are involved in multiple invoca-
tions. We only note that our adaptation uses only a total
of O(m) extra bits of memory (if we consider the itera-
tion number to be a fixed size). No storing of the complete
state is needed, as in [11].

APPENDIX A
FORMAL DESCRIPTION OF THE KNOT DETECTION
ALGORITHM

Variables at Node i

S Buffer state of node i (FULL or NOT _FULL).

M, Mode of node i. (IDLE, OPERATE, FREE
or DEADLOCK, initial values: if §; =
NOT _FULL then: M; = FREE else: M; =

IDLE).
0; Set of outgoing links at node i.
SI; Set of selected incoming links over which a TEST

9

message has been received (initial value SI; =

).

T;(I) Indicates if link / has been tested (initial value
;) = 0).

SO, Presently tested outgoing link (initial value SO;
= &).

L, The identity of node i’s leader (initial value L; =
i).

LL; Direction to present leader (a part of the leader
tree which leads toward the leader). (Initial
value LL; = ®).

MX; Maximal identity heard (initial value MX; = i).

LB; Set of branch links (the part of the leader tree
which leads to the branches). (Initial value LB;
= &).

CT;(l) Indicates if a CHANGE_ _TERM message has
been accepted on link / (initial value CT;(l) =
0).

ST;(1) Indicates if a SEARCH__TERM message has been
accepted on link / (initial value ST;(I) = 0).

CF; A flag indicates if node i has initiated a changing
leader process (initial value CF; = 0).

DF; A flag indicates if node i has sent a DELETE

message over a link which connects two nodes
of the same cluster (initial value DF; = 0).

Messages Sent and Received by Node i

START Message accepted from the
outside world which signals
the start of the algorithm.

Message sent on outgoing links
prior to the TEST.

Message sent on selected out-
going link.

Message sent in response to an
ASK message by a FREE
node.

Message sent with maximal
identity MX; and f = 1 if MX;
= L; (f = leader indicator).

Search for an untested outgo-
ing link.

Search has terminated.

Delete link from lists.

Change leader to j.

Change leader process has ter-
minated.

ASK
TEST

FREE

MAX(MX,, f)

SEARCH

SEARCH _TERM
DELETE
CHANGE_LEADER(j)
CHANGE _TERM

DELIVER Message sent through LL; to
inform leader of a new iden-.
tity received from cluster
outgoing link.

SPAN Message sent from leader

through LB; to inform nodes
with new information (can
contain information about 1)
new identity to be broad-

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

casted 2) final mode of
cluster (FREE or DEAD-
LOCK)).

Note: A received message is usually indexed by link
identity from which it was accepted, i.e., TEST(I) —
TEST received over link /.

Algorithm for Node i

al. For START then:
al.l IfS; = FULL and M; = IDLE then: send
ASK message to all O;; M; <« OPERATE;
for some k € O; send TEST to k; T;(k) « I;

SO; < k;
a2. For ASK(l) then:
a2.l1 as <al.l>;

a2.2 IfS; = NOT_FULL then: send FREE to [,
a2.3 If M; = DEADLOCK then: send FREE to I,
a3. For FREE(!) then:
a3.1 If M; = OPERATE and [€ O; then: M; «
FREE; send FREE to all links; reset all
variables except M;;
a4. For TEST(!l) then:
a4.1 1If M; = OPERATE then: SI;, < SI; U {l};
ad.1.1 1f MX; = L, then: send MAX(MX,,
1) to[;
a4.1.2 Else: send MAX(MX;, 0) to [;
a5. For MAX(l, MX,, f) then:
a5.1 1If MX, > MX; and L; # i then: send
DELIVER(MX,;, L)) to LL;;
If MX;, > MX; and L; = i then: MX; «
MX,; send SPAN(MX,, L;) to LB;; send
MAX(MX;, 0) to SI;
If MX, = MX; = L;and f = 1 and [= SO;
then: send DELETE to [, DF; < 1;
If MX, = MX, = Lyand f = O and [= SO;
then: LB, « LB; U SO;; CF; < 1; send
CHANGE LEADER(L;) to I,
a6. For CHANGE LFEADER(, L;) then:
a6.1 1f L, = L, then: send DELETE to [; delete [
from SI;; '
Else: L, « L;; MX; < L;; LB; < LB; U
(LL; — 1) U SO;; SO; < &; LL; < I,
for all j: CT;(j) < O; send
CHANGE__LEADER(L;) to LB;;
a6.2.1 1If LB; = & then: send
CHANGE _TERM to LL;;
a7. For CHANGE__TERM(I) then: CT;(l) « 1;
a7.1 1If for all k € LB;CT;(k) = 1 then:
a7.1.1 1If CF; = 0 then: SO; < ®; send
CHANGE _TERM to LL;;
a7.1.2 Else: SO; < ®; CF; < 0; goto
<all> act as SEARCH was
received;
a8. For DELETE(]) then:
a8.1 Ifl = SO, then:
a8.1.1 1If DF; = 1 then: SO; « &; DF; «

