
2588 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 7, NOVEMBER 2000

The Ballot Theorem Strikes Again:
Packet Loss Process Distribution

Omer Gurewitz, Moshe Sidi, Senior Member, IEEE, and Israel Cidon, Senior Member, IEEE

Abstract—The probability distribution of the number of lost
packets within a block of consecutive packet arrivals into a finite
buffer is an important quantity in various networking problems.
In a recent paper, Cidon, Khamisy, and Sidi introduced a recur-
sive scheme to derive this distribution. In this paper, we derive ex-
plicit expressions for this distribution using various versions of the
powerful Ballot Theorem. The expressions are derived for a single
source M/M/1/K queue.

Index Terms—Ballot theorem, blocking probability, finite
queues, forward error recovery, high-speed networks, packet loss
processes.

I. INTRODUCTION

I N many networking applications, messages are divided into
smaller data units—packets—that are transmitted consecu-

tively into the network. The packet loss process is an important
performance measure in the design and analysis of such appli-
cations. The loss of a single packet of the message may result
in the loss of the entire message. Forward error-correcting tech-
niques are suggested that use block encoding and hence the loss
probability of packets out of a message (block) ofconsec-
utive packets, is a crucial measure for proper design of error
recovery mechanisms [1].

In a recent paper, Cidon, Khamisy, and Sidi [1] introduced
recursive schemes to compute the above quantity for various
packet-arrival models and service distributions. In their most
basic model, the arrival process is Poisson and service times
are exponentially distributed, resulting in the recursive anal-
ysis of the above probabilities for a finite M/M/1 queue. Later,
Altman and Jean-Marie [2] used the recursive equations to de-
rive expressions for the multidimensional generating function of
the required probabilities and for some system parameters ob-
tained explicit expressions for the probabilities themselves. The
method they introduced is algebraic in nature.

In this paper, we introduce an alternate method (that also
yields alternate simpler expressions) to obtain explicit expres-
sions for the required probabilities for all the system parameters
of interest. The method is probabilistic in nature and is based
on extensive use of various versions of the powerfulBallot The-
orem[3]. There are several other examples in which Ballot The-

Manuscript received May 14, 1999; revised May 28, 2000. This work was
supported by the Consortium for Broadband Communication administered by
the Chief Scientist of the Israeli Ministry of Commerce and Industry.

The authors are with the Department of Electrical Engineering, Technion–Is-
rael Institute of Technology, Haifa 32000, Israel (e-mail: gurewitz@tx.tech-
nion.ac.il; moshe@ee.technion.ac.il; cidon@ee.technion.ac.il).

Communicated by V. Anantharan, Associate Editor for Communication Net-
works.

Publisher Item Identifier S 0018-9448(00)09682-6.

orems have been used to analyze the performance of networking
systems [4], [5].

II. THE MODEL AND PRELIMINARIES

We consider systems with variable-length packets whose
transmission time is exponentially distributed with parameter

. The packets are stored in a queue that can accommodate
up to packets (including the served packet) and are served
(transmitted) according to the first-in-first-out (FIFO) rule. If
a packet arrives at a system that containspackets, it is lost.
The packets are grouped into fixed size blocks, namely, every

consecutive packets form ablockand we are interested in the
probability distribution of the number of lost packets within
a block in steady state. Other grouping scenarios were also
considered in [1].

Packets arrive at the system according to a Poisson process
with rate . The average loadis defined as . We recall
that the stationary probability of havingpackets in the system
at an arrival epoch (and also at an arbitrary epoch) is

Our purpose in this paper is to compute the probabilities
of losses in a

block of packets, given that there arepackets in the system
just before the arrival epoch of the first packet in the block, as
well as the probabilities of losses
in a block of consecutive packets. Since the first packet in a
block is arbitrary,1 , we have the relation

(1)

In [1], a recursive method has been presented to compute the
probabilities and
(1) was used to obtain . In this paper, we introduce a
probabilistic method to obtain all these probabilities explicitly.

