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Analysis of a Correlated Queue in a
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Abstract—A family of queunes where the service time B, of cus-
tomer n depends on the interarrival time I, between customers
n—1 and n is studied. In particular, the focus is on dependencies
that arise naturally in the context of communication systems,
where the finite speed of the communication links constrains the
amount of data that can be received in a given fime interval.
Specifically, queues are studied where the random variables I,
and B, exhibit some form of proportionality relation. Such depen-
dencies can have significant impact on system performance and
it is, therefore, critical to develop tractable models that account
for them. The paper starts with the simple case of a deterministic
proportionality relation between the service time of a customer
and its preceding interarrival time. This is then extended to
allow for the addition of an independent, generally distributed
overhead to the service time of each customer. Next, several
models that capture the ON-OFF behavior of communication
links in packet networks are considered. In all cases, expressions
for the delay experienced by a packet in the system are provided.
Numerical examples that illustrate the impact of dependencies
through comparison with less accurate models are also supplied.
While the paper is clearly motivated by problems that originated
in the field of communications and in particular packet switching
networks, its results should be of relevance to other environments
as well.

Index Terms— Correlated queues, dependent queues, propor-
tional dependency, ON-OFF processes.

I. INTRODUCTION

HE FOCUS of this paper is on a family of .queues

where service and interarrival times exhibit some form
of dependency. The initial motivation for this study was
the modeling of a communication link in a packet-switched
network carrying variable size packets. It should, however, be
pointed out that the results obtained are also of general interest
as they provide simple and new tools to analyze the impact
of certain types of dependencies in queues. The general issue
of dependencies in queueing systems is clearly an important
one, and has been extensively studied in the literature. The
reader is referred to [1] for a review on the various types of
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dependencies that exist in packet queues, and a study of their
impact on different system performance measures.

In this paper, we focus on a particular type of dependencies,
where the service time associated with a packet, e.g., its trans-
mission time on the link, is correlated with its interarrival time.
Such correlations arise, for example, in the context of a packet-
switched network where variable length packets are forwarded
from one node to another. The finite speed of network links
then results in large packets having correspondingly large
interarrival times, i.e., for a link of speed S the amount of work
received in a time interval 7 cannot exceed S X 7. This strong
positive correlation between interarrival and service times,
can greatly improve the delay characteristics in the buffers
preceding communication links. It is, therefore, important to
provide models that account for this effect while remaining
tractable. :

A number of earlier works have considered the issue of
correlation between service and interarrival times. In particu-
lar, the impact of correlated interarrival and service times has
been investigated in the context of two important queueing
systems, i.e., tandem queues and fluid-flow models. Although
these studies and the techniques they rely on are not directly
applicable to our model, they address similar issues and
provide further motivations for the models we develop in
the paper. After reviewing the more relevant aspects and
results from these works, we focus on a series of papers that
analyzed queueing systems closely related to those considered
in this paper. We highlight their key features, and then identify
how the results of this paper extend them to provide more
accurate and yet simple models that are applicable to many
communication systems.

One of the earliest work to systematically investigate the
issue of correlation between service and interarrival times
is [2]. In [2], Kleinrock studied the impact of correlated
message lengths and interarrival times in the context of a
queueing network model for communication networks. The
intractability of the general problem led him to formulate
the well-known and useful independence assumption, which
amounts to ignoring correlations. This approach is reasonably
accurate in the presence of sufficient traffic mixing in the
network, but can significantly overestimate delays in systems
where there is a strong positive correlation between service and
interarrival times as in tandem queues (see [3, 4, 5]), where
little or no traffic mixing is present.

The dependency between interarrival times and the amount
of work that can be brought into a system, has also been
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Fig. 1. Comparison of ON-OFF fluid-flow and discrete arrivals models.

studied in the context of fluid-flow models [6]—[12] which
assume that work arrives into and is removed from a system at
continuous and possibly varying rates. A particularly popular
and simple example is that of an ON—OFF source feeding a
buffer, which is emptied at a constant rate. The finite input and
output rates account for the dependency between the amount
of data received and the elapsed time ¢, i.e., the amount of
data received is proportional to both the input rate and ¢.

While fluid-flow models capture some of the dependencies
that exist between arrivals and service times in communication
systems, they do not account for the granularity of arrivals
and services. Rather, they assume that both arrivals and
departures are progressive, with the work in the system being
a continuous function of time. This may not always be an
adequate assumption for communication systems (especially
not in store-and-forward networks), i.e., packets must typically
be fully received before they can be forwarded. As iliustrated
in Fig. 1, this can result in significant inaccuracies when
estimating system performance (see also [13]). It is one of
the purposes of this paper to propose and to analyze models,
that not only account for the type of dependencies captured
by fluid-flow models, but also preserve the discrete nature of
arrivals and services that is characteristic of many commu-
nication systems. Before proceeding with the description of
these models, we complete our review of earlier works by
discussing several papers [14]—[21] that are directly relevant
to this study.