as.2

as.3

as.4

ab.2

0; goto <all> act as SEARCH
was received;
Else: SO; < ®; delete ! from LB;;
goto <a7l.l1>;
a8.2 Else: delete [from SI;; send DELETE to I.
a9. For SPANMX,, L;) from LL; then:
a9.1 YL, = L;and MX, then: send SPAN(MX,,
L;) to LB;,
a9.1.1 U MX, < oo then: MX; « MX,;
send MAX;(MX;, 0) to SI;;
a9.1.2 Else: m; < DEADLOCK; send
FREE to SI;

a8.1.2

al0. For DELIVER(MX,, L)) from some k € LB, then:
al0.1 If MX, > MX;and L, = L, #+ i then:
send DELIVER(MX,, L;) to LL;,
al0.2 If MX, > MX;and L, = L, = i then:
MX; < MX;; send MAX(MX;, 0) to SI;;
send SPAN(MX;, L;) to LB;;
all. For SEARCH from LL,; then:

all.l If for some k € O; T;(k) = O then:
SO; < k; send TEST to k; T;(k) « 1;
all.2 Else: If for some k € LB;ST;(k) = 0 then:
send SEARCH to k;
all.2.] Else: If L; # i then: send
SEARCH _TERM to LL;;
all.2. 1.1 Else: M; «
DEADLOCK; send
FREE to SI;; send
SPAN(o, L;) to LB;;
reset all variables
except M;;
al2. For SEARCH _TERM from k € LB; then: ST; (k)
« 1; same as <al>;

Communication Cost

To compute the communication cost, measured in num-
ber of messages sent in the network, we will consider sep-
arately each message type. Let n' be the number of FULL
nodes in the system, and m' the number of bidirectional
links which are attached to those nodes.

1) A TEST, ASK, and FREE message can be sent over
any outgoing unidirectional link, and thus at most 6m’
such messages are sent.

2) SPAN and DELIVER messages are sent only over
the leader trees, each contains different identities, and thus
at most n'> messages are sent.

3) CHANGE__LEADER and CHANGE__TERM
messages are sent only over trees or cycles, once for each
leader. Since no more then n' leaders can be found, then,
their total number is bounded by 4n "

4) MAX messages are received over selected outgoing
links. However for a node which is not in a knot, such a
link is only selected once. For nodes in knots such mes-
sages can be received only over outgoing links which are
part of a cycle (except when the leader identity is re-
ceived) over links which connect nodes of the same clus-
ter) and thus no more then 2n? + m' of such messages
can be sent. We can conclude that communication cost at

CIDON er al.: LOCAL DISTRIBUTED DEADLOCK DETECTION

worst case is of O(m' + n'?) messages, each of no more
than O(log (n")) bits.

Memory Cost

In order to compute the memory cost of the algorithm,
we assume that one bit variable is allocated for describing
the membership of each adjacent link to each set of links
(0;, I, L;, LL;, SO;, LB;). This implies that except MX;
which contains a node identity, all variables are of one bit
length, and a fix number of such variables is allocated for
each link of the node.

We can conclude that the total memory cost of this al-
gorithm is O(n log, (n) + m) bits for the total network,
and O(log, (n) + k) for each node where k is the link
degree of that particular node.

APPENDIX B
ForMAL DESCRIPTION OF ADAPTATION TO THE
DyNaMICc ENVIRONMENT

Variables at Node i
Same as in the static version with the addition of

CN; Iteration number of node i (initial value CN; =
0).

MCN;(l) Inthis variable the node records the highest CN
which was accepted over link / while in OP-
ERATE mode, it also indicates the reception
of an ASK message (initial value MCN;(l)
= 0).