Obviously, when packets are lost , one of the
packets of the block is theth packet to be lost, and no other
packet of the block is lost after that packet. Let denote
the probability that theth packet of the block is theth and the
last packet of that block to be lost, given that there arepackets

1Note that the block structure is an indexing imposed on the sequence of
(Poisson) arrivals starting at an arbitrary location, hence, the M/M/1 behavior is
intact.

0018–9448/00$10.00 © 2000 IEEE

GUREWITZ et al.: THE BALLOT THEOREM STRIKES AGAIN 2589

Fig. 1. An example to illustrate Events A and B.

in the system just before the arrival epoch of the first packet of
the block. It is clear that

(2)

Note that

since the probability that theth packet of the block is theth
to be lost, for is zero.

For the th packet in the block to be theth and the last packet
of the block to be lost, two mutually exclusive events must occur
(see Fig. 1).

Event A: The th packet in the block is theth lost packet
given that upon the arrival of the first packet of the block
the buffer contains packets.

Event B: No more packets of the block are lost after the
th packet is lost.

In order to proceed we define apathas an ordered sequence
of events. Event is either an arrival or a departure . For
instance, the ordered sequences and are both
paths that contain three arrivals and one departure. They are
different paths since the order of events is different.

Let denote the probability that an arrival precedes a depar-
ture when the queue is not empty and . Due to the ex-
ponential nature of the service times and the interarrival times,
we have that

The memoryless property of the exponential distribution also
implies that at any epoch the probability that a path will have

arrivals and departures is if along this path the buffer
never empties. If the buffer emptiestimes along this

path, then the probability of such a path increases to
(since when the buffer is empty, the next event is an arrival with
probability one).

In the sequel we will compute the probabilities of Events A
and B. To that end we will need the following Lemmas.

Lemma 1: Assume that upon the arrival of the first packet
of the block the buffer containspackets. The th packet is the
th to be lost if and only if upon the arrival of theth packet the

number of arrivals exceeds the number of departures by
for the first time.

Proof: Assume that the th packet is the th to be lost.
This implies that the buffer becomes full at leasttimes right
after the arrival of packets . Let be the
packet that fills the buffer for the first time. Clearly, no packets
from the block are lost prior to and including the arrival of, so
they all join the buffer. Right before the arrival of the first packet
there are empty places in the buffer, so for to fill it for
the first time, the number of arrivals must exceed the number of
departures by exactly (counting from the arrival of the
first packet of the block until the arrival of).

Let be the first packet of the block to be lost. Counting
events from the time the buffer was full (right after the arrival of
packet) until is lost, it is clear that during this period the
number of arrivals exceeds the number of departures by one.
This is true since just before the arrival ofthe buffer was full,
i.e., the total content of the buffer did not change, no packet was
lost, so the number of arrivals equals the number of departures.
Using this reasoning inductively, we conclude that upon each
packet that is lost, the number of arrivals exceeds the number of
departures by one counting from the previous loss (since a lost
packet leaves the buffer full). Since there are exactlylosses
upon the arrival of the th packet we conclude that the number
of arrivals exceeds the number of departures by for
the first time upon the arrival of theth packet, completing the
proof of one direction.

For the other direction, consider the first time the number of
arrivals exceeds the number of departures by . This
can happen only upon an arrival, say of theth packet. We need
to show that this arrival is lost and it is theth loss. To see

2590 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 7, NOVEMBER 2000

that consider first the case and let be the packet that
causes the number of arrivals to exceed the number of departures
by for the first time. This implies that prior to the
arrival of the number of arrivals never exceeded the number
of departures by more than . Since upon the arrival of the
first packet there are spaces in the buffer, no packets were
lost prior to the arrival of . In addition, just before the arrival
of the number of arrivals exceeds the number of departures by

, implying the buffer is full, so packet is lost and is the
first to be lost. Observing that each lost packet leaves the buffer
full, we use the above reasoning, inductively, to conclude that
if we look at the first time the number of arrivals exceeds the
number of departures by , then a packet is lost and it
is the th loss, completing the proof of the other direction.

