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Optimal Buffer Sharing 
Israel Cidon, Senior Member, IEEE, Leonidas  Georgiadis, Senior Member, IEEE, 

Roch Gu6rin, Senior Member, IEEE, and Asad  Khamisy 

Absfract-We a d h  the  pmblem of designing  optimal bufYer 
management  policies in shared  memory switches when  packets 
already  accepted  in  the switcb can be dropped  (pushed*ut). 
Our goal is to maximize the overall  throughput, or equivalently 
to d n h h e  the  overall loss probability  in the system. For a 
system  with two output ports, we  prove that the  optimal  policy is 
of push-out  with  threshold  type (POT). The  same  result holds 
if the  optimality  criterion is the weighted sum of the port 
loss probabilities. For this system, we also give an approximate 
method for the calculation of the  optimal  threshold,  which we 
conjecture to  be asymptatdadiy correct. For the N-ported system, 
the optimal  policy is not kwm in general, but we show that for a 
symmetric  system  (equal traf6c on all ports) it consists of always 
accepting arrivals when the b d e r  is not full, and  dropping 
one h m  the  longest  queue to aecollLmodpte the new arrival 
when  the  buffer is full. Numerical rpsolts are provided which 
reveal an interesting and somewhat unexpected phenomenon. 
While the overall  improvement  in loss probability of the  optimal 
POT policy over  the  optimal  eoordinate-convex  policy is not 
very significant, the loss probability of an individrral output port 
lplllsins approximately constant as the load on the  other port 
varies  and the  optimal POT policy i s  applied, a property not 
shared  by the  optimal  coordinate-convex  policy. 

I. INTRODUCTION 

S HARED-MEMORY fast packet switches consist of a 
single large memory where packets arriving from all 

inputs are stored while they wait before being transmitted on 
their respective output(s). While this design presents a number 
of technical challenges, in particular memory access and speed, 
the sharing of a single memory by all input and output 
ports offers numerous advantages. One of them is improved 
buffer efficiency, which translates into smaller memory sizes to 
satisfy a given loss probability requirement. However, despite 
this greater efficiency, losses remain unavoidable and it is, 
therefore, still of interest to understand how they can be min- 
imized. Furthermore, sharing of the memory also introduces 
new potential problems as individual inputs can now affect 
the performance seen by others. In this paper, we focus on 
identifying how to best share the memory between the system 
ports,  so that overall system throughput is maximized. 

There has been a number of prior works which have ad- 
dressed this problem. In particular, Kamoun  and Kleinrock [3] 
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analyzed several sharing schemes, namely, complete sharing 
(CS) in which an arriving packet is accepted if any storage 
space is available, complete partitioning (CP) in which the 
entire storage is permanently partitioned among the output 
ports, sharing with maximum queue lengths (SMXQ) in which 
a limit on the number of buffers allocated to each output port is 
imposed, sharing with a minimum allocation (SMA) in which 
a minimum number of buffers is always reserved for each 
output port and the remaining buffers are shared between all 
output ports, and sharing with a maximum queue and minimum 
dlocation (SMQMA) which is a combination of the SMXQ 
and SMA schemes. Their study assumed independent Pois- 
son arrivals and exponential service times and they obtained 
closed form expressions for the probability distribution of the 
buffer occupancy, based on the fact that it has a well-known 
product form solution. From their numerical examples, they 
showed that sharing can improve performance especially when 
little storage is available, but that some restrictions should 
be imposed to avoid throughput degradation in asymmetric 
systems. 

The existence and  the structure of  an optimal sharing policy 
(in the sense of minimum packet loss or maximum through- 
put) was  then  first investigated by Foschini and Gopinath 
[2]. They considered optimality within the class of policies 
that never drop a packet once they admit it  in the buffer, 
and have coordinate-convex state space R (if z E 0, then 
( q ~ ,  . . .  ,(x; - I)+, . . .  ,zN) E R for all i = 1, . .  . , N ) .  
These policies, referred to as coordinate-convex policies, in- 
clude the policies of [3]. For a switch with two output ports 
and independent Poisson arrivals and service times they proved 
that the optimal coordinate-convex policy is to limit the queue 
length of output port i, i = 1 , 2  to some fixed level m;, such 
that ml + m2 2 B, where B is the buffer size. For more than 
two ports they conjectured that the optimal policy is simple 
(see definition in [2]). Their proofs were based on the fact 
that the probability distribution of the buffer occupancy has a 
product form solution. 

Wei et al. [8], suggested a sharing policy which allows 
for the dropping of accepted packets, and therefore does not 
belong to the class of coordinate-convex policies. According 
to this policy (named, drop-on-demand, or DoD), an arriving 
packet is always accepted if there is an empty buffer. If a 
packet destined for output port i arrives and finds the buffer 
full and output port I has more packets in the shared-memory 
than any other ports, the following action is taken: if i = I ,  
the arriving packet is dropped; if i # I ,  the arriving packet 
joins the buffer and one port I packet is dropped. In general, 
policies which can accept an arriving packet by dropping 
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another packet from the system are known as push-out policies 
(see, e.g., [4]). Push-out policies include coordinate-convex 
policies (never push-out a packet) as well as the DoD policy. 
In [8], numerical examples were provided showing that the 
DoD policy yields better throughput and lower packet losses 
than either the CS and CP policies. However, as we shall show, 
this policy is optimal only for symmetric systems. 