A. A Correlated Queue

One of the early works to consider a queueing system
with explicit correlations between interarrival and service

times is [14]. It analyzes a system with Poisson arrivals at
rate A, where the service time B, of the nth customer is
proportional to the interarrival time I,, between the (n — 1)st
and the nth customers. In other words, the service time is a
deterministic function of the interarrival time, with B,, = al,
(e < 1 for stability). This system can be used to model a
buffer connected to a unit speed communication link, that
receives an uninterrupted string of packets with exponentially
distributed length from an upstream link of speed a. An
explicit expression for the delay distribution is obtained in
[14], while the initial busy period, the system state, and the
output process are studied in [16]. Numerical comparisons
between this system and related M/M/1, M/D/1 and D/M/1
queues were carried out in [15].

More general correlations were considered in [17] using a
bivariate exponential distribution to characterize the correla-
tion between interarrival and service times. This work was
subsequently extended in several papers. The delay density
was shown to have a hyperexponential distribution in [18],
while [19] studied the sensitivity of this distribution to the
value of the correlation coefficient. A system with infinitely
many servers was considered in [20]. Recently, a variant of
the M/G/1 queue, in which service time and interarrival time
are positively correlated, was studied in [21].

B. Scope of the Paper

The work presented in this paper begins with a system
similar to that of [14], and expands it in several pew di-
rections that makes it more applicable to the modeling of
actual communication systems. As mentioned earlier, our goals
are to account for both the dependencies between packet
interarrival and transmission times due to the finite speed of
communication links, and the discrete nature of these events.
In this paper, we propose new models that not only accurately
capture these effects, but, more importantly remain tractable.
The models and results are sufficiently general so that they are
also of interest and potentially useful to model dependencies in
systems outside the field of communications. We now sketch
out the different results obtained, and point to their significance
while outlining the structure of the paper.

In Section II, we introduce a system similar to that of
[14] (see Fig. 2), and present a simple derivation for the
Laplace—Stieltjes Transform (LST) of the delay in the system.
This simple derivation is obtained by directly focusing on the
steady state equations, rather than on the transient evolution
equations as was done in all earlier works on similar correlated
queues [14], [16]-[18], [20], [21]. The LST of the delay is
then obtained by applying results from the theory of linear
functional equations [22] and the analytic properties of the
LST. This approach not only provides a formal framework for
such problems, but it also results in a solution method that is
applicable to a more general class of problems. In particular,
it allows us to tackle more involved systems as illustrated in
the rest of the paper.

The first extension we consider consists of the addition of
an independent, generally distributed, non-negative random
variable to the service time. Using the notations introduced
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Fig. 2. System with proportional interarrival and service times.

above, the service time of the nth customer is now of the
form B, = al,+J,, where J, is an independent, nonnegative
random variable with a general distribution. This extension is
useful to model systems where each packet needs additional
service in excess of its raw transmission time. The additional
service may be due to some overhead such as a header ap-
pended to the original data, or correspond to some processing
that needs to be performed for each packet.

The simple model of Section Il is useful to capture the
impact of dependencies between packet interarrival and service
times. However, from a modeling point-of-view, it imposes a
number of limiting constraints. In particular, it requires that
the input correspond to a “saturated link” with a transmission
rate lower than that of the output link (o < 1). In order
to overcome this limitation, the model is further extended
in Section III, where we allow the input process to alternate
between active and idle periods. This is achieved by allowing
the proportionality constant o to be itself a random variable,
that takes value «; > O with probability ¢; and o = 0
with probability go = 1 — g;. This results in an ON-OFF
input process with exponentially distributed ON and OFF
periods, a geometric number of packets in each ON period,
and exponentially distributed packet sizes. Specifically, after
an exponentially distributed time interval of duration I, and
mean 1/), a packet of size oI, is generated with probability
gi» © = 1,2. This creates exponentially distributed active
and idle periods on the link, with means 1/A(1 — g1) and
1/Ags, respectively. The resulting arrival process is illustrated
in Fig. 3. Note that, as with the model of Section III, it is
also possible to add an independent and generally distributed
“overhead” to each packet.

