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The Ballot Theorem Strikes Again:
Packet Loss Process Distribution
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Abstract—The probability distribution of the number of lost  orems have been used to analyze the performance of networking
packets within a block of consecutive packet arrivals into a finite  systems [4], [5].
buffer is an important quantity in various networking problems.
In a recent paper, Cidon, Khamisy, and Sidi introduced a recur-
sive scheme to derive this distribution. In this paper, we derive ex- Il. THE MODEL AND PRELIMINARIES

plicit expressions for this distribution using various versions of the ; . : )
powerful Ballot Theorem The expressions are derived for a single We 90n5|de_r Sy_StemS with .Va”ab.le !ength packets whose
source M/M/L/K queue. transmission time is exponentially distributed with parameter
index T _Ballot th blocki bability, finit 1. The packets are stored in a queue that can accommodate
naex lerms allo eorem, OCKINng probability, Tinite . :
queues, forward error recovery, high-speed networks, packet loss up tOm.paCkets (|ncllud|ng bl _serv.ed.packet) and are served
processes. (transmitted) according to the first-in-first-out (FIFO) rule. If
a packet arrives at a system that containpackets, it is lost.
The packets are grouped into fixed size blocks, namely, every

. INTRODUCTION n consecutive packets formbdockand we are interested in the

N many networking app"ca’[ions, messages are divided |rﬁ{)0babl|lty distribution of the number of lost packets within
smaller data units—packets—that are transmitted conse@ublock in steady state. Other grouping scenarios were also
tively into the network. The packet loss process is an importagfnsidered in [1].
performance measure in the design and analysis of such appliPackets arrive at the system according to a Poisson process
cations. The loss of a single packet of the message may resuith rateA. The average loaglis defined ap £ A/ . We recall
in the loss of the entire message. Forward error-correcting tethat the stationary probability of havirigrackets in the system
niques are suggested that use block encoding and hence thedbss arrival epoch (and also at an arbitrary epoch) is
probability of j packets out of a message (block)otonsec-
utive packets, is a crucial measure for proper design of error
recovery mechanisms [1].

In a recent paper, Cidon, Khamisy, and Sidi [1] introduced
recursive schemes to compute the above quantity for variouour purpose in this paper is to compute the probabilities
packet-arrival models and service distributions. In their mogt(; ) ¢ = 0,1,...,m,n > 1,0 < j < n, of j losses in a
basic model, the arrival process is Poisson and service tinigsck of n packets, given that there air@ackets in the system
are exponentially distributed, resulting in the recursive angist before the arrival epoch of the first packet in the block, as
ysis of the above probabilities for a finite M/M/1 queue. Latefye|| as the probabilitie®(j,n),n > 1,0 < j < n, of j losses
Altman and Jean-Marie [2] used the recursive equations to dg-a block ofn consecutive packets. Since the first packet in a
rive expressions for the multidimensional generating function gfock is arbitrary,, we have the relation
the required probabilities and for some system parameters ob-
tained explicit expressions for the probabilities themselves. The m
method they introduced is algebraic in nature. P(j,n) =Y () Pi(j,n). 1)

In this paper, we introduce an alternate method (that also =0
y?elds alternate s_impler expr_e_s_sions) to obtain explicit EXPreE [1], a recursive method has been presented to compute the
sm_nsforthe required pro_bab|I|t|es f(_)r .a||.the system paramet ﬁ)babilitiesB(j, n)yi=0,1,...,m,n>1,0<j <nand
of mterest.. The methoq is prob§b|llst|c in nature and is bas was used to obtait(j,n). In this paper, we introduce a
on extensive use of various versions of the POWEE,SMOt The- robabilistic method to obtain all these probabilities explicitly.
orem[3]. There are several other examples in which Ballot The- Obviously, whenj packets are lostj > 1), one of then

packets of the block is thgth packet to be lost, and no other
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Fig. 1. An example to illustrate Events A and B.