Indicates if a TEST message stamped with it-
eration number MCN, () was accepted over
link / (initial value MT;(l) = 0).

MT; (1)

Messages Sent and Received by Node i

The same as in the static version with the addition of
iteration number.

Additional Actions Taken by Node i
bl. For S; « FULL then: CN; < CN; + 1) M; <
IDLE; initiate all variables; initiate the algorithm

for the new iteration (as if a START is received);
b2. For ASK(l, CN,) then:

b2.1 IfCN; > CN,or S; = NOT__FULL then:
CN; < max{CN,, CN,}; send FREE(CN)) to

b2.2 If CN; = CN, and §; = FULL then: same
as in static algorithm;

b2.3 If CN;, < CN,and S; = FULL then:

b2.3.1 If M; = FREE then: CN; « CN; +
1; M; < IDLE; initiate all
variables; initiate the algorithm for
the new iteration (as if a START is
received); consider this message as
just received;

b.2.3.2if M; = OPERATE then: MCN,(l)
« CN,, MT;(l) < 0;

b2.3.3 If M; = DEADLOCK then: send
FREE(CN)) to I,

b3. For TEST(l, CN,) then:

b3.1 If CN, = CN, then: same as in the static
algorithm when a TEST received;
b3.2 TIfCN;and S, = FULL and M; +

DEADLOCK then: MT;(l) «< 1
b4. For FREE(I/, CN,) then:
b4.1 If CN, = CN, then: same as in the static
algorithm when a FREE message is
received;
b5. For M; < DEADLOCK or M; < FREE then: after
finishing original algorithm lines: act as recorded
messages (if any) were just received.

APPENDIX C
Proor oF CORRECTNESS

Theorem 1: All nodes of a knot eventually set their
mode to DEADLOCK. If at time ¢ a node is not dead-
locked, then, it has never been in DEADLOCK mode, be-
fore t.

In order to prove Theorem 1, which is the main theorem
of this section, we present some introduction lemmas. The
following two lemmas prove some properties of the static
algorithm.

Lemma 1: Consider the algorithm of Appendix A. If a
knot exists at time ¢ and a START is given at least to one
of the nodes in the knot, then all nodes of the knot will
complete the algorithm in the DEADLOCK mode without
leaving the OPERATE mode prior to completion. Fur-
thermore, they will complete the algorithm after they join
the cluster whose leader is the node with the maximal
identity in the knot.

Proof of Lemma 1: First, we prove that none of the
knot’s nodes can complete the static algorithm in FREE
mode, before at least one of the nodes has completed the
static algorithm in DEADLOCK mode. To see that, as-
sume in contradiction that i is the first node of the knot
which completes the algorithm in FREE mode. In order
to complete the algorithm as FREE, a FULL node must
receive a FREE message over an outgoing link. As no link
is outgoing from the knot this implies that node i receives
the FREE message from another member of the knot. Let
us denote as j this FREE message originator. Clearly, in
order to send a FREE message, node j must be either in
the FREE mode or in DEADLOCK mode prior to the time
of i’s reception. The former case contradicts our assump-
tion that node i is the first to become FREE. The latter
case implies that j has completed the algorithm in the
DEADLOCK mode. Since there is an outgoing link from
J to i they are members of the same knot which proves
that a member of a knot cannot become FREE before some
other member of the same knot becomes DEADLOCK.

Now we prove that all nodes complete the algorithm in
DEADLOCK mode. To see that, let m be the node with
the maximal identity in the knot. As identities are always
sent over incoming links it is clear that m is the maximal
identity which might be known at every node of the knot.

First, we prove that in finite time after ¢ all nodes ini-
tiate the algorithm. This is clearly true since a knot is a

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

strongly connected graph and ASK messages are sent over
all outgoing links of any node which initiates the algo-
rithm. Recall that at least one of the knot’s nodes receives
a START.

Secondly, we prove that each outgoing link of the knot’s
nodes is tested before any node become DEADLOCK.
Clearly no cluster leader may become DEADLOCK be-
fore it receives SEARCH__TERM messages over all its
branch links and before it tests all its outgoing links
(<all.2.1.>). By repeating this argument for all nodes
of the leader tree starting from the leader, it is clear
that if some outgoing link is not tested, at least one
SEARCH _TERM message is not delivered. This implies
that if an untested link exists in the cluster then no node
becomes DEADLOCK in that cluster.