This model, although reminiscent of a fluid-flow model for
a two-state Markovian ON—OFF source, exhibits a number of
key differences. First, data arrival does not take place gradually
over the duration of an ON period. Rather, work accumulates
for some interval of time, and it is only upon its completion
that a packet is generated to the system. This provides a more
accurate representation of the discrete nature of packet arrivals.
Second, the model allows for the partition of a single ON
period into multiple packets. This is in contrast to a fluid-
flow model, where data arrival is interrupted over the duration
of the entire ON period, and the transmission of bits rather
than packets is considered. Despite its increased flexibility,
the model of Section 3 still has a number of limitations. In
particular, it requires that the average length of the active
and the idle periods on the link be proportional, i.e., within
a factor ¢1/{1 — g¢1). This implies that for a given link
utilization, the average duration of incoming bursts is fixed.
Burst duration is, however, a key performance factor [13],
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Fig. 3. System with ON-OFF source and multiple discrete arrivals.
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[23], and it is of interest to develop models that allow burst
duration and utilization to vary independently. This is the topic
of Section IV.

In Section IV, we consider a model where the arrival
process corresponds to an extended ON—OFF process. As
in Section III, we allow multiple packets with exponentially
distributed lengths to be generated during a single ON period,
but this is now achieved without imposing any constraint on
the duration of OFF periods and hence on the utilization.
Specifically, the link is assumed to remain active for an
exponentially distributed time I, with mean 1/, at the end
of which a packet of size al, is generated. The link then
starts a new ON period with probability 1 — p or enters
an OFF period with probability p. The duration of an OFF
period is exponentially distributed with mean 1/u, and the
link returns to the ON state at the end of an OFF period.
This allows us to construct ON periods, where the number
(geometrically distributed) of consecutive packets that are
generated is independent of the length of OFF periods.

Note that the arrival process of Section III can be viewed as
a special case of this extended ON—OFF process with p = g2
and ¢ = Ag;, whose analysis is much simpler. Similarly,
the more traditional ON—OFF process where each ON period
corresponds to a single packet and is always followed by an
OFF period, corresponds to the special case p = 1. The arrival
process introduced in Section IV is therefore, quite general
and provides us with the necessary flexibility to investigate
the influence of different parameters on system performance.
In addition, it is again possible to further enhance the model
by allowing the addition of an independent and generally
distributed overhead to each packet.

Numerical examples that illustrate the results obtained for
the models described in the paper are provided. These exam-
ples help identify the impact and significance of the successive
refinements allowed by the three models. Some comparisons
with models that assume either independent interarrival and
service times or rely on fluid-flow approximations are also
provided. A brief conclusion summarizes the findings of the

paper.

II. DETERMINISTIC PROPORTIONAL DEPENDENCY

Here, we start with the model of [14]. We consider a system
with Poisson arrivals at rate A, where the service time B,
of the nth packet is proportional to the interarrival time I,
between the (n — 1)st and nth packets, i.e., B, = al, (@ <1
for stability). Let W,, denote the amount of unfinished work
just after the nth packet arrival. Assuming service is according
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to the FIFO discipline, W, is also the delay of the nth packet
and it evolves according to
Wn+1 = (Wn - n+1)+ + aIn+17 n 2 07 (1)
where Xt = max(X,0).
Let Wy(s) = E[e‘SW"](Re( ) >
Then

0) be the LST of W,.

Wn+1(8) — E[e—s[(Wn—In+i)+-l'QIn+l]]’ n > 0.

Therefore, letting fw, (w) denote the probability density func-
tion (pdf) of W, we obtain

i [ ] [

_s(w z+azx) dr +/ /\e—kz . eT59T Jo

n+1

A w
= m Wi(s) = Wa(X + as)]
+ 3 —:\as Wh(A + as).

Letting n — oo, we obtain the following functional relation
for the LST of the delay W(s) in steady state:

A

W) = T T as)

WA + as) @)

Such relations are called homogeneous linear functional equa-
tions (see [22]).

Define s; = A(1 — &) /(1 — a)+a’s,i > 0,c = A/(1-a)
and b(s) = ¢/(A + as) to obtain for any k > 0,

= W(Skfl) H b(Sz)

=0

W(s)
Letting k& — co, we have (recall that a < 1),
oo
¢) H b(s;).
=0

Using the fact that W(0) = 1, we obtain

o0

=H(l—ai),

=1

W(e)

and therefore,

oo i
- H 1-a
s 1=(1-s 1-(1=s/c)at
: . dWi(s) .
Calculating the first moment E[W] = —=7= | _ we obtain
oo
_1-a
A o 1—o2

A. Additional Random Overhead

The first extension we consider consists of the addition
of an independent, generally distributed, nonnegative random
variable to the service time. Using the notation introduced
above, the service time of the nth customer is now of the form
B, = al, + J,, where J, is an independent, nonnegative
random variable with a general distribution. As mentioned
earlier, this extension is useful to model systems where each
packet service time includes an additional overhead in excess
of its raw transmission time. This overhead may be.in the form
of a header appended to the original data, or corresponds to
some processing that needs to be performed for each packet.