in the system just before the arrival epoch of the first packet péth, then the probability of such a path increases“to®q”

the block. It is clear that (since when the buffer is empty, the next event is an arrival with
n probability one).
Pi(j,n) = Z PF(j,n) 2 In the sequel we will compute the probabilities of Events A
k=1 and B. To that end we will need the following Lemmas.
Note that Lemma 1: Assume that upon the arrival of the first packet
n n of the block the buffer containspackets. Théth packet is the

> Pf(n) = Priin) jth to be lost if and only if upon the arrival of thgh packet the
k=1 k=j number of arrivals exceeds the number of departures by+ ;

for thefirst time.
Proof: Assume that thé&th packet is thejth to be lost.

For thekth packet in the block to be thieh and the last packet 1 1iS implies that the buffer becomes full at legsimes right

of the block to be lost, two mutually exclusive events must occ@fter the arrival of packets, 2,...., k. Letro(ro < k) be the
(see Fig. 1). packet that fills the buffer for the first time. Clearly, no packets

from the block are lost prior to and including the arrivalgf so
Event A: Thekth packet in the block is théth lost packet  they all join the buffer. Right before the arrival of the first packet
given that upon the arrival of the first packet of the blockhere aren — ¢ empty places in the buffer, so feg to fill it for
the buffer containg packets. the first time, the number of arrivals must exceed the number of
Event B: No more packets of the block are lost after th§€Partures by exacthy, — 1 (counting from the arrival of the
kth packet is lost. irst packet of the block until the arrival af,).
Let »; be the first packet of the block to be lost. Counting
In order to proceed we definegmthas an ordered sequenceevents from the time the buffer was full (right after the arrival of
of events. Event is either an arrivt} or a departurdd}. For packetro) until 7 is lost, it is clear that during this period the
instance, the ordered sequendesada} and {aaad} are both number of arrivals exceeds the number of departures by one.
paths that contain three arrivals and one departure. They &his is true since just before the arrivalnfthe buffer was full,
different paths since the order of events is different. i.e., the total content of the buffer did not change, no packet was
Let p denote the probability that an arrival precedes a depa®st, so the number of arrivals equals the number of departures.
ture when the queue is not empty ane: 1 — p. Due to the ex- Using this reasoning inductively, we conclude that upon each
ponential nature of the service times and the interarrival timd¥icket that is lost, the number of arrivals exceeds the number of

since the probability that theth packet of the block is thgth
to be lost, fork < j is zero.

we have that departures by one counting from the previous loss (since a lost
A P packet leaves the buffer full). Since there are exagtlgsses
p= A+ 1+ upon the arrival of théth packet we conclude that the number
H 1 p of arrivals exceeds the number of departures/by ¢ + j for
q= H_ - the first time upon the arrival of thieth packet, completing the
Adp 14p

proof of one direction.

The memoryless property of the exponential distribution also For the other direction, consider the first time the number of
implies that at any epoch the probability that a path will havarrivals exceeds the number of departuresiby- ¢ + ;. This

w arrivals andv departures ig“q? if along this path the buffer can happen only upon an arrival, say of #k packet. We need
never empties. If the buffer emptiésimes(h < «) along this to show that this arrival is lost and it is thg¢h loss. To see
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that consider first the case= 1 and letu be the packet that 1) ComputingP;(j,n): We start by computing the proba-
causes the number of arrivals to exceed the number of departuoiéiy of Event A, i.e., the probability that theth packet in the

by m — ¢ + 1 for the first time. This implies that prior to the block is thejth lost packet. From Lemma 1, it follows that we
arrival of » the number of arrivals never exceeded the numbare interested in all the paths that end with an arrival and contain
of departures by more than — ¢. Since upon the arrival of the k arrivals(k < n) andl departures such that—Il =m — i+ j

first packet there arew — ¢ spaces in the buffer, no packets weréi is the number of packets in the buffer upon the arrival of the
lost prior to the arrival of. In addition, just before the arrival first packet of the block). Such paths will never cause the buffer
of » the number of arrivals exceeds the number of departurestbybecome empty, irrespective of the order of events of that path
m — i, implying the buffer is full, so packet is lost and is the since