Let us divide at some time 7 = r all the directed links
of the knot into two groups: those which are tested and
all the rest. Now consider all the clusters which exist
within the knot at time 7. If there exists a cluster without

any currently selected outgoing link, then, in finite time -

after 7, at least one untested link will be selected as the
cluster selected outgoing link, which implies that at least
one link leaves the second group and joins the first. If all
clusters have already selected outgoing links at 7 and the
knot consists of more then one cluster, then there exists
at least one cycle of clusters. Consider one of these cycles
and let & be the leader with maximal identity in this cycle.
No higher identity can be accepted at this cycle (identities
are accepted only over outgoing tested links). Since at
each cluster, the maximal identity accepted over the se-
lected outgoing link is 1) delivered to the leader, 2)
spanned to all the cluster’s nodes, and 3) broadcasted over
all selected incoming links, then in a finite time after 7
the cluster whose leader is k accepts its own identity over
its outgoing tested link and initiates a cluster forma-
tion process using CHANGE__LEADER messages.
CHANGE _LEADER messages are forwarded over all
branch links and selected outgoing links. This insures that
the CHANGE__LEADER messages are accepted at all
nodes of the cycle except those of the A cluster (with the
exception of a single node which replies with a DELETE
message, see <ab6.1>). The termination of this process
is guaranteed by CHANGE _TERM messages flowing
back over the new combined leader tree, and the search
for a new untested outgoing link proceeds (also at nodes
that just joined the cluster). In a finite time after ¢ at least
one untested outgoing link is found and tested. This im-
plies that at least one link leaves the second group and
joins the first. If the knot consists of only one cluster, then
again any untested outgoing link will be found and tested
by the search process. Repeating this argument results that
each untested link is eventually tested before any node
become deadlock.

This also proves that no node of the knot may reach the
FREE mode. No FREE message from outside may cause
this since no outgoing link in is directed outside to the
knot. No FREE message is sent within the knot. A DEAD-
LOCK node sends FREE messages only over its selected

incoming links (see <all.2.1.1>). As all directed links
which connects two members of the same knot are deleted
from the list of selected incoming links following the test
(see <a5.3> and <a.8.1.1>). All these links are al-
ready deleted before any node may become DEADLOCK.

Third, we prove that in finite time after ¢ all nodes of
the knot will accept the identity m. To see that let us di-
vide at some time 7 = ¢ the nodes of the network into two
groups, those which already accept m, and those which
do not. Since at least one outgoing link is directed from
the second group to the first and this link is eventually
tested, following the second argument, in finite time after
7, at least one node from the second group receives this
identity over the tested link and thus leaves the second
group and joins the first.

Fourth, we prove that in finite time after ¢ all nodes of
the knot join the cluster whose leader is m. To see that
assume a time 7 after which, following the third argu-
ment, all nodes have already accepted the identity m. And
let us consider all clusters whose leader is not m. If such
clusters exist, then at least one outgoing link is directed
from the m cluster to the others and vice versa. As all
nodes accepted the identity m, all outgoing links are even-
tually tested, and no identity above m can be accepted at
the knot, then, in finite time after 7 the identity m is ac-
cepted by one of the m cluster’s nodes from outside, which
resulted in a cluster formation process using CHANGE-
_ LEADER messages. This implies that in finite time after
7 at least one node joins the m cluster. Repeating this ar-
gument results that all nodes eventually join the m cluster.

Using the above it is clear that the search process in the
m cluster will be terminated using SEARCH _ TERM mes-
sages, resulting in a deadlock detection at m which broad-
casts this information to all knot’s nodes using SPAN
messages. As no node of the knot may accept a FREE
message over an outgoing link as described in the second
argument, this completes the proof of Lemma 1.

Lemma 2: Consider the static algorithm of Appendix
A, If a node j is not a member of a knot then in a finite
time after j initialized the algorithm, it becomes FREE.

Proof of Lemma 2: If node j is not in a knot then
there is a path of outgoing links directed from j to a NOT-
__FULL node or to a knot. Consider the first case, the
initialization of the algorithm results in a flooding of ASK
messages over all outgoing links, and such an ASK is re-
sponded by a FREE message when received by a NOT-
__FULL or a FREE node, then if j does not become
DEADLOCK it becomes FREE. In the second case if j has
a path to some knot, then following Lemma 1, this knot
is detected. Since FREE messages are sent over all links
incoming to the knot, the above holds for this case as well.
Therefore it is sufficient to prove that j does not become
DEADLOCK.