The delay W,, of the nth customer evolves according to,

Wot1 = (Wn = List)" + alpgs + Jug1, 120,

where J,, is a nonnegative random variable, independent of n,
and independent of I, for any k. The pdf of J,, is f(y) and
its LST is J(s). By defidition,

. Whai(s) = E

)= [ o
l:/ e —-Ax | —s(w ztax) dz

/ fi(y)e™*¥ dy
0
+ / Ae™AE L eSO

7 sty e dy}

M) _ AT (s)s
=3 a-as O G e - as o
* Wha(X + as).

[e—s[(Wn— n+1>++aln+1+J"+‘]], n > 0.
Therefore,

n+1

Letting n — oo we obtain the following functional equation
for LST W(s) of the delay in steady state:

W(s) = b(s)W(A + as), 3)
where
b(s) = AsT (s)
[(1-a)s=X1=T()A+as)’

which is consistent with (2), when J(s) = 1. Note that if
o = 0 the results reduce to the well-known M/G/1 Pol-

" laczek—-Khinchin waiting time relation (see [24]). Also note

that the condition for steady state in this case is @« < 1 — A/§
where 1/6 = E[J,].
As before, we obtain from (3) that

H b(s;),

=0

W(s) =

where we recall that s; = A(1 — o?)/(1 —a) +a’s, i > 0
and ¢ = A/(1 — a). To determine the constant W(c) we use
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TABLE 1
AVERAGE DELAY VERSUS THE PROPORTIONALITY PARAMETER «
fo 0.1 0.2 0.3 0.4 0.45 0.49 0.495
Exponential 1.2882 1.6905 ‘ 2.3420 3.8888 6.5745 26.7529 51.7778
Discrete 1.2847 1.6835 2.3311 3.8722 6.5537 26.7258 51.7497
the normalization condition, i.e., W(0) = 1. With the aid of Therefore,

L’Hospital’s law we obtain
AN IE) — o
W@)—(l 1~a>[[ e

=1
where & = A(1 — o) /(1 — a). It should be noted that when
the stability condition & < 1 — A/é holds, W(c) is strictly
positive. This follows from the fact that J(&) > 1 —&/6 >
o',

Differentiating W(s) at s = 0, we get the expression
for the average delay, (see equation at bottom of page)
where J'(&) = dJ(s)/ds|s=¢; and J"(0) = d*J(s)/
d82i s=0-

Numerical Examples: From (5), we observe that the average
delay depends on the entire probability distribution and not
only on the first and the second moments of the random
variable J,,. In Table I, we compute the average delays for
two distributions for J,, that have the same first and second
moments. Specifically, one distribution is exponential with
parameter § = 2, and the other distribution is discrete with
Prob(J, = 0) = Prob(J, = 1) = 0.5. Note that the differ-
ences between the averages are small.

4)

III. RANDOM PROPORTIONAL DEPENDENCY

We begin this section by considering the basic model of the
previous section, but. now assuming that the proportionality
parameter between the service time and the interarrival time
is itself a random variable. Specifically, we assume that the
delay W,, of the nth customer evolves according to

Wot1 = (Wn - n+1)+ + Qni1lng, n 20,
where (), is a random variable that takes the value ‘with
probability g;, 1 < I < L, for some integer L(z, o= 1)
The stability condition of this system is E[Q,] < 1, ie,
Z{;l aigi < 1. As in Section II, it is assumed that I, is
exponentially distributed with parameter A.

As before, the LST W,,.1(s) can be expressed as

=Soal [ ([

i /—s(w—m+aza:) dil,‘-i"/

w

'n.+1
)\e—kx e sz d:z)]

L .
Z [——1”_—0”)- [Wh(s) = Wa(A+ ais)]

4 A
A4 oys

Wa(r+ 0413)} . ©)

Letting n — co we obtain the following functional equation
for the LST W(s) of the delay in steady state:

@ Vg
A— (1 ha al)s
giAs
[(1—a)s— AJ(A+ as)

WA+aws). (T

Such a relation is a nonhomogeneous linear functional equa-
tion, and its solution is an open problem as indicated in
[22].