In this paper we consider a model similar to the one of 
[31. The buffer size is denoted by B, and the arrival and 
service processes of type i (destined to output i )  packets are 
Poisson and exponential with rates Xi  and pi, respectively. 
Upon arrival of a packet the system can decide to either accept 
the packet, or reject it, or accept it and drop another packet 
from the system. In other words, we include pushout policies 
and our goal is to determine the policy which maximizes the 
overall throughput, or equivalently minimizes the overall loss 
probability. 

For a two-ported switch, we prove that the optimal policy 
is of push-out with threshold type (POT), ;.e., whenever the 
buffer is nonfull, the arrival should be accepted, and whenever 
it is full, an arrival from type i, i = 1,2,  is accepted and a type 
i (the other type) packet is pushed-out if the number of type i 
packets is below some threshold IC: (where rCy + k; = B). The 
same result is true if the optimality criterion is the weighted 
sum of the port loss probabilities. For p1 = p2 and X1 2 X2 

we also show that k; 5 B/2. In general, the determination of 
the threshold k; is computationally intensive, but for the two- 
ported system we develop a simple and yet reasonably accurate 
heuristic to obtain its value. The results for the two-ported 
system establish the nonoptimality of DoD for asymmetric 
systems. 

For the symmetric N-ported system with identical arrival 
rates and identical transmission rates, we show that the optimal 
policy is to accept an arrival whenever the buffer is nonfull, 
or the queue corresponding to the type of the arriving packet 
is not the largest; in the second case a packet from the longest 
queue is dropped. This establishes the optimality of DoD  for 
the N-ported symmetric system. The proofs of the results for 
both the two-ported and N-ported systems are based on the 
theory of Markov decision processes. 

The behavior of the optimal policies are then investigated 
for the two-ported case by means of numerical examples, 
which reveal an interesting and somewhat unexpected phe- 
nomenon. While the overall improvement in loss probability 
of the optimal POT policy over the optimal coordinate-convex 
policy  is found to be relatively minor, a significant difference 
is observed when focusing on the loss probability of an 
individual output port. The use  of the optimal POT policy 
results in  an approximately constant loss probability on a given 
port as the  load on the other varies. In contrast, significant 
variations can be observed with the optimal coordinate-convex 
policy. The insensitivity of individual losses is clearly a 
desirable feature, but nevertheless surprising given the global 
nature (overall throughput) of our optimization. For the two- 
ported system, we also investigate a heuristic method for 
determining the threshold of the optimal POT policy, which 
based  on the numerical results obtained is conjectured to 
be asymptotically correct as the buffer size B increases. 

- 

Numerical comparisons further show that the approximation 
is very good for most practical scenarios. 

The paper is organized as follows. In Section I1  we introducc 
the system model and provide the formulation of the opti- 
mization problem. In Section 111 we investigate the structure 
of  the optimal policy. Section IV is devoted to numerical 
comparisons between the performance of the optimal POT 
and coordinate-convex policies. Finally, the appendix provides 
proofs of lemmas used in Section 111. 

11. THE MODEL AND PROBLEM FORMULATION 

The system consists of a buffer shared by packets destined 
to any  of N output ports. Packets are said to  be of type 
i, 1 5 i 5 N, if they are destined to port i .  Type i ,  I 5 i 5 N ,  
packets arrive to the buffer according to a Poisson process 
with rate X,, and are transmitted by output port i with a 
transmission time which is exponentially distributed with rate 
pi, We assume that X;, pi < co so that only a finite number 
of transitions can occur in  any finite interval of time, and that 
packet inter-arrival and transmission times from all sources 
are mutually independent. The total buffer size is taken to be 
B packets, and a packet occupies its buffer until it has been 
completely transmitted. 

Our goal is to determine how the B buffers are “best” 
shared among packets of different types, so that the overall 
system throughput is maximized. This amounts to identifying 
rules that specify when and how packets of different types are 
allowed to occupy a spacc in the shared buffer.  In this paper, 
acceptable rules include accepting or rejecting an arriving 
packet as well as discarding (pushing-out) an already stored 
packet to accommodate an arriving one. Because the state of 
the system can be represented by a Markov chain, the rules or 
policy governing the sharing of the buffer can be expressed as 
a continuous time Markov decision process. Decision epochs 
correspond to amvals and departures from the system, where at 
each epoch, a decision is made as to whether the next arriving 
packet should be accepted, rejected, or accepted by pushing- 
out another packet from the system. The decision may depend 
on the type of the arriving packet. Next, we proceed with a 
precise formulation of this process. 

Let x(.) = (zl(n),z2(n). . . . , x N ( n ) )  be the state of the 
system at decision cpoch n = 0,1, . ., where xi(n), 1 5 i 5 
N? denotes the number of type i packets in the system at 
decision epoch 7 ~ .  Let X = (0: 1 , .  . . , B}N be the state space 
of the system. Define the following operators to denote the 
rejection, acceptance and push-out of packets, respectively 
(upon arrival epoch) 

Pr(z) = x 
Pa,(.) = z + e , ,  z E Dom(Paz), 1 5 i 5 N (1) 
Pp:(z) = x + ei - e j ,  z E Dom(Pp,), 1 5 i # . j  5 N 

where, e , ,  1 5 i 5 N ;  denotes the vector with all components 
zero except the ith which is equal 1, Dom(P,t)={C,=l < 
D} and Dom(P,:)A{z, > 0). 