Assume in contradiction that i is the first node which
becomes DEADLOCK but is not a member of a knot. Fol-
lowing the proof of Lemma 1, it is clear that i must be a
cluster leader. Clearly, before reaching the DEADLOCK
node i is FULL, receives a SEARCH__TERM message

CIDON et al.: LOCAL DISTRIBUTED DEADLOCK DETECTION

over all its branch link and each of its outgoing link is
either a branch link or deleted. Now consider all nodes
adjacent to the branch links of i. The same argument must
hold for these nodes. Using this induction argument for
all branch links, we can conclude that all nodes which are
reachable from i are FULL, belongs to i’s cluster, and all
their outgoing links are directed to nodes of the same clus-
ter. This implies that these nodes form a knot, which con-
tradicts the assumption. Thus j does not become DEAD-
LOCK and thus becomes FREE.

Lemma 3: Consider the algorithm of Appendix B. Let
t be a time in which a node becomes FULL resulting in a
knot K. Let R be the highest cycle number known in X at
t. The following can be said about the nodes of the knot.
All nodes of K with cycle number less than R enter the
FREE mode in their current cycle. All nodes of K even-
tually increment their cycle number to R. The R cycle re-
sults in a DEADLOCK mode at all nodes of K.

Proof of Lemma 3: We prove the lemma by an in-
duction over the cycle numbers. Assume the lemma is
correct for all cycle numbers r < R. The lemma is true
for R = 0 following Lemmas 1 and 2 as the operation of
the algorithm is static in this case.

As a deadlock exists permanently, the existence of K at
time ¢ implies its existence at all times 7 = ¢. It also im-
plies that no node of K was a member of a knot prior to
t.

We first show that in finite time after ¢ all nodes of the
knot will have cycle number which is at least R. Let R,
be the lowest cycle numbers known at the knot at time .
Let us further assume that R, < R.

First, we show that all nodes with cycle number R,
complete this cycle in FREE mode. To see that let the
graph (N, L) consists of all nodes and directed links of the
network with their states at the time they started cycle R,.
Nodes that skipped this cycle number are considered as
NOT _FULL. The execution of the R, cycle in the net-
work is identical to an execution of the static algorithm in
(N, L). This is true since all FULL nodes have the same
directed links, nodes with higher cycle numbers are con-
sidered as NOT_FULL and each packet transmission to
a NOT__FULL node over an outgoing link is interpreted
as FREE message reception. Asssume in contradiction that
some node k of K in (N, L) becomes DEADLOCK. Then
by Lemmas 1 and 2, a knot K, exists in (N, L). Consider
the nodes of K, after the completion of the R, cycle. K,
forms a cluster of FULL nodes where each outgoing link
is either a branch link or deleted (following the proof of
Lemma 2). This implies that K, is a knot in the network
too. Since k is a member of both K, and K and each knot
is strongly connected, K, = K. The induction hypothesis
implies that K is detected in the R, cycle. As no node
changes its cycle number after it becomes DEADLOCK
this contradicts the assumption that R, < R and implies
that all nodes of K complete the R, cycle as FREE.

Secondly, we show that all nodes with cycle number
R(7) eventually increment their cycle number. Let us
consider the time at which all nodes having cycle numbers

13

R.(7) have already reach the FREE mode. Divide the
nodes of the knot into two groups, those with cycle num-
ber R,(7) and the rest. If the first group is empty, then we
are done. Else, as a knot is a fully connected subgraph,
there exists at least one outgoing link directed from the
second group to the first one. Since ASK messages are
sent for each cycle over each outgoing link, then, at least
one such message has been sent stamped with cycle num-
ber above R,(7) over that particular link. Receiving such
an ASK message stamped with higher cycle number at a
node which has already completed its current cycle in the
FREE mode while in the FULL state, results in a cycle
number increment. This implies that at least one node
leaves the second group and joins the first. Repeating this
argument results in all nodes with cycle number R,(7) in-
crementing their cycle number by one.

Using the above argument it is clear that all cycles lower
than R result in FREE mode. Moreover, by repeating this
argument for the remaining set of nodes with the lowest
cycle number, and by using the fact that FULL nodes in-
crement cycle numbers always one by one, we can con-
clude that all nodes increment their cycle number to R.