In the following, we will restrict ourselves to a particular
case of (7) that captures some of the aspects of ON~OFF
behavior of arrival processes in networks. Specifically, we
assume that L = 2, a3 = o and ay = 0. With these
assumptions we essentially have an ON—OFF input process
with exponentially distributed ON and OFF periods, a geomet-
ric number of packets in each ON period, and exponentially
distributed packet sizes. Specifically, after an exponentially
distributed time interval of duration I,, and mean 1/}, a packet
of size o;I, is generated with probability g;, ¢ = 1,2. This
creates exponentially distributed active and idle periods on
the link, with mean 1/A(1 — ¢g1) and 1/Ag, respectively.
The resulting arrival process is illustrated in Fig. 3. Note that
some customers arrive at the system but do not require any
service from it. The delays computed in the following analysis
include the delay of these customers. If one is interested only
in the delays of customers that require service, the expressions

Wory(a) = E[e—s[(Wn—In+1)+ i In+1]] n>0 we derive should be slightly modified and the derivation is .
b1 » y = straightforward.
a 1 1 J"(0)
EW|l=—+4 -+ - ———5
W] +5'*21—a—xw
o0

21 —-a)(aJ (&) - T'(&) + 2T (&)1 -

T(E)(1 = at) +X6T (&)

|1M

&I (&1 — )6 — A1 -

TENO T k) ©
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A. Analysis of the Case o1 = o, ag = 0

When oy = @, oz = 0, we obtain from (7) that

a(s)W(s) = b(s)W(A + as) + c(s), ®
where
a(s) = 5(1~ @) = A1~ agy),
b(s) = Agi(s — A)/ (A + as),
c(s) = gaW(A)[s(1 — ) — A

Note that the constant W(X) is yet unknown, but using the
normalization condition, i.e., W(0) = 1, we obtain that

W) =1-agn
and we assume that the stability condition ag; < 1 holds.
By successive substitutions, we obtain from (8) that

W(s) = W(sn+1) H bls;) ZE:;

n
; c(s:) T
+
1355+ 2 a6 U
where we recall that s; = A(1 — a*)/(1 — &) + &®s for i > 0.
When n — oo, we have

e w>n e 20“2 g

where an empty product equals 1 and (9) holds only when all
the quantities involved are finite.

We now distinguish between the two cases of & < 1 and
o > 1. Note that for the former case W(ss) = W(c),
where we recall that ¢ = A(1 — @), while in the latter case
W(ss) = W(o0). The case o = 1 is handled similarly to
the case o > 1, but it involves some technical difficulties for
some values of ¢;. For purposes of clarity and simplification
we focus on cases where o # 1.

Case 1) o > 1: In this case, we use the fact that the infinite
product in (9) vanishes for any Re(s) > 0 since the degree
of the denominator is higher than the degree of the numerator
for each term in the product and since s; is monotonically
increasing with j. Therefore, we obtain

W(s) = g 31) H ”“J

Note that in this case a(s;) does not vanish for any Re(s) > 0
and any ¢ (since the stability comndition ag; < 1 holds), so as
required the function W(s) is analytic in the region Re(s) > 0.
By taking the derivative of W(s) with respect to s at s = 0,
we obtain the average delay E[W],

AEW] = g1(1+ o)+ gi(a—1)
o 1 Fa
: + +
[1 —ag; 1- gl] 1+ a)(ae—aq1)
THCREDY
i=3
1
(1 -giat=%) (e = 1)(af - 1)
ﬁ g1
=2 91T o=t

Case 2) oo < 1: In this case, we observe from (9) that we
need to compute the constant W(s,) = W{c). We do that
by exploiting the analytic propertles of W(s) for Re(s) > 0.
Rewrite (9) as

Wisw)+ 3 3 ] 3]

=0

ﬁ b(s;)

) it 3=0

W(s) =

_ . (10)
IT a(s;)

=

(=}

Note that the denominator of W(s) vanishes only for values
of s for which a(s;) vanishes for some j. Consider the root
oo for which a(s) = a(so) = 0, ie.,

Al — ag1)
(1-a)

gg =

Since oo > 0, the numerator of W(s) must also vanish at
s = og. Therefore,

Z b szls—ao)

Szls—oo

(8js=00)

jmit1 b(s;s=c0)

(i1

Simple computation yields

a‘(s’ils=0‘o) = )‘gla(l - ai)y
Agia(l — gio)
b(si|s=ao) = W

(8ils=a0) = —Ag1(1 — g1)(1 — agr )i,

and therefore, after some algebra, we obtain
(1-g1)(1 - ag)d ,

E l l 1-a7).