first to be lost. Observing that each lost packet leaves the buffer

full, we use the above reasoning, inductively, to conclude that =k —(m —i+j) <n—(m—i+j) <i—j<i

if we look at the first time the number of arrivals exceeds the i .
number of departures by — i + 4, then a packet is lost and itnamely, the number of departures is smaller than the initial con-
is the jth loss, completing the proof of the other directiori] tent of the buffer. Furthermore, exacgl}pickets are lost along
) such a path. All these paths hae — g(g=m — i + j) events
Lemma 2: Assume the:th packet is lost. No packets are loshyt which the first is an arrival (of the first packet of the block)

afterwards if and only if throughout the arrival of the rest of thg,q they are all equiprobable. The probability of each of these
block the number of departures is always not smaller than tBSths igp*—1¢*—9 (first arrival with probability onek — 1 more
number of arrivals (counting starts right after the arrival of thgiyals each with probability andk — ¢ departures each with
kth packet). _ probability¢) and their total number i§**~91). Recall, how-

~ Proof: Assume that the number of departures is never bgger, that due to Lemma 1 we need to count only those paths for
hind the number of arrivals during the arrival of the rest of thgnich thekth arrival is thejth loss, i.e., the paths in which the
block and packet > k is the first to be lost after packét number of arrivals exceeds the number of departureg toy

Starting counting when the buffer is full just after packels  the first time in thekth arrival epoch. To count these paths we
lost, Lemma 1 dictates that for packes be lostuponits arrival, yse the following version of the Ballot Theorem [3].

the number of arrivals should exceed the number of departures

by one. However, this contradicts the fact that the number of de-Classial Ballot Theorem: In a ballot candidate A scores

partures is never behind the number of arrivals during the arrival Votes and candidate B scorgs votes, wherea > /3.

of the rest of the block, proving that no packets from the rest suming that all orderings are equally likely, the probability

block can be lost, completing the proof of one direction. that throughout the counting A is always ahead in the count of
For the other direction assume that no packets from the r¥8tes is(« — 3)/(a + 3).

of the block are lost and the number of arrivals does exceed therg count the relevant paths, the theorem is used looking from
number of departures for the first time upon the arrival of pack@fe ;th arrival epoch backward. In this backward direction, the
!> k.Using Lemma 1, start counting when the buffer is full jusiymber of arrivals must always exceed the number of departures
after packet is lost, if upon an arrival of a packet the number ofptherwise, at some point these two numbers were equal, contra-
arrivals exceeds the number of departures, the packet is Iostﬂﬁging the “first-time” requirement when looking at the path in
packet must be lost, but this contradicts the fact that no packejss forward direction). From the Ballot Theorem we have that
from the rest of the block are lost, thus completing the proof gfe proportion of the number of paths with— 1 arrivals and
the other direction. k — g departures such that the number of arrivals must always
exceed the number of departures (in the backward direction) out
lll. ANALYSIS of the total number of paths with — 1 arrivals and: — ¢ de-

In the analysis we distinguish between the simple case Rartures igg —1)/(2k — g — 1). Consequently, the probability
which the buffer can contain a complete bidek > n) and the that upork arrivals and: — g departures, the number of arrivals
more complicated case that the block is larger than the bufffceeds the number of departuresgipr the first time in the

(n > m). kth arrival epoch (Event A) is
A. CASE i): The Buffer Can Contain a Complete Block _g9=1 (2k—g-—1 PELgke 3)
(m > n) 2k—g—1 k-1