Lemma 2: Assume the th packet is lost. No packets are lost
afterwards if and only if throughout the arrival of the rest of the
block the number of departures is always not smaller than the
number of arrivals (counting starts right after the arrival of the

th packet).
Proof: Assume that the number of departures is never be-

hind the number of arrivals during the arrival of the rest of the
block and packet is the first to be lost after packet.
Starting counting when the buffer is full just after packetis
lost, Lemma 1 dictates that for packetto be lost upon its arrival,
the number of arrivals should exceed the number of departures
by one. However, this contradicts the fact that the number of de-
partures is never behind the number of arrivals during the arrival
of the rest of the block, proving that no packets from the rest of
block can be lost, completing the proof of one direction.

For the other direction assume that no packets from the rest
of the block are lost and the number of arrivals does exceed the
number of departures for the first time upon the arrival of packet

. Using Lemma 1, start counting when the buffer is full just
after packet is lost, if upon an arrival of a packet the number of
arrivals exceeds the number of departures, the packet is lost. So
packet must be lost, but this contradicts the fact that no packets
from the rest of the block are lost, thus completing the proof of
the other direction.

III. A NALYSIS

In the analysis we distinguish between the simple case in
which the buffer can contain a complete block and the
more complicated case that the block is larger than the buffer

.

A. CASE i): The Buffer Can Contain a Complete Block

The case that the buffer can contain a complete block
is relatively simple, since if the buffer ever becomes empty

during the arrival of the packets of the block, no further packets
from the currently arriving block will be lost, since there is
enough room for all packets. Therefore, if theth packet of the
block is lost, the buffer could not have been empty at any of the
arrival epochs of the preceding packets of the block.

In the following we start with the computations of the prob-
abilities that together with (1) yield . We then
provide a much simpler expression for directly.

1) Computing : We start by computing the proba-
bility of Event A, i.e., the probability that theth packet in the
block is the th lost packet. From Lemma 1, it follows that we
are interested in all the paths that end with an arrival and contain

arrivals and departures such that
(is the number of packets in the buffer upon the arrival of the
first packet of the block). Such paths will never cause the buffer
to become empty, irrespective of the order of events of that path
since

namely, the number of departures is smaller than the initial con-
tent of the buffer. Furthermore, exactlypackets are lost along
such a path. All these paths have events
of which the first is an arrival (of the first packet of the block)
and they are all equiprobable. The probability of each of these
paths is (first arrival with probability one, more
arrivals each with probability and departures each with
probability) and their total number is . Recall, how-
ever, that due to Lemma 1 we need to count only those paths for
which the th arrival is the th loss, i.e., the paths in which the
number of arrivals exceeds the number of departures byfor
the first time in the th arrival epoch. To count these paths we
use the following version of the Ballot Theorem [3].

Classial Ballot Theorem: In a ballot candidate A scores
votes and candidate B scores votes, where .

Assuming that all orderings are equally likely, the probability
that throughout the counting A is always ahead in the count of
votes is .

To count the relevant paths, the theorem is used looking from
the th arrival epoch backward. In this backward direction, the
number of arrivals must always exceed the number of departures
(otherwise, at some point these two numbers were equal, contra-
dicting the “first-time” requirement when looking at the path in
the forward direction). From the Ballot Theorem we have that
the proportion of the number of paths with arrivals and

departures such that the number of arrivals must always
exceed the number of departures (in the backward direction) out
of the total number of paths with arrivals and de-
partures is . Consequently, the probability
that upon arrivals and departures, the number of arrivals
exceeds the number of departures byfor the first time in the

th arrival epoch (Event A) is

(3)

It now remains to compute the probability of Event B, i.e.,
the probability that no more packets of the block are lost after
the th packet is lost. Since upon the arrival of theth packet
the buffer is full (otherwise, theth packet would not have been
lost), we conclude from Lemma 2 that we should consider only
those paths in which the number of departures is not smaller than
the number of arrivals until the last packet of the block arrives.
Furthermore, once the number of departures is , the rest
of the path is irrelevant since enough space is available to insure
that no more packets will be lost. Therefore, we consider only