Let U = { U  = (ul,uZ,. ’ .  , uh-) : ui E { T ,  al ,pS ,  1 5 j # 
i 5 N } }  be the set of possible decisions, and U ( x )  = {u, E 

A A‘ 
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U : z E ff1Dom(P,,)} be the set of all admissible actions 
when the system state is z. The specification of the continuous 
time Markov decision process is then completed once we 
have defined the length of time between successive decision 
epochs and the transition probability function. When the 
system is in state z, the length of time until the next decision 
epoch is an exponential random variable with transition rate 

(X; +pil{zi > 0}), and the transition probability to the 
next state is given by 

Pr[z(n + I) = P,, (z)lz(n) = z, x(.) = u] 
- Xi - 

C,N1(AP + j L i l { Z i  > 0))' 
l l i < N  

Pr[a(n + 1) = Di(z)lz(n) = z, u(n)  = u1 

(2) 

where D ; ( x )  indicates a departure of a type i packet when the 
system is in state z, i.e., Di(z)  = z - e i .  

As mentioned earlier, the objective of the optimization 
is to minimize the overall loss probability, or equivalently 
to maximize the overall throughput of the system. That is, 
denoting by n(T) the number of decision epochs up to time 
T ,  we are interested in the policy that for any initial state 
z(0) = z, maximizes 

where di(k) = 1 if at the kth decision epoch a departure of 
type i occurs and d ; ( k )  = 0 otherwise. The above expression 
can be generalized to a weighted average gain of the form 

2 0 , l  5 i 5 N 

and the proof of Section 111 on the structure of the optimal 
policy actually goes through for this more general case. 
However, in order to keep notations simple we will assume 
that wz = 1 , 1  5 i 5 N in the rest of the paper. 

The above continuous time problem needs to be translated 
into an equivalent discrete time optimization problem, and we 
use uniformization (see [5] ,  [7], [ l ,  sect. 6.71) for that purpose. 
In our case, uniformization amounts to introducing, when the 
system is in one of the states z E {ai = 0, for at least one 
i}, jictirious departure epochs of type i which occur with rate 
pi  1 { zi = 0 ) .  The gain of a fictitious departure is taken to be 
zero. This modification does not alter the stochastic behavior 
of the process and results in identical transition rates, equal to 
Cz",l(X, + p i ) ,  independent of the state of the system and the 
decision taken. The transition probabilities in the new system 
are now given by 

and the equivalent discrete time optimization objective is to 
find a policy that for any initial state x(0)  = z, maximizes 

n-m n 

where &(n) = 1 if at the nth decision epoch a real (nonficti- 
tious) departure of type i occurs and d;(n) = 0 otherwise. In 
the next section, we consider the problem of identifying the 
policy that maximizes this gain function. 

111. THE OPTIMAL POLICY 

To avoid cumbersome notation, in the following we assume 
without loss of generality that the arrival and departure rates 
are normalized so that, C,,l(Xi + 11%) = 1. A standard 
approach to solving the kind of optimization problem we 
consider, is to first  work with the discounted gain criterion [6]  

N 

n=1 i=l 

where 0 < 0 < 1 is a discount factor. 
In our system, since the gains di(n) are bounded, it is known 

161 that there is always an optimal stationary policy to the 
discounted problem. Therefore, we limit our investigations 
to this class of policies. A stationary policy A is a function 
A : X + U with .(x) E U ( z )  for every 2 E X ,  and such 
that under A the decision x = ~ ( z )  is always taken whenever 
the system is in state z. In order to carry out our investigation 
of the optimal policy, we need to introduce the Banach space 
.F of all bounded real functions f : X + R with norm I I . 1 1  

For any stationary policy A we then define T, : F 4 F 
given by llfll = $ylf(.)l. 

(the dynamic programming operator) by 
N 

( T T f ) ( Z )  = { L i l { Z i  > 0 )  
a = 1  

iV N 

where, ~(z) = (ul,uz,. . ' ,  U N ) .  The first  term in the right 
hand expression is the one-step gain for the system under 
policy T ,  while the rest of the terms correspond to the gain 
that incurs after the first step. Based on (6) we then define 
the operator T by ( T f ) ( z )  = maX(Trf)(z) for all x. If  we 
denote the optimal gain starting from state x by Jp(z), the 
following results arc well-known (see, e.g., 161). 

7r 

For every x E X ,  . J p ( a )  = TJg(z) .  
For any f E 7, limn+oc T(" ) f ( z )  = JD(z) for evcry 
x E X ,  where T(n) is the n- fold composition of the 
operator T.  
A stationary policy A is optimal iff .Jo(z) = T,J$(z) for 
every :I; E X .  
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In  the next sections, we rely on these results to identify 
the optimal policy for  our system. We focus first on the two- 
ported system for which we show that the optimal policy is of 
POT type in the general case of different arrival and service 
rates on each port. We also prove some interesting properties 
of this policy in some cases and propose a simple heuristic 
to compute the optimal threshold value. The accuracy of this 
approximation is later evaluated in Section IV. The N-ported 
system is treated next,  but only for the symmetric case for 
which the optimal policy is identified. 