The case that the buffer can contain a complete black> It now remains to compute the probability of Event B, i.e.,

n) is relatively simple, since if the buffer ever becomes empthe probability that no more packets of the block are lost after
during the arrival of the packets of the block, no further packetise kth packet is lost. Since upon the arrival of tkid packet
from the currently arriving block will be lost, since there ighe buffer is full (otherwise, th&th packet would not have been
enough room for all packets. Therefore, if thid packet of the lost), we conclude from Lemma 2 that we should consider only
block is lost, the buffer could not have been empty at any of thigose paths in which the number of departures is not smaller than
arrival epochs of the preceding packets of the block. the number of arrivals until the last packet of the block arrives.
In the following we start with the computations of the probFurthermore, once the number of departures is &, the rest
abilities P;(j,n) that together with (1) yield’(j,n). We then of the path is irrelevant since enough space is available to insure
provide a much simpler expression fB(j, n) directly. that no more packets will be lost. Therefore, we consider only
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those paths for which the number of departures-isk and the P(j,n) directly. In fact, we can show that the probabilities of
number of arrivals can obtain any value betw@eandn — k. losing at leas}j packets out of a block of packets,P(> j,n),
Note that the buffer does not become empty for such paths, siimegiven by

it starts with a full buffer and the number of departures is smaller " ) .

than the buffer sizen(n — k < n < m). To insure we count  p(> j ) = II(m) Z J—1 <2h -] 1)

disjoint paths, we consider paths for which the last event is a ) 2h—j—1 h-1

departure. The probability of each path with- & departured,
arrivals, and the last event is a departurgig™ %1 = plg"—* N . .
and their number i§"~*'*). Note thatd <1 < n —k — 1 ~ Ti(m) Z J <2h o 2)
since the last event is a departure. The proportion of the number 2h—j -2 h—1

of paths in which the number of departures is not smaller than

the number of arrivals out of the total number of paths with

n—k departures antarrivals is again obtained using the BalloDbviously,
Theorem to yieldn — & — 1)/(n — k). Combining the above

we obtain the probability of Event B, i.e., the probability that no P(j,n)=P(=j,n)—P(=j—1n)
more packets of the block are lost after ftth packet is lost

h=j
Xph lqh J(n—h—i—l)

h=j+1
% ph—lqh—j—l(n —h + 1) (5)

so we have a very simple expression to comptitg, ») that
—k—1 n—k=1(n—k—1+1\ ; .4 requires onhyO(m-+n—j+1) computations (the: comes from

Z p— < I ) " (4) the need to computd(m)) which is a substantial improvement

=0 over of the complexity of)(m + n;j?) computations required

o : . by the expressions obtained in [2].
Combining (2)—(4) and using the fact thal(j,n) = 0 for L
1<k < m—i+j (sincem — i packets of the block can To derive (5) we letX; , (I1,l2,...,ln are consecutive

be accommodated into the buffer and cannot be lost) we obtgf’ﬁCkEts in the block) be the set of al paths in which packets
fori=01..mmn>11<j<n andl;,(j < h < n) are lost ang — 2 packets are lost between

them (so a total ofj packets are lost). Each of these paths
~ g—1 2k —g—1\ ni1 ry can be divided into two parts. a) The loss of padkevhose
Z 2k—g—1 < E—1 )p q probability isII(m). b) The rest of the path that starts right after
k=g the loss of packel; and ends with the loss of packigtwhich
" k=l fn—k—1 +1\ { . Isthejthloss. The probability of this part is the probability of
X Z Tn—Fk < l ) a path that containk — 1 arrivals (packet$;,ls, ..., l;), h—J
departures, and the first time the number of arrivals exceeds
where we recall thay = m — ¢ + j, and we define an empty the number of departures ky— 1 (remembell; was lost, so
sum to be one and fdr = g = 1 define the first term as one aswe need anothef — 1 losses) is afteeh — j — 1 events. This
well (¢ = 1ifand only ifi = m andj = 1, i.e., when the first probability has been derived in (3) and is given by
packet is lost). Obviously,