GUREWITZ et al.: THE BALLOT THEOREM STRIKES AGAIN 2591

those paths for which the number of departures is and the
number of arrivals can obtain any value betweenand .
Note that the buffer does not become empty for such paths, since
it starts with a full buffer and the number of departures is smaller
than the buffer size . To insure we count
disjoint paths, we consider paths for which the last event is a
departure. The probability of each path with departures,
arrivals, and the last event is a departure is
and their number is . Note that
since the last event is a departure. The proportion of the number
of paths in which the number of departures is not smaller than
the number of arrivals out of the total number of paths with

departures andarrivals is again obtained using the Ballot
Theorem to yield . Combining the above
we obtain the probability of Event B, i.e., the probability that no
more packets of the block are lost after theth packet is lost

(4)

Combining (2)–(4) and using the fact that for
(since packets of the block can

be accommodated into the buffer and cannot be lost) we obtain
for

where we recall that , and we define an empty
sum to be one and for define the first term as one as
well (if and only if and , i.e., when the first
packet is lost). Obviously,

From the above discussion it is clear that if we are interested
in the probability of losingat least packets out of a block of

packets given that there werepackets in the buffer upon the
arrival of the first packet of the block (let denote this
probability), then we only have to sum (3) over all, since Event
B is irrelevant in this case. The result is

where for the first term is defined as one. Obviously,

so we have an alternate expression to compute that re-
quires only computations. The fact that our expres-
sion requires less computations asincreases is not surprising,
since we are looking at the last packet to be lost, and asin-
creases, the number of ways to choose that packet decreases.

2) Computing : Using a similar approach to that pre-
sented in the previous section we can compute the probabilities

directly. In fact, we can show that the probabilities of
losing at least packets out of a block of packets, ,
is given by

(5)

Obviously,

so we have a very simple expression to compute that
requires only computations (the comes from
the need to compute) which is a substantial improvement
over of the complexity of computations required
by the expressions obtained in [2].

To derive (5) we let (are consecutive
packets in the block) be the set of all paths in which packets
and are lost and packets are lost between
them (so a total of packets are lost). Each of these paths
can be divided into two parts. a) The loss of packetwhose
probability is . b) The rest of the path that starts right after
the loss of packet and ends with the loss of packetwhich
is the th loss. The probability of this part is the probability of
a path that contains arrivals (packets),
departures, and the first time the number of arrivals exceeds
the number of departures by (remember was lost, so
we need another losses) is after events. This
probability has been derived in (3) and is given by

Therefore,

Note that the above probability does not depend onand but
only on the number of packetsbetween them. The number of
possible pairs of packets that areplaces apart within a block
of size is . However, if we sum the above probability
over all possible pairs a path
that contains losses will be counted

times (once for every consecutive losses). Therefore, in
order to insure that each path is counted exactly once, we need
to subtract each path that contains losses times. Using the
same reasoning if we compute ,
each path that contains losses will be counted
times, but this is exactly what we need to subtract, hence (5).

Remark: It is easy to see that the expressions derived above
can be used as long as since, for these parameters, if
the buffer ever becomes empty during the arrival of the packets
of the block, there is no possibility that the number of arrivals
will exceed the number of departures by .

2592 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 7, NOVEMBER 2000

Fig. 2. A typical path withj losses.

B. CASE ii): The Block is Larger than the Buffer

The analysis presented in this section is rather general and
holds for any set of parameters . Yet, it is more complex
than the analysis presented for Case i) above, and the expres-
sions obtained are much more complex. Note that Altman and
Jean-Marie [2] did not provide expressions for for
blocks larger than the buffer. In this section, we also derive

first and then show the derivation of .
As we observed from Lemma 1, if upon the arrival of the first

packet of the block the buffer containspackets, to lose
packets we must have that the number of arrivals exceeds the
number of departures by (counting from the arrival
of the first packet of the block until the arrival of theth lost
packet). The main difficulty in case the block is larger than the
buffer is that paths with this property may cause the buffer to
become empty (even several times). As explained in Section II,
the probability of a path depends on the number of times the
buffer empties along this path, and counting the number of paths
is rather complex.

To carry the analysis consider a typical path (see Fig. 2) that
starts upon an arrival of the first packet of the block when there
are packets in the buffer, containspacket arrivals of which

are lost. Denote theth lost packet by
. We note that such a path can be decom-

posed into three types of mutually exclusive events as follows.

Event : the first packet to be lost is given that
upon an arrival of the first packet of the block there are
packets in the buffer.