A. The Two-Ported  System ( N  = 2) 

I )  Optimal  Policy  Derivation: In order to determine the 
optimal policy for the two-ported system, it is necessary to 
specify enough of its properties so that it is fully characterized. 
The basic approach we employ to identify these properties 
is the value iteration method (see [6]). It is based on the 
fact that the optimal value function can be shown to obey 
a certain property simply by showing that if this property 
holds for a function j E 3, then it continues to hold for the 
function Tf (which also belongs to F). The main difficulties in 
using this approach are in initially “guessing” the properties 
of the optimal policy, and in selecting appropriate auxiliary 
properties for the function f which are usually necessary to 
prove that the desired properties hold. 

The dynamic programming operator for the two-ported 
system is 

Tf(k1, k z )  = Pl l {k l  > 0 )  + PZl{kZ > 0 )  
+ DPlf((k1 - I )+ ,  k2) 
+ SPZf(k1. ( k z  - I)+) 
+ PAl@l(kl.kZ) + PA2Wk1,kZ) (7) 

where 

Q l ( k 1 . k ~ )  = rnax{f(kl,kz), j ( k l +  1 , k z  - 1)) if kl 

@ ~ ( k l .  kz) = max(f(k1, k z ) ,  f(k1 + 1, k z ) ,  

+ k 2 = B  

f(k1 + I ,  k2 - 1)) if kl + k~ < B (8) 

and 

% ( k ~ .  k2)  = max(f(k1, k z ) ?  f(k1 - 1: kz + I)} if k1 

W k l . k 2 )  = max{f(kl,kz),f(kl,kz + 11, 

+ k z = B  

f(k1 - 1, kz + 1)) if kl + kz < B (9 )  

where we define a i ( k l , k Z ) = 0  for k l ,  kz < 0 or k l ,  kz > B. 

following properties: 

A 

k m m a  1: The optimal value function J p ( k l ,  kz)has  the 

1) Monotonicity and boundedness in kl: 0 5 J;c(kl + 
2) Monotonicity and boundedness in kz:  0 5 Jp(k1, kz + 
3) Concavity along kl: Jp(kl + 1 , k . l )  - JP(kl,  k z )  5 

1. k2)  - Ja(k1,kz) 5 l , o  5 kl 5 B - 1. 

1) - Jp(k1,kz) 5 1 , 0  I kz 5 B - 1. 

Jj(k1.k-2) - - 1 . k l ) .  1 5 IC1 5 B - 1. 

4) Concavity along k z :  J;c(kl ,  kz + 1) - Jp(kl, k,) 5 

5 )  Concavity along the line kl + kz = h, 2 5 0 5 B: 
Jp(k1,kz) - Jp(k1,kz - l ) ,  1 I kz I B - 1. 

J;c(kl + 1, kz - 1) - Jp(k1, kz) I Jp(k1,kz) - J&1- 
l , k z + l ) , l 5 k 1 5 B - l , 1 5 k  2 < - B - 1 .  

Proof: Consider a function f E F which satisfies Prop- 
erties 1-5 of Lemma 1 (for example the function “0”). In the 
appendix, we show that the function Tf also satisfies these 
properties. Using the fact that T(”) j(x) = Jp( z )  for 
every z E X ,  the function Jp( . )  then satisfies these properties 
as well. 0 

Properties 3 4  are only auxiliary properties needed for the 
proof of Property 5,  and the combination of Properties 1, 2, 
and 5 of Lemma I allows to directly establish the following 
proposition. 

Proposition I :  The optimal policy for the discounted gain 
problem is of type POT. 

Proof: Properties 1-2 of Lemma 1 imply that an arrival 
from either type should be accepted if  an empty buffer is 
available. From Property 5 ,  the optimal value function is 
concave on the line kl + kz = B and hence it has either a 
unique maximum or two maxima at consecutive points on this 
line. The fact that J o ( z )  satisfies the dynamic programming 
equation Jp(z) = T J o ( x ) ,  implies that the value of k1 (or 
k2)  corresponding to the maximum (in case two maxima exist 
either one can be chosen) is the optimal threshold in the POT 
policy. 0 

Lemma 1 and Proposition 1 can be shown to hold for the 
weighted average gain criterion with weights 0 5 w1, ‘wz 5 
1,  w1+ wz = 1. In this case, the differences in Properties 1 and 
2 of Lemma 1 should be upper bounded by w1 and w 2  instead 
of 1, respectively, and the proofs follow as in the appendix. 

2)  The Two-Ported  System  with Equal  Transmission  Rutes 
(p1 = pz): In this section we establish an interesting albeit 
intuitive property of the optimal policy for the two-ported 
system when the transmission rate on both output ports are 
equal, = pz=p. For that system, we  show  that  when 
X1 2 Xz, the optimal threshold satisfies, k:  5 B / 2 .  The proof 
of this property relies again on the value iteration method. 

The dynamic programming operator for this system is now 

A 

T f ( k l ,  kz) = P[l{kl > 0 )  + l{kZ > 011 
+ PPIf((k1 - I )+ ,  k2) + f(k1, (k:z - I)+)] 
+ PXl@l(kl?k2) + PX2@2(kl: k z )  (10) 

where, ai( .), i = 1 , 2 ,  were defined  in (8)-(9 ). 

J3(k1, k2) has the following property 
Lemma 2: If XI 2 Xz, the optimal value function 

Jlr(k1,kz) 2 JdkZ,kl ) ,k2  z k.1 

Proof: See the appendix. 0 
The above lemma essentially states that when X1 2 Xz, it 

is preferable to have more packets of type 2 than of type 1 
in the system. When combined with Proposition 1, it directly 
gives the desired result stated in the following Proposition. 