o 1‘—91051) 1 _g1a1.+1) ) ( o )

j=i+l
(12)

It is important to note that the denominator of W(s) vanishes
also at other values of s with Re(s) > 0. This occurs when
a(s;) vanishes for some j > 1. However, we will show
that these values yield the same equation for W(ss). For
instance, assume that for some k > 1, a(sx) = 0 and let
or. denote the single solution of that equation, ie., o =
A(1 - g1a'™*) /(1 — ). Note that we consider only values
of k for which o, > 0. Then from (10), we obtain
Z Szls—-ak
b(szIS—ak)

=0

a(8;ls=a\)

Wiseo) = 85ls=0s)

=i41 (
_ - c(szls—ak) N a(s] ls=0y)

b sziS—ak b(s; IS"Uk

g== +1

where we used the fact that a(sk|s=»,) = 0. Now using the
identity $;|s=o, = Si—k|s=0, fOr ¢ > k we have that (13) is
equivalent to (11).

Once the quantity W(s ) is determined (see (12)), the LST
of the delay is completely determined. By taking the derivative
of W(s) with respect to s at s = 0, we obtain the average delay
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Fig. 4. Average delay versus proportionality parameter .

in this case. Assuming that g1 # o for any i > 1, we obtain

AE[W] =

oY 1 Fia

1 —gl]+<1+a><a—gl>
= 1

~ (1-gral~%) (et~ = D{at - 1)

2

71+ )b (o= 1) 7=

2
+gi(a—1)
-1

-H—gl—+W(soo)(

=291 ol

g3(1—a)? ﬁ g1
1-ag)(1-g1) ;5 91 —aF™Y
where W(so) is given in (12). When g; = o for some
1 > 1 the expression obtained is slightly more involved and,
therefore, omitted.

Numerical Examples: In Fig. 4, we depict the average
delay as a function of the proportionality parameter o for
various values of g; assuming that A = 1. As expected,
the average delay grows monotonically with o and with g¢;.
For comparison purposes we also plot the average delay of a
customer in an equivalent M/G/1 system, in which the service
time of a customer has the same distribution as in our system,
ie., the service time of the nth customer is distributed as
Q,1,, but it is sampled independently of any other event in the
system. We observe that the average delay of the equivalent
M/G/1 system is always larger than the average delay of
our system with the random proportional dependency. When
gi = 0.9, the difference gets very large when the system is
heavily loaded. For instance, for a = 1.08 (1.1), the average
delay in our system is 6.55 (13.82) while in the equivalent
M/G/1 system it is 38.46 (109.9). Similar behaviors have also
been observed in previous studies of correlated queues [14].

IV. AN ON-OFF SOURCE

In this section, the source that generates packets is modeled
as an ON-OFF source which alternates between ON and. OFF
states. While in the ON state packets are generated at the end
of each ON period (there may be multiple ON periods while in
the ON state) with a size proportional to the duration of the ON
period. ON and OFF periods are exponentially distributed with
parameters A and p, respectively. At the end of an ON period
the source either starts another ON period with probability

g = 1 —p or an OFF period with probability p. At the end of
an OFF period the source always begins an ON period. This
resuilts in a transition rate from ON state to OFF state equals
to pJ, while transitions from OFF state to ON state occur at
rate 4. We let n, n = 0,1,---, be the packet arrival index,
with the nth packet arriving into the system at the end -of the
nth ON period. The random variable TN is used to denote the
duration of the nth ON period. Similarly, in the case where the
nth ON period is immediately preceded by an OFF period, this
OFF period will then be termed the nth OFF period and the
random variable TOTF is used to denote its length. We further
denote by I, the interarrival time between the (n — 1)st and
the nth packets and by B,, the service time of the nth packet.
We then have B, = oION, where o is the (nonnegative)
proportionality constant relating the ON period duration and
the service time of the nth packet, and o < 1+ pA/u is the
stability condition of the system. The evolution of the delay
W, of the nth packet is then given by,

Wyt = Wn ~ Ins1)t +aIQY, n>o0. (14)

Let 6,, be the state of the source just after the nth packet
arrives. It is clear that §, = OFF with probability p and
0, = ON with probability g. Using the evolution equation
(14) and the definition of the LST, we have
Wpt1(s) = Pr(6, = OFF)

, E{e-s[(wn-r,?ff—rsm“Lmrsrl]}

+Pr(6, = ON) E{e-s[(wn—f,?ﬁ)*wzggl]]