, , b —G—1\ pq ps
n (‘7—1)/(2’1—]—1)( h_‘jl )p’ g
Bi(0,n) = 1= Pi(j,n).
=1 Therefore,
From the above discussion it is clear that if we are interested X7 ] =Ti(m) J—1 2h—j5 -1 Pl
in the probability of losingat leastj packets out of a block of ftu 2h—j—1 h—1 )

n packets given that there wer@ackets in the buffer upon the
arrival of the first packet of the block (€%, (> j,n) denote this
probability), then we only have to sum (3) over/alkince Event
B is irrelevant in this case. The result is

Note that the above probability does not depend, and/;, but
only on the number of packetsbetween them. The number of
possible pairs of packets that dreplaces apart within a block
of sizen isn — h+ 1. However, if we sum the above probability
“og—1 2k —g—1\ 4 1 x_yg over all possible pair§ >, _; Prob[X] , [(n — h + 1) a path
Z %k—g—1 < E—1 )p q that containg/ +¢ (0 < t < n — j) losses will be counted
k=g t + 1 times (once for every consecutive losses). Therefore, in
where fork = g = 1 the first term is defined as one. Obviouslyorder to insure that each path is counted exactly once, we need
to subtract each path that contajns ¢ losseg times. Using the
Pi(j,n) = Pi(z j,n) - P(zj—1n) same reasoning ifwe compig)_ . | Prob[X{ " [(n—h+1),
each path that contairfg + 1) + ¢ losses will be countetl+ 1
times, but this is exactly what we need to subtract, hence (5).

Pi(=j,n) =

so we have an alternate expression to complité, ») that re-
quires onlyO(n —j+1) computations. The fact that our expres-
sion requires less computationsjascreases is not surprising, Remark: It is easy to see that the expressions derived above
since we are looking at the last packet to be lost, anglias can be used as long as< m + j since, for these parameters, if
creases, the number of ways to choose that packet decreasake buffer ever becomes empty during the arrival of the packets

2) ComputingP(j,n): Using asimilar approach to that pre-of the block, there is no possibility that the number of arrivals
sented in the previous section we can compute the probabilitiedl exceed the number of departuresfay+ j.
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Fig. 2. A typical path withy losses.

B. CASE ii): The Block is Larger than the Bufigr > m) By definition, s(k;, ki+1) = O whenk; > kiqq forl <1 <
g 1. Therefore, (6) can be rewritten as

. Z Ui(k'l)s(k'l, /{}2) e
kal

s(kj—1,k;)ulk;)

The analysis presented in this section is rather general an
holds for any set of parametensm. Yet, it is more complex P(j,n) = Z
than the analysis presented for Case i) above, and the exprezé—’
sions obtained are much more complex. Note that Altman and
Jean-Marie [2] did not provide expressions fBxj,n) for ) _
blocks larger than the buffer. In this section, we also deri in @ matrix form '

P,(j,n) first and then show the derivation &f(j, 7). P(jn)=V,;.- 8. u* (7)

As we observed from Lemma 1, if upon the arrival of the firsyhereV; andU aren-length row vectors with elements(.)
packet of the block the buffer contaiisackets, tolosg(j > 1)  andu(-), respectively, and is ann x n matrix with elements
packets we must have that the number of arrivals exceeds fhe.). Note that the matrix$ is very simple in the sense that
number of departures by. — ¢ + j (counting from the arrival each of its rows (except the first) is identical to the previous row
of the first packet of the block until the arrival of thiéh lost with the elements moved one place to the right. Therefore, the
packet). The main difficulty in case the block is larger than théomputation 0fs? needs onlyO(j - n?) operations.
buffer is that paths with this property may cause the buffer to we now have to compute the elementsVaf U, andS$. To
become empty (even several times). As explained in Sectiontat end we consider a general path that starts when there are
the probability of a path depends on the number of times the < , < m) packets in the buffer, ends with(1 < ;. < m)
buffer empties along this path, and counting the number of paMkets in the buffer, containg0 < 7 < 2n + . — ) events
is rather complex. (arrivals and departures), and no packets are lost;\(ety.) be