Proposition 2: If X1 2 X2, the optimal policy for the 
discounted gain is POT with threshold k: 5 B / 2  . 
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Pro08 From Proposition 1, the optimal policy for the 
discounted gain problem is POT. From Lemma 2, we know 
that 

J p ( k l , B - k l )  2 J 3 ( B - k l , k l ) , k  < 
B 

'-5 
which, together with the concavity of the optimal value 
function Jo(k1, k2) on the line kl + kz = B (Property 5 of 
Lemma l), implies that the maximum of the optimal value 
function on this line occurs in the range IC1 5 B/2. 0 

This result confirms the intuition that the higher arrival rate 
of type 1 packets implies that they can be pushed out more 
often. 

3)  Threshold Design for the Two-Ported  System: The two 
previous sections established that the optimal policy for the 
two-ported system is of type POT. However, the value of 
the optimal threshold was not explicitly identified. There 
are a number of possible approaches to obtain the value of 
the optimal threshold, but typically they are computationally 
intensive and for large values of the buffer size may even be 
infeasible. In this section we propose a heuristic approximation 
to compute the value of the optimal threshold IC;. The accuracy 
of  this approximation will be assessed numerically in Section 
IV-B. 

Using the value iteration method, it is easy to check that 
an upper bound to the solution of the equation Jp(k1, k2) = 
TJp(k.1, k 2 )  is the function 

where d = (p1+ p2)/(1- p), and ai, i = 1,2, is the unique 
solution in (0 , l )  of the quadratic equation 

(1 - p + pip + X$)(Yi = Xipa: + pip (1 1) 

and 

ci = pa 
1 - p ( l  - Ai(1  - ai))' (12) 

In fact, the function fp(k,, IC2) corresponds to the discounted 
long term throughput when the buffer size is infinite. We 
are interested in determining the value ki that maximizes 
Jo(k, B - k) for k = 0,. e . ,  B. Our proposed approxima- 
tion consists of assuming that IC; approximately maximizes 
f3(ki B - k), k = 0, . . , B as well. We expect this to be 
especially true for large buffers since the optimal gain is then 
closer to fp(.). 

The maximum of fp(k, B - k), k = 0 : .  . . , B is easily 
found to be either max( lz'J, 0) or max ( [x*] + 1 , O ) .  where 

To  find the form of the approximation for the average gain 
criterion (see Section III-C for details), we have to take the 
limit as p -+ 1. Let pi=Xi/p;,  i = 1,2. It can be seen that A 

Also, when p; I 1 

We can, therefore, compute (except for the case p 1  = p2 = 1 
which requires that we apply L'Hospital's rule one more time) 

= lo, In 2 
I n p 1 + q n p l , '  if P 1  > 1, P2 > 1 

~1-:1+p2-xZ. if P1 < 1, P2 < 1 1-x1 

if P1 > 1, P z  I 1 

and similarly 61 can be computed. 
The proposed approximation for the optimal threshold k; 

consists then of selecting the closest integer to + G ~ B .  
Note that the main contribution for large B comes from c2. 
In fact, as will be seen in Section IV-B, numerical evidences 
smggest the following conjecture which, however, we were 
not able to prove 

B. The Symmetric N-Ported System 
In this section, we consider a system with Nidentical output 

ports, Le., the arrival and transmission rates are the same 
on all ports and denoted by X and p, respectively. For this 
special case, we show that the optimal policy is to accept all 
packets whenever the buffer is nonfull, and  when the buffer is 
full to accept a packet only if the queue corresponding to its 
destination output port is not the largest. In  the latter case, a 
packet from the largest queue is pushed-out to accommodate 
the new arrival. 

The dynamic programming equation for this system be- 
comes 

M 

T i ( @  = px l{ki > 0) 
i=l 

N N 

*=1 i=l 
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As for the two-ported case, we first proceed to establish a 
number of  key properties of the optimal value function which 
will cnable us to characterize the optimal policy. 

Lemma 3: The optimal value function Jp(x) has the fol- 
lowing properties: 

I )  Monotonicity and boundedness in ki: 0 5 Jo(% + ei) - 
Jp(,) 5 1,0  <ki 5 B - 1, 1 5 i 5 N . 

2) Symmetry: J o ( k )  = Jp(x(%)) for any permutation n(E) 
of the vector E. 

3) Balancing: - For 1 5 a, j 5 N ,  if k; 2 kj then Jo(%) 2 
Jp(k + e; - e j ) ,  otherwise Jo(Z) 5 Jp(lc+ ei - e j ) .  

4) Drop from the longest queue: For 1 5 i ,  j, 1 5 N ,  if 
k; < k j  < kl then .Io(% + ei - el) 2 Jo(E + e; - ei). 

Pro08 See the appendix. 0 
As before, the above properties can now be applied to 

characterize the optimal policy which we state in the following 
proposition. 

Proposition 3: The optimal policy for the discounted gain 
problem is to accept a packet whenever the buffer is nonfull. 
When the buffer is full, a packet is accepted only if the queue 
corresponding to its destination output port is not the largest 
among all queues. The arriving packet is then accommodated 
by pushing-out a packet from the largest queue. 