Event : packet is lost given that packet
was lost.

Event : packet is the last to be lost.

Clearly, a path is a succession of events

Let and be the probabilities of
events and , respectively. It is clear
that

and in the general case

(6)

By definition, when for
. Therefore, (6) can be rewritten as

or in a matrix form

(7)

where and are -length row vectors with elements
and , respectively, and is an matrix with elements

. Note that the matrix is very simple in the sense that
each of its rows (except the first) is identical to the previous row
with the elements moved one place to the right. Therefore, the
computation of needs only operations.

We now have to compute the elements of and . To
that end we consider a general path that starts when there are

packets in the buffer, ends with
packets in the buffer, contains events
(arrivals and departures), and no packets are lost. Let be
the probability of such a path. We can express the values of the
elements of and using the quantities as follows.

Expression for :
If the first packet of the block arrives at a full buffer, it is lost

and no other packet can be the first to be lost. Otherwise, that
first packet joins the buffer so the evolution of the path starts
with and packets still to arrive. For the packet
to be the first lost packet, there must be an epoch after the arrival
of the packet that the buffer is full, i.e., and the next
event is an arrival. Up to that epoch, the number of arrivals must
exceed the number of departures by exactly (otherwise,
the buffer would not be full). The number of arrivals up to that
epoch is (from the second arrival until the arrivals of
packet), so the number of departures is to
yield a total number of events. Combining
the above we get (8) at the bottom of the following page.

Expression for :
Right after the arrival and loss of packetthe buffer is full so

. Right before the arrival of packet the buffer must
be full, i.e., and the next event is an arrival (of packet

) so we have to multiply our probability by. Since we start
and end with a full buffer, the number of arrivals
equals the number of departures and the total number of events
is . Therefore,

(9)

Expression for :
It is clear that if is the last packet of the block

then no packets can be lost after it, i.e., . We now con-
sider the cases for which . From the proof of Lemma 2

GUREWITZ et al.: THE BALLOT THEOREM STRIKES AGAIN 2593

we conclude that in order to compute it suffices to con-
sider the path until the epoch that the th departure oc-
curs, starting to count after the arrival of packet(since after
that there is sufficient buffer space for the rest of the block).
In order to avoid counting a path more than once, we consider
only those paths that end with a departure and look at the paths
right before that departure, so our probability should be multi-
plied by to take care of that departure. So the total number
of departures we consider is . Let be the total
number of arrivals to avoid losses and

since the difference between the
number of departures, including the last one, and the number
of arrivals cannot exceed , so the total number of events is

and we have

packets in the buffer. Consequently, we get (10) at the bottom
of this page

To complete the analysis we need to compute . The
main difficulty in computing these probabilities is that for a
given number of arrivals and a given number of departures, the
number of times the buffer may become empty depends on
and .

We begin by considering paths that do not cause the buffer to
ever become empty. Let be the probability of such paths

and by
definition for and for .
Such a path contains arrivals and
departures. Therefore,

(11)

where is the number of such paths. This number can
be computed by applying the following Ballot problem [3].

Ballot Theorem: In a ballot, candidate scores votes
and candidate scores votes, and all the possible voting
records are equally probable. Let where

are integers. The number of possible arrangements
of votes such that candidateis always ahead of candidate
by less than votes and more than votes is

where takes values in the above sums so that the
binomial coefficients are proper (e.g., in the first sum
and).

The quantity can now be computed by identifying
with arrivals, with departures, with the threshold by which
the number of arrivals must exceed the number of departures in
order to lose a packet, and with the threshold by which the
number of arrivals must be behind the number of departures in
order to empty the buffer, i.e.,

, and to obtain

or using (11)

(12)

Using (12) we can easily compute the probability of paths with
events that start with an empty buffer , end with

packets in the buffer, and do not become empty in between. Let
be this probability. Then since the next event when the

buffer is empty is an arrival with probability one we have

(13)

Similarly, we can compute the probability of paths with
events that start with packets in the buffer, end with an
empty buffer and do not become empty in between.
Let be this probability. Then since the buffer becomes
empty upon a departure that occurs with probabilitywe have

(14)

Combining (13) and (14) we obtain the probability of paths that
start and end with an empty buffer and do not become empty in
between

(15)

otherwise

otherwise
(8)

(10)

2594 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 7, NOVEMBER 2000

Fig. 3. A typical path for which the buffer becomes emptyr times.