= p/:ofwn(w) Uow Ae™
. </0w—z e~ HY

 emstw=(1-0)=9) g,
o0
+ pe P¥eToa dy) dz
’U)o—O(E

e ATemsow dx:| dw

+
+ q/ fw, (w) [/ e~ Aems(w—(1-)2) 4o
0

0
+/ /\e_)‘xe"saxdx] dw.
(15)

Assuming @ < 1+ pA/p and letting n — oo, we get

a(sYW(s) = b(s)W(A + as) + c(s), (16)

where
a(s) = (A+ as)(A -+ as)p + (@ = 1)(s - ),
b(s) = A(s — ) (k — ¢(A + as))

c(s) = Ap(A + as)(A — s + as)W(u). )
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By successive substitutions, we obtain from (16) that

W(s) = W(seo) [ | bls;) Z c(si_) (18)

where an empty product equals 1 and we recall that s; =
M1 - a)/(1 — a) + as, i > 0. As in Section III, the
above expression is only meaningful when all the quantities
involved are defined, i.e., the infinite product is bounded. This
can be shown to hold when « # 1, but as before technical
difficulties exist in the case o = 1. For purposes of clarity and
simplification, we focus on cases where o # 1.

In order to uniquely determine W(s) we need to identify
the two unknowns W(u) and W(s.). We shortly describe
how they can be obtained using the normalization condition
and the analytic properties of W(s) in the region Re(s) > 0.
Let

i

b(s;) p(l - a) Bj+1

7= jI:IO a(8;) |50 Bi+1 J];[o (1= adt1)(B; + 2p)
(19)
and
— <(s1) S,’I)
W(p) ?___‘6 a(s;) H 50
(1-a) /\zpz o - 1) (20)
. :81771+1 ’
where 8; 2 p(l—a) — Al-0a), ;i & pll-a) -

Ag(l—a'), i@ > 0. In the rest of the analysis, we
assume that B;, m; # 0. If B = 0O for some k >
1, a different equation for d; can be obtained using

the fact that a(sk) Y sos Z((? 5 H’_t Z((Zj ‘ = 0. Then,
di can be obtained using L’Hospital’s law at s = O.
Similarly, if ;, = 0 for some £ > 1, we have d; =

. We omit the derivations for

i—1 b(s
vt Sieo o s a6 |
these cases as they are stralghtforward and do not add to the
understanding of the solution technique. We now proceed with
the determination of the two unknowns W(u) and W(s«)
for which we distinguish between the cases o < 1 and
a > 1.

Case 1) a > 1: In this case, s, = 0o and it can be shown
that all the quantities involved are finite (in fact, the infinite
product []2,b(s;)/a(s;) vanishes as the degree of a(s) is
larger than that of b(s)). Therefore we have

4y

Note that (assuming 5;, 7; # 0, ¢ > 1) a(s;) does not vanish
for any Re(s) > 0 and any i as long as the stability condition
holds. The function W(s) is, therefore, as required analytic
in the region Re(s) > 0. The second unknown W(y) is then
obtained by applying the normalization condition V(0) = 1)

in equation (21), which gives

'L+1 _ 1) -1
W('u)z a :< a))\zpz /anz-i-l ) '

=0
Once W(s) has been determined, we can proceed to obtain an
expression for the average delay in the system, E[WW]. Let

%

d ij
a H(.)

g a(s;)

0; =

—0

- a3< @ _ 1 1 1 ag o )
/H]+1 /63 +Ap ﬁ] Ti+1 )‘(1 - aj+1)

]=

(22)
and
1 d [ elsi) = b(s;)
%= 350 @ | 2 atew) 1 36 0
1 1+1 _ 1)
/\2
p; ﬂz"?z—i—l
200t -1 qoit )
. . + - + o 23
(A(l o) B @)
Then, we find that
aw
EW] = - d(s) = ~W(u)ds.
. S s—0

 Case 2) o < 1: In this case all the quantities involved can
again be shown to be finite and we have W(ss) = W(TL\Z .
We, therefore, need to determine the two unknowns W(u)
and W(Ti‘—a

equation,

). The normalization condition gives us one

d1W(IL) + 'Yocw<%a> =1, (24)

1
where Yoo £ lim; 00 y; and ; is given in (19).
Another equation is obtained by exploiting the analyticity
of W(s) in the region Re(s) > 0. For this purpose, we rewrite
(18) as

720

Note that the denominator of W(s) vanishes only for values
of s for which a(s;) = 0 for some j. Consider the root gq for
which a(s) = a(sg) = 0, ie,

Ap
1—-a’

oo = U+

Since o¢ > 0, the numerator of W(s) must also vanish at
s = og. Therefore,
A
| =dsW 26
w ( 1— Oé> 3 (N)7 ( )
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where

C 1l els) Ty alsi)
d3 = W(n) ; b(s;) i1 b(s:) s=

j
= 1-a)p(A—p(l —a))
e P+ u(l-a))
; (1 —qot+1)&&in
o (1—a9) (& +p(l - )
H Al jqaﬂ‘l)

(4]

=i+l

and & = A1-ga?) — p(l- a)(1-a'), ¢ > 0. For
simplicity, we assume that &; # 0, ¢ > 1. If & = 0 for some
1 2> 1, d3 can again be obtained by applying I.’Hospital’s rule
at s = og.