Third, we show that the R cycle results in a DEAD-
LOCK mode at all nodes of K. The proof follows imme-
diately as a result of Lemmas 1 and 3. As the knot per-
manently exists (no node can change its state), no link is
outgoing outside the knot, and messages with cycle num-
bers higher than R are not responded until the node reaches
its final mode, then the operation of cycle R is equivalent
to the operation of the static algorithm resulting in DEAD-
LOCK mode at all nodes.

Lemma 4: If the algorithm results in a DEADLOCK
mode at any node then there is a deadlock.

Proof of Lemma 4: Let us denote by i the first node
which reaches the DEADLOCK mode, and by R the cor-
responding cycle number. As all nodes except the clusters
leaders reach the DEADLOCK mode only by receiving a
SPAN message which contains this information, i must be
a cluster leader. As i concluded that a deadlock exists it
must have received SEARCH__TERM messages over all
branch links. As all nodes send SEARCH _TERM mes-
sages only after they test that all their outgoing links are
directed to members of the same cluster, and only after
they received SEARCH__TERM messages over all their
branch links, it is clear that node i can conclude a dead-
lock situation only after a SEARCH _TERM message
has been sent by all the nodes of its cluster. A SEARCH _
TERM message can be sent by a node only after all its
outgoing links were tested and were found to be directed
to FULL nodes of the same cluster with the same cycle
number R. If at the time when i concludes a deadlock
situation all nodes which sent the SEARCH _ TERM mes-
sage remain FULL and with the same outgoing links, then,
the cluster is indeed a knot of FULL nodes and a deadlock
does exist. On the other hand if some node became
NOT_FULL or has some other outgoing link which did
not exist at the time of SEARCH__TERM sensing, then it
is clear that such a node must have sent at least one packet

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

over one of the outgoing links existed at that time. As no
NOT_FULL node can send a SEARCH__TERM message,
this implies that no node can become NOT__FULL be-
tween the time it initiates the current cycle until the time
it sends the SEARCH _TERM message. Now let us as-
sume in contradiction that j is the first node of the cluster
which sends a packet after it initiates cycle R. Following
the above this packet transmission occurs only after a
SEARCH _TERM message has been sent. Now let us de-
note by k, j’s packet destination. As packets can be sent
only to NOT_FULL nodes, then k must have been
NOT_FULL before j does. Now consider the two possi-
ble events: 1) node k becomes NOT__FULL after it initi-
ates the R cycle. This clearly contradicts the assumption
that j is the first node which does. 2) When j sent the
message to k, node k£ has not yet initiated the R cycle.
This contradicts the assumption that node j sent a
SEARCH__TERM message, since k is outgoing from j,
and so j must TEST k before deciding on SEARCH _
TERM. This implies that if all nodes send a SEARCH _
TERM message a deadlock does exists and the cluster
leader conclusion is indeed correct.
Theorem 1 is proved using Lemmas 3 and 4.

REFERENCES

[1] K. D. Gunther, ‘‘Prevention of deadlocks in packet-switched data
transport systems,”’ IEEE Trans. Commun. (Special Issue on Conges-
tion Control in Computer Networks), vol. COM-29, pp. 512-524,
June 1981.

[2] P. M. Merlin and P. J. Schweitzer, ‘‘Deadlock avoidance in store-
and-forward networks—I: Store and forward deadlock,’’ IEEE Trans.
Commun. , vol. COM-28, Mar. 1980.

[31 G. A. Grover and J. M. Jaffe, ‘‘Standoff resolution in computer com-
munication networks,”” IBM Res. Rep. RC11009; also IEEE Trans.
Commun. , submitted for publication.

[41 R. Obermarck, ‘‘Distributed deadlock detection algorithm,”” ACM
Trans. Database Syst., vol. 7, no. 2, pp. 187-208, June 1982.

[5] K. M. Chandy, J. Misra, and L. M. Haas, ‘‘Distributed deadlock
detection,”” ACM Trans. Comput. Syst., vol. 1, no. 2, pp. 144-156,
May 1983.

[6] K. M. Chandy and J. Misra, ‘‘A distributed algorithm for detecting
resource deadlocks in distributed systems,’” in Proc. ACM SIGACT-
SIGOPS Symp. Principles of Distributed Computing, Ottawa, Ont.,
Canada, Aug. 1982. New York: ACM, 1983, pp. 157-164.