To carry the analysis consider a typical path (see Fig. 2) thie probability of such a path. We can express the values of the
starts upon an arrival of the first packet of the block when theggements o¥/;, U and$ using the quantitie$, (¢, 1«) as follows.
aret packets in the buffer, containspacket arrivals of which Expression for v; (k1 ):

J (4 = 1) are lost. Denote théh lost packet by (1 <1 < j, If the first packet of the block arrives at a full buffer, it is lost
ki < ky <--- < kj;). We note that such a path can be decommd no other packet can be the first to be lost. Otherwise, that
posed into three types of mutually exclusive events as followfirst packet joins the buffer so the evolution of the path starts
with . = i+ 1 andn — 1 packets still to arrive. For thie, packet
to be the first lost packet, there must be an epoch after the arrival
ofthek; —1 packet that the bufferis full, i.e., = m and the next
. . . eventis an arrival. Up to that epoch, the number of arrivals must
Event S(k, ki+1): packetky: is lost given that packel; oy cooq the number of departures by exagthy:—1 (otherwise,
was lost. the buffer would not be full). The number of arrivals up to that
Event((k;): packetk; is the last to be lost. epoch isk; — 2 (from the second arrival until the arrivals of
Clearly, a path is a succession of events pg(lzlget/? t—Il), sobtheor;]umgzr of depqrtu:;eskjﬁ—t mé— ¢ _b'l to
yield a total number ofy = 2k; —m +4 — 3 events. Combining
Vike), S(ky, k), S(ka, ka), .., S(kjmy, ky) UK. the above we get (8) at the bottom of the following page.

Let v;(k1), s(ki, kiy1) and u(k;) be the probabilities of Expression for s(kz, ki1):
eventsV;(ki), S(ki, kip1) andid(k;), respectively. It is clear  Right after the arrival and loss of pacKethe buffer is full so
that . = m. Right before the arrival of packéi, ; the buffer must

‘ _ be full, i.e.,;» = m and the next event is an arrival (of packet
F1,n) Z vilk (k) ki+1) SO we have to multiply our probability kpy Since we start

k1=1ko=1

Event V;(k;): the first packet to be lost i&; given that
upon an arrival of the first packet of the block there are
packets in the buffer.

’:__11 n and end with a full buffer, the number of arrivdlg.;, — &; — 1
‘ _ ‘ equals the number of departures and the total number of events
Fi@,n) k§1 k2§+1vz(/€1)8(/€1, bz Julks) isn = 2(kiy1 — k; — 1). Therefore,
and in the general case s(kt, kiy1) = p - Cogrysy —ky—1) (M, m) 9)
g n—jitl n Expression for u(k;):
BGn)=>_ > o > wilk)s(ky k). It is clear that ifk; is the last packet of the blogl; = n)
ki=lhko=ki+l  kj=hj_1+1 then no packets can be lost after it, ig(n) = 1. We now con-

s(kj_1,kj)u(k;). (6) sider the cases for which; < n. From the proof of Lemma 2
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we conclude that in order to computék, ) it suffices to con- where—co < T < oo takes values in the above sums so that the
sider the path until the epoch that the- k;th departure oc- binomial coefficients are proper (e.g., in the first sifid < b
curs, starting to count after the arrival of packet(since after anda > —Td).

that there is sufficient buffer space for the rest of the block). . . .
. . - " The quantityV;, (¢, 1) can now be computed by identifying
In order to avoid counting a path more than once, we con5|de|rth arrivals,b with departuresg with the threshold by which
only those paths that end with a departure and look at the paﬁus ' P ¢ y
Iti-

riaht before that departure. so our probability should be multee number of arrivals must exceed the number of departures in
9 b f P Y order to lose a packet, ard- d with the threshold by which the

plied by g to take care .Of th_at departure. So the total numb%hmber of arrivals must be behind the number of departures in
of departures we consider is — k; — 1. Let h be the total