It is important to note that the denominator of W(s) can
also vanish at the other values of s with Re(s) > 0. This
occurs when a(s;) vanishes for some i > 1. However, as in
Section II1, it can be shown again that all these values yield
the same equation (26). Now, from (24) and (26), we have

1 A ds
=g ) et @

The average delay E[W] can then be found to be

B = (Wit + W (122 et ). 9

where 8o £ lim;_,00r 8; and 6; is given in (22).

Numerical Examples: We now provide some numerical
examples that illustrate the results developed in this section. In
particular, we compute the average delay for the case p = 1,
i.e., a single packet is generated at the end of the ON state, and
compare it to the values obtained assuming equivalent GI/M/1
and fluid-flow models. The equivalent GI/M/1 system has
independent interarrival times with a probability” distribution
whose LST is A(s) = pA/(s + )(s + A). The service times
are independent of the interarrival times and exponentially
distributed with parameter A/a. The equivalent fluid-flow
model is such that the output rate is 1 and the input rate in the
ON state is a > 1 (for o < 1 the unfinished work in the system
is always zero). For this model, the packet delay is defined
from the time the last bit of the packet is received until the time
it completely departs the system. Therefore, the average delay
for the equivalent fluid-flow model is (@ — 1)/) — p{a — 1),
if & > 1 and zero, otherwise.

The average delays for all three models are plotted in Fig. 5
as a function of the proportionality parameter «. Note that
a < 14 A/u is the stability condition for all three models. We
consider two cases with u =1, A=02and u =1, A = 1.2.
The results for both cases illustrate the fact that the models
developed in this paper in a sense “bridge the gaps™ left by
previous approaches. '

Specifically, while traditional point-process models such
as the GI/M/1 account for the granular nature of customer
arrivals and departures, they typically ignore dependencies
between interarrival and service times. As demonstrated in
Fig. 5 and many previous studies, this often results in overly

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 2, MARCH 1993

30

T
I
~--Equiv. GI/M/1 System |
25 |——Equiv. Flow Model
—Prop. Dependency

p=l

20

15

]
]
1
[
i
]
[}
1]
1]
]
[}
!
]
7

10

AVERAGE DELAY

5t
0 AR
0 0.5 1 1.5 2 2.5
PROPORTIONALITY PARAMETER a
Fig. 5. Average delay versus proportionality parameter .

pessimistic estimates of system performance, especially at high
loads. Conversely, fluid-flow models successfully capture the
dependencies that exist between interarrival and service times,
but they fail to preserve the discrete nature of these events.
As alluded to in Fig. 1 and illustrated in Fig. 5, this can in
turn yield an overly optimistic view of system behavior, in
particular at light and medium loads. The models developed
in this paper, because they are able to retain both aspects,
provide more accurate estimates of actual system performance
for all load values.

V. SUMMARY

In this paper, we have developed several models and solu-
tion methods, that allow accurate and yet tractable analysis of
a number of key aspects in packet communication systems. In
particular, the models allow us to capture the strong positive
correlation that finite transmission speeds introduce between
packet sizes and interarrival times. The dual scenario, where
the interarrival time exhibits a proportional dependency on
the service time of the previous packet was considered in a
companion paper [25]. As illustrated through a number of
numerical results, these dependencies can have a significant
impact on system performance, which simpler and more
traditional models failed to account for.

The scenarios considered in the paper and the results that
were derived, extend the work started in {14] in a number of
directions. The approach taken, based on functional equations,
provides a general framework for the study of such systems
and allows us to greatly extend the type of problems that can
be studied. In particular, this enables us to define and analyze
new models which accurately describe communication links
in packet networks. This gives a greater insight into the actual
behavior of such systems.

Although packet networks originally motivated the investi-
gation carried out in this paper, the models and techniques that
were developed should be of general interest and applicable
to other environments. As a case in point, the initial study of
correlated queues carried out in [14] did not even arise in a
queueing context. Rather, it was intended as a model for a
chase involving a hunter and its quarry. -
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