Pro08 Property 1 of Lemma 3 implies that an arriving 
packet should be accepted if an empty buffer is available. 
Property 3 implies that an arrival to a full buffer should be 
accepted only if  it is not destined to the longest output queue; 
in this case Property 4 implies that a packet from the longest 
output queue should be dropped in order to accommodate the 
arriving packet. 0 

C. The Average Cost Problem 
In this section, we establish that the usual conditions re- 

quired to extend the solution of the discounted gain problem to 
the average gain problem are indeed satisfied. The state space 
of our system is finite, and for pi > 0 , l  5 i 5 N ?  the state 
2 = 0 is accessible from every other state regardless of which 
stationary policy is used. Hence, the conditions of Corollary 
2.5, 16, sect. V] are satisfied and the following properties hold: 

1) There exists a bounded function h(i) and a constant J 
(the optimal value of the average gain problem which 
doesn't depend on the initial state) which satisfy the 
average gain version of the optimality equation 

N 

i= l  
N N 

i=l  i= l  

where @ i ( k )  is defined in (16) with h(.) replacing f(.). 
2) For some sequence on 4 1, h( i )  = limn+m [J/j, (&) - 

3) J = limo+l(1 - P)Jo(O). 
From Property 2 it follows that the function h ( i )  has the 

same properties as the function J p n  (k) listed in Lemmas 1-3 
for some sequence 0, + 1. Equation (1 7) has a form similar 

J L L  @)I. 

to the dynamic programming equation of the discounted gain 
problem and Propositions 1-3 can, therefore, be shown to also 
hold for the average gain problem. 

IV. NUMERICAL RESULTS 

In this section we investigate the performance of a shared 
memory switch operated under the optimal policy identified in 
this paper. Our focus is on the two-ported case for which more 
general results are available. For this system, we conduct two 
kinds of investigations: A comparison with the performance 
of the optimal coordinate-convex policy; An evaluation of the 
accuracy of the heuristic approximation proposed to compute 
the optimal threshold. 

In order to determine the performance of the optimal policy, 
we need to compute the packet loss probabilities of the system 
under this policy. A direct computation of state probabilities 
proved numerically rather unstable especially for large buffers 
(note that the number of states is ( B  + 1)'/2, where B is the 
buffer size). Therefore, to compute the loss probabilitics we 
used a technique based on the method of successive approxi- 
mation for computing average gains presented in [ l ,  sect. 7.21. 
This technique requires certain properties from the Markov 
chain, but they are easily seen to be satisfied in our case. While 
slow to converge, this method is numerically very stable. 

A. Comparison with Coordinate-Convex  Policies 
Since a coordinate-convex policy is a special case of a 

pushout policy, considering as cost the overall switch loss 
probability, the optimal pushout policy will have a smaller 
loss probability than the optimal coordinate convex policy. 
The price of this improvement is, however, a more complex 
implementation, and it is of interest to evaluate the trade-off 
between the gain in performance and the higher cost. In this 
section, we provide numerical results to help us compare the 
relative performance of the optimal coordinate-convex, n:, and 
the optimal pushout, T; policies. Fig. 1 gives the performance 
of the two policies for a buffer size of 50. In Fig. 1 (a) and (b), 
the utilization ( p  = A/p) of port 1 is kept constant at 0.6 while 
t h e  utilization of port 2 varies from 0.6 to 1.9. In Fig. l(c) and 
(d), the utilization of port 1 is kept constant at .8 while the 
utilization of port 2 varies again between 0.6 and 1.9. 

We observe that the difference in overall loss probability 
between the two policies is not very significant. For the specific 
examples we consider, the maximum value of the ratio 

Loss probability of T: 

Loss prohatility of $, 

is 1.18. However, when individual loss probabilities arc con- 
sidered, significant differences between the two policies are 
observed. Specifically, the loss probability of port 1 whose 
utilization is kept constant, is affected significantly by the 
vsuiation of the utilization of port 2 under policy T," and varies 
by up to seven orders of magnitude. Under policy xi, however, 
the loss probability of port 1 never increases above what it 
experiences in the reference balanced case (equal port loads) 
by more than one order of magnitude as the utilization of 
port 2 varies. Furthermore, the better overall performance of 
T; often also results in lower loss probabilities for both ports. 
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Fig. 1. Comparison of pushout and cwrdinate-convex  policies. 

Even in the few cases where the loss probability for the heavier 
loaded port is lower under 7rr than under x;, the difference 
remains minimal. Specifically, for the examples of Fig. 1, the 
loss probability for the heavier loaded port under ..,* is never 
less than 65% of its value under T;. Similar experiments were 
conducted for many other values of port utilizations and for 
buffer sizes up  to 80, and similar behaviors were observed. 
Therefore, we concluded that an important advantage of 7ri 
compared to 7rf is that it effectively isolates the performance 
of  a port with constant utilization from fluctuations in the 
utilization of the other port (assuming, the optimal policy is 
used  in each case). 

Fig. 2 illustrates another noteworthy feature of the pushout 
policies. In this figure we plot the total loss probability and 
the loss probabilities of the two ports when  a POT policy, 
not necessarily the optimal, is employed. The buffer size 
in this case is 30 and the kl thresholds used by the POT 
policy are varied between 0 and 30. We observe that the 
overall loss varies little as the threshold changes. This implies 
that the performance of the optimal policy is not critically 
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dependent on the choice of  the optimal threshold. However, 
this is not true for individual loss probabilities at each port. 
As we have seen above it may be desirable, in addition to 
achieving a throughput close to the optimal, to also provide 
appropriate loss probabilities to each port. In this case a  good 
approximation to the optimal threshold k; is still required. 
As we shall see in the next subsection, the approximation 
proposed in Section IKA3 for the optimal threshold is quite 
good, especially when the port utilizations are smaller than 1.  