{7] G. Gambosi, D. P. Bovet, and D. A. Menascoe, ‘‘A detection and
removal of deadlocks in store and forward communication net-
works,”” in Performance of Computer-Communication Systems, H.
Rudin and W. Bux, eds. Amsterdam: The Netherlands: Elsevier-
North-Holland, 1984, pp. 219-229.

8] I. Cidon, J. M. Jaffe, and M. Sidi, ‘‘Local distributed deadlock de-
tection with finite buffers,’” IBM Israel Scientific Center Tech. Rep.
88.154, Apr. 1985.

[9] ——, “‘Global distributed deadlock detection and resolution with fi-
nite buffers,”” IBM Israel Scientific Center Tech. Rep. 88.161, July
1985.

[10] J. Misra and K. M. Chandy, ‘‘A distributed graph algorithm: Knot
detection,”” ACM Trans. Program. Lang. Syst., vol. 4, no. 4, pp.
678-686, Oct. 1982.

{11] G. Bracha and S. Toueg, ‘‘A distributed algorithm for generalized
deadlock detection,’” in Proc. Symp. Principles of Distributed Com-
put., Oct. 1984, pp. 285-301.

[12] D. P. Mitchell and M. J. Merritt, ‘‘A distributed algorithm for dead-
lock detection and resolution,’” in Proc. Symp. Principles of Distrib-
uted Comput., Oct. 1984, pp. 282-284.

[13] P. A. Humblet, ‘“A distributed algorithm for minimum weight di-
rected spanning trees,”’” IEEE Trans. Commun., vol. COM-31, pp.
756-762, June 1983.

[14] E. Gafni and Y. Afek, ‘‘Election and traversal in unidirectional net-
works,”” Dep. Comput. Sci., Univ. California, Los Angeles.

[15] 1. Cidon, J. M. Jaffe, and M. Sidi,‘‘Local distributed deadlock de-
tection by cycle detection and clustering,’” IBM Israel Scientific Cen-
ter Tech. Rep. 88.164, July 1985.

Israel Cidon (M’85) received the B.Sc. (summa
cum laude) and D.Sc. degrees from the Tech-
nion—Israel Institute of Technology, Haifa, Is-
rael, in 1980 and 1984, respectively, both in elec-
trical engineering.

From 1977 to 1980 he was a consulting Re-
search and Development Engineer involved in the
design of microprocessor-based equipment. From
1980 to 1984 he was a Teaching Assistant and a
Teaching Instructor at the Technion. From 1984
to 1985 he was a faculty member with the Faculty
of Electrical Engineering at the Technion. Since 1985 he has been with
IBM Thomas J. Watson Research Center, Yorktown Heights, NY. His cur-
rent research interests are in distributed algorithms and voice/data com-
munication networks.

Jeffrey M. Jaffe (M’80) received the B.S. degree
in mathematics, the M.S. degree in computer sci-
ence, and the Ph.D. degree in computer science
from the Massachusetts Institute of Technology,
Cambridge, in 1976, 1977, and 1979, respec-
tively.

He has been a Research Staff Member in the
Department of Computer Science at the IBM
Thomas J. Watson Research Center, Yorktown
Heights, NY, since 1979. He is currently the De-
partment Manager of the Department of Commu-
nications Systems. During 1984-1985 he spent a sabbatical year at the IBM
Scientific Center in Haifa, Israel. His work for the past several years has
been in the area of network architecture and protocols, in particular in the
area of distributed routing algorithms.

Dr. Jaffe is a member of the Association for Computing Machinery and
Phi Beta Kappa.

Moshe Sidi (S’77-M’82) was born in Israel in
1953. He received the B.Sc., M.Sc., and D.Sc.
degrees from the Technion—Israel Institute of
Technology, Haifa, Israel, in 1975, 1979, and
1982, respectively, all in electrical engineering.

From 1975 to 1981 he was a Teaching Assis-
tant and a Teaching Instructor at the Technion in
communication and data networks courses. In
1982 he joined the Faculty of Electrical Engi-
neering Department, Technion, where he is pres-
ently a Senior Lecturer. His current research in-
terests are in the area of computer communication networks.

Dr. Sidi is a Bat-Sheva de Rothschild fellow.