In order to continue, we need to take into account also those
paths that do cause the buffer to become empty. Note that a path
that starts when there arepackets in the buffer, ends with
packets in the buffer, and containsevents can become empty
only if and at most times
(is obviously an even number). Furthermore, the first
time the buffer can become empty is afterevents (all must
be departures) and the last time it can become empty after

events (and all the rest events must be arrivals). Also, the
buffer can become empty only after events
(all must be departures). Let be the set of these events, i.e.,

. Consider now paths that
the buffer becomes empty exactly times along
the path. Denote theth event that causes the buffer to become
empty by . We note
that such paths can be decomposed into three types of mutually
exclusive events as follows.

Event : the first time the buffer becomes empty is
upon given that the path started withpackets in the
buffer.

Event : the buffer becomes empty upon
after becoming empty upon and was not empty in be-
tween the two events.

Event : upon the buffer becomes empty for the
last time.

Clearly, a path with the above properties is a succession of
events
(see Fig. 3).

Let and be the probabilities of
events and , respectively. It is clear
that the probability that such a path will cause the buffer to
become empty once is , twice

and, in general, times

(16)

where we used the fact that when for
. Equation (3) can be written in a matrix form

where and are -length row vectors with elements
and , respectively, and is an matrix with elements

. The elements of these vectors and matrix can be easily
computed using (12). For instance, theth
element of the vector is the probability that this part of the
path starts with packets in the buffer, ends with an empty buffer
after events, and the buffer does not become empty in be-
tween. By definition, this quantity is just . Therefore,

Similarly, the th element of the vector is
the probability that this part of the path starts with no packets
in the buffer, ends with packets in the buffer after
events, and the buffer does not become empty in between. By
definition, this quantity is just . Therefore,

Finally, the element of the matrix
is the probability that this part of the path starts and ends with
no packets in the buffer after events and the buffer
does not become empty in between. By definition, this quantity
is just . Therefore,

Note that the matrix is very simple in the sense that each of
its rows (except the first) is identical to the previous row with
the elements moved one place to the right. Therefore, the com-
putation of needs only operations.

To obtain we just need to sum over all paths that cause
the buffer to become empty times, i.e.,

The computation of needs operations. Once
is known for all parameters, we use (8) and (10) to com-

pute the vectors and , respectively, and (9) to compute the
matrix . Finally, (7) is used to compute (recall that

).
Having completed the computation of we note that

GUREWITZ et al.: THE BALLOT THEOREM STRIKES AGAIN 2595

where is a unit row vector, since eventis irrelevant when we
are interested in at leastlosses. The above computation needs

operations. Finally, similarly to the reasoning for
obtaining for small blocks (see Section III–A2), in
the current situation we have that

Note that is just the sum of the elements of the matrix
and equals where the set was

defined in Section III-A2.

REFERENCES

[1] I. Cidon, A. Khamisy, and M. Sidi, “Analysis of packet loss processes in
high-speed networks,”IEEE Trans. Inform. Theory, vol. 39, pp. 98–108,
Jan. 1993.

[2] E. Altman and A. Jean-Marie, “Loss probabilities for messages with re-
dundant packets feeding a finite buffer,”IEEE J. Select. Areas Commun.,
vol. 16, pp. 778–787, June 1998.

[3] L. Takacs,Combinatorial Methods in the Theory of Stochastic Pro-
cesses. New York: Wiley, 1967.

[4] P. Humblet, A. Bhargava, and M. G. Hluchyj, “Ballot theorems
applied to the transient analysis of nD/D/1 queues,”IEEE/ACM Trans.
Networking, vol. 1, pp. 81–95, Feb. 1993.

[5] I. Cidon, R. Guerin, I. Kessler, and A. Khamisy, “Analysis of a statistical
multiplexer with generalized periodic sources,”Queueing Syst.: Theory
and Applic., vol. 20, pp. 139–169, 1995.