8. Accuracy of the Approximation 

Fig. 3 compares the values of the optimal threshold and the 
proposed approximate threshold for the parameters of Fig. 1. 

We see that the approximate values are very close to 
the optimal when utilization of both ports is smaller than 
one. Numerical experimentation has also shown, that the 
approximation while somewhat less accurate, is still good 
when the utilization of both ports is larger than one. The 
approximation is less accurate when the utilization of one 
port is smaller than but close to 1, while the utilization of 
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Fig. 2. Performance of a POT policy as the threshold varies. 

the other port is larger than but close to 1. Even in this 
case, as the buffer size increases, the approximation does 
become more accurate. This is illustrated in  Fig. 4, where we 
plotted the ratio of the optimal to the approximate threshold 
as the buffer size increases. This was done for two sets of 
port utilizations. In the first set (pl,  p z )  = (.8,1.1), while 
in the second, ( p l , p z )  = (.9,1.1). We see that in both 
cases, while the approximation is poor for small buffers, it 
continually improves as the buffer size increases. This leads 
us to conjecture the correctness of the asymptotic behavior of 
the approximation expressed in (14). 

APPENDIX 
PROOFS OF LEMMAS 

Proof  of Lemma 1: Assume that Properties 1-5 of 
Lemma 1 hold for a function f E 3. 

1.WE.o 

1.WE.l 
0 2  4 6 8 1012141618202224262830 

Threshold for Port 1 -1 (b) 

Overall Loss 

Port 1 Loss 

Port 2 Loss ~- 

Port 1 Utiiization=.5 
Port 2 Utiiization=l.2 

Loss Probability 

'"1 1 .WE 

Proof of Property 1: 
Case 1 (kl + ICz 5 B ~ 2) : From properties 1-2  of the 

function f, we have 
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Fig. 3. Comparison of approximate  and optimal threshold. 

Comparing (18) and (19) term by term  and using Properties and Tf(lc1, k2)is the  same as (18). From Properties 1-2 of the 
1-2 of the function f, we have that 

P l l {k l  = 01 I T f ( h  + 1,kz) - Tf(k1, k2) 

funct ionf ,wehaveOIf(kl+2,k2- l ) - f (k l+1~k2-1)  5 
land -1 I f ( h +  1, kz - 1) - f ( h +  1, k z )  I 0, from which 
we have 

+ DP2f(kl+  1, (kz - 1)+) (22) 

+ 0x2 IIl=If(kl+ 1, k2)r f (k l ,k2  + 1)) 1, k 2 )  - Tf(kl ,  IC*) 5 1. 

+ DX1 m a { f ( h  + 1, kq), f ( k 1  + 2: k2 - 1)) 
Comparing (18) and (20) term by  term and using  Properties 
1-2 of the function f and  (21)-(22),  we have 0 5 Tf(kl + 

(20) Proof  of  Property 2: similar to the  proof of Property I .  
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Ratio of Optimal to Approximate Thresholds 

WAPr 

Fmm Property 4 we have f(0,  kz  + 1) ~ f (0 ,  k g )  5 f ( 0 .  k z )  - 
f@,  - l), and from Property 1 we have f(1, ICz - 1) 5 
1 + f(0, k2 - 1). From the last two inequalities we have 
f ( l , k2 -1 ) - f (Olk~)  5 l+f(O,kz)-f(O,kg+l),fromwhich 
the inequality (25) follows. The proof is similar for the case 
kt 2 2, = 1. case 2 (kl +kg = B): The inequality T f (  kl + 
is easily shown to hold by comparing these expressions term 
by term and using Property 5 of the function f on the lines 
kl + kz = B - 1 and k l  + kz = B. For the terms involving 
XI, Xz the above inequality holds for all cases of the location 
of the maximum of the function f on the line k l  + IC2 = B. 0 

Proof of Lemma 2: Assume that Lemma 2 holds for a 
function f 6 F. case I ( k l  + kz  5 B - 1): From Properties 
1-2 of the function j ,  we have 

1,kZ - 1) - Tf(k1,kz) I Tf(k1,kZ) - T f ( k 1  - 1, k2 + 1 )  

Proof of Property 3: follows directly by comparing 

term by term as in the proof of Property 1. The proof of 
Property 4 follows in a similar way. 