number of arrivalsh < n — k; — 1) to avoid losses and orijerfleinptgrrgzEUffe_ii,ll-tecf)l,:b(gi—nHru)/lb=(77+b—u)/2,
h > max(0,n — k; — m) since the difference between the”~ """ =m

number of departures, including the last one, and the number Ny(eo ) = Z K . Ui )

of arrivals cannot exceesh, so the total number of events is T — [\ 5" = T(m+1)

n =mn—k; — 14 h and we have n
u:m—(n—kj—l)—i—h:m—n—l—kj—i—h—i—l _<n_;_”—T(m+1)>:|

packets in the buffer. Consequently, we get (10) at the bottamusing (11)
of this page

To complete the analysis we need to compiite, ;). The Enltm) =Y [( P —77T(m n 1)>
main difficulty in computing these probabilities is that for a T 2

given number of arrivals and a given number of departures, the B n pm GEEr)
number of times the buffer may become empty dependsg on Tt —T(m+1)
and p. v>21, p=1l. (12)

We begin by considering paths that do not cause the bufferd%i
ever become empty. Léf (2, 1) be the probability of such paths
(1<e<m 1< p<mfe—pl <n<2n+0—pandby
definition &o(¢, 1) = 1 for ¢ = pandéop(e, i) = 0 for v # ).
Such a path contain® — « + u)/2 arrivals andn + ¢ — 11)/2
departures. Therefore,

Sn(b,u) _ Nn(bvli)p (11) ST](Ovu) = Sn—l(laﬂ)a w1 (13)

whereN, (1, 1) is the number of such paths. This number canimilarly, we can compute the probability of paths with

be computed by applying the following Ballot problem [3]. events that start with > 1 packets in the buffer, e_nd with an
empty buffer(;s = 0) and do not become empty in between.

Ballot Theorem: In a ballot, candidatel scoresu votes | et ¢, (:,0) be this probability. Then since the buffer becomes

and candidateB scoresb votes, and all the possible VOtingempty upon a departure that occurs with probabjjitye have
records are equally probable. Let- d < a — b < ¢ where

ng (12) we can easily compute the probability of paths with
7n events that start with an empty buffer= 0), end withp > 1
packets in the buffer, and do not become empty in between. Let
&,(0, 1) be this probability. Then since the next event when the
buffer is empty is an arrival with probability one we have

n—rtu  nti—p
2 2

0 < ¢ < d are integers. The number of possible arrangements §n(,0) = g&y-1(e, 1), 021 (14)
of votes such that candidateis always ahead of candidai2  Combining (13) and (14) we obtain the probability of paths that
by less thar: votes and more than— d votes is start and end with an empty buffer and do not become empty in

Z[( a—i—b)_( atb )} between
— [\b—Td b+c—Td £,(0,0) = g&,—2(1,1). (15)
1, k=1
vm (k1) = {0, otherwise
‘ . 0, ki <m-—1 p
Uz(kl) B {p N C2k1—rn+i—3(i + 17 m)7 otherwise ' ?é - (8)
n—kj—l
u(k;) = q Z Cnfkj*1+h(m7 m—n+k;+h+1), ki <mn (20)

lh=max(0,n—k;—m)

1, k‘j =n.
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__E(Jvent)_ﬂ__ o —rie Event
y 11712

y(l,,zm)—"“ s —<Event Z+
IR S R B B B

first packet e; - first e - second e - I-th eir1 - (L +1)-st e, - last last QaCket
arrival empty empty empty empty empty arrival

— BEvent W, —

Fig. 3. A typical path for which the buffer becomes emptgimes.

In order to continue, we need to take into account also thogg, -). The elements of these vectors and matrix can be easily
paths that do cause the buffer to become empty. Note that a pggmputed using (12). For instance, thle (0 < [ < R — 1)
that starts when there aregpackets in the buffer, ends witlh element of the vectdd, is the probability that this part of the
packets in the buffer, and containevents can become emptypath starts with packets in the buffer, ends with an empty buffer
only if n > ++p and at mostR = 1+ (n—¢— p)/2 times after. + 21 events, and the buffer does not become empty in be-
(n—¢—p is obviously an even number). Furthermore, the firdgtveen. By definition, this quantity is jugt, (¢, 0). Therefore,
time the buffer can become empty is afieevents (all must
be departures) and the last time it can become empty after W, = (SL(L, 0),&42(t,0),. .., Eqar—1) (¢, 0)) .
i events (and all the regt events must be arrivals). Also, the
buffer can become empty only after eventsi2, . .., +2(R—1)  Similarly, thelth (0 < I < R — 1) element of the vectaZ is
(all must be departures). Lét be the set of these events, i.e.the probability that this part of the path starts with no packets
€ = {,t+2,...,0.+2(R — 1)}. Consider now paths thatin the buffer, ends with packets in the buffer aftey — . + 21
the buffer becomes empty exactly1 < r < R) times along events, and the buffer does not become empty in between. By
the path. Denote thith event that causes the buffer to becoméefinition, this quantity is jus§, —,42:(0, 1). Therefore,
empty bye;(1 <1 <r,ep € €,e1 < ez < - <e.). Wenote
that such paths can be decomposed into three types of mutuallyZ = (§y—.(0, 1), &5——2(0,48), - - -, &y m2(r—1) (0, 1))

exclusive events as follows. ) )
Finally, thel;,15(0 < [3,l> < R — 1) element of the matri¥”

Event W, (c1): the first time the buffer becomes empty iSs the probability that this part of the path starts and ends with
upone; given that the path started withpackets in the o packets in the buffer afteX(l, — I;) events and the buffer
buffer. does not become empty in between. By definition, this quantity
Event Y(ei, e141): the buffer becomes empty upeq;: s justés,—;,)(0,0). Therefore,

after becoming empty upo#y and was not empty in be-

tween the two events. 0 £(0,0) &(0,0) -+ &yr-1)(0,0)
Event Z(e,.): upone, the buffer becomes empty for the 0 0 £2(0,0) -+ &xr-2(0,0)
last time. ) ) ) ) )
Y =
Clearly, a path with the above properties is a succession of . . . .
events.WL(el),y(el,CQ), Viea,es),..., V(er_1,¢r), Z(ey) 0 0 0 £2(0,0)
(see Fig. 3). 0 0 0 0

Let w,(e1), y(er, erq1), and z(e,.) be the probabilities of
eventsW, (e1), Ve, e141), and Z(e,.), respectively. It is clear Note that the matri¥” is very simple in the sense that each of
that the probability that such a path will cause the buffer tits rows (except the first) is identical to the previous row with

become empty once 5., .. w.(c1)z(e1), twice the elements moved one place to the right. Therefore, the com-
putation ofY’ needs onlyO(j - n?) operations.
Z Z w,(e1)y(ey, e2)z(es) To obtaing, (¢, ) we just need to sum over all paths that cause

C1EE€ erEE cn>er the buffer to become empty0 < » < R) times, i.e.,

and, in general; times R o
Cn([’a N) = SU(IH N) + Z W,,Y1 IZT'

Z Z Z w,(er)y(er, e2) - -yler—1,er)2(e;) (16) r=1
AEEeCE  ercl The computation of, (¢, ;) needsD(R? -n?) operations. Once

where we used the fact thafe;, ¢;41) = 0 whene; > ¢4, for  Gy(¢, 1) is known for all parameters, we use (8) and (10) to com-
1 <1< r— 1. Equation (3) can be written in a matrix form  pute the vector¥’; andU, respectively, and (9) to compute the
matrix S. Finally, (7) is used to comput&;(j,n) (recall that
w, Yy t.z" Pi(0,n) = 1 =37, Pi(j,n)).
Having completed the computation Bf(5, ») we note that
whereW , andZ areR-length row vectors with elements, (-) '
andz(-), respectively, an® is anR x R matrix with elements P(>jn)=V; -8 *.¢"
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