T f ( k 1 + 1 , I c , ) - T f ( k l , ~ z ) w i t h T f ( k l , k z ) - T f ( k l - 1 , k ~ )  

Proof of Propeq  5: 
Case 3 (k1 + kz 5 B - 1) : From Properties 1-2 of the 

function f ,  we have 

Tf(k1 + 1,kz - 1) - T f ( k 1 , k z )  = PZ(l{kZ > 1) - 1) 

+ BPl(f(k1,kZ - 1) - f(k1 - 1,kz)) 
+ PPZ(f(k1 + 1, ( k z  - 2)+) - f(k1, kz - 1)) 
+ PXl(f(k1 + 2, kz - 1) - f(k1 + 1, k 2 ) )  

+ PXZ(f(k1 + 1, k z )  - f(k1,kZ + 1)) (23) 

T f ( k 1 ,  k z )  - Tf(k1 - 1, kz + 1) = P l ( 1  - l(k1 > 1)) 
+ PPl(f(k1 - 1, kz )  - f ( (k1 - 2)+, kz + 1)) 
+ PPz(f(k1, kz - 1) - f(k1 - 1, kz)) 
+ PXl(f(k1 + 1, k2) - f(k1, kz + 1)) 
+ PX~(f(k1,kz + 1) - f ( h  - 1, kz + 2)). (24) 

For k~, /Cg 2 2 it follows directly by comparing (23) with 
(24) term by term and using Property 5 of the function f 
that the LHS of (23) is less or equal to the LHS of (24). For 
kl = 1,kz 2 2, comparing (23) with ( 2 4 )  term by term we 
have that, the terms multiplied by P p z ,  PAl, PAz in (23) are 
less equal to the corresponding terms in (24) by Property 5. 
We still have to show that 

OPl(f(1,kZ - 1) - f(0,  k z ) )  5 Pl + PPl(f(0, k z )  
-f(O. kz + 1)). (25) 

Comparing (26) with (27) term by term and using Lemma 2 
for the function f ,  we have that T f ( k l , k 2 )  2 T f ( k z , k ~ )  . 
case 2 (kl + ka = B): Here  we have 

where in the last two terms of (29) we  used Lemma 2 and 
Property 5 of Lemma 1 (concavity on the line k l  + = B )  
for the function f. Applying Lemma 2 twice to the function 
f, we obtain the following two inequalities 

From (30) and the inequality X1 2 X2 we have T f ( k 1 ,  k g )  2 
Tf ( b l  k1 ). 0 
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Pruof of Lemma 3: Assume that Properties 1 4  of Lemma 
3 hold for a function f E F. 

Proof of Property 1: Similar to the proof  of Property 1 
of Lemma 1. 

Proof of Property 2: Consider a state and define the 
state TzJ as the state E with ki and ki interchanged. It is 
enough to show that Tf(’iF) = Tf@. Compare the dymanic 
programming equations (15) of T f ( k )  and Tf&) term by 
term. Clearly, the first terms are equal. Using Property 2 (f((x - e*)+) = f((&j - e j )+))  it follows that the second 
terms are equal as well. Using Property 2 again one can easily 
show that the third terms are also equal. 

Proof of Property 3: Consider a state and assume that 
the buffer is full, i.e., k, = B. Fix some i , j ( i  # j), and 
assume that k, 2 k j ( >  1). We show that Tf@) - T f ( z  + 
e;  - ej)  2 0. From (15) we have that 

~ f ( l c )  - T ~ ( H  + ei - e,) = p [ ~ -  ~ { k j  > 111 
N 

Each of the second and the third terms of (31) is greater than 
or equal to zero (gez) by Properties 2 and 3. For kj > 1 
the first  term  of ( 31 j vanishes and the fourth term is gez by 
Property 3. For kJ = 1 the first term equals p and for the 
fourth term we have by Property 1 (boundedness) that it is 
greater or equal to -&, hence the  sum  of the first and the 
fourth terms is greater than zero  for < 1. This shows that 
the  sum  of the first four terms is gez. 

Then, we show that the last term of (31) is gez. We show 
that for each 1 the term that appears in the sum is gez. Fix 1 and 
denote by p ;  and p; the indices that give the maximum value 
in the first  and the second maximum terms, respectively. We 
break ties in  the maximum terms by choosing p ;  and p; such 
that kp;and kp; are the maximal components of the vectors 
k and IC + e; - e j ,  respectively (obviously, this convention 
doesn’t affect the validity of the proof). Next, we consider 
all cases of  the location of the maximum indices p;  and p ;  
and  show that each term that appears in the sum of the last 
term  of (31) is gez. First, consider the case p ;  = j .  Then, by 
Property 4 of the function f it  must be that kj is the maximal 
component of the vector E (there may be other components 
with the same value), and since k, 2 kJ we have that k; = kj. 
Then, applying Property 4 of the function f to the second 
maximum term we have that p;  = i, which implies that the 
two maximum terms are equal. Next, consider the case p ;  = i 
(and assume that k; > kj, otherwise we get the previous case). 
Then, by Property 4 of the function f it must be that k; is the 
maximal component of  the vector x, and hence p3 is equal to 

~ 

i (by Property 4 again). Then, the difference between the two 
maximum terms is gez for a = 1 or i, j # I by Property 3 of 
the function f and for 1; # 1 = j by Properties 2 and 3 of 
the function f. Finally, we consider the case p ;  # i ,  j (and 
assume that k,; > k;, otherwise we get the previous case). 
Then, by Property 4 of the function f it must be that kp;  is 
the maximal component of the vector X, and hence pa is equal 
to p ;  (by Property 4). The proof then follows exactly as the 
previous case. 

Consider the case ki < kj and define k% + ei - ej. Then, 
for kj > k; + 1 we have T i ( & )  2 Tf(& + e; - e 3 )  by 
the first part of Property 3, and for kj = k; + 1 we have 
T f ( 6 )  = Tf(6  + ei - e 3 )  by Property 2. This completes the 
proof of Property 3 for the case of full buffer. The proof for the 
case of a nonfull buffer is simpler and follows in a similar way. 

Proof of Property 4: This property follows directly from 
Property 3. 0 